The various faces of a pairing on p-units

Romyar Sharifi

Max Planck Institute of Mathematics
Bonn, Germany
Basic objects:

Let K be a number field, a finite extension of \mathbb{Q} in a fixed algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}.

Let \mathcal{O}_K be the ring of integers of K, consisting of all roots in K of monic polynomials with integral coefficients.

Let Cl_K denote the class group of K, the quotient of the semigroup of nonzero ideals of \mathcal{O}_K by the nonzero principal ideals.

Let h_K be the class number of K, the order $|\text{Cl}_K|$ of Cl_K.

Example. The ring of integers of $\mathbb{Q}(\sqrt{-5})$ is $\mathbb{Z}[\sqrt{-5}]$. The class number $h_{\mathbb{Q}(\sqrt{-5})}$ is 2, and the image of $(2, 1 + \sqrt{-5})$ generates $\text{Cl}_{\mathbb{Q}(\sqrt{-5})}$.
Irregular primes and Bernoulli numbers:

A prime number p is called regular if $p \nmid h_{\mathbb{Q}(\mu_p)}$. Otherwise, p is called irregular.

Example. 37, 59 and 67 are the smallest three irregular primes.

Remark. Kummer proved Fermat’s Last Theorem for regular odd primes in 1850.

Let B_k denote the kth Bernoulli number, which is defined by the power series

$$
\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k.
$$

p is regular if and only if p does not divide the numerator of B_k/k for any positive even k (with $k \leq p - 3$).

Example. 37 | B_{32}, 59 | B_{44}, 67 | B_{58}, and 691 | B_{12}.
Eigenspaces:

Henceforth, \(K = \mathbb{Q}(\mu_p) \) for an odd prime \(p \). Let \(\Delta = \text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^\times \).

Consider the \(p \)-adic integers \(\mathbb{Z}_p = \lim \downarrow \mathbb{Z}/p^n\mathbb{Z} \).

We define the Teichmüller character

\[
\omega: \Delta \to \mu_{p-1}(\mathbb{Z}_p) \subset \mathbb{Z}_p^\times
\]

by \(\delta \zeta = \zeta^{\omega(\delta)} \) for \(\delta \in \Delta, \zeta \in \mu_p \).

Any \(\mathbb{Z}_p[\Delta]\)-module \(A \) breaks up into eigenspaces

\[
A = \bigoplus_{i=0}^{p-2} A^{(i)}
\]

where for \(i \in \mathbb{Z} \), an element \(\delta \in \Delta \) acts through multiplication by \(\omega(\delta)^i \) on \(A^{(i)} \).

Also, if \(\sigma \in \Delta \) has order 2, then we have a decomposition \(A = A^+ \oplus A^- \), where \(\sigma a = \pm a \) for \(a \in A^\pm \).
L-functions:

Recall the complex \(\zeta \)-function, which is an analytic function on \(\mathbb{C} - \{1\} \) with

\[
\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}
\]

for \(\text{Re } s > 1 \).

For \(k \) even, we have \(p \)-adic \(L \)-functions \(L_p(s, \omega^k) \) defined on \(s \in \mathbb{Z}_p \) (Kubota-Leopoldt).

The \(p \)-adic \(L \)-functions interpolate special values of \(\zeta(s) \) as follows:

\[
L_p(1 - k, \omega^k) = \zeta(1 - k) = -\frac{B_k}{k}
\]

when \(k \geq 2 \) and \(k \not\equiv 0 \text{ mod } p - 1 \).
Orders of class groups:

Let A_K denote the p-part of Cl_K.

Theorem (Mazur-Wiles). For $k \not\equiv 0 \mod p-1$ even,

$$|A_{K}^{(1-k)}| = |\mathbb{Z}_p / L_p(0, \omega^k)|.$$

The above theorem is a weak form of the Main Conjecture of Iwasawa theory. It relates an arithmetic object with a (p-adic) analytic object.

This, plus $A_{K}^{(1)} = 0$, describes the size of A_{K}^{-}.
Vandiver’s conjecture:

As for A^+_K, we have the following conjecture.

Conjecture (Vandiver). $A^+_K = 0$.

