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Introduction

At its core, the ancient subject of number theory is concerned with the arithmetic of the integers.
The Fundamental Theorem of Arithmetic, which states that every positive integer factors uniquely
into a product of prime numbers, was contained in Euclid’s Elements, as was the infinitude of the set
of prime numbers. Over the centuries, number theory grew immensely as a subject, and techniques
were developed for approaching number-theoretic problems of a various natures. For instance, unique
factorization may be viewed as a ring-theoretic property of Z, while Euler used analysis in his own
proof that the set of primes is infinite, exhibiting the divergence of the infinite sum of the reciprocals
of all primes.

Algebraic number theory distinguishes itself within number theory by its use of techniques from
abstract algebra to approach problems of a number-theoretic nature. It is also often considered, for
this reason, as a subfield of algebra. The overriding concern of algebraic number theory is the study
of the finite field extensions of (, which are known as number fields, and their rings of integers,
analogous to Z.

The ring of integers &' of a number field F is the subring of F' consisting of all roots of all monic
polynomials in Z[x|. Unlike Z, not all integer rings are UFDs, as one sees for instance by considering
the factorization of 6 in the ring Z[v/—5]. However, they are what are known as Dedekind domains,
which have the particularly nice property that every nonzero ideal factors uniquely as a product of
nonzero prime ideals, which are all in fact maximal. In essence, prime ideals play the role in & that
prime numbers do in Z.

A Dedekind domain is a UFD if and only if it is a PID. The class group of a Dedekind domain is
roughly the quotient of its set of nonzero ideals by its nonzero principal ideals, and it thereby serves
as something of a measure of how far a Dedekind domain is from being a principal ideal domain. The
class group of a number field is finite, and the classical proof of this is in fact a bit of analysis. This
should not be viewed as an anomalous encroachment: algebraic number theory draws heavily from
the areas it needs to tackle the problems it considers, and analysis and geometry play important roles
in the modern theory.

Given a prime ideal p in the integer ring &' of a number field F, one can define a metric on F that
measures the highest power of p dividing the difference of two points in F. If the finite field &'/p has
characteristic p, then the completion F, of F' with respect to this metric is known as a p-adic field,
and the subring 0}, that is the completion of & is called its valuation ring. In the case that F = Q,
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one obtains the p-adic numbers QQ, and p-adic integers Z,. The archimedean fields R and C are
also completions of number fields with respect to the more familiar Euclidean metrics, and are in that
sense similar to p-adic fields, but the geometry of p-adic fields is entirely different. For instance,
a sequence of integers converges to 0 in Z, if and only it is eventually congruent to zero modulo
arbitrarily high powers of p.

It is often easier to work with p-adic fields, as solutions to polynomial equations can be found in
them by successive approximation modulo increasing powers of a prime ideal. The “Hasse principle”
asserts that the existence of a solution to polynomial equations in a number field should be equivalent
to the existence of a solution in every completion of it. (The Hasse principle does not actually hold in
such generality, which partially explains the terminology.)

Much of the formalism in the theory of number fields carries over to a class of fields of finite
characteristic, known as function fields. The function fields we consider are the finite extensions
of the fields of rational functions FF,(¢) in a single indeterminate ¢, for some prime p. Their “rings
of integers”, such as F,[t] in the case of IF,,(¢), are again Dedekind domains. Since function fields
play a central role in algebraic geometry, the ties here with geometry are much closer, and often
help to provide intuition in the number field case. For instance, instead of the class group, one
usually considers the related Picard group of divisors of degree 0 modulo principal divisors. The
completions of function fields are fields of Laurent series over finite fields. We use the term “global
field” refer to number fields and function fields in general, while the term “local field” refers to their
nonarchimedean completions.

An introductory course in algebraic number theory can only hope to touch on a minute but essen-
tial fraction of the theory as it is today. Much more of this beautiful edifice can be seen in some of the
great accomplishments in the number theory of recent decades. Chief among them, of course, is the
proof of Fermat’s last theorem, the statement of which is surely familiar to you. Wiles’ proof of FLT
is actually rather round-about. It proceeds first by showing that a certain rational elliptic curve that
can be constructed out of a solution to Fermat’s equation is not modular, and then that all (or really,
enough) rational elliptic curves are modular. In this latter aspect of the proof are contained advanced
methods in the theory of Galois representations, modular forms, abelian varieties, deformation theory,
Iwasawa theory, and commutative ring theory, none of which we will be able to discuss.

NOTATION 0.0.1. Throughout these notes, we will use the term ring to refer more specifically to
a nonzero ring with unity.
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Algebraic number theory






CHAPTER 1

Abstract algebra

In this chapter, we introduce the many of the purely algebraic results that play a major role in
algebraic number theory, pausing only briefly to dwell on number-theoretic examples. When we do
pause, we will need the definition of the objects of primary interest in these notes, so we make this
definition here at the start.

DEFINITION 1.0.1. A number field (or algebraic number field) is a finite field extension of Q.

We have the following names for extensions of (Q of various degrees.

DEFINITION 1.0.2. A guadratic (resp., cubic, quartic, quintic, ...) field is a degree 2 (resp., 3, 4,
5, ...) extension of Q.
1.1. Tensor products of fields

PROPOSITION 1.1.1. Let K be a field, and let f € K[x] be monic and irreducible. Let M be a

field extension of K, and suppose that f factors as [T/, fi" in M|x], where the f; are irreducible and
distinct and each e; is positive. Then we have an isomorphism

<2 Kld/(f) ®KM%ﬁM[x]/<ﬁf>

of M-algebras such that if g € K|x], then x((g+ (f))®1) = (g+ (/"))

PROOF. Note that we have a canonical isomorphism K [x] ®x M — M|x] that gives rise to the first
map in the composition

KIx)/ () @ M = M)/ () = [ M/,

the second isomorphism being the Chinese remainder theorem. The composition is K. U

We have the following consequence.

LEMMA 1.1.2. Let L/K be a finite separable extension of fields, and let M be an algebraically
closed field containing K. Then we have an isomorphism of M-algebras

k:LoxM = ] M,
o: L—M
11
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where the product is taken over field embeddings of L in M fixing K, such that

kK(B®1)=(0B)s
forall B € L.

PROOF. Write L = K(6), and let f € K[x] be the minimal polynomial of 6. Then we define Kk as

the composition
LxM = H ﬂ ~ H M
oiimm X—0(8)) ity
where the first isomorphism is that of Proposition 1.1.1 and the second takes x to 6(0) in the coordi-
nate corresponding to 6. Any f8 € L has the form g(6) for some g € K[x], and since any 6: L — M

fixing K fixes the coefficients of g, we have k( ® 1) is as stated. O

REMARK 1.1.3. If we compose k of Lemma 1.1.2 with the natural embedding L — L ®x M that
takes o € L to ot ® 1, then the composition
w:L— ] M
o: L—M
is the product of the field embeddings ¢ of L in M fixing K.

DEFINITION 1.1.4. Let K be a field and L and M be extensions of K both contained in some field
Q. We say that L and M are linearly disjoint over K if every K-linearly independent subset of L is
M-linearly independent.

LEMMA 1.1.5. Let K be a field and L and M be extensions of K both contained in some field Q.
If L and M are linearly disjoint over K, then LNM = K.

PROOF. If x € LNM with x ¢ K, then x and 1 are elements of L that are K-linearly independent
but not M-linearly independent, so L and M are not linearly disjoint over K. U

From the definition, it may not be clear that the notion of linear disjointness is a symmetric one.
However, this follows from the following.

PROPOSITION 1.1.6. Let K be a field and L and M be extensions of K both contained in some
field Q. Then L and M are linearly disjoint over K if and only if the map ¢ : L&x M — LM induced
by multiplication is an injection.

PROOF. Suppose that y;,...,% € M are L-linearly dependent, and write )7, 3;%; = 0 for some
Bi € L. If @ is injective, then we must have Y} | B; ® % = 0, which means that the ¥ are K-linearly
dependent.

Conversely, let L and M be linearly disjoint over K. Suppose that we have a nonzero

x:Zﬁi@)%Eker(p
i=1
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for some f; € L and ¥; € M, with s taken to be minimal. If x # 0, then the 7; are L-linearly dependent,
so they are K-linearly dependent. In this case, without loss of generality, we may suppose that

s—1
Ys + Z oY =0
1

1=

for some ¢; in K. Then
s—1

X = Z(Bi_ aiBS)®%7

i=0
contradicting minimality. Thus ker ¢ = 0. U

COROLLARY 1.1.7. Let K be a field and L and M be extensions of K both contained in a given
algebraic closure of K. Then L and M are linearly disjoint over K if and only if L Qg M is a field.

PROOF. Note that LM is a union of subfields of the form K(a, ) with o € L and 8 € M. Since
o and f are algebraic over K, we have K(a, ) = K[o, B], and every element of the latter ring is a
K-linear combination of monomials in & and 8. Thus ¢ of Proposition 1.1.6 is surjective, and the
result follows from the latter proposition. U

COROLLARY 1.1.8. Let K be a field and L and M be finite extensions of K inside a given algebraic
closure of K. Then [LM : K| = [L: K|[M : K] if and only if L and M are linearly disjoint over K.

PROOF. Again, we have the surjection ¢: L ®x M — LM given by multiplication which is an
injection if and only if L and M are linearly disjoint by Proposition 1.1.6. As L ®x M has dimension
[L: K|[M : K] over K, the result follows. O

REMARK 1.1.9. Suppose that L = K(6) is a finite extension of K. To say that L is linearly disjoint
from a field extension M of K is by Propostion 1.1.1 exactly to say that the minimal polynomial of 6
in K[x] remains irreducible in M|x].

We prove the following in somewhat less generality than possible.

LEMMA 1.1.10. Let L be a finite Galois extension of a field K inside an algebraic closure Q of K,
and let M be an extension of K in Q. Then L and M are linearly disjoint if and only if LNM = K.

PROOF. We write L = K(0) for some 6 € L, and let f € K[x] be the minimal polynomial of 6. As
Gal(LM /M) = Gal(L/(LNM)) by restriction, we have LN M = K if and only if [LM : M| = [L : K].
Since LM = M(6), this occurs if and only if f is irreducible in M[x]. The result then follows from
Remark 1.1.9. O

1.2. Integral extensions

DEFINITION 1.2.1. We say that B/A is an extension of commutative rings if A and B are commu-
tative rings such that A is a subring of B.
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DEFINITION 1.2.2. Let B/A be an extension of commutative rings. We say that B € B is integral
over A if B is the root of a monic polynomial in A[x].

EXAMPLES 1.2.3.

a. Every element a € A is integral over A, in that a is a root of x —a.

b. If L/K is a field extension and o € L is algebraic over K, then « is integral over K, being a
root of its minimal polynomial, which is monic.

c. If L/K is a field extension and o € L is transcendental over K, then « is not integral over K.
d. The element /2 of Q(+/2) is integral over Z, as it is a root of x> — 2.

e. The element ¢ = # of @(\/3) is integral over Z, as it is a root of x> —x—1.
PROPOSITION 1.2.4. Let B/A be an extension of commutative rings. For B € B, the following

conditions are equivalent:

i. the element B is integral over A,
ii. there exists n > 0 such that {1,B,...,B"} generates A[B] as an A-module,
iii. the ring A[B] is a finitely generated A-module, and

iv. there exists a finitely generated A-submodule M of B that such that BM C M and which is
faithful over A[B].

PROOF. Suppose that (i) holds. Then B is a root of a monic polynomial g € A[x]. Given any
f € A[x], the division algorithm tells us that f = gg+ r with ¢,r € Alx] and either r = 0 or degr <
degg. It follows that f(B) = r(B), and therefore that f(f) is in the A-submodule generated by
{1,B,...,B%e¢=11 50 (ii) holds. Since this set is independent of f, it generates A[] as an A-module,
so (iii) holds. Suppose that (iii) holds. Then we may take M = A[f], which being free over itself has
trivial annihilator.

Finally, suppose that (iv) holds. Let

M= iAy,-gB
=1

1=

be such that BM C M, and suppose without loss of generality that § # 0. We have
n
=) aijy
j=1

for some a;; € A with 1 <i<nand 1 < j<n. Consider A-module homomorphism 7': B" — B"
represented by (a;;). The characteristic polynomial f(x) € A[x] of T is monic, and f(f3) acts as zero
on M. Since M is a faithful A[]-module, we must have f(f8) = 0. Thus, B is integral. O

EXAMPLE 1.2.5. The element % € Qs not integral over Z, as Z[I,Z*1 yo., 27" forn > 0 is equal
to Z[2~"], which does not contain 2~ ("1,


http://math.ucla.edu/~sharifi/algebra.pdf#nameddest=theorem.5.2.4
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DEFINITION 1.2.6. Let B/A be an extension of commutative rings. We say that B is an integral
extension of A if every element of B is integral over A.

EXAMPLE 1.2.7. The ring Z[\/Q] is an integral extension of Z. Given a = a+ b2 with a,b € Z,
note that ¢ is a root of x2 — 2ax + a? — 2b?.

LEMMA 1.2.8. Suppose that B/A is an extension of commutative rings such that B is finitely
generated as an A-module, and let M be a finitely generated B-module. Then M is a finitely generated
A-module.

PROOF. Let {my,...,m,} be a set of generators of M as a B-module, and let {B,..., B} be a set
of generators of B as an A-module. We claim that { S;m j | 1 <i<k, 1< j<n}isasetof generators
of M as an A-module. To see this, let m € M and write

m = ibjmj
j=1

with b; € Bfor 1 < j <n. For 1 < j < n, we then write

k
bj = Zaijﬁi
i=1

with a;; € A for 1 <i < k. We then have

=)

n
i=1j=

aijPim;,
1

as desired. O

We now give a criterion for a finitely generated algebra over a ring to be finitely generated as a
module.

PROPOSITION 1.2.9. Let B/A be an extension of commutative rings and suppose that

B :A[ﬁ17ﬁ27“*7ﬁk]

for some k > 0 and B; € B with 1 < i < k. Then the following are equivalent.

i. the ring B is integral over A,

ii. each B; with 1 <i <k is integral over A, and

iii. the ring B is finitely generated as an A-module.

PROOE. Clearly, (i) implies (ii), so suppose that (ii) holds. By definition, each f; is then integral
over any commutative ring containing A. By Proposition 1.2.4, each A[By,...,B;] with 1 < j <k is
a finitely generated A[f,..., B;—1]-module, generated by {1,8;,..., ﬁ;’j } for some n; > 0. Assum-

ing recursively that A[f;,...,B;_1] is finitely generated as an A-module, Lemma 1.2.8 implies that
AlB1,...,Bjl =A[Bi,...,Bj—1][B;] is finitely generated as an A-module as well. Therefore, (iii) holds.
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Finally, if (iii) holds and B € B, then since BB C B, the element [ is integral over a by Proposi-
tion 1.2.4. Thus (i) holds. L]

We derive the following important consequence.

