The various faces of a pairing on *p*-units

Romyar Sharifi

Max Planck Institute of Mathematics Bonn, Germany

Basic objects:

Let K be a number field, a finite extension of \mathbf{Q} in a fixed algebraic closure $\overline{\mathbf{Q}}$ of \mathbf{Q} .

Let \mathcal{O}_K be the *ring of integers* of K, consisting of all roots in K of monic polynomials with integral coefficients.

Let CI_K denote the *class group* of K, the quotient of the semigroup of nonzero ideals of \mathcal{O}_K by the nonzero principal ideals.

Let h_K be the *class number* of K, the order $|CI_K|$ of CI_K .

Example. The ring of integers of $Q(\sqrt{-5})$ is $Z[\sqrt{-5}]$. The class number $h_{Q(\sqrt{-5})}$ is 2, and the image of $(2, 1 + \sqrt{-5})$ generates $Cl_{Q(\sqrt{-5})}$.

Irregular primes and Bernoulli numbers:

A prime number p is called *regular* if $p \nmid h_{\mathbf{Q}(\mu_p)}$. Otherwise, p is called *irregular*.

Example. 37, 59 and 67 are the smallest three irregular primes.

Remark. Kummer proved Fermat's Last Theorem for regular odd primes in 1850.

Let B_k denote the kth Bernoulli number, which is defined by the power series

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k.$$

p is regular if and only if p does not divide the numerator of B_k/k for any positive even k(with $k \le p-3$).

Example. 37 | B_{32} , 59 | B_{44} , 67 | B_{58} , and 691 | B_{12} .

Eigenspaces:

Henceforth, $K = \mathbf{Q}(\mu_p)$ for an odd prime p. Let $\Delta = \operatorname{Gal}(K/\mathbf{Q}) \cong (\mathbf{Z}/p\mathbf{Z})^{\times}$.

Consider the *p*-adic integers $\mathbf{Z}_p = \lim_{n \to \infty} \mathbf{Z}/p^n \mathbf{Z}$.

We define the Teichmüller character

$$\omega \colon \Delta \to \mu_{p-1}(\mathbf{Z}_p) \subset \mathbf{Z}_p^{\times}$$

by $\delta \zeta = \zeta^{\omega(\delta)}$ for $\delta \in \Delta$, $\zeta \in \mu_p$.

Any $\mathbf{Z}_p[\Delta]$ -module A breaks up into eigenspaces

$$A = \bigoplus_{i=0}^{p-2} A^{(i)}$$

where for $i \in \mathbb{Z}$, an element $\delta \in \Delta$ acts through multiplication by $\omega(\delta)^i$ on $A^{(i)}$.

Also, if $\sigma \in \Delta$ has order 2, then we have a decomposition $A = A^+ \oplus A^-$, where $\sigma a = \pm a$ for $a \in A^{\pm}$.

L-functions:

Recall the complex ζ -function, which is an analytic function on $\mathbf{C} - \{1\}$ with

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

for $\operatorname{Re} s > 1$.

For k even, we have p-adic L-functions $L_p(s, \omega^k)$ defined on $s \in \mathbb{Z}_p$ (Kubota-Leopoldt).

The *p*-adic *L*-functions interpolate special values of $\zeta(s)$ as follows:

$$L_p(1-k,\omega^k) = \zeta(1-k) = -\frac{B_k}{k}$$

when $k \geq 2$ and $k \not\equiv 0 \mod p - 1$.

Orders of class groups:

Let A_K denote the *p*-part of CI_K .

Theorem (Mazur-Wiles). For $k \not\equiv 0 \mod p-1$ even,

$$|A_K^{(1-k)}| = |\mathbf{Z}_p/L_p(0,\omega^k)|.$$

The above theorem is a weak form of the Main Conjecture of Iwasawa theory. It relates an arithmetic object with a (p-adic) analytic object.

This, plus $A_K^{(1)} = 0$, describes the size of A_K^- .

Vandiver's conjecture:

As for A_K^+ , we have the following conjecture.

Conjecture (Vandiver). $A_K^+ = 0$.

Vandiver's conjecture is known to hold for p < 12,000,000 (Buhler, et. al.)

If Vandiver's conjecture holds, then $A_K^{(1-k)}$ is cyclic for any even k.

Note. For simplicity of presentation, we will assume Vandiver's conjecture at p for the remainder of the talk.

All statements can be modified, when necessary, so as to remove this assumption.

A cup product pairing:

 $R_K = \mathbf{Z}[\mu_p, \frac{1}{p}]$ is the ring of *p*-integers of *K*. $\mathcal{E}_K = R_K^{\times}$ is the group of *p*-units of *K*.