Vandiver’s conjecture is known to hold for $p < 12,000,000$ (Buhler, et. al.)

If Vandiver’s conjecture holds, then $A^{(1-k)}_K$ is cyclic for any even k.

Note. For simplicity of presentation, we will assume Vandiver’s conjecture at p for the remainder of the talk.

All statements can be modified, when necessary, so as to remove this assumption.
A cup product pairing:

\[R_K = \mathbb{Z}[\mu_p, \frac{1}{p}] \] is the ring of \(p \)-integers of \(K \).
\[\mathcal{E}_K = R_K^\times \] is the group of \(p \)-units of \(K \).

McCallum and I defined a pairing

\[(,)_K : \mathcal{E}_K \times \mathcal{E}_K \to A_K \otimes \mu_p. \]

which arises from the cup product in étale (or Galois) cohomology

\[H^1(\text{Spec } R_K, \mu_p)^\otimes 2 \cup H^2(\text{Spec } R_K, \mu_p^\otimes 2). \]

Conjecture (McCallum-S). \((,)_K\) is surjective.

Theorem (S). \((,)_K\) is surjective for \(p < 1000 \).
Special values:

Fix a primitive pth root of unity ζ. The image of ζ generates $(E_K/E_K^p)^-$. For odd i, we have special p-units

$$\eta_i = \prod_{u=1}^{p-1} (1 - \zeta^u)^{u^{-1}}.$$

The image of η_i generates $(E_K/E_K^p)^{(1-i)}$. For i odd and k even, we have

$$(\eta_i, \eta_{k-i})_K \in A^{(1-k)}_K \otimes \mu_p \hookrightarrow \mathbb{Z}/p\mathbb{Z},$$

and these values determine $(\ , \)_K$.

McCallum and I explicitly computed these values for fixed k up to a possibly zero scalar for each k and $p < 10,000$.
Table of pairings:

\[p = 37, \, k = 32 \]
\[(1 \, 26 \, 0 \, 36 \, 1 \, 35 \, 31 \, 34 \, 3 \, 6 \, 2 \, 36 \, 1 \, 0 \, 11 \, 36 \, 11 \, 26) \]

\[p = 59, \, k = 44 \]
\[(1 \, 45 \, 21 \, 30 \, 14 \, 35 \, 5 \, 0 \, 48 \, 57 \, 7 \, 52 \, 2 \, 11 \, 0 \, 54 \, 24 \, 45 \, 29 \]
\[38 \, 14 \, 58 \, 27 \, 32 \, 15 \, 0 \, 44 \, 27 \, 32) \]

\[p = 67, \, k = 58 \]
\[(1 \, 45 \, 38 \, 56 \, 0 \, 47 \, 62 \, 9 \, 29 \, 15 \, 65 \, 26 \, 45 \, 57 \, 0 \, 10 \, 22 \, 41 \, 2 \]
\[52 \, 38 \, 58 \, 5 \, 20 \, 0 \, 11 \, 29 \, 22 \, 66 \, 2 \, 24 \, 43 \, 65) \]

\[p = 101, \, k = 68 \]
\[(1 \, 56 \, 40 \, 96 \, 26 \, 63 \, 0 \, 61 \, 81 \, 71 \, 35 \, 92 \, 73 \, 64 \, 6 \, 88 \, 0 \, 0 \, 13 \]
\[95 \, 37 \, 28 \, 9 \, 66 \, 30 \, 20 \, 40 \, 0 \, 38 \, 75 \, 5 \, 61 \, 45 \, 100 \, 17 \, 17 \, 12 \]
\[66 \, 72 \, 53 \, 86 \, 31 \, 70 \, 15 \, 48 \, 29 \, 35 \, 89 \, 84 \, 84) \]

\[p = 103, \, k = 24 \]
\[(1 \, 70 \, 17 \, 22 \, 77 \, 25 \, 78 \, 26 \, 81 \, 86 \, 33 \, 102 \, 18 \, 4 \, 26 \, 92 \, 77 \]
\[54 \, 88 \, 90 \, 23 \, 26 \, 57 \, 0 \, 11 \, 86 \, 70 \, 85 \, 85 \, 97 \, 57 \, 0 \, 46 \, 6 \, 18 \]
\[18 \, 33 \, 17 \, 92 \, 0 \, 46 \, 77 \, 80 \, 13 \, 15 \, 49 \, 26 \, 11 \, 77 \, 99 \, 85) \]