PROPOSITION 1.2.10. Suppose that C/B and B/A are integral extensions of commutative rings.
Then C/A is an integral extension as well.

PROOF. Let y € C, and let f € B[x] be a monic polynomial which has y as a root. Let B’ be
the subring of B generated over A by the coefficients of f, which is integral over A as B is. By
Proposition 1.2.9, the ring B’ is then finitely generated over A. As B'[Y] is finitely generated over B’
as well, we have B'[y] is finitely generated over A. Hence, B[] is itself an integral extension of A.
By definition of an integral extension, the element Y is integral over A. Since y € C was arbitrary, we
conclude that C is integral over A. U

DEFINITION 1.2.11. Let B/A be an extension of commutative rings. The integral closure of A in
B is the set of elements of B that are integral over A.

PROPOSITION 1.2.12. Let B/A be an extension of commutative rings. Then the integral closure
of A in B is a subring of B.

PROOF. If @ and B are elements of B that are integral over A, then Ala, ] is integral over A by
Proposition 1.2.9. Therefore, every element of A[c, ], including @ + 8 and « - B, is integral over
A as well. That is, the integral closure of A in B is closed under addition, additive inverses, and
multiplication, and it contains 1, so it is a ring. U

EXAMPLE 1.2.13. The integral closure of Z in Z[x] is Z, since if f € Z[x| is of degree at least 1
and g € Z[x| is nonconstant, then g(f(x)) has degree degg - deg f in x, hence cannot be 0.

DEFINITION 1.2.14.

a. The ring of algebraic integers is the integral closure Z of Z inside C.

b. An algebraic integer is an element of Z.

DEFINITION 1.2.15. Let B/A be an extension of commutative rings. We say that A is integrally
closed in B if A is its own integral closure in B.

DEFINITION 1.2.16. We say that an integral domain A is integrally closed if it is integrally closed
in its quotient field.

EXAMPLE 1.2.17. Every field is integrally closed.

PROPOSITION 1.2.18. Let A be an integrally closed domain, let K be the quotient field, and let L
be a field extension of K. If B € L is integral over A with minimal polynomial f € K|x|, then f € A[x].
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PROOF. Since B € L is integral, it is the root of some monic polynomial g € A[x| such that f
divides g in K[x]. As g is monic, every root of g in an algebraic closure K containing K is integral
over K. As every root of f is a root of g, the same is true of the roots of f. Write f =[], (x — B;)
for B; € K integral over A. As the integral closure of A in K is a ring, it follows that every coefficient
of f is integral over A, being sums of products of the elements ;. Since f € K[x] and A is integrally
closed, we then have f € A[x]. O

The following holds in the case of UFDs.

PROPOSITION 1.2.19. Let A be a UFD, let K be the quotient field of A, and let L be a field
extension of K. Suppose that B € L is algebraic over K with minimal polynomial f € K|[x]. If B is
integral over A, then f € Alx].

PROOF. Let 3 € L be integral over A, let g € A[x| be a monic polynomial of which it is a root, and
let f € K[x] be the minimal polynomial of 3. Since f divides g in K[x] and A is a UFD with quotient
field K, there exists d € K such that df € A[x] and d f divides g in A[x]. Since f is monic, d must be
an element of A (and in fact may be taken to be a least common denominator of the coefficients of f).
The coefficient of the leading term of any multiple of d f will be divisible by d, so this forces d to be
a unit, in which case f € A[x]. O

COROLLARY 1.2.20. Every unique factorization domain is integrally closed.

PROOF. The minimal polynomial of an element a of the quotient field K of a UFD A is x —a. If
a ¢ A, it follows from Proposition 1.2.19 that a is not integral over A. U

EXAMPLES 1.2.21. The ring Z is integrally closed.

3

EXAMPLE 1.2.22. The ring Z[v/17] is not integrally closed, since a = 1+2 is a root of the
monic polynomial x*> —x — 4. In particular, Z[+/17] is not a UFD.

PROPOSITION 1.2.23. Let B/A be an extension of commutative rings, and suppose that B is an

integrally closed domain. Then the integral closure of A in B is integrally closed.

PROOE. Let A denote the integral closure of A in B, and let Q denote the quotient field of A. Let
a € Q, and suppose that « is integral over A. Then A[a] is integral over A, so A[a] is integral over A,
and therefore « is integral over A. That is, o is an element of A, as desired. U

EXAMPLE 1.2.24. The ring Z of algebraic integers is integrally closed.

PROPOSITION 1.2.25. Let A be an integral domain with quotient field K, and let L be an algebraic
extension of K. Then the integral closure B of A in L has quotient field equal to L inside L. In fact,
every element of L may be written as g for somed € A and b € B.
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PROOF. Any f3 € L is the root of a monic polynomial f = Y jax’ € K[x]. Let d € A be such that
df € Alx]. Then

n
d"f(d 'x) =Y aid"'x' € A[x]
i=0

is both monic and has df as a root. In other words, df3 is contained in B, as desired. O
EXAMPLE 1.2.26. The quotient field of Z is Q.

DEFINITION 1.2.27. The ring of integers (or integer ring) Ok of a number field K is the integral
closure of Z in K.

The prototypical examples of rings of integers arise in the setting of quadratic fields.
THEOREM 1.2.28. Let d # 1 be a square-free integer. The ring of integers of(@(\/g) is

fz2[54] ira=1mods,
Oq(va) =
Z[\Vd] ifd =2,3 mod 4.

PROOF. Suppose that & = a + b+/d is integral for a,b € Q. If b = 0, then we must have a € Z.
If b # 0, then the minimal polynomial of « is f = x> — 2ax +a® — b?d. Since « is integral, we must
have f € Z[x], so 2a € Z. If a € Z, then since a®> — b*d € Z and d is square-free, we have b € Z
as well. If a ¢ Z, then 2a = @’ and 2b = b’ for some odd a,b’ € Z, and (a')? = (b')*>d mod 4. As
(Z./47)* = {0, 1}, this is impossible if d % 1 mod 4. If d = 1 mod 4, then a+ b+/d lies in the claimed
ring, since it contains v/d, and clearly (14 +/d)/2 is integral. O

1.3. Norm and trace
DEFINITION 1.3.1. Let L/K be a finite extension of fields. For & € L, let my: L — L denote the
linear transformation of K-vector spaces defined by left multiplication by o.

a. The norm map Ny i : L — K is defined by Ny jx(a) = detmg for a € L.
b. The trace map Tr jx: L — K is defined by Try k(o) = trmg for @ € L.

REMARK 1.3.2. For a finite field extension L/K, the trace map Tr;, /k 1s @ homomorphism, and
the norm map Ny x is a homomorphism to K * upon restriction to L*.

PROPOSITION 1.3.3. Let L/K be a finite extension of fields, and let a € L. Let f € K[x| be the
minimal polynomial of o, over K, let d = [K(a) : K|, let s = [L : K(«)], and let K be an algebraic
closure of K. Suppose that f factors in K|x] as

d
f= H(x—%’)

1
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for some a,...,0 € K. Then the characteristic polynomial of me, is f*, and we have

NL/K HOC and TrL/K —SZ(X;
i=1

PROOF. We claim that the characteristic polynomial of the K-linear transformation m,, is f*. First
suppose that L = K(a). Note that {1, a,...,a?'} forms a K-basis of K (), and with respect to this
basis, m¢ is given by the matrix

0 —ay
1 0 —aj

1 0 —ag-»
1 —ag

where a; € K for 1 < i <d are such that

d—1
f=x'+ Z a;x'.
i=0

Expanding the determinant of xI — A using its first row, we see that
charmy = det(x] —A) = xdet(xI —A") + (—1)? " gg det

= xdet(xI —A") + ay,

where A’ is the (1, 1)-minor of A. By induction on the dimension of A, we may assume that

det(x/ —A") = x4 Z aip1x,
i=0

so charmgy, = f. Since

f=x—tr(me)x 1 -+ (—1)4 det(my),
we have by expanding out the factorization of f in K[x] that Ny k0 and Try /g o are as stated in this
case.

In general, if {Bi,...,Bs} is a basis for L/K (), then {B;at/ | 1 <i<s,0< j<d—1}1is abasis
for L/K. The matrix of my with respect to this basis (with the lexicographical ordering on the pairs
(i, /)) is the block diagonal matrix consisting of s copies of A. In other words, charmy, is the f*, from
which the result now follows easily. U

We can also express the norm as a power of a product of conjugates and the trace as a multiple of
a sum of conjugates.
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PROPOSITION 1.3.4. Let L/K be a finite extension of fields, and let m = [L : K|; be its degree of
inseparability. Let S denote the set of embeddings of L fixing K in a given algebraic closure of K.
Then, for a. € L, we have

NL/K H oca™ and TrL/K =m Z oX.
ce6 cel

PROOF. The distinct conjugates of « in a fixed algebraic closure K of K are exactly the o for
7 in the set T of distinct embeddings of K(a) in K. These Ta are the distinct roots of the minimal
polynomial of o over K, each occuring with multiplicity the degree [K(a) : K]|; of inseparability of
K(ot)/K. Now, each of these embeddings extends to [L : K(a)], distinct embeddings of L into K, and
each extension ¢ € G of 7 sends o to 7(a). By Proposition 1.3.3, we have

Npxo =[] (vo) EE@IK@:K: = TT gtk

Te¥ ce6

and similarly for the trace. U
We have the following immediate corollary.

COROLLARY 1.3.5. Let L/K be a finite separable extension of fields. Let S denote the set of
embeddings of L fixing K in a given algebraic closure of K. Then, for o € L, we have

NL/K HGOC and TrL/K Z oo.

ce6 ces

We also have the following.

PROPOSITION 1.3.6. Let M /K be a finite field extension and L be an intermediate field in the

extension. Then we have
NM/K:NL/KONM/L Cll’ld TrM/K:TrL/KOTrM/L'

PROOF. We prove this for norm maps. Let & denote the set of embeddings of L into K that fix K,
let T denote the set of embeddings of M into K that fix L, and let {[ denote the set of embeddings of
M into K that fix K. Since [M : K]; = [M : L); - [L : K];, it suffices by Proposition 1.3.4 to show that

[T6a=1] G(H‘COC).
oeul cc6 €%
We extend each ¢ to an automorphism & of K fixing K. We then have

I G<Hm> ~ [ (5o«

cedS (1% ceG el

For the trace map, we simply replace the products by sums.
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We claim that the subset X = {G o7 | 0 € &,7 € T} of il is exactly &, which will finish the proof.
Let 0,0’ € G and 7,7’ € T, and suppose that

(1.3.1) 601=6"0o7.
Since 6 o 7|, = 0|, we have that ¢ = ¢’. Since & is an automorphism, we then apply its inverse to
(1.3.1) to obtain 7 = 7’. As there are then |&||T| = |U| elements of X, we have the result. O
EXAMPLE 1.3.7. The norm for the extension Q(v/d)/Q, where d is a square-free integer, is given
by
N@(ﬁ)/@(x‘f'y\/g) = (x+yvVd)(x —yVd) = x* — dy?
for x,y € Q.

EXAMPLE 1.3.8. For a,b,c € Q, we have

Ng(ym)g(a+bV2+cV4) = (a+bV2+cVa)(a+boV2+co’ Vi) (a+bo’V2+cov4)

=@ 207 +43 — 6abc,
for @ a primitive cube root of unity. The trace is simpler:

3 3
TrQ(%)/@(a—f—b\/E—FC\/Z) =3a.

DEFINITION 1.3.9. A K-valued linear character of a group G is a group homomorphism y: G —
K>, where K is a field.

DEFINITION 1.3.10. We say that a set of K-valued linear characters X of a group G is K-linearly
independent if it is linearly independent as a subset of the K-vector space of functions G — K.

THEOREM 1.3.11. Any set of K-valued linear characters G — K> of a group G is K-linearly

independent.

PROOF. Let X be a set of linear characters G — K. Suppose by way of contradiction that m > 2
is minimal such that there m distinct, linearly dependent elements of G. Choose a@; € K and }; € X
with 1 <i < m for which a; # 0 and

m
Z aixi = 0.
i=1
Also, let h € G be such that y;(h) # xm(h). Set b; = a;(xi(h) — xm(h)) for 1 <i <m— 1. For any
g € G, we then have
m—1 m m m
Y bixi(g) = Y ai(xi(h) — xm(h)2i(8) = Y aixi(hg) — xm(h) Y aixi(g) = 0.
i=1 i=1 i=1 i=1
Since by # 0 and Z;’;‘ll biyi has only m — 1 terms, this contradicts the existence of m. ]

In the case of cyclic extensions, the kernel of the norm map bears a simple description.
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THEOREM 1.3.12 (Hilbert’s Theorem 90). Let L/K be a finite cyclic extension of fields, and let G

be a generator of its Galois group. Then

ker Ny /x = {%m eLx}.

PROOF. Setn =[L:K]. Let B € L, and note that

5(B)) _"H o™ (B) _ Nux(B) _
Ny (T)‘i_o 5B)  Nyx(B)

Next, suppose that o € ker Ny g, and set

Xy =Y+ ac(y)+ac(a)o* () +-- +ac(a)---o" (a)a" " (y)

for y € L. The elements of Gal(L/K), which is to say the powers of &, are distinct L-valued characters
on L™, and therefore they are L-linearly independent. Thus, there exists ¥ € L™ such that x, # 0. We
then note that

a0 (xy) = a0 (y) + ac(@)o?(y) + -+ ac(a) 6" (@) 0" (¥) + Nyx(a)y =2y,
soa”! = o (xy)xy, !, finishing the proof. O

There is also an additive form of Hilbert’s Theorem 90, which describes the kernel of the trace.
We leave the proof to the reader.

PROPOSITION 1.3.13 (Additive Hilbert’s Theorem 90). Let L/K be a finite cyclic extension of
fields, and let ¢ be a generator of its Galois group. Then

ker Tr,x = {0(B) — B | B € L}.

LEMMA 1.3.14. Let B/A be an integral extension of domains, and suppose that A is integrally
closed in its quotient field K. Let L denote the quotient field of B, and suppose that L/K is finite. Then
Np/k(B) and Try jx (B) are elements of A for every B € B.

PROOF. Since f is integral over A, so are all of its conjugates in an algebraic closure L of L, since
they are also roots of the monic polynomial of which f is a root. It follows from Proposition 1.3.4
and the fact that the integral closure of A in L is a ring that Ny /x(B) and Try /x (B) are elements of K
integral over A, so A is integrally closed. U

1.4. Discriminants

DEFINITION 1.4.1. Let K be a field and V a finite-dimensional K-vector space. A K-bilinear form
(or simply, bilinear form) y: V xV — K on V is a function satisfying

YV W) = yw) +p(vow) and ywtw) = yw) +yinw)
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and
y(av,w) = ay(v,w) = y(v,aw)
foralla € K and v,V ,w,w' € V.