McCallum and I defined a pairing

$$(,)_K : \mathcal{E}_K \times \mathcal{E}_K \to A_K \otimes \mu_p.$$

which arises from the cup product in étale (or Galois) cohomology

 $H^1(\operatorname{Spec} R_K, \mu_p)^{\otimes 2} \xrightarrow{\cup} H^2(\operatorname{Spec} R_K, \mu_p^{\otimes 2}).$

Conjecture (McCallum-S). $(,)_K$ is surjective.

Theorem (S). $(,)_K$ is surjective for p < 1000.

Special values:

Fix a primitive *p*th root of unity ζ . The image of ζ generates $(\mathcal{E}_K/\mathcal{E}_K^p)^-$.

For odd i, we have special p-units

$$\eta_i = \prod_{u=1}^{p-1} (1 - \zeta^u)^{u^{i-1}}.$$

The image of η_i generates $(\mathcal{E}_K/\mathcal{E}_K^p)^{(1-i)}$.

For i odd and k even, we have

$$(\eta_i, \eta_{k-i})_K \in A_K^{(1-k)} \otimes \mu_p \hookrightarrow \mathbf{Z}/p\mathbf{Z},$$

and these values determine $(,)_K$.

McCallum and I explicitly computed these values for fixed k up to a possibly zero scalar for each k and p < 10,000.

Table of pairings:

p = 37, k = 32 (1 26 0 36 1 35 31 34 3 6 2 36 1 0 11 36 11 26)

p = 59, k = 44 (1 45 21 30 14 35 5 0 48 57 7 52 2 11 0 54 24 45 29 38 14 58 27 32 15 0 44 27 32)

p = 67, k = 58 (1 45 38 56 0 47 62 9 29 15 65 26 45 57 0 10 22 41 2 52 38 58 5 20 0 11 29 22 66 2 24 43 65)

p = 101, k = 68 (1 56 40 96 26 63 0 61 81 71 35 92 73 64 6 88 0 0 13 95 37 28 9 66 30 20 40 0 38 75 5 61 45 100 17 17 12 66 72 53 86 31 70 15 48 29 35 89 84 84)

p = 103, k = 24

(1 70 17 22 77 25 78 26 81 86 33 102 18 4 26 92 77 54 88 90 23 26 57 0 11 86 70 85 85 97 57 0 46 6 18 18 33 17 92 0 46 77 80 13 15 49 26 11 77 99 85)

p = 131, k = 22(1 35 74 129 81 0 50 2 57 96 130 0 38 8 81 67 83 64 3 127 107 0 34 69 23 105 34 64 100 105 70 73 37 13 118 114 124 36 95 7 17 13 118 94 58 61 26 31 67 97 26 108 62 97 0 24 4 128 67 48 64 50 123 93 0)

Milnor *K*-groups:

Define

$$K_2^M(R_K) = \frac{\mathcal{E}_K \otimes \mathcal{E}_K}{\langle x \otimes (1-x) \mid x, 1-x \in \mathcal{E}_K \rangle}$$

We have a canonical homomorphism

$$K_2^M(R_K) \to K_2(R_K),$$

where $K_2(R_K)$ is the usual algebraic K_2 -group.

Remark. If R_K is replaced by any field and \mathcal{E}_K by its multiplicative group, the above map is an isomorphism (Matsumoto).

Surjectivity of $(,)_K$ can be reinterpreted as the following equivalent statement.

Conjecture (McCallum-S). The map

 $K_2^M(R_K) \otimes \mathbf{Z}_p \to K_2(R_K) \otimes \mathbf{Z}_p$

is surjective.

Class groups of Kummer extensions:

Class groups of large, nonabelian number fields are notoriously hard to compute. The pairing affords us a means of doing this.

The pulling affords us a means of doing t

For
$$i \ge 1$$
 odd, let $L_i = K(\eta_i^{1/p})$.

Let A_{L_i} denote the *p*-part of Cl_{L_i} . Let B_{L_i} denote the quotient of A_{L_i} by the classes of the primes of L_i that lie above *p*.

Theorem (McCallum-S). The norm map on ideal classes $B_{L_i} \rightarrow A_K$ is an isomorphism if and only if $(\eta_i, \cdot)_K$ is surjective.

As a result, we can determine exactly when A_{L_i} and B_{L_i} are isomorphic to A_K for p < 1000.

K-groups of **Z**:

For each $i \ge 2$ and j = 1, 2, we have surjective cycle class maps (Soulé, Dwyer-Friedlander)

 $c_{i,j}: K_{2i-j}(\mathbf{Z}) \otimes \mathbf{Z}_p \to H^j(\operatorname{Spec} \mathbf{Z}[1/p], \mathbf{Z}_p(i)).$

Quillen and Lichtenbaum conjectured the following. It is a consequence of a conjecture of Bloch-Kato, a proof of which has recently been announced.

Theorem (Voevodsky-Rost). Each $c_{i,j}$ is an isomorphism.

This allows us to prove the following.