\[p = 131, \, k = 22 \]
\[(1 \, 35 \, 74 \, 129 \, 81 \, 0 \, 50 \, 2 \, 57 \, 96 \, 130 \, 0 \, 38 \, 8 \, 81 \, 67 \, 83 \, 64 \]
\[3 \, 127 \, 107 \, 0 \, 34 \, 69 \, 23 \, 105 \, 34 \, 64 \, 100 \, 105 \, 70 \, 73 \, 37 \, 13 \]
\[118 \, 114 \, 124 \, 36 \, 95 \, 7 \, 17 \, 13 \, 118 \, 94 \, 58 \, 61 \, 26 \, 31 \, 67 \, 97 \]
\[26 \, 108 \, 62 \, 97 \, 0 \, 24 \, 4 \, 128 \, 67 \, 48 \, 64 \, 50 \, 123 \, 93 \, 0) \]
Milnor K-groups:

Define

$$K_2^M(R_K) = \frac{\mathcal{E}_K \otimes \mathcal{E}_K}{\langle x \otimes (1-x) \mid x, 1-x \in \mathcal{E}_K \rangle}.$$

We have a canonical homomorphism

$$K_2^M(R_K) \to K_2(R_K),$$

where $K_2(R_K)$ is the usual algebraic K_2-group.

Remark. If R_K is replaced by any field and \mathcal{E}_K by its multiplicative group, the above map is an isomorphism (Matsumoto).

Surjectivity of $(\langle \quad \rangle)_K$ can be reinterpreted as the following equivalent statement.

Conjecture (McCallum-S). The map

$$K_2^M(R_K) \otimes \mathbb{Z}_p \to K_2(R_K) \otimes \mathbb{Z}_p$$

is surjective.
Class groups of Kummer extensions:

Class groups of large, nonabelian number fields are notoriously hard to compute. The pairing affords us a means of doing this.

For \(i \geq 1 \) odd, let \(L_i = K(\eta_i^{1/p}) \).

Let \(A_{L_i} \) denote the \(p \)-part of \(\text{Cl}_{L_i} \).
Let \(B_{L_i} \) denote the quotient of \(A_{L_i} \) by the classes of the primes of \(L_i \) that lie above \(p \).

Theorem (McCallum-S). *The norm map on ideal classes \(B_{L_i} \to A_K \) is an isomorphism if and only if \((\eta_i, \cdot)_K \) is surjective.*

As a result, we can determine exactly when \(A_{L_i} \) and \(B_{L_i} \) are isomorphic to \(A_K \) for \(p < 1000 \).
K-groups of \mathbb{Z}:

For each $i \geq 2$ and $j = 1, 2$, we have surjective cycle class maps (Soulé, Dwyer-Friedlander)

$$c_{i,j} : K_{2i-j}(\mathbb{Z}) \otimes \mathbb{Z}_p \to H^j(\text{Spec } \mathbb{Z}[1/p], \mathbb{Z}_p(i)).$$

Quillen and Lichtenbaum conjectured the following. It is a consequence of a conjecture of Bloch-Kato, a proof of which has recently been announced.

Theorem (Voevodsky-Rost). Each $c_{i,j}$ is an isomorphism.

This allows us to prove the following.

Theorem (S). For i odd and k even with $i, k - i > 1$, the product map

$$K_{2i-1}(\mathbb{Z}) \otimes K_{2(k-i)-1}(\mathbb{Z}) \to K_{2k-2}(\mathbb{Z}) \otimes \mathbb{Z}_p$$

is surjective if and only if $(\eta_i, \eta_{k-i})_K \neq 0$.

This yields which products on odd K-groups of \mathbb{Z} are surjective onto p-parts for $p < 1000$.

13
The fundamental group of $\mathbb{P}^1 - \{0, 1, \infty\}$:

\[\pi_1 = \pi_1(\mathbb{P}^1(\mathbb{C}) - \{0, 1, \infty\}) \]
is a free group on two generators.