DEFINITION 1.4.2. A K-bilinear form y on a K-vector space V is said to be symmetric if

W(Vv W) = W(Wv V)

forallvweV.
EXAMPLE 1.4.3. Given a matrix Q € M, (K), we can define a bilinear form on K" by
v(v,w) =vIow
for v,w € K", where we use a superscript 7 to denote the transpose. It is symmetric if and only if Q
is.
EXAMPLE 1.4.4. If L/K is a finite extension of fields, then y: L x L — K defined by
v(a,p)= Tr k()

for a, B € L is a symmetric K-bilinear form on L.

DEFINITION 1.4.5. The discriminant of a bilinear form y on a finite dimensional K-vector space
V relative to an ordered basis (vi,...,v,) of V is the determinant of the matrix (y(v;,v;))i ;.

LEMMA 1.4.6. Let y: V xV — K be a K-bilinear form on a finite-dimensional vector space V
of dimensionn > 1. Let vy,...,vy, €V, and let T: V —V be a linear transformation. Then

det(l,t/(Tv,-, TVj))l'J = (detT)2 . det(l//(vi,vj)),-J.

PROOF. Suppose first that the v; form a basis of V. Let A = (4;;) denote the matrix of 7" with
respect to the ordered basis (vy,...,v,). for each i. We may then write

n n
TVHTVJ Z Z jlw Vk7vl

As matrices, we then have
(W (Tvi, Tv))) = A(w(vi,v;))AT,
and the result follows as det7 = detA = detA” .

If the v; do not form a basis of V, then there is an ordered basis (ey,...,e,) of V and a linear
transformation U : V — V of with U (e;) = v; for all i. As detU = 0, we have

det(l,U(Vi,Vj))l’J = (detU)zdet(l//(e,-,ej)),',j =0.

As the Tvy,...,Tv, cannot be a basis, we have that both sides in the formula are zero. O
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REMARKS 1.4.7. Let w: V xV — K be a K-bilinear form on a finite-dimensional vector space V
of dimension n > 1. Then Lemma 1.4.6 implies the following.

a. The discriminant of ¥ to a basis is independent of its ordering, since a permutation matrix has

determinant +1.

b. We have det(y(v;,vj));j =0if v,...,v, € V are linearly dependent.

DEFINITION 1.4.8. Let L/K be a finite extension of fields. The discriminant of L/K relative to a
basis of L as a K-vector space is the discriminant of the bilinear form

(a,B) = Tryx(aB)
relative to the basis.
NOTATION 1.4.9. If L/K is a finite extension of fields and By, ..., B, € L are arbitrary, we set
D(B1;. .., Bn) = det(Trr /x (BiB)))i ;-
If (By,...,Bn) is an ordered basis of L/K, then D(f,..., ;) is its discriminant.

PROPOSITION 1.4.10. Let L/K be a finite separable extension of fields. Then for any By, ...,B, €

L, we have
D(B1, ..., Bu) = (det(ciB;)i ),

where {0, ...,0,} is the set of embeddings of L in an algebraic closure of K that fix K.
PROOF. Note that
o5 B81) = 3 ou(B)ok(B),
so the matrix (Tr; /x(BiB;)) equals QT Q, where Q € M, (L) satisfies Q;; = 0i(f3;). O

DEFINITION 1.4.11. Let K be a field, and let ¢, ..., o, € K. Then the matrix

1 o --- a{l_l
1 o --- anfl
2
oloy,...,0,) =
n—1
I o, -+
is called the Vandermonde matrix for oy,..., o,.

LEMMA 1.4.12. Let K be a field, and let Q(ay, ..., 0,;) be the Vandermonde matrix for elements
ai,...,0 of K. Then

detQ(ou,...,o0) = [] (oj—o0%).
1<i<j<n
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PROOF. We work by induction on n > 1, the case n = 1 asserting the obvious fact that detQ(a) =

1 for any o € K. To compute the determinant of Q = Q(a,..., ), subtract @; times its ith column
from its (i 4+ 1)th column for each 1 <i < n— 1, which leaves the determinant unchanged. We then
obtain

1 0 o 0 B

n-2 m—o 0y o — o)
I -0y - o) “(op—on)
detQ - . . . = .

' : : -y - (o —a

1 oay—ar - o2, — o) o n ()

n

=[] —ou)-detQ(a, ..., o),
i=2

and the result now follows by induction. U

PROPOSITION 1.4.13. Suppose that L/K is a separable extension of degree n, and let o0 € L be
such that L = K(&t). Then

D(l,O{,...,OCn_I) = H (OC]'—OC,‘)Z #0,

1<i<j<n

where o, ..., Q, are the conjugates of @ in an algebraic closure of K.

PROOF. By Proposition 1.4.10, we have that D(1,a,..., o !) is the square of the determinant
of the Vandermonde matrix Q(y, ..., ), and the result then follows from Lemma 1.4.12. O

EXAMPLE 1.4.14. Let d be a square-free integer with d # 1. Consider the basis {1,v/d} of
Q(v/d) as a Q-vector space. Since the distinct conjugates of v/d are =v/d, we have D(1,/d) = 4d.

The following is basically a rephrasing of Proposition 1.4.13.

COROLLARY 1.4.15. Suppose that L/K is a separable extension of degree n, and let o0 € L be
such that L = K (o), and let f € K|x] be the minimal polynomial of o.. Then

D(La,...,o" ) = (1) T Ny (£ (@),

where [’ € K|x| is the derivative of f.

PROOF. Let aty,..., 0, be the conjugates of ¢ in an algebraic closure K of K. Then

so we have
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for each i, and the conjugates of f’(@) in K are the f’(¢;). We then have

n

NL/K HH OC] = l)n(n—l)/Z H (OC]‘—OC,')Z.
i=1j=1 1<i<j<n
J#

O

COROLLARY 1.4.16. Let L/K be a finite separable extension of fields. Then the discriminant of
L/K relative to an ordered basis (B, ..., Bn) of L is nonzero.

PROOF. Since L/K is separable, there exists & € L such that L = K(c). Then (1,a,...,a" 1)
is an ordered basis of L/K, and there exists an invertible K-linear transformation 7: L — L with
T(ai~1) = i for 1 <i < n. By Lemma 1.4.6, we have that

D(B1,Ba;---,Ba) = (detT)*D(1, ..., a" V).
It follows Proposition 1.4.13 that D(1, ..., a"~!) # 0, so we have the result. O

REMARK 1.4.17. Together, Lemma 1.4.6 and Corollary 1.4.16 tell us that the discriminant of a
finite separable field extension L/K (relative to an ordered basis) reduces to an element of K* /K*?
that is independent of the choice of basis.

DEFINITION 1.4.18. Let B/A be an integral extension of domains such that A is integrally closed,
and suppose that B is free of rank n as an A-module. Let (f,...,[,) be an ordered basis of B as a
free A-module. The discriminant B over A relative to the basis (By,...,B,) is D(Bi,. .., Bn)-

LEMMA 1.4.19. Let A be an integrally closed domain with quotient field K. Let L be a finite
separable extension of K, and let B denote the integral closure of A in L. Let (a,...,0,) be any
ordered basis of L as a K-vector space that is contained in B. Let B € L be such that Try jx(af) € A
forall o € B. Then

n
D(OC] ooy Otn)ﬁ € ZA(X,‘.
i=1

PROOF. Since f € L, we may write

n
B = Zdi%
i=1
for some a; € K for 1 <i < n. For any i, we have that
n
(1.4.1) TI'L/K(OCiﬁ) = Z ajTl‘L/K(OCiOCj).
j=1

The right-hand side of (1.4.1) is the ith term of the product of the matrix Q = (Try /x(0;0t;)) times the
column vector with ith entry ;. Since the determinant of Q is d =D(a, ..., 0y), letting Q% € M, (A)
denote the adjoint matrix to Q, we have Q*Q = dI,,. Thus, we have da; € A for each i. In other words,
dp lies in the A-module generated by the @;, so we are done. U
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PROPOSITION 1.4.20. Let A be an integrally closed domain with quotient field K. Let L be a finite
separable extension of K, and let B denote the integral closure of A in L. There exists an ordered basis

(ay,...,a,) of L as a K-vector space contained in B. Moreover, for any such basis, we have

Zn:Aoci CBC Zn:Ad—la,-,
i=1

i=1

where d =D(ay,...,a,).

PROOF. First, take any ordered basis (fi,...,,) of L/K. By Proposition 1.2.25, there exists
a € A— {0} such that a; = af}; € B for each 1 <i < n. Clearly, (ay,...,0) is a basis of L/K, so
in particular, the A-module generated by the ; is free and contained in B. The other containment is
simply a corollary of Lemma 1.4.19 and the fact that Tr /x (B) C A. O

The following notion of rank is most interesting for finitely generated modules, though we shall
have occasion to use it without this assumption.

DEFINITION 1.4.21. The rank of a module M over a domain A is
rankg (M) = dimg (K @4 M).

COROLLARY 1.4.22. Let A be an integrally closed Noetherian domain with quotient field K. Let
L be a finite separable extension of K, and let B denote the integral closure of A in L. Then B is a
finitely generated, torsion-free A-module of rank [L : K.

PROOF. By Proposition 1.4.20, we have free A-modules M and M’ of rank n = [L : K] such that
M C B C M'’. Since M’ has no A-torsion, neither does B. We have

K@aMCKQsBC K@M

As M and M’ are both isomorphic to A", their tensor products over A with K are n-dimensional K-
vector spaces, which forces K ®4 B to have K-dimension n as well. Moreover, B is finitely generated
being a submodule of a finitely generated module over A, as A is Noetherian. U

PROPOSITION 1.4.23. Let A be an integrally closed Noetherian domain with quotient field K. Let
L be a finite separable extension of K, and let B denote the integral closure of A in L. Then any finitely
generated, nonzero B-submodule of L is a torsion-free A-module of rank [L : K]|.

PROOF. Let M be a finitely generated, nonzero B-submodule of L. If B € L*, then the multiplication-
by-B map B — B} is an isomorphism of B-modules, so Bf3 has rank [L : K| as an A-module. In
particular, ranks (M) > ranky (B), taking B € M. Since M is B-finitely generated and contained in the
quotient field of B, there exists & € B such that oM C B. Since multiplication by & is an isomorphism,
ranky (M) < rank4 (B). The result now follows from Corollary 1.4.22. O
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COROLLARY 1.4.24. Let A be a PID with quotient field K, let L be a finite separable extension of
K, and let B denote the integral closure of K in L. Then any finitely generated, nonzero B-submodule
of L is a free A-module of rank [L : K|.

PROOF. By the structure theorem for modules over a PID, any torsion-free rank » module over A
is isomorphic to A”. The result is then immediate from Proposition 1.4.23. U

We have the following application to number fields.

LEMMA 1.4.25. Let K be a number field. Then the discriminant of Ok over Z is independent of
the choice of ordered basis of Ok as a free Z-module.

PROOF. By Corollary 1.4.24, the ring Ok is free of rank n = [K : Q] over Z. If By,...,B, and
oy, ..., 0 are bases of Ok as a free Z-module, then there exists a Q-linear homomorphism 7: K — K
such that 7' (a;) = B; for all i. Then

D(Bl, Bn) det( )ZD((Xl,...7OCn),
and det(T') is a unit in Z, so in {1}, which is to say that det(T)* = 1. O

DEFINITION 1.4.26. If K is a number field, the discriminant disc(K) of K is the discriminant of
OUx over Z relative to any basis of Ok as a free Z-module.

Noting Theorem 1.2.28, the case of quadratic fields is immediately calculated as in Example 1.4.14.
PROPOSITION 1.4.27. Let K = Q(v/d), where d # 1 is a square-free integer. Then

d d=1mod4,

disc(K) =
4d d=2,3 mod 4.

We end with the following general result.

PROPOSITION 1.4.28. Let A be an integrally closed domain with quotient field K. Let L and L'
be finite separable extensions of K that are linearly disjoint, and let B and B’ denote the integral
closures of A in these fields, respectively. Suppose that B is A-free with basis B, ..., B, and that B’
is A-free with basis Vi, ..., Y. Setd =D(B1,...,B,) and d' =D(n,...,Yn). Then the K-basis of LL'
consisting of the elements Byy; for 1 <i<mand 1 < j < n has discriminant d"(d')". Moreover, if
we let C denote the integral closure of A in LL' and C' denote the A-algebra that is the A-span of the
Biyj, then (d.d")C C C'.

PROOF. Since L and L' are linearly disjoint, LL' is a field extension of K of degree [L : K][L' : K]
with K-basis the B;7;. Let & € C, and write

o= Z ai;Biy;

1j=1

M=

~.
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for some a;; € K. Set
n
5]' = Zaijﬁi eL
i=1

foreach1 < j<m,soa= Z’J’-’:l 07,
Let K be an algebraic closure of K containing L, and let 71, ..., T,, be the distinct field embeddings
of LL' in K that fix L. Let M = (1;%;) € My (K), and let w = (8y,...,8,) € L. Then Mw = v, where

v=(T1Q,..., Ty ).

Let M* be the adjoint matrix to M, so we have M*v = det(M)w. As the entries of M and v are
contained in the integral closure A of A in K, the vector det(M)w € K" has entries in A as well. Note
that det(M)? = d’ by Proposition 1.4.10, so in fact d’'w has entries in A N L, which is to say that
d'd; € B for each j. Since the f8; form a basis for B over A, we have that d’a;; € A for all i and j.
The analogous argument tells us that da;; € A for all i and j as well, so (d,d")a € C', as we set out to
prove.

Finally, we compute the discriminant of the basis f3;y;. Let 01,..., 0, be the field embeddings of
LL’ in an algebraic closure K of K that fix L, so

{Gi‘cj|1§i§n,1§j§m}

is the set of field embeddings of LL in K that fix K. Let Q be the matrix in M,,,(K) which we think of
as consisting of n? square blocks of size m by m each, the (i, j)th of which is the matrix o;3 iM. Then
Q is a product of two matrices, the first of which is block diagonal with m copies of N = (o;f8 j) ij>
and the second of which consists of n> square blocks, the (i’, j')th of which is the identity times Ty Y-
Letting M be as before, a simple computation then tells us that

DBy |1 <i<n, 1< j<m)=det(Q)* = det(N)*"det(M)* = d™(d')".

1.5. Normal bases

DEFINITION 1.5.1. A normal basis of a finite Galois extension L/K is a basis of L as a K-vector
space of the form {o (&) | 0 € Gal(L/K)} for some a € L.

The goal of this section is to prove E. Noether’s theorem that every finite Galois extension has a
normal basis. We start with the following lemma.

LEMMA 1.5.2. Let L/K be a finite Galois extension with Galois group {0y,...,0,}, where n =
IL:K]. Let {a,...,0,} be a basis of L as a K-vector space. Then the set

{(o1(at)),...;on(0)) | 1 < j < nj

is an L-basis of L".


http://math.ucla.edu/~sharifi/algebra.pdf#nameddest=theorem.8.7.13
http://math.ucla.edu/~sharifi/algebra.pdf#nameddest=theorem.8.7.14

30 1. ABSTRACT ALGEBRA

PROOEF. By Corollary 1.4.16, the discriminant D(@,...,,) is nonzero. By Proposition 1.4.10,
this discriminant is the square of det(o;0;); ;. Since the latter determinant is therefore nonzero, the
vectors in question are linearly independent over L. 0

LEMMA 1.5.3. Every finite cyclic extension of fields has a normal basis.