Theorem (S). For i odd and k even with i, k - i > 1, the product map

 $K_{2i-1}(\mathbf{Z}) \otimes K_{2(k-i)-1}(\mathbf{Z}) \to K_{2k-2}(\mathbf{Z}) \otimes \mathbf{Z}_p$ is surjective if and only if $(\eta_i, \eta_{k-i})_K \neq 0$.

This yields which products on odd K-groups of \mathbf{Z} are surjective onto p-parts for p < 1000.

The fundamental group of $P^1 - \{0, 1, \infty\}$:

 $\pi_1 = \pi_1(\mathbf{P}^1(\mathbf{C}) - \{0, 1, \infty\})$ is a free group on two generators.

Let $\pi_1^{\text{pro}-p}$ be the pro-*p* completion of π_1 . There is a canonical "representation"

$$\rho_p$$
: Gal($\bar{\mathbf{Q}}/\mathbf{Q}$) \rightarrow Out($\pi_1^{\mathsf{pro}-p}$).

through which Ihara defined a filtration on $G_{\mathbf{Q}}$, the graded pieces of which form a graded \mathbf{Z}_{p} -Lie algebra \mathfrak{g}_{p} .

For each odd $i \geq 3$, one can choose special nontrivial elements $\sigma_i \in \operatorname{gr}^i \mathfrak{g}_p$ (Soulé-Ihara).

Conjecture (Deligne). The graded Lie algebra $\mathfrak{g}_p \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ is freely generated by the σ_i .

Theorem (Del.-Beilinson, Hain-Matsumoto). $\mathfrak{g}_p \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ is generated by the σ_i .

Properties of \mathfrak{g}_p :

As for \mathfrak{g}_p itself, we have the following.

Theorem (S). Assume Deligne's conjecture. 1. If p is regular, \mathfrak{g}_p is generated by the σ_i . 2. If p is irregular and $(,)_K$ is surjective, \mathfrak{g}_p is not generated by the σ_i .

Ihara studied a "mysterious relation" in a certain Lie algebra of derivations containing g_{691} , which led him to conjecture the following.

Theorem (S). There is a relation in $gr^{12}\mathfrak{g}_{691}$ of the form

 $[\sigma_3, \sigma_9] - 50[\sigma_5, \sigma_7] = 691h$

with $h \notin [\mathfrak{g}_{691}, \mathfrak{g}_{691}]$.

The coefficients 1 and -50 are, modulo 691 and up to a particular isomorphism

$$A_K^{(1-12)} \otimes \mu_{691} \cong \mathbb{Z}/691\mathbb{Z},$$

the values $(\eta_3, \eta_9)_K$ and $(\eta_5, \eta_7)_K$.

Hecke algebras:

Let T denote the ordinary cuspidal Hecke algebra of weight 2, level p, and character ω^{k-2} .

T is generated by Hecke operators T_l with $l \neq p$ prime and U_p , and T contains an ideal I called the *Eisenstein ideal* which contains $U_p - 1$.

Theorem (S). $(p, \eta_{k-1})_K \neq 0$ if and only if $U_p - 1$ generates the group I/I^2 .

This theorem and a computation imply the surjectivity of (,) $_{K}$ for p<1000.

Remark. $U_p - 1$ relates directly to the value at 1 of the *p*-adic *L*-function of a cusp form congruent to an Eisenstein series modulo *p*.

Modular Forms:

Let k be a positive even integer. Let G_k denote the normalized Eisenstein series of weight k and level 1:

$$G_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n,$$

where $\sigma_{k-1}(n) = \sum_{1 \leq d \mid n} d^{k-1}$, $q = e^{2\pi i z}$.

Assume that p divides the numerator of B_k/k .

There exists a weight k cusp form

$$f = \sum_{n=1}^{\infty} a_n q^n$$

for $SL_2(\mathbf{Z})$ which is a Hecke eigenform and satisfies a certain mod p congruence with G_k .

Sketch of a conjectural relationship:

There is a *p*-adic *L*-function $L_p(f,s)$ interpolating special values of the classical *L*-function

$$L(f,s) = \sum_{n=1}^{\infty} a_n n^{-s},$$

up to certain transcendental periods (Manin, Mazur-Tate-Teitelbaum).

Normalizing, we may reduce the $L_p(f,i)$ for odd i with $1 \le i \le k-1$ modulo the maximal ideal \mathfrak{m} of the ring of integers of $\overline{\mathbf{Q}_p}$.

The reductions $\overline{L_p(f,i)}$ of the $L_p(f,i)$ modulo \mathfrak{m} are \mathbf{F}_p -proportional.

Conjecture (S). The values $\overline{L_p(f,i)}$ and the values $(\eta_i, \eta_{k-i})_K$ for odd i with $1 \le i \le k-1$ define the same element of $\mathbf{P}^{k/2-1}(\mathbf{F}_p)$.