Let $\pi_1^{\text{pro-}p}$ be the pro-p completion of π_1. There is a canonical “representation”

\[\rho_p : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \text{Out}(\pi_1^{\text{pro-}p}). \]

through which Ihara defined a filtration on $G_{\mathbb{Q}}$, the graded pieces of which form a graded \mathbb{Z}_p-Lie algebra \mathfrak{g}_p.

For each odd $i \geq 3$, one can choose special nontrivial elements $\sigma_i \in \text{gr}^i \mathfrak{g}_p$ (Soulé-Ihara).

Conjecture (Deligne). The graded Lie algebra $\mathfrak{g}_p \otimes \mathbb{Z}_p \mathbb{Q}_p$ is freely generated by the σ_i.

Theorem (Del.-Beilinson, Hain-Matsumoto).

$\mathfrak{g}_p \otimes \mathbb{Z}_p \mathbb{Q}_p$ is generated by the σ_i.

14
Properties of g_p:

As for g_p itself, we have the following.

Theorem (S). Assume Deligne's conjecture.
1. If p is regular, g_p is generated by the σ_i.
2. If p is irregular and $(\ , \)_K$ is surjective, g_p is not generated by the σ_i.

Ihara studied a “mysterious relation” in a certain Lie algebra of derivations containing g_{691}, which led him to conjecture the following.

Theorem (S). There is a relation in $\text{gr}^{12} g_{691}$ of the form

$$[\sigma_3, \sigma_9] - 50[\sigma_5, \sigma_7] = 691h$$

with $h \notin [g_{691}, g_{691}]$.

The coefficients 1 and -50 are, modulo 691 and up to a particular isomorphism

$$A_K^{(1-12)} \otimes \mu_{691} \cong \mathbb{Z}/691\mathbb{Z},$$

the values $(\eta_3, \eta_9)_K$ and $(\eta_5, \eta_7)_K$.

15
Hecke algebras:

Let T denote the ordinary cuspidal Hecke algebra of weight 2, level p, and character ω^{k-2}.

T is generated by Hecke operators T_l with $l \neq p$ prime and U_p, and T contains an ideal I called the Eisenstein ideal which contains $U_p - 1$.

Theorem (S). $(p, \eta_{k-1})_K \neq 0$ if and only if $U_p - 1$ generates the group I/I^2.

This theorem and a computation imply the surjectivity of $(\cdot, \cdot)_K$ for $p < 1000$.

Remark. $U_p - 1$ relates directly to the value at 1 of the p-adic L-function of a cusp form congruent to an Eisenstein series modulo p.

Modular Forms:

Let k be a positive even integer. Let G_k denote the normalized Eisenstein series of weight k and level 1:

$$G_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n,$$

where $\sigma_{k-1}(n) = \sum_{1 \leq d | n} d^{k-1}$, $q = e^{2\pi i z}$.

Assume that p divides the numerator of B_k/k.

There exists a weight k cusp form

$$f = \sum_{n=1}^{\infty} a_n q^n$$

for $SL_2(\mathbb{Z})$ which is a Hecke eigenform and satisfies a certain mod p congruence with G_k.
Sketch of a conjectural relationship:

There is a \(p \)-adic \(L \)-function \(L_p(f, s) \) interpolating special values of the classical \(L \)-function

\[
L(f, s) = \sum_{n=1}^{\infty} a_n n^{-s},
\]

up to certain transcendental periods (Manin, Mazur-Tate-Teitelbaum).

Normalizing, we may reduce the \(L_p(f, i) \) for odd \(i \) with \(1 \leq i \leq k - 1 \) modulo the maximal ideal \(m \) of the ring of integers of \(\mathbb{Q}_p \).

The reductions \(\overline{L_p(f, i)} \) of the \(L_p(f, i) \) modulo \(m \) are \(\mathbb{F}_p \)-proportional.

Conjecture (S). The values \(\overline{L_p(f, i)} \) and the values \((\eta_i, \eta_{k-i})_K \) for odd \(i \) with \(1 \leq i \leq k - 1 \) define the same element of \(\mathbb{P}^{k/2-1}(\mathbb{F}_p) \).