PROOF. Let L/K be finite cyclic of degree n, generated by an element 6. Then K[Gal(L/K)]
is isomorphic to K[x]/(x* — 1) via the unique K-algebra homomorphism that takes & to x. As L is
a K[Gal(L/K)]-module, it becomes a K[x]-module annihilated by x" — 1. If f = Y cix € K[x]
annihilates L, then Y7~ c;0?(ot) = 0 for all & € L, which by the linear independence of the o forces
f to be zero. Thus, the annihilator of L is (x" — 1), and by the structure theorem for finitely generated
modules over the PID K[x], this means that L has a K[x]-summand isomorphic to K|[x]/(x" — 1),
generated by some o € L. Since the latter module has K-dimension n, as does L, the elements
{a,0(x),...,6" ()} form a K-basis of L.

O

THEOREM 1.5.4 (Normal basis theorem). Every finite Galois extension of fields has a normal
basis.

PROOF. Let L/K be a finite Galois extension of degree n. Since any finite extension of finite
fields is cyclic, we may by Lemma 1.5.3 suppose that K is infinite. Write Gal(L/K) = {oy,...,0,}
and o1 = 1. Let {oy,...,0,} be a basis of L as a K-vector space. It suffices to find B € L with
D(o1(B),...,04(B)) # 0 by Corollary 1.4.16.

Define an element p € L|xy,...,x,] by

2
p(x1,...,x,) = det(Z Gjlci(ak)xk> .
k=1

Note that the coefficients of p are fixed by the elements of Gal(L/K), since they permute the columns
of the matrix. By Lemma 1.5.2, we can find ﬁj € Lfor 1 < j <nbe such that

i Bi(oi(aj), 00(cx)),...,on(xj)) = (1,0,...,0).

j=1
Then for all 1 <i,j < n, we have

n
Y o ci(o) B = 6.,
k=1

sop(Bi,...,B.) =det(l,)*> =1,s0 p#0. Since K is infinite, there exist aj, ... ,a, € K with p(ay, ..., a,) #

0. For y= Z;?:l a;Q;, we have by Proposition 1.4.10 the first equality in

D(01(7),...,0u(y)) = det(c; ' 6i(¥))> = plau,...,an) # 0.
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CHAPTER 2

Dedekind domains

2.1. Fractional ideals
We make the following general definition.

DEFINITION 2.1.1. A fractional ideal of a domain A is a nonzero A-submodule a of the quotient
field of A for which there exists a nonzero d € A such that da C A.

REMARK 2.1.2. Every nonzero ideal in a domain A is a fractional ideal, which is sometimes
referred to as an integral ideal. Every fractional ideal of A that is contained in A is an integral ideal.

EXAMPLE 2.1.3. The fractional ideals of Z are exactly the Z-submodules of (Q generated by a
nonzero rational number.

LEMMA 2.1.4. Let A be a Noetherian domain. A nonzero A-submodule of the quotient field of A
is a fractional ideal if and only if it is finitely generated.

PROOF. If a is a finitely generated A-submodule of the quotient field of A, then let d € A denote
the product of the denominators of a set of generators. Then da C A. Conversely, suppose that a is
a fractional ideal and d € A is nonzero and satisfies da C A. Then da is an ideal of A, hence finitely
generated. Moreover, the multiplication-by-d map carries a isomorphically onto da. U

DEFINITION 2.1.5. Let A be a domain with quotient field K, and let a and b be fractional ideals
of A.

a. The inverse of aisa™! = {b € K | ba C A}.

b. The product of a and b is the A-submodule of K generated by the set {ab | a € a,b € b}.

REMARK 2.1.6. By definition, multiplication of fractional ideals is an associative (and commu-
tative) operation.

LEMMA 2.1.7. Let A be a domain, and let a and b be fractional ideals of A. Then a !l a+b, ab,
anb are fractional ideals of A as well.

PROOF. Let K denote the quotient field of A. Let c,d € A be nonzero such that ca C A and db C A.
Then c(aNb) CA, cd(a+b) C A, and cdab C A.

Note that a~! is an A-submodule of K which is nonzero since there exists d € A with da C A in
that a is a fractional ideal. Let a € a be nonzero, and let e € A be its numerator in a representation

31
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of a as a fraction, so e € a as well. For any ¢ € a~!, we have ce € A by definition, so ea! C A, and
therefore a—! is a fractional ideal. OJ

DEFINITION 2.1.8. We say that a fractional ideal a of a domain A is invertible if there exists a
fractional ideal b of A such that ab = A.

LEMMA 2.1.9. A fractional ideal a of a domain A is invertible if and only if aa~! = A.

PROOF. For the nonobvious direction, suppose that a is invertible. Then we must have b C a™!
by definition of a~!. On the other hand,

A=baCa laCA,
so we must have a~'a = A. O

EXAMPLE 2.1.10. Consider the maximal ideal (x,y) of Q[x,y]. If f € Q(x,y)* is such that fx €
Q[x,y] (resp., fy € Q|x,y]) then its denominator is a divisor of x (resp., y). Therefore (x,y) ™! = Q[x, ],
and we have

(x’y) ’ (x’y)_l = (x’y) 7£ @[xay]'

Thus, (x,y) is not invertible as a fractional ideal.

DEFINITION 2.1.11. A principal fractional ideal of A is an A-submodule (a) generated by a
nonzero element a of the quotient field of A.

LEMMA 2.1.12. Let a be a fractional ideal of a PID. Then a is principal.

PROOEF. There exists d € A such that da = (b) for some b € A. Then g € a and given any c € a,

we have dc = ba for some a € A, so ¢ = ag. That is, a = (3). O

LEMMA 2.1.13. Let A be a domain, and let a be a nonzero element of its quotient field. Then (a)
is invertible, and (a)~' = (a™1).

PROOF. If x € (a)~!, then xa = b for some b € A, so x =ba~ ! € (a'). If x € (a”!), then
x =a~'b for some b € A. On other hand, any z € (a) has the form z = ya for some y € A, and we have
xz=a 'bya=by € A, sox € (a)~!. We then have

(@) (@)~ =(a)(a") = (aa™") = A,

completing the proof. U

2.2. Dedekind domains

DEFINITION 2.2.1. A Dedekind domain is a Noetherian, integrally closed domain, every nonzero
prime ideal of which is maximal.

We have the following class of examples.
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LEMMA 2.2.2. Every PID is a Dedekind domain.

PROOF. A PID is Noetherian, and it is a UFD, so it is integrally closed. Its nonzero prime ideals
are maximal, generated by its irreducible elements. U

EXAMPLES 2.2.3.
a. The ring Z is a Dedekind domain by Lemma 2.2.2, since Z is a PID.

b. If K is a field, then K|[x] is a Dedekind domain, since K|[x] is a PID.

LEMMA 2.2.4. Let A be an integral domain, and let B be a commutative ring extension of A that
is integral over A. If b is an ideal of B that contains a nonzero element which is not a zero divisor,
then b A is a nonzero ideal of A.

PROOF. That b N A is an ideal is clear, so it suffices to show that b N A is nonzero. Let B € b be
nonzero and not a zero divisor. Then f is a root of some monic polynomial g € A[x]. Write g = x"f
for some nonzero f € A[x] with nonzero constant term. Since 8 € b, we have f(B) — f(0) € b, and
as f(B) = 0 given that f3 is not a zero divisor, we have f(0) € b. But f(0) # 0, so b has a nonzero
element. U

The following proposition allows us to produce many more examples of Dedekind domains.

PROPOSITION 2.2.5. Let A be an integral domain in which every nonzero prime ideal is maximal,
and let B be a domain that is an integral extension of A. Then every nonzero prime ideal in B is
maximal.

PROOF. Let ‘P be a nonzero prime ideal in B, and let p = PPN A. Note that F = A/p is a field as p
is a nonzero (prime) ideal of A by Lemma 2.2.4. For 8 € B, let f € A[x] be a monic polynomial such
that 8 is a root of f. Let f € F|[x] denote the image of f under the natural quotient map A[x] — F|[x].
Let B denote the image of B in B/3. Then f(B) is the image of f(B) = 0 in B/P so is itself 0. In
other words, B is algebraic over F. Thus, B/8 = F[{B | B € B}] is a field. In other words, 3 is
maximal. U

COROLLARY 2.2.6. Let A be a Dedekind domain, and let B be the integral closure of A in a finite,
separable extension of the quotient field of A. Then B is a Dedekind domain.

PROOF. Note that B is a finitely generated A-module by Corollary 1.4.22. If b is an ideal of B,
then b is an A-submodule of B, and as A is Noetherian, it is therefore finitely generated. Thus, B is
Noetherian. That B is integrally closed is just Proposition 1.2.23. That every nonzero prime ideal in
A 1s maximal is Proposition 2.2.5. U

We have the following immediate corollary.

COROLLARY 2.2.7. The ring of integers of any number field is a Dedekind domain.
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More examples of Dedekind domains can be produced as follows.

PROPOSITION 2.2.8. Let A be a Dedekind domain, and let S be a multiplicatively closed subset
of A. Then S™'A is also a Dedekind domain.

PROOE. Given an ideal b of S~!A, set a = AN b. Then a is an ideal of A, and b = S~ !a. It follows
that any set of generators of a as an ideal of A generates S™'a as an ideal of S~!A. Hence S™!A is
Noetherian. If, moreover, b is a nonzero prime, then clearly a is as well, and a is maximal since A is
a Dedekind domain. Then S~'A/b = A/a is a field, so b is maximal as well.

Let K be the quotient field of A. Any & € K that is integral over S~!A satisfies a monic polynomial
f with coefficients in ST'A. Set n = degf. If d € S is the product of the denominators of these
coefficients, then d" f(d~'x) € A[x] is monic with da € K as a root. Since A is integrally closed, we
have dot € A, so @ € S~!A. Thatis, S~!A is integrally closed. O

LEMMA 2.2.9. Let A be a Noetherian domain, and let a be a nonzero ideal of A.

a. There exist k > 0 and nonzero prime ideals p1,...,p; of A such that py---p; C a.

b. Suppose that every nonzero prime ideal of A is maximal. If py,...,py are as in part a and p is

a prime ideal of A containing a, then p = p; for some positive i < k.

PROOF. Consider the set X of nonzero ideals of A for which the statement of the first part of the
lemma fails, and order X by inclusion. Suppose by way of contradiction that X is nonempty. Let C
be a chain in X. Either C has a maximal element or there exist a; € C fori > 1 with a; C a;4 for each
i. The latter is impossible as A is a Noetherian. By Zorn’s lemma, X contains a maximal element a.
Now a is not prime since it lies in X, so let a,b € A — a with ab € a. Then a+ (a) and a+ (b) both
properly contain a, so by maximality of a, there exist prime ideals p1,...,p; and q1,...,q; of A for

some k,/ > O such that p;---pr Ca+(a)and q;---q; C a+ (b). We then have

prepedr e C (a+ (@) (a+ (b)) Ca,

a contradiction of a € X. This proves part a.

Now, suppose that a is proper, and let p be a prime ideal containing a. Assume that every nonzero
prime ideal of A is maximal. If no p; equals p, then since p; is maximal, there exist b; € p; with b ¢ p
for each 1 <i < k. We then have b ---by ¢ p as p is prime, so by ---by ¢ a, a contradiction. Hence
we have part b. U

LEMMA 2.2.10. Let A be a Dedekind domain, and let p be a nonzero prime ideal of A. Then
—1
pp =A

PROOF. Let a € p be nonzero. Noting Lemma 2.2.9a, we let kK > 1 be minimal such that there
exist nonzero prime ideals pi,...,p; of A with p;---p; C (a). By Lemma 2.2.9b, we may without
loss of generality suppose that p; = p. Let b € py---pi_ be such that b ¢ (a). Then a~'b ¢ A, but
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we have
a 'bpCalprp CA,

which implies that a~'b € p~!. Moreover, if p~!p = p, then a—'bp C p. Since p is finitely generated,
Proposition 1.2.4 tells us that a~'b is integral over A. But A is integrally closed, so we have a contra-
diction. That is, we must have p C p~'p C A, from which it follows that p~'p = A by maximality of
p. O

THEOREM 2.2.11. Let A be a Dedekind domain, and let a be a fractional ideal of A. Then there
exist k > 0, distinct nonzero prime ideals p1, ... ,py, unique up to ordering, and unique nonzero r; € 2.

for 1 <i<ksuchthat a = pql . -p;". Moreover, a is an ideal of A if and only if every r; is positive.

PROOF. First suppose that a is a nonzero ideal of A. We work by induction on a nonnegative
integer m such that there are nonzero prime ideals qi,...,q; of a (not necessarily distinct) with
q1---qm € a, which exists by Lemma 2.2.9a. If m =0, then A C a, so a =A. For m > 1, we may
suppose that a is proper, so there exists a nonzero prime ideal p that contains a and p = q; for some
i < m. Without loss of generality, we take i = m. Then

G Qna1 S a1 gup ' Cap ! CA.

By induction, there exist nonzero prime ideals g/, .. ., q} of A for some £ < m such thatap~! =g} ---q}.
The desired factorization is given by multiplying by p, applying Lemma 2.2.10, and gathering together
nondistinct primes.

In general, for a fractional ideal a, we let d € A be such that da C A. We write da = q - - - q,, for
some m > 0 and prime ideals q; for 1 <i < m. We also write (d) =1; - -, for some n > 0 and prime
ideals [; for I <i < n. By Lemma 2.2.10, we then have

a=(d)" (da)=17" Ll ar g

If q; = [; for some i and j, then we may use Lemma 2.2.10 to remove qi[jfl from the product. Hence
we have the desired factorization.
Now suppose that

_ur ry .S Sy
a_pll...pk _qll...ql

for some &,/ > 0, distinct primes py, ..., pg, distinct primes ¢, ..., q;, honzero ry, ..., rx, and nonzero
S1s---,81. If ri <O (resp., s; < 0) for some i, we multiply both sides by p, " (resp., ;) and obtain an
equality of two products that involve only integral ideals. So, we assume without loss of generality
that all r; and s; are positive. We may suppose that t = 25;1 r; 1s minimal among all factorizations of
a. If t =0, then k = 0, and then / must be zero so that qil e qfl is non-proper. If ¢ is positive, then pj
contains a, so Lemma 2.2.9b tells us that p; = g; for some 1 < i < /. Multiplying both sides by pk_l,
the quantity ¢ is decreased by one. By induction, we have that the remaining terms are the same up to
reordering, hence the result. U
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DEFINITION 2.2.12. We say that an ideal b of a commutative ring A divides an ideal a of A if
there exists an ideal ¢ of A such that a = bc. We write b | a to denote that b divides a.

COROLLARY 2.2.13. Let a and b be nonzero ideals in a Dedekind domain A.

a. The ideals a and b are not divisible by a common prime ideal if and only if a+b = A.

b. Suppose that a C b. Then b divides a.

PROOF. For part a, note that if p | a and p | b for some prime ideal p, thenp | (a+b), so a+b #£ A.
On the other hand, if there is no such p, then a and b are not contained in any common maximal ideal
(since p divides a if and only if it occurs in its factorization), so a+ b = A.

For part b, using Theorem 2.2.11, write a = p; - - - py (resp., b = qj - - - q;) for some nonzero prime
ideals p; (resp., q;) of A. Suppose without loss of generality that p; = q; for all 1 <i <t for some
nonnegative ¢+ < min(k,/) and that p; (resp., q;) does not occur in the factorization of b (resp., a) for
i >t. Then

b=a-+b=qi - dq(Pr1-Pet i) =d1-dr,
the last step using part a. We therefore have r = [, so b divides a. O

DEFINITION 2.2.14. Let A be a Dedekind domain, and let a and b be ideals of A. The greatest
common divisor of a and b is a+ b.

REMARK 2.2.15. By Lemma 2.2.13, a4 b contains and hence divides both a and b and is the
smallest ideal that does so. (The use of the word “greatest”, as opposed to “smallest”, is in analogy
with greatest common divisors of pairs of integers.)

DEFINITION 2.2.16. Let A be a Dedekind domain. The set I(A) of fractional ideals of A is called
the ideal group of A.

We have the following immediate corollary of Theorem 2.2.11.

COROLLARY 2.2.17. The ideal group I(A) of a Dedekind domain A is a group under multiplica-
tion of fractional ideals with identity A, the inverse of a € I(A) being a™ 1.

DEFINITION 2.2.18. Let A be a Dedekind domain. Then we let P(A) denote the set of its principal
fractional ideals. We refer to this as the principal ideal group.

COROLLARY 2.2.19. Let A be a Dedekind domain. The group P(A) is a subgroup of [(A).

DEFINITION 2.2.20. The class group (or ideal class group) of a Dedekind domain A is CI(A) =
I(A)/P(A), the quotient of the ideal group by the principal ideal group.

LEMMA 2.2.21. A Dedekind domain A is a PID if and only if C1(A) is trivial.
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PROOF. Every element of /(A) has the form ab~! where a and b are nonzero ideals of A. If A is
a PID, then both a and b are principal and, therefore, so is ab~!. On the other hand, if a is a nonzero
ideal of A with a = (a) for some a € K, then clearly a € A, so CI(A) being trivial implies that A is a
PID. U

NOTATION 2.2.22. Let K be a number field. We let Ix, Px, and Clx denote the ideal group,
principal ideal group, and class group of Ok, respectively. We refer to these as the ideal group of K,
the principal ideal group of K, and the class group of K, respectively.

EXAMPLE 2.2.23. Let K = Q(v/—5). Then Ok = Z[\/—5]. The ideal a = (2,1 ++/—5) is non-
principal. To see this, note that N g(2) = 4 and Nk (1 ++/—5) = 6, so any generator x of a must
satisfy Ng g(x) € {£1,42}. But

Nggla+bv/=5) = a* +5b
for a,b € Z, which forces x = +1. This would mean that a = Z[v/—5]. To see that this cannot happen,
define ¢ : Z[v/—5] — Z/6Z by ¢p(a+b+/—5) = a—b for a,b € Z. This is a ring homomorphism as
¢o((a+bv—5)(c+dv—5)) = ¢(ac —5bd + (ad + bc)\/—5) = ac — 5bd — ad — bc
=ac+bd—ad—bc=(a—b)(c—d).

Moreover, ¢(1+4+/—5) =0, so the kernel of ¢ contains (and is in fact equal to) (14 +/—5). Therefore,
¢ induces a surjection (in fact, isomorphism),

ZIN=53]/a — Z)67)(2) = L2,
so a # Z[v/—5], and x does not exist. Therefore, CIQ( J5) is nontrivial.
We end with the following important theorem.
THEOREM 2.2.24. A Dedekind domain is a UFD if and only if it is a PID.

PROOF. We need only show that a Dedekind domain that is a UFD is a PID. Let A be such a
Dedekind domain. By Theorem 2.2.11, it suffices to show that each nonzero prime ideal p of A is
principal. Since p is prime and A is a UFD, any nonzero element of p is divisible by an irreducible
element in p. If 7 is such an element, then (7) is maximal and contained in p, so p = (7). O

2.3. Discrete valuation rings

DEFINITION 2.3.1. A discrete valuation ring, or DVR, is a principal ideal domain that has exactly
one nonzero prime ideal.

LEMMA 2.3.2. The following are equivalent conditions on a principal ideal domain A.
i. Aisa DVR,
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ii. A has a unique nonzero maximal ideal,

iii. A has a unique nonzero irreducible element up to associates.

PROOF. This is a simple consequence of the fact that in a PID, every nonzero prime ideal is
maximal generated by any irreducible element it contains. 0

DEFINITION 2.3.3. A uniformizer of a DVR is a generator of its maximal ideal.

Moreover, we have the following a priori weaker but in fact equivalent condition for a domain to
be a DVR.

PROPOSITION 2.3.4. A domain A is a DVR if and only if it is a local Dedekind domain that is not
a field.

PROOF. A DVR is a PID, hence a Dedekind domain, and it is local by definition. Conversely,
suppose that A is Noetherian, integrally closed, and has a unique nonzero prime ideal p. We must
show that A is a PID. Since nonzero ideals factor uniquely as products of primes in A, every ideal of
A has the form p” for some 7. In particular, p = () for any 7 € p — p2, and then p” = (") for all n.
Therefore, A is a PID and hence a DVR. O

THEOREM 2.3.5. A Noetherian domain A is a Dedekind domain if and only if its localization at
every nonzero prime ideal is a DVR.

PROOF. We have seen in Proposition 2.2.8 that Ay is a Dedekind domain for all nonzero prime
ideals p. By Proposition 2.3.4, each such localization is therefore a DVR.

Conversely, suppose A is a Noetherian integral domain such that Ay, is a DVR for every nonzero
prime ideal p. We can and do assume that A is not a field and consider the intersection B = (1, A,
over all nonzero prime ideals p of A, taken inside the quotient field K of A. Clearly, B contains A, and
if % € B for some c,d € A with d # 0, then we set

a={a€A]|ace (d)}.

By definition of B, we may write 5 = f withr € A and s € A — p, and we see that sc = rd, so s € a. In
other words, we have a ¢ p for all prime ideals p of A, which forces a = A. This implies that ¢ € (d),
so 7 €A.

Next, suppose that q is a nonzero prime ideal of A, and let m be a maximal ideal containing it.
Then qAn, 1s a nonzero prime ideal of Ay, which is a DVR, so gA, = mAy,. Since q and m are prime
ideals contained in m, we therefore have

Thus, every nonzero prime ideal is maximal.
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Finally, each A, is integrally closed in K by Corollary 1.2.20, and then the intersection A is as
well, since any element of K that is integral over A is integral over each Ay, hence contained in each
Ap. That is, A satisfies the conditions in the definition of a Dedekind domain. O

To make some sense of the name “discrete valuation ring”, we define the notion of a discrete
valuation. For this purpose, we adjoin an element oo to Z which is considered larger than any element
of Z, and we set x+y = o if x,y € Z U {eo} and either x or y equals .

DEFINITION 2.3.6. Let K be a field. A discrete valuation on K is a surjective map v: K — ZU{eo}
such that

i. v(a) = if and only a = 0,

ii. v(ab) =v(a)+v(b), and

iii. v(a+b) > min(v(a),v(b))
for all a,b € K.

DEFINITION 2.3.7. If v is a discrete valuation on a field K, then the quantity v(a) for a € K is said
to be the valuation of a with respect to v.

The following are standard examples of discrete valuations.

EXAMPLE 2.3.8. Let p be a prime number. Then the p-adic valuation v, on Q is defined by
vp(0) =0 and vy(a) = r for a € Q* if a = p”d’ for some r € Z and a’ € Q* such that p divides
neither the numerator nor denominator of ¢’ in reduced form.

EXAMPLE 2.3.9. Let F be a field, and consider the function field F (7). The valuation at o on
F (1) is defined by ve.(%) = degh —degg for g,h € F[t] with h # 0, taking deg0 = —oo.

More generally, we have the following.

DEFINITION 2.3.10. Let A be a Dedekind domain with quotient field K, and let p be a nonzero
prime ideal of A. The p-adic valuation v, on K is defined on a € K* as the unique integer such that
(a) = p*?@bc! for some nonzero ideals b and ¢ of A that are not divisible by p.

EXAMPLE 2.3.11. For the valuation at e on F(¢), where F is a field, we may take A = K[t ]
and p = (1~!). Then the valuation v., on F(¢) is the (+~!)-adic valuation. To see this, note that for
nonzero g,h € F[t], one has
@ _ (t—l)degh—degg G<t_]>

h(t) H(=t)’
where G(t~') = t7988g(¢) and H(t~') = t~9%€/}(¢) are polynomials in r~! which have nonzero
constant term.

LEMMA 2.3.12. Let A be a Dedekind domain with quotient field K, and let p be a prime ideal of

A. The y-adic valuation on K is a discrete valuation.
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PROOEF. Let a,b € K be nonzero (without loss of generality). Write (a) = p”a and (b) = p°b for
r =vp(a) and s = v, (b) and fractional ideals a and b of A. Note that (ab) = p"*ab, so v,(ab) =r+s.
We have
(a + b) _ ]JrCl-l- psb _ pmin(ns) (pr—min(m)a _i_ps—min(r,s)b)’
SO
vp(a+b) = min(r,s) + vy (p"~min(8) g 4 ps=min(S) ) > min(r, s).
O

LEMMA 2.3.13. Let v be a discrete valuation on a field K. Then we have v(—a) = v(a) for all
ack.

PROOF. Note that 2v(—1) = v(1) =0, so we have v(—a) = v(—1) +v(a) = v(a). O
LEMMA 2.3.14.
v(a+b) = min(v(a),v(b))
forall a,b € K with v(a) # v(b).
PROOF. If v(a) < v(b), then
v(a) =v((a+b) —b) > min(v(a+b),v(b)) > min(v(a),v(b)) =v(a),
so we have v(a) = min(v(a+ b),v(b)), which forces v(a+b) = v(a). O
DEFINITION 2.3.15. Let K be a field, and let v be a discrete valuation on K. Then
Oy,={acK|v(a) >0}
is called the valuation ring of v.

LEMMA 2.3.16. Let K be a field, and let v be a discrete valuation on K. Then O, is a DVR with
maximal ideal
m,={ac€K|v(a) > 1}.

PROOF. That &), is a ring follows from the fact that if a,b € 0, then v(ab) = v(a) +v(b) > 0,
v(—a) =v(a) >0, and v(a+b) > min(v(a),v(b)) > 0. For a € 0, and x,y € m,, we have v(x+y) >
min(v(x),v(y)) > 1 and v(ax) = v(a) 4+ v(x) > 1, so m, is an ideal. It is also the unique maximal ideal:
given a € 0, —m,, we have v(a~!) = v(a) +v(a=!) =v(1) =0, so a € ). Given an ideal a of 7,
let a € a be an element of minimal valuation n. Let & € &), with v(7) = 1, and write a = 7"u for some
uec 0. Then v(u) =0, sou € 0. Therefore, (") C a. On the other hand, since n is minimal, we
have a C (7""), and therefore a is a principal. By Lemma 2.3.2, we conclude that &), is a DVR. O

EXAMPLE 2.3.17. In Q, we have

a
Oy, =ZLp) = {Z | a,bEZsuchthath(b}.
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2.4. Orders

In this section, we investigate rings that would be Dedekind domains but for the removal of the
hypothesis of integral closedness. The following definition is perhaps nonstandard outside of the
context of number fields, but it works well for our purposes.

DEFINITION 2.4.1. A Noetherian domain R in which every nonzero prime ideal is maximal is
called is called an order. For a Dedekind domain A, an order in A is an order contained in A with
integral closure A in its quotient field.

By Lemma 2.2.5, we have the following.

LEMMA 2.4.2. Let R be an order, and let B be an integral extension of R that is a domain and
finitely generated as an R-algebra. Then B is an order.

We omit the proof of the following theorem.

THEOREM 2.4.3 (Krull-Akizuki). If A is a Noetherian domain in which every nonzero prime ideal
is maximal and L is finite extension of the quotient field K of A, then every subring B of L containing
A is also a Noetherian domain in which every nonzero prime ideal is maximal. Moreover, for any
nonzero ideal b of R, the quotient ring B/bB is a finitely generated A-module.

The following corollary generalizes Theorem 2.2.6 by both by removing the condition of separa-
bility of the extension and by removing the condition that the ground ring be integrally closed.

COROLLARY 2.4.4. Let A be an order, let K denote the quotient field of A, let L be a finite
extension of K, and let B be the integral closure of A in L. Then B is a Dedekind domain.

DEFINITION 2.4.5. Let R be an order, and let A be the integral closure of R in its quotient field.
The conductor of R is the ideal fg of A defined by

fr={a€A|aA CR}.

REMARK 2.4.6. The conductor of R is the largest ideal of A that is contained in R. In particular,
it is also an ideal of R.

LEMMA 2.4.7. Let R be an order, and let A be the integral closure of R in its quotient field. Then
A is a finitely generated R-module if and only if the conductor of R is nonzero.

PROOF. Let {ay,...,a,} be a set of generators of A as an R-module, and for each i < m, let
ri € R—{0} be such that r;a; € R. Note that r; exists as A is contained in the quotient field of R. Then
r=ry---r, is a nonzero element of fz.

Conversely, let r € fg be nonzero. Then multiplication by r is an R-module isomorphism from A
to an ideal of R, which is finitely generated as R is noetherian. U
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EXAMPLE 2.4.8. The conductor of Z[v/d] as a subring of Ogya) 18 (1)ifd =2,3 mod 4 and (2)
if d =1 mod 4.

LEMMA 2.4.9. Let A be a Dedekind domain with quotient field K. Let L be a finite separable
extension of K, and let B be the integral closure of A in K. Suppose that L = K (o) for some o € B.
Then A|ol] is an order in B, and D(1, ¢, ..., K1) ¢ faja)-

PROOF. This is a direct consequence of Proposition 1.4.20. U

PROPOSITION 2.4.10. Let R be an order, and let p be a nonzero prime ideal of R. Let A denote
the integral closure of R in its quotient field. Suppose that the conductor fg is nonzero. Then p does
not contain fg if and only if Ry is a DVR. In this case, pA is a prime ideal and the inclusion map
Ry — Ay is an isomorphism.

PROOE. First, suppose that fg Z p, and let x € fg with x ¢ p. We have that xA C R and x € R;;,
so A C Ry. Let q=ANpRy,, which is a prime ideal of A containing p. We must then have p = qNR,
since N R is a prime ideal of R. Note that R, C A;. On the other hand, if $ € A, for some a € A
and s € A — q, then note that xa € R and xs ¢ p, so ¢ € R, as well. Thus, R, = A4 is a DVR by
Proposition 2.3.4.

We claim that q = pA. Clearly, q occurs in the factorization of pA, and if any other prime ideal
q" occurred in said factorization, then Ay would contain R, = A, contradicting the fact that g’ is
maximal. So pA = q° for some e > 1, but pRy, = pA; = q°A, is the maximal ideal of Ry, = A, so it
equals gA, which forces e = 1.

Conversely, suppose that Ry, is a DVR, hence integrally closed. Since A is integral over R, every
element of A is integral over the larger ring Ry. In other words, we have that A C Ry. Note that this
also implies that p = pANR since p = pR, NR 2 pANR, while the other containment is immediate.

Let {ay,...,a,} be a set of generators of A as an R-module, and write ¢; = ?—z for some y; € R and
si€R—pforeach 1 <i<n.Lets=s;---s,. Then sa; € R for each 7, so s € fg. Since s € R—p, we
have that fg Z p. O

Let us focus now on the setting of number fields. The following is immediate from the definition
of integral closure.

LEMMA 2.4.11. Every subring of a number field K that is finitely generated as an abelian group
is contained in Ok.

We note the following.

LEMMA 2.4.12. A subring of K is an order in Ok if and only if it is finitely generated of rank
K : Q] as a Z-module.
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PROOF. Let R be a finitely generated Z-submodule of K of rank [K : Q]. That R is an order is an
immediate corollary of Lemma 2.4.2. On the other hand, if R is an order in Ok, then its quotient field
is K, so its rank as a Z-module is [K : Q). O

REMARK 2.4.13. The ring of integers of a number field K is often referred to as the maximal
order of K.

Along with the notion of conductor, we also have a notion of discriminant of an order in a number
field.

DEFINITION 2.4.14. Let K be a number field, and let R be an order in k. The discriminant
disc(R) of R is the discriminant of R relative to a basis of R as a Z-module.

REMARK 2.4.15. That the discriminant of R is well-defined follows by the same argument as in
Proposition 1.4.25.

The following is a consequence of Lemma 1.4.6 and the fact that a Z-linear transformation that
carries one subgroup of rank 7 in an n-dimensional Q-vector space to another in which it is contained
has determinant equal to the index of the first subgroup in the second.

LEMMA 2.4.16. Let R be an order in Ok for a number field K. Then
disc(R) = [0k : R]*disc( k).
COROLLARY 2.4.17. Let K be a number field and R be an order in its ring of integers. If disc(R)

is a square-free integer, then R = Ok.

LEMMA 2.4.18. Let K be a number field, and let R be an order in Ok. Then the prime numbers
dividing Ok : R] are exactly those that divide the unique positive generator of fg N 7.

PROOF. Let f > 1 be such that (f) = fg NZ. Since f- Ok C R, we have that f is a multiple
of the exponent of O /R. On the other hand, suppose that some prime number p divides f but not
[0k : R]. Since p | f, there exists a nonzero prime ideal p of O with p N Ok = pZ that divides fg.
Let g = p~!fz, which is an ideal of 0. Since multiplication by p is invertible on 'k /R, we have

0(0k/R) = pa(Ok /R) = (pp~")fr(Ok /R) = 0.
In other words, we have g0k C R. But fg C g, which is a contradiction. U
2.5. Ramification of primes

The integral closure B of a Dedekind domain A in a finite extension L of its quotient field K is
also a Dedekind domain. If p is a nonzero prime ideal of A, then we can consider the ideal pB of B.
This ideal may no longer be prime. Instead, it has a factorization

2.5.1) pB =P P
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for some distinct nonzero prime ideals *J3; of B and positive integers e;, for 1 <i < g for some g > 1.
We make the following definitions.

DEFINITION 2.5.1. Let B/A be an extension of commutative rings. We say that a prime ideal 3
of B lies over (or above) a prime ideal p of A if p =P NA. We then say that p lies under (or below)

L.
In (2.5.1), the prime ideals of B lying over p are exactly the *J3; for 1 <i <g.

DEFINITION 2.5.2. Let A be a Dedekind domain, and let B be the integral closure of A in a finite
extension L of the quotient field K of A. Let p be a nonzero prime ideal of A.

a. We say that p ramifies (or is ramified) in L/K if pB is divisible by the square of a prime ideal
of B. Otherwise, it is said to be unramified.

b. We say that p is inert in L/K if pB is a prime ideal.

c. We say that p is split in L/K if there exist two distinct prime ideals of B lying over p. Otherwise,
p is non-split.

It follows directly that p is ramified in L/K if some ¢; in (2.5.1) is at least 2. On the other hand,
p is inert in L/K if there is exactly one prime ideal of B lying over p and its ramification index is 1,
which is to say that g = 1 and e; = 1 in (2.5.1). Finally, p is splitin L/K if g > 1.

EXAMPLE 2.5.3. Let A = Z and L = Q(v/2). The integral closure of A in L is B = 0 = Z[\/2].
The prime p = (2) ramifies in Q(v/2)/Q, since

2Z[V2] = (V2)*
Moreover, 3 = (1/2) is a prime ideal of Z[v/2], since Z[v/2]/(v/2) = Z /27 via the map that takes
a+ bv/2 to a mod 2. Therefore, p is ramified and non-split.

Next, consider the prime ideal (3) of Z. We have Z[v/2]/(3) = F3[v/2] = Fy, so (3) is inert in
Q(v/2)/Q. On the other hand, the prime factorization of 7Z[v/2] is exactly

1ZV2) = (3+V2)(3-V?2),
since Z[v/2]/(3 ++/2) is isomorphic to Z/77Z via the map that takes a + b+/2 to a F 3b. That is, (7)
splits in Q(+/2) /Q.

DEFINITION 2.5.4. Let A be a Dedekind domain, and let p be a nonzero prime ideal of A. The
residue field of p is A/p.

REMARK 2.5.5. Let A be a Dedekind domain, and let B be the integral closure of A in a finite
extension L the quotient field K of A. Let p be a nonzero prime ideal of A, and let *}3 be a prime ideal
of L lying over K. Then B/ is a field extension of A /p via the natural map induced on quotients by
the inclusion A — B.
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DEFINITION 2.5.6. Let A be a Dedekind domain, and let B be the integral closure of A in a finite
extension L of the quotient field K of A. Let p be a nonzero prime ideal of A, and let *}3 be a prime
ideal of B lying over p.

a. The ramification index ey, of P over p is the largest e > 1 such that ¢ divides pB.
b. The residue degree fy ,, of a prime ideal of *P lying over p is [B/F : A/p].

REMARK 2.5.7. It follows quickly from the definitions that ramification indices and residue de-
grees are multiplicative in extensions. That is, if A C B C C are Dedekind domains with the quotient
field of C a finite extension of that of A and ‘P is a prime ideal of C lying over P of B and p of A, then

eq/p = ep/pepsp and  fon = fop/pfpsp-

EXAMPLE 2.5.8. In Example 2.5.3, the residue degree of (\/E) over 27 is 1, the residue degree
of 3Z[+/2] over 3Z is 2, and the residue degrees of (3 & +/2) over 7Z are each 1. The ramification
indices are 2, 1, and 1, repsectively.

We shall require the following lemmas.

LEMMA 2.5.9. Let p be a nonzero prime ideal in a Dedekind domain A. For each i > 0, the
A/p-vector space p' /p is one-dimensional.

PROOF. Let x € p/ — p/*! for some i > 0. (Such an element exists by unique factorization of
ideals.) We need only show that the image of x spans p’/p’*!. For this, note that (x) = pa for some
nonzero ideal of A not divisible by p. Then

(x) +p" =p'(atp) =9,
the last step by the Chinese remainder theorem. U
LEMMA 2.5.10. Let A be a Dedekind domain and P be a set of nonzero prime ideals of A. Let S
a multiplicatively closed subset of A such that SNp = @ for all p € P. Let a be a nonzero ideal of A
that is divisible only by prime ideals in P. Then the natural map
Ala—ST'A/S7 a
is an isomorphism.
PROOF. Suppose that b € S~YanA, and write b = % for some a € a and s € S. Then a = bs, and
since a divides (a) while (s) is relatively prime to a, we must have that a divides (»). In other words,
b € a, and therefore the map is injective. Given ¢ € A and ¢ € S, the ideals (7) and a have no common

prime factor, so in that A is a Dedekind domain, satisfy (¢) 4 a = A. Thus, there exists u € A such that
ut —1 € a. Then cu+ a maps to 7+ S~a, so the map is surjective. U

The ramification indices and residue degrees of the primes over p satisfy the following degree
formula.
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THEOREM 2.5.11. Let A be a Dedekind domain, and let B be the integral closure of A in a finite
separable extension L the quotient field K of A. Let p be a nonzero prime ideal of A, and write

e
pB:iBTl... gg

for some distinct nonzero prime ideals *3; of B and positive integers e;, for 1 <i < g and some g > 1.
For each i, let fi = fy,/p- Then

8
Y eifi=[L:K].
i=1

PROOF. We prove that dim, /, B /pB equals both quantities in the desired equality. By the Chinese
remainder theorem, we have a canonical isomorphism

8
B/pB=[]B/%¥;",
i=1

of A/p-vector spaces, so
e,-fl

8 8 . .
dimy /, B/pB = zidimA/p B/p¢ = Zi Zb dimy , B/ /B!
1= =1 j=

By Lemma 2.5.9, each ‘}3{ / ‘l?l] ™1 is a 1-dimensional B /Bi-vector space, and we therefore have
. g . g
dimy ), B/pB = Z eidimy /, B/B; = Z eifi.
i=1 i=1

Let S denote the complement of p in A. Then S™!A = Ay and S~!B are Dedekind domains, and
Ay is a DVR, hence a PID. Moreover, S~1B is the integral closure of Ay in L, being both integrally
closed and contained in said integral closure. Thus, Corollary 1.4.24 tells us that S~!B is free of rank
[L: K] over Ap. In particular, S~!B/pS~'B is an [L : K]-dimensional A, /pA,-vector space. On the
other hand, note that

SAY; = SNANP; =SNp =
for each 1 <i < g. Therefore, Lemma 2.5.10 tells us that
S'B/pS~'B=~B/pB
and Ap/pAy, = A/p. We thus have that dimy /, B/pB = [L : K|, as required. O

In other words, Theorem 2.5.11 tells us that the sum over all primes lying over p of the products
of their ramification indices with their residue degrees equals the degree of the field extension L/K.

The following theorem provides a very useful method for determining prime factorizations in
extensions of Dedekind domains.
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THEOREM 2.5.12 (Kummer-Dedekind). Let A be a Dedekind domain, let K be the field of frac-

tions of A, let L be a finite separable extension of K, and let B be the integral closure of A in L. Write
L =K(&) for some o € B. Let p be a nonzero prime ideal of A such that pB is prime to faj)- Let
h € Alx] be the minimal polynomial of &, and let h € (A/p)[x] be its reduction modulo p. Write

T 7 7€

h= h‘i’l bt
where the h; € (A/p)[x] are distinct nonconstant, irreducible polynomials and the e; are positive
integers for 1 <i < g, for some g > 1. Let h; € A[x| be any lift of h;. Then the ideals

Bi =pB+ (hi(w))
of B are distinct prime ideals over p of ramification index e; and residue degree degh;. In particular,
we have the prime factorization pB =B -- -‘,Bz,g .
PROOF. Set F = A/p. The canonical composite map
Alx] — Flx] — F[x]/(h)

has kernel pA[x] + (h), and
AN/ (pAlx] + (h)) = Aler]/pAla]

by the third isomorphism theorem. Combining this with the Chinese remainder theorem, we have

8
Alal]/pAla] = Flx]/(h) = [TF[x]/ (B).
i=1
Set P, = pAla] + (hi(a)). We claim that P is the kernel of the surjective map
9i: Ala] — F[x/(h{").

By definition, the P; are distinct and coprime, and we have

Ala) /P = F[x]/ (hi),
so A[o]/P; is a field extension of F of degree degh;, which is to say that P, is maximal. The image of

hf"_l is not in the kernel of ¢; so P/ is the smallest power of P, contained in ker ¢, which is contained
in P;. In that P, is maximal, we have

Ala]/P = Ala]p /P 'Alalp,

Note that A[] is an order by Lemma 2.4.2. The prime ideal P, = ‘B3; NA[a] is relatively prime to
faja) S Al@] as PB; does not divide f4(4 in B. Thus, we have that A[@]p, is a DVR by Proposition 2.4.10.
So, the only ideals of A[ct]/P/" are P" /P’ for 0 < m < e;. The kernel of A[a]/P{" — F|[x]/(h{") can
then only be zero, which means that ker ¢; = P, as claimed.

Since the product of the induced maps

HA /Pe’—>HF /(R
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is injective, we have pA[a] = P{'--- P5*, and then by definition, we have pB = PB{' - B¢ as well.
Proposition 2.4.10 tells us that each °B; is prime, By, = Ap, and P; = ;N A[a]. In particular, the
P3; are distinct, and as they are the only primes occuring in the factorization of pB, they are the only
primes of B lying over p. Since B/%B; = F|[x]/(h;), the residue degree of *B; is degh;, and by the
factorization of pB, the ramification index of J3; over p is e;. O

EXAMPLE 2.5.13. Let h(x) = x> +x+ 1 € Z[x]. Note that it is irreducible in Q[x] since it is monic
with no integral roots (or since it has no roots modulo 2). Let L = Q(«) for a root & of F in C. Then
Z[o] is integral over Z and has discriminant —31 (which of course one should check), so must be the
ring of integers of L. Since /4(0) and A(1) are both odd, A(x) remains irreducible modulo (2), so (2)
is inert in L/Q. On the other hand,

h(x) = (x*+x—1)(x—1) mod 3,

SO
3Z[o] = P12
where PB1 = (3, «? + o — 1) has residue degree 2 and B, = (3, & — 1) has residue degree 1.

COROLLARY 2.5.14. Let p be an odd prime number, and let a € 7 be square-free and not divisible
by p. Then a is a square modulo p if and only if (p) splits in Q( /a).

PROOE. Since the conductor of Z[\/a] divides (2), Theorem 2.5.12 applies. We may therefore
determine the decomposition of (p) in ﬁQ( Ja) via the factorization of x*> —a modulo p. Since p does
not divide a, the polynomial x> — a is not a square modulo p. Therefore, (p) will split if and only if
the polynomial splits, which is to say exactly when a is a square modulo p. U

PROPOSITION 2.5.15. Let A be a Dedekind domain, let K be the field of fractions of A, let L be a
finite separable extension of K, and let B be the integral closure of A in L. Write L = K (o) for some
o € B. If a nonzero prime ideal of A is ramified in B, then it divides D(1,«, . . ., olLKI=1,

PROOF. Let f € A[x] be the minimal polynomial of c. Let p be a nonzero prime ideal of A such
that pB is relatively prime to f5[o]. By Theorem 2.5.12, the prime p is ramified in B if and only if the
reduction f € (A/p)[x] is divisible by the square of an irreducible polynomial. For this to occur, f
would have to have a multiple root in any algebraic closure of A /p. By Proposition 1.4.13, this means
that D(1,a, ..., alEK1=1) = 0 mod p.

Finally, note that f 4 divides D(1,a,..., OC[L:K}*I) € A by Lemma 2.4.9, so any prime p of A for
which pB is not relatively prime to f4|¢) divides D(1, ..., olLKI=T, O

COROLLARY 2.5.16. Let A be a Dedekind domain and B the integral closure of A in a finite

separable extension of the quotient field of A. Then only finitely many prime ideals of A are ramified
in B.
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The following is also useful.

LEMMA 2.5.17. Let A be a Dedekind domain, K its quotient field, L a finite separable extension
of K, and B the integral closure in K. Let b € B. Every nonzero prime ideal of B dividing bB lies
above a prime ideal of A dividing Ny /x(b)A. Conversely, every prime ideal of A dividing Ny jx(b)A
lies below a prime ideal of B dividing bB.

PROOF. If B divides (b), then Ny kb € p =*PNA, so p divides (N /xb). Conversely, if no prime
over p divides b, then for any field embedding ¢ of L in an algebraic closure of K fixing L, no prime
over p in o(B) divides (o(b)). But then no prime over p in the integral closure C of B in the Galois
closure of L divides (Ny /g (b)), which is to say the ideal generated by the product of the elements
o(b). Hence p cannot divide (Ny k(b)) either. O

We have the following immediate corollary.

COROLLARY 2.5.18. Let A be a Dedekind domain, K its quotient field, L a finite separable exten-
sion of K, and B the integral closure in K. An element b € B is a unit if and only ifNL/K(b) €A,

2.6. Decomposition groups

Throughout this section, we let A be a Dedekind domain with quotient field K. We let L be

a finite Galois extension of K, and we let B denote the integral closure of A in L. Moreover, set
G =Gal(L/K).

TERMINOLOGY 2.6.1. We frequently refer to a nonzero prime ideal of a Dedekind domain as a
prime.

DEFINITION 2.6.2. A conjugate of a prime ‘B of B is () for some o € G.

LEMMA 2.6.3. Let p be a prime of A, and let *B be a prime of B lying over p. Then any conjugate
of B is also a prime of B lying over p.

PROOF. Since any o € G is an automorphism, ‘P is an ideal. The rest is simply that

o(P)NA=0(PNA)=0o(p) =p.

Clearly, we have an action of the group G on the set of primes of B lying over a prime p of A.

PROPOSITION 2.6.4. The action of G on the set of primes of B lying over a prime p of A is

transitive.

PROOF. Let P and £ be primes of B lying over p. Suppose by way of contradiction that £ is
not a conjugate of 3. By the Chinese Remainder Theorem, we may choose b € B such that b € Q
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but b = 1 mod o(*P) for all o € G. The latter condition may be rewritten as o(b) = 1 mod P8 for all
0 € G. Then a = Ny jk(b) € p since b € Q, but

a= Hc(b)zlmodq&

oceG
Since a € A, this tells us that @ = 1 mod p, which is a contradiction. O

DEFINITION 2.6.5. Let ‘3 be a prime of B. The decomposition group Gy of 3 is the stabilizer of
B3 under the action of G. That is,

Gp={0ecG|a(P)="%}.
COROLLARY 2.6.6. Let p be prime of A, and let *3 be a prime of B lying over p. Then there is a

bijection
G/Gy — {Q prime of B| QNB = p}
that takes a left coset 6Gop to ().
PROPOSITION 2.6.7. Let *B be a prime of B lying over a prime p of A, and let 6 € G. Then
Co(y)/p = ep/p A Sory)/p = S /p-
PROOF. Let S be a set of Gyz-coset representatives of G/Gsy. By Corollary 2.6.6, we have

pB = [J (o).

[of=N)

Since T € G acts trivially on p, we have that 7(pB) = p7(B) = pB. We therefore have
pB=1(pB) = [[ (o) 'owirp.

ocS
By unique factorization of ideals in E, this forces all ey, for 0 € G to be equal.
Moreover, any ¢ € G restricts to an isomorphism 6: B — B (since for € B, the element ¢ (f3)
has the same monic minimal polynomial over K) that fixes A. It then induces an isomorphism

o: B/ = B/c(P)
of residue fields fixing the subfield A/p. In particular, this is an isomorphism of A /p-vector spaces,
so all fs(yp)/p are equal. U

REMARK 2.6.8. For L/K Galois, and B3 lying over p, we often set e, = e/p and fy = fap/p-

COROLLARY 2.6.9. Let p be a prime of A, and let *B be a prime of B lying above p. Set e = ey )y,
[ = fyp and g =[G : Gyp]. Then

g
pB =] J(oB)*
i=1
for {o1,---,04} a set of Gy-coset representatives of G/Gsyp. Moreover, we have

efg=[L:K].
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LEMMA 2.6.10. Let ‘B be a prime of B. Let 6 € G. Then
Go(p) = O'Gmo_l.
PROOF. Since G is finite, it suffices to show one containment. Let T € Gy Then we have

o1 (o) = o () = oL,

sooto e Goy, as needed. O

COROLLARY 2.6.11. Suppose that L/K is an abelian extension and ‘B is a prime of B. Then
Gop) = Gp forall o € G.

REMARK 2.6.12. One often writes Gy, for the decomposition group of a prime 3 of B lying above
a prime p of A, and this is independent of the choice of 3 if L/K is abelian.

LEMMA 2.6.13. Let p be a prime of A, and let Y3 be a prime of B lying above p. Let E be the fixed
field of G, and let C be the integral closure of A in E. Then *B is the only prime of B lying above
P=CN*B, and ep), = fp/p, = 1.

PROOF. Since Gy fixes I3 and the action of Gsz on the primes of B lying above P is transitive, 3
is the unique prime over P. Note that ez, > eq3/p and fip/, > fiz/p- We have eqpfip/p = [L : E],
while the number of primes g above p in L equals [E : K], s0 eq/pfip/pg = [L : K]. On the other hand,
Corollary 2.6.9 tells us that e, fiy/p¢ = [L : K], so we must have eg ), = e /p and fip/p = fip/p- In
other words ep/, = fp/p = 1. U

PROPOSITION 2.6.14. Let p be a prime of A, and let °3 be a prime of B lying over p. Then the
extension B/P of A/p is normal, and the map

myp: Gy — Gal((B/%)/(A/p))
with op(0) (b +%) = o(b) + B for 6 € Gy is a well-defined, surjective homomorphism.

PROOF. Let o € B, and let & denote its image in B/B. Let f € Alx| be the minimal polynomial
for a over K, and let f be its image in (A/p)[x]. Clearly, & € B/B is a root of f. Since f splits
completely over L, with roots in B, its reduction f splits completely over B/B. Since the minimal
polynomial of & divides f, we have that B/* is a normal extension of A/p.

Let 0 € Gy, and let b,c € B. If b+*P = ¢ +°B, then b — ¢ € P. Since o(P) = P, we have that
o(b—c) € P as well, so wp(0)(b+*B) = mp(0o)(c +P). The image my (o) is also easily seen to be
a field isomorphism by such computations as

o(be) +P = o(be+P) = o((b+P)(c+B)) = (6(b) +F)(o(c) +F)
for any b,c € *B, and it clearly fixes A/p. That 7y is a homomorphism is similarly easily checked.

It remains to show surjectivity. Let 6 be an automorphism of B/B fixing A/p. Let E be the fixed
field of Gy, let C be the integral closure of A in E, and let P = CN*B. Suppose that 0 € B/ generates



52 2. DEDEKIND DOMAINS

the maximal separable subextension of B/B over A/p = C/P. Let 8 € B be a lift of 6. Let g € C[x]
be the minimal polynomial of 0, let g be its reduction modulo P, and let & € (A/p)[x] be the minimal
polynomial of 8. Since &(8) is also a root of A, it is a root of g, and therefore there exists a root 6’
of g such that 6’ reduces to 5(0). Let ¢ € Gy be such that 6(0) = 6’. Then my(0)(0) = 6(6), so
mip(0) = & by choice of 6. O

DEFINITION 2.6.15. Let }3 be a prime of B. The inertia group Iy of °B is the kernel of the map
Gy — Gal((B/B)/(A/p)).

COROLLARY 2.6.16. Let p be a prime of K and %3 a prime of B lying over p. Then there is an
exact sequence of groups

1 — Iy — Gy —2 Gal((B/B)/(A/p)) — 1.

REMARK 2.6.17. The inertia group is a normal subgroup of the decomposition group of a prime.
If the corresponding extension of residue fields is separable, then its order is the ramification index of
the prime.

EXAMPLE 2.6.18. Let L = Q(, v/2), where @ is a primitive cube root of 1. Let K = Q(w). Let
G = Gal(L/Q) and N = Gal(L/K). Note that

D(1,V2,(V2)?) = Ny 3),6(3(V2)?) =27 -4 = 108,

so 2 and 3 are the only primes that can divide the conductor of Z[\3/§] (which is in fact the ring of
integers of Q(v/2), though we shall not use this).
e The prime 2 is inert in K /Q and ramifies in L/K; the decomposition is 207 = (v/2)3. We
therefore have G( )= Gand/ (32 = N.
e The prime 3 is totally ramified in L/Q. To see this, note first that it ramifies as 30k =
(1 - w)? in K. Moreover, Npg(1+ v/2) = 3, while 1+ +/2 is congruent to its conjugates
modulo (1 — ). This tells us that 3¢, = 3° for
3 l-w
P=(1+V2,1-0)= (T\ﬁ)
Then Gy = Iy = G.
e The prime 5 is inert in K/Q and splits in L/K: for the latter, we may apply the Kummer-

Dedekind criterion, noting that 3> =2 mod 5, so x®> — 2 splits completely over the residue
field Fy5 of K at (5). We then have 507, = Q1,03 for primes

Q; = (5, w2 - 3)

with G, = Gal(L/E;), where E; = Q(®~'v/2) for 1 <i < 3. We have 50f, = qq, where
9 lies over q; = (5,v/2—3) and Q, and Q3 lie over qo = (5,(v/2)? +3v/2 +4), which
have fq,/(s) = T and fo(s5) = 2.
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TERMINOLOGY 2.6.19. If K is a number field, then we often refer to a nonzero prime ideal of
Ok as a prime of K.

DEFINITION 2.6.20. Let K be a number field and a be a nonzero ideal in Ok. The absolute norm
of a is the integer Na = [0k : a.

REMARK 2.6.21. If p is a prime in the ring of integers of a number field K lying above pZ, then
Np = p/, where f is the residue degree of p over pZ.

REMARK 2.6.22. The absolute norm extends to a homomorphism N: Ix — Q* with N(ab™!) =
Na-(Nb)~! for any nonzero ideals a and b of 0.

For number fields, the residue fields of primes are finite. Recall that the Frobenius element ¢ &
Gal(F,/IF,) for g a power of a prime and n > 1 is defined by ¢(x) = x4 for all x € F,. That is,
we have canonical generators of Galois groups of extensions of residue fields. Since the map of
Proposition 2.6.14 is surjective, these lift to elements of decomposition groups.

DEFINITION 2.6.23. Let L/K be a finite Galois extension of number fields with G = Gal(L/K).
Let p be a prime of K and *B a prime of L lying over p. A Frobenius element of Gy is an automorphism
oy € Gy satisfying

op(a) = P mod P
forall a € 0}.

REMARK 2.6.24. If p is unramified in L/K, then @y is unique given a choice of *B. If, in addition,
L/K is abelian, then ¢y is independent of the choice of 3.






CHAPTER 3

Applications

3.1. Cyclotomic fields
Let n be a positive integer.

NOTATION 3.1.1. Let n be a positive integer and K a field. The group p,(K) will denote the group
of nth roots of unity in K.

REMARK 3.1.2. Let n be a positive integer and K a field of characteristic not divisible by n. The
group U, to denote the group of nth roots of unity in an algebraic closure of K, fixed beforehand. This
group always has order n.

EXAMPLE 3.1.3. Let £ and p be prime numbers.

a. The group (E) of /th roots of unity in an algebraic closure of ¥, has order ¢ for £ # p and
is trivial if / = p.

b. The group y(F ) is . for £ dividing p — 1 and 1 for all other .

NOTATION 3.1.4. Let K be a field and L be an extension of K. If S is a set of elements of L, then
the field K(S) is the subfield of L given by adjoining to K all elements of S.

DEFINITION 3.1.5. The field Q(u,,) is the nth cyclotomic field.

REMARK 3.1.6. More generally, if F is a field of characteristic not dividing n, we let F(u,)
denote the field obtained from F by adjoining all nth roots of unity in an algebraic closure of F.

REMARK 3.1.7. The field Q(u,) is Galois over Q, as it is the splitting field of x" — 1. All nth
roots of unity are powers of any primitive nth root of unity §,, so Q(u,) = Q(&,).

DEFINITION 3.1.8. The nth cyclotomic polynomial ®, € Z[x] is the polynomial which has as its
roots the primitive nth roots of unity.

Note that x" — 1 = [] 4|, 4. We recall the definition of the M&bius function.

DEFINITION 3.1.9. The Mébius function u: Z>1 — Z is defined as follows. Let n = p}'--- p}f
for distinct primes p; and positive integers r; for 1 <i < k for some k > 0. Then

(=DF ifr;=1forall 1 <i<k,
(n) = ,
0 otherwise.

55



56 3. APPLICATIONS

We omit the proof of the following, which uses the M&bius inversion formula.

LEMMA 3.1.10. Foralln > 1, we have

d|n

EXAMPLES 3.1.11.

a. CI)1=x—1,<l>2:x+1,<I>3:x2+x+1,¢4:x2+1,¢5: 4+x3+x2+x+1,¢6=x2—x+1.
b. ®is =2 —x"+xX -+ —x+1.

c. D, = X1 .4 x4 1 for every prime p and r > 1.

For n > 1, we will use {, to denote a primitive nth root of unity in an algebraic closure of Q.

LEMMA 3.1.12. Let n > 1 and let i, j € 7 be relatively prime to n. Then

l—C’

I_Cn Q(ﬂn)'
PROOF. Let k € Z with jk =1 mod n. Then
1— i 1— ijk

is an algebraic integer since §, is. The same being true after reversing i and j, we have the result. [J
We let Z [, denote the ring generated over Z by the nth roots of unity.

LEMMA 3.1.13. Let p be a prime number and r > 1. Then the absolute value of the discriminant
of Zu,r] is a power of p, and (p) is the only prime of 7 that ramifies in Q(,r). It is totally ramified
and lies below (1 — §,r). Moreover, [Q(p,r) : Q] = p™~1(p—1).

PROOF. Note that [Q(t,r) : Q] < deg®,r = p"~!(p—1). We have

pr—1

[T0-&) =2y (1)=p.

l;ﬂl
which forces 1 — C;;r to be divisible by a prime p over p for some i with p {i. By Lemma 3.1.12, this
implies that each 1 — ler with p 1 j is divisible by p. Therefore, pl’rfl(p_l) divides (p), which forces

[Q(upyr): QI =p'(p—1) and
POQu,) = p 07D = (1= g

Finally, note that
dlsc(@@ ) | disc(Z[uyr]),
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which is a product of terms of the form § ;r - Ifr for i # j both not divisible by p, which from what
we have seen is only divisible by the prime p = (1 — {,r). In other words, no prime other than p can
ramify. U

PROPOSITION 3.1.14. The nth cyclotomic polynomial is irreducible for all n > 1. In other words,
[Q(un) : Q] = @(n), where @ is Euler’s phi-function. Moreover, the prime ideals of 7 that ramify in
Oq(u,) are the odd primes dividing n and, if n is a multiple of 4, the prime 2.

PROOF. If we write n = p{'--- p,r{" for distinct primes p; and r; > 1, then

n k
d%¢n=2}4§>dzllﬁ’Wm—4)=¢@)

dn
Hence, the second statement implies the first. In n is even and not divisible by 4, then Q(u,) =
Q(t,/2) and @(n) = @(n/2), so we may assume that either  is odd or divisible by 4.

The result holds for k = 1 by Lemma 3.1.13. Write n = mp" for some m,r > 1 and prime p not
dividing m. As p does not not ramify in Q(u,,) by induction on k but is totally ramified in Q(u,) by
Lemma 3.1.13, the fields Q(u,,) and Q(u,-) are linearly disjoint. So by induction, the primes which
divide n are exactly those which ramify in Q(u,) = Q(t,)Q(u,r), and we have

[Q(un) : Q = [Q(tm) - QI[Q(uyr) : Q = 9(m)@(p") = @(n).

For an arbitrary field of good characteristic, let us make the following definition.

DEFINITION 3.1.15. Let F be a field of characteristic not dividing n > 1. Define a homomorphism
xn: Gal(F(u,)/F) — (Z/nZ)*

on ¢ € Gal(F(u,)/F) as follows. If i, is the unique integer with 1 < i < n such that 6({) = ' for
all nth roots of unity { in F, then ,(0) = iz mod n. Then ¥, is called the nth cyclotomic character
for F.

NOTATION 3.1.16. If a € Z/nZ, then {¢ for  an nth root of unity denotes {? for any b € Z with
image a modulo n.

REMARK 3.1.17. The homomorphism , is always injective, as any element such that y, (o) =1
for all o € Gal(F (u,)/F) fixes u, and hence F(u,).

We have the following corollary of Proposition 3.1.14, since ¥, for F' = Q is an injective homo-
morphism between groups of equal order.

COROLLARY 3.1.18. The nth cyclotomic character ¥,: Gal(Q(u,)/Q) — (Z/nZ)* is an iso-

morphism.
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REMARK 3.1.19. In particular, Q(u,)/Q for an odd prime p and r > 1 has cyclic Galois group.
PROPOSITION 3.1.20. The ring Z[W,] is the ring of integers of Q(uy,).

PROOF. We first consider n = p” for a prime p and r > 1. In this case, we know that the absolute
value of disc(Z[u,r]) is a power of p, say p™. In particular, fzju, divides (p"). Let A =1—(pr,
which generates the unique prime over (p) in Q(u,). Since (p) is totally ramified in Q(u,r)/Q, we
have that

Oq(u,/ (M) = Z/PZ.
In particular,
3.1.1) ﬁ@(up,) = Z‘Flrﬁ(@(upr) = Z[,Ltpr] + ﬂ,rﬁ@(“pr).
Replacing Oy w,r) ON the right-hand side of (3.1.1) using the formula for @@(ﬂpr) given by (3.1.1)
itself, we have
O, = L]+ A (Zlpr] + 4O ) = Ll ] + 47 O, -

Repeatedly replacing O w,r) O the right, we eventually obtain

OQuy) = Lty ]+ P" O,y = L1y ]

the latter step by definition of the conductor.

For the general case, we write n = p\'--- p/* for distinct primes p; and r; > 1. Then Q(u,) is the
compositum of the Q(u p;,») and the discriminants of the fields Q(u plg) are relatively prime, we have
by Proposition 1.4.28 that the elements

C e L,

Py Py
with 0 <, < ptr’fl(p, — 1) —1 for each 1 <t <k form an integral basis of 6"@(””). Since these

elements are all contained in the order Z[u,| in Q(L,), we have the result. O

The factorization in Q(u,) of the ideals generated by prime numbers is rather easy to describe.

PROPOSITION 3.1.21. Let p be a prime, and let r > 0 be such that p” exactly divides n. Let
m = 25, and let f be the order of p in (Z/mZ)*. Then

PZL[,) = (p1 "'Pg)(p(pr),

where @ is the Euler phi-function, g = f~'@(m) and the p; are distinct primes of Z[u,) of residue
degree f.

PROOF. First, we note that p is totally ramified in Q(u,) of degree ¢@(p") and unramified in
Q(tm). It follows from Remark 2.5.7 that the ramification index of p in Q(u,) is then ¢(p"), and the
residue degree of p in Q(u,) is the residue degree of p in Q(,y,).
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So, let q be a prime ideal over p in Z[,]. Its residue field is

F= Z[.um]/q = IE‘P(.um)

As F* is cyclic of order |F| — 1, we have F =T ,; for the smallest f > 1 such that m | (p! — 1),

which is to say that the order of p in (Z/mZ)*. Finally, g is constrained to be f~!¢@(m) by the degree
formula. O

We have the following corollary.

COROLLARY 3.1.22. An odd prime p splits completely in Q(u,)/Q if and only if p =1 mod n.
The prime 2 does not split completely in a nontrivial cyclotomic extension of Q.

PROOF. By Proposition 3.1.21, to say that a prime p splits completely is exactly to say that
¢@(p") =1andthe order of pin (Z/(n/p")Z)* is 1. If p is odd, then this means » =0 and p = 1 mod n.
If p = 2, this forces n = 1 or n = 2, which is to say that Q(u,) = Q. O

3.2. Quadratic reciprocity

In this section, we briefly explore the relationship between cyclotomic and quadratic fields.
DEFINITION 3.2.1. For an odd prime p, we set p* = (—1)(?=1/2p,
The reason for this definition is the following.

LEMMA 3.2.2. Let p be an odd prime. The field Q(\/ p*) is the unique quadratic field contained
in Q(up).

PROOF. Recall that Gal(Q(u,)/Q) is cyclic of order p — 1, so it has a unique quotient of order 2.
As p is totally ramified in Q(u,)/Q, it is ramified in K, so K = Q(v/p’), where p’ = £p. Moreover,
no other prime is ramified in Q(u,)/Q. If p’ = 3 mod 4, then K has ring of integers Z[/p’], and we
have

ZIVP/(2) 2 Falx] /(2 = p') 2 Fa[d]/ (x + 1)%,

which means that 2 ramifies in K. Since p* = 1 mod 4, we must have p’ = p*. U

We prove the following consequence of results of Proposition 3.1.21.

PROPOSITION 3.2.3. Let p and q be odd prime numbers. Then q splits in Q(\/p*) if and only if
q splits into an even number of primes in Q(L).

PROOF. The prime g splits into an even number of primes in Q(u,) if and only if the decompo-
sition group G, of any prime over ¢ has even index in Gal(Q(p,)/Q). Since the latter Galois group
is cyclic with unique subgroup of index 2 having fixed field Q(1/p*) by Lemma 3.2.2, this occurs if
and only if G, fixes Q(+/p*), which is to say, if and only if ¢ splits in Q(1/p*). O
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DEFINITION 3.2.4. Let a be an integer and ¢ be an odd prime number with ¢ { a. The Legendre
symbol (%) is defined to be

q

<a) 1 ifaisasquare mod g,

—1 otherwise.

In other words, (£) is the unique unit in Z such that

a% = (E> mod gq.
q

Gauss’ law of quadratic reciprocity is the following.

THEOREM 3.2.5 (Quadratic reciprocity). If p and q are distinct odd prime numbers, then

(£)()-co

g—1 p—1¢g—1

p? =(—1)7 7 modgq.

PROOF. Note that

if and only if
qg—1
T

(P*)

which is to say if and only if (%*) = 1. This says exactly that there exists a € Z such that

=1 mod g,

a®>=p* mod g.

But then x> — p* factors modulo g, so (g) splits in Z[/p*]. Now, Proposition 3.2.3 tells us that this
happens if and only if (g) splits in Z[u,] into an even number of primes. By Proposition 3.1.21, the
prime (g) splits into (p — 1)/ f primes in Q(L,,), where f is the order of ¢ modulo p. So, it splits into
an even number if and only if f divides (p — 1)/2, which is to say that

p—1
g 2 =1mod p,
In other words, (£) = (—1)[%1% if and only if () = 1, as desired. O

REMARK 3.2.6. To complete the law of quadratic reciprocity, we note that the definitions imply

that
3)-cv

and we note without proof that
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3.3. Fermat’s last theorem

Recall that Fermat’s last theorem (or FLT) asserts the nonexistence of integer solutions to x" +
y* = 7" with xyz # 0 for all n > 3. Fermat proved this conjecture for n = 4, and given this it clearly
suffices to show the nonexistence for odd prime exponents. While FLT was proven by Wiles in 1995
using methods far beyond the scope of these notes, we are able to prove here the following so-called
“first case” of Fermat’s last theorem for odd prime exponents of a special form.

Fix an odd prime p and a primitive pth root of unity {, in Q(u,). We require a couple of lemmas.

LEMMA 3.3.1. Let x,y € Z be relatively prime, and suppose that p t x+Yy. Then the elements
x+ (:;y of Z[up) for 0 <i < p —1 are pairwise relatively prime.

PROOF. If q is a prime ideal of Z[u,] dividing both x + CI’;y and x + C,{y for 0 <i < j < p, then
q divides both (CI{ — CI’,)y and (CI{ — CI’,)x If g does not lie over p, then it must divide both x and
y, which is impossible. Thus, q lies over p, so it equals (1 —{,). On the other hand, x + {y =
x+y mod (1—¢,), which implies that x+y = 0 mod p, since x+y is an integer. Thus, no such ¢ can

exist. U

TERMINOLOGY 3.3.2. For any n > 3, we refer to the unique element of Gal(Q(u,)/Q) with
image —1 under the nth cyclotomic character as complex conjugation, and we write & to denote the
image of o € Q(Lt,) under this element.

LEMMA 3.3.3. Let € € Z[lp|*. Then there exists j € Z such that ECI{ is fixed by complex conju-
gation.

PROOF. Note that o(£€¢™!) has absolute value 1 for every o € Gal(Q(u,)/Q), so it is a root of
unity by Corollary 4.4.2 below, hence a 2pth root of unity. If the lemma did not hold, then each
&0 _ ot

eg; -
would have to be nontrivial for every j, which means that €€~
Thus, we would have ¢! = —C;; for some i € Z. We may write € = ¢ mod (1 — {,,) for some ¢ € Z,
and so € = ¢ mod (1 —{,,) as well. On the other hand,

! would not be a pth root of unity.

€= —Z_:; =—-e=-cmod (1-{)),
so (1 —¢,) in fact divides €, which is a contradiction as € is a unit. U

LEMMA 3.3.4. The images of any p — 1 of the pth roots of unity in Z[u,]/(p) are F,-linearly
independent.

PROOF. We have

ZIup)/(p) = ZIx]/(@p, p) = Fplal/(@p) 2 Fplx]/(x—1)P,
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and the images of any p — 1 among 1,x,...,x"~! are [F,-linearly independent in the last term. 0

We now prove the result.

THEOREM 3.3.5 (Kummer). Let p be an odd prime such that Cl@(#p) contains no elements of
order p. Then there do not exist integers x,y,z with p { xyz such that xP 4+ yP = zP.

PROOF. Suppose that x” + y? = zP for some integers x,y,z with p{xyz and (x,y) = (1). For p =3,
we note that the set of nonzero cubes modulo 9 is {#1}, and no sum of two elements of this set equals
a third element modulo 9. Thus, we may assume that p > 5 from now on.

Note that if x =y = —z mod p, then 2x” = —x” mod p, so p divides 3x”. As p 1 xyz, this cannot
happen. Therefore, if p | x—y, then p t x+z. Switching the roles of y and —z by writing x” + (—z)” =
(—y)? if needed, we may therefore assume that p{x—y.

In Z[u,), the quantity x” 4 y” factors, and we have

p—1

[TGx+Ey) =2

i=0
Note that z = x+y mod p, so p does not divide x+y. By Lemma 3.3.1, we have that the ideals
(x+¢ ;;y) are coprime, so in order that their product be a pth power of an ideal, each must itself be a
pth power. Write

(x+Cpy) = a”
for some ideal a of Z[u,]. Since we have assumed that Clg(y,) has no elements of order p, the ideal
a is principal, so let & € Z[u,] be a generator of a. We then have

x+Cy=¢eal

for some € € Z[u,]*.
Now, note that we may write & = ¢ +d(1 — {) for some ¢ € Z and d € Z[u,], and

of =c?4+dP(1—§)P =cmod (p).

By Lemma 3.3.3, we that there exists j € Z such that & = C,{e is fixed by complex conjugation. We
thus have

x+Epy= Cp’je’c mod (p),
)
x+ Cp_ly = {J€'c mod (p).
We therefore have
£ (x4 &py) =x+ &, 'y mod (p).

If § 2j , gj +1, 1 and ¢ b I are distinct pth roots of unity, then since p — 1 > 4, they are linearly inde-
pendent modulo p. This would force both x and y to be divisible by p, a contradiction.
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It follows that 1 = ,%j , ,%j or }%j *2 n the first of these cases, we have

x+&y=x+¢, 'y mod (p),
so p divides y, a contradiction. In the second case, we have
& 'x+y=x+¢ 'y mod (p),
so p divides x —y, again a contradiction. In the final case, we have
-2 —1, — -1
Cp x+€p y:x_I—Cp y mOd(p>7
so p divides x, a contradiction, finishing the proof. O

REMARK 3.3.6. The “first case” of FLT refers to the nonexistence of solutions to x” + y” = z?
with p txyz. The “second case” refers to the nonexistence of solutions with p | xyz and xyz # 0.






CHAPTER 4

Geometry of numbers

4.1. Lattices

DEFINITION 4.1.1. A lattice in an finite-dimensional R-vector space V is an abelian subgroup of
V that is generated by a finite set of R-linearly independent vectors.

DEFINITION 4.1.2. A lattice in a finite-dimensional R-vector space V is said to be complete, or
full, if its elements span V.

The following is an immediate consequence of