Iwasawa Theory for Kummer Extensions

Romyar Sharifi

McMaster University

January 7, 2005

Classical Iwasawa Theory:

<u>Basic objects:</u> p prime number, F number field. K cyclotomic \mathbf{Z}_p -extension of F. $\Gamma = \text{Gal}(K/F) \cong \mathbf{Z}_p, \ \Lambda = \mathbf{Z}_p[[\Gamma]] \cong \mathbf{Z}_p[[T]].$

An Iwasawa module is a continuous Λ -module. Any Galois group of a pro-p abelian extension of K Galois over F is an Iwasawa module via conjugation (lifting elements of Γ).

Examples:

Module	Galois group over K
	of its maximal abelian pro- p
\mathfrak{X}_K	unramified outside p extension
$X_K^{}$	unramified extension
$Y_K^{}$	unramified extension in which
_	all primes above p split completely

 $\mathfrak{X}_K \twoheadrightarrow X_K \twoheadrightarrow Y_K.$

 \mathfrak{X}_K is a finitely generated Λ -module. X_K is a torsion Λ -module.

Conjecture (Iwasawa). X_K is finitely generated over \mathbf{Z}_p .

Iwasawa's conjecture holds at p if and only if the p-torsion in X_K is finite. Ferrero-Washington proved this for abelian extensions of \mathbf{Q} .

If F is abelian, then Iwasawa's Main Conjecture (Mazur-Wiles) describes the even eigenspaces of \mathfrak{X}_K in terms of the *p*-adic *L*-functions of the corresponding characters.

The Main Conjecture also describes the odd eigenspaces of X_K .

Iwasawa modules over larger extensions:

L abelian pro-p extension of K unramified outside a finite set of primes and Galois over F. $G = \text{Gal}(L/K), \ \mathcal{G} = \text{Gal}(L/F).$

Examples:

1. $L = \tilde{K}$, the compositum of all \mathbb{Z}_p -extensions of F.

Conjecture (Greenberg). $X_{\tilde{K}}$ has annihilator of height ≥ 2 as a $\mathbb{Z}_p[[\mathcal{G}]]$ -module.

Greenberg's conjecture $\Leftrightarrow X_L$ is $\mathbb{Z}_p[[G]]$ -torsion.

F totally real $\Rightarrow \tilde{K} = K$ and Greenberg's conjecture reduces to the finiteness of X_K .

In fact, Vandiver had conjectured that X_K is trivial when $F = \mathbf{Q}(\mu_p)^+$.

2. *L* is a \mathbb{Z}_p -extension of *K* Galois over *F*. Is X_L a $\mathbb{Z}_p[[G]]$ -torsion module?

If $\mu_p \subset F$, Kummer theory implies that L can be defined by the p-power roots of an element of the p-completion of K^{\times} .

Conjecture. If $F = \mathbf{Q}(\mu_p)$ and L is defined by a sequence of p-units of $K = \mathbf{Q}(\mu_p \infty)$, then X_L is $\mathbf{Z}_p[[G]]$ -torsion.

Theorem 1. Let $F = \mathbf{Q}(\mu_p)$ and $L = K(p^{1/p^{\infty}})$. For p < 1000, we have $X_L \cong X_K$.

Theorem 2 (Hachimori-S.). If *L* is a CM-field and the \mathbb{Z}_p -rank of X_K is at least 2, then X_L is not $\mathbb{Z}_p[[G]]$ -torsion.

There are unramified outside p examples for p = 157, 353, 379, etc., when $F = \mathbf{Q}(\mu_p)$.

Theorem 1 has the following consequence.

Theorem 3. Greenberg's conjecture holds for $Q(\mu_p)$ for all p < 1000.

The above conjecture on those L defined by punits implies Greenberg's conjecture for $\mathbf{Q}(\mu_p)$.

Another application:

A slightly stronger statement gives us the following.

Theorem 4. The Galois group $\mathcal{G}_{K}^{\text{un}}$ of the maximal unramified pro-*p* extension of $K = \mathbf{Q}(\mu_{p^{\infty}})$ is abelian for all p < 1000.

Note: this contradicts a twice-published result (1994) that $\mathcal{G}_{K}^{\text{un}}$ is free pro-*p* under Vandiver's conjecture.

Iwasawa theory for Kummer extensions:

L a \mathbb{Z}_p -extension of K Galois over F and unramified outside a finite set of primes.

Theorem 5. There is a canonical exact sequence of Λ -modules:

$$0 \to Y_L^G \otimes_{\mathbf{Z}_p} G \to \mathcal{U}_{L/K} \otimes_{\mathbf{Z}_p} G \to \ker \Sigma_{L/K}$$
$$\to (Y_L)_G \to Y_K \to \operatorname{coker} \Sigma_{L/K} \to 0.$$

 G_v decomposition group of G at a prime v. $\Sigma_{L/K}: \bigoplus_v G_v \to G$ product map. $\mathcal{U}_{L/K}$ quotient of universal norm sequences of p-units for K/F by universal norms from L.

 $\Sigma_{L/K}$ is an isomorphism if there is a unique prime above p in L outside of which L/K is unramified.

For simplicity, let us assume this.

 I_G augmentation ideal in $\mathbb{Z}_p[[G]]$. Note: $(Y_L)_G = Y_L/I_GY_L$.

We can consider higher graded quotients.

Theorem 6. For each $k \ge 1$, there is a canonical isomorphism:

$$I_G^k Y_L / I_G^{k+1} Y_L \cong Y_K / \mathcal{P}_{L/K}^k \otimes_{\mathbf{Z}_p} G^{\otimes k},$$

with $\mathcal{P}_{L/K}^k$ the group of "(k + 1)-fold Massey products for L/K."

In particular, $\mathcal{P}_{L/K}^1$ is generated by inverse limits of cup products of a Kummer generator of L with a universal norm of p-units.

Modular Galois representations:

 \mathfrak{h} even eigenspace of Hida's ordinary cuspidal Hecke algebra of increasing *p*-power levels (mild restrictions on the eigenspace).

 \mathfrak{h} has Hecke operators U_p and T_l for $l \neq p$.

Eisenstein ideal \mathcal{I} of \mathfrak{h} : generated by T_l minus the *l*th coefficient of an Eisenstein series and $U_p - 1$.

Consider the Galois action on the corresponding eigenspace \mathfrak{Z} of an inverse limit of cohomology groups for $X_1(p^n)$.

Note: M. Ohta used this action to give another proof of the Main Conjecture for \mathbf{Q} .

The fixed field of the kernel of $G_{\mathbf{Q}} \rightarrow \operatorname{Aut}_{\mathfrak{h}}\mathfrak{Z}$ contains an unramified outside p, totally ramified at p extension L/K with Λ -torsion Galois group G.

 $\mathcal{V} = \mathbf{Z}_p$ -submodule of \mathcal{I} generated by $U_p - 1$. $F = \mathbf{Q}(\mu_p), \ \tilde{\Gamma} = \text{Gal}(K/\mathbf{Q}).$

Theorem 7. There are canonical isomorphisms

$$(I_G X_L / I_G^2 X_L)_{\tilde{\Gamma}} \cong \mathcal{I} / \mathcal{I}^2,$$

$$(I_G Y_L / I_G^2 Y_L)_{\tilde{\Gamma}} \cong \mathcal{I} / (\mathcal{V} + \mathcal{I}^2)$$

Outline of proof of Theorem 1. We show that $U_p - 1$ generates $\mathcal{I}/\mathcal{I}^2$ as a pro-p group if and only if $G \cong \mathbb{Z}_p$ and an eigenspace of $\mathcal{P}^1_{L/K}$ and Y_K agree. This eigenspace is generated by the cup product of an element of the p-completion of K^{\times} defining L with a universal norm in K with value p in F. Set E = $K(p^{1/p^{\infty}})$. By an argument involving antisymmetry of the cup product, we can deduce that X_E and X_K agree if $U_p - 1$ generates $\mathcal{I}/\mathcal{I}^2$ in all eigenspaces. The latter holds for p < 1000by computation in level p.

Cup Products:

 $G_{F,\{p\}}$ Galois group of the maximal unramified outside p extension of F.

 $\mathcal{E}_F p$ -units in F, $A_F p$ -part of class group of F. $\Delta = \text{Gal}(F/\mathbf{Q}).$

Cup product on $H^1(G_{F,\{p\}},\mu_p)$ induces:

 (\cdot, \cdot) : $\mathcal{E}_F \times \mathcal{E}_F \to A_F \otimes \mu_p$.

Theorem $1 \Rightarrow (p, \cdot)$ is surjective for p < 1000.

Theorem 8 (McCallum-S.). For p < 10000, we have a computation of (\cdot, \cdot) up to scalar in $\mathbb{Z}/p\mathbb{Z}[\Delta]$ (or, in terms the value $(p, 1 - \zeta)$ with $\langle \zeta \rangle = \mu_p$).

This allows us to prove Theorem 4 on unramified Galois groups.

Rough form of a conjecture: the values of the cup product pairing are p-adic L-values modulo p of cusp forms congruent to Eisenstein series modulo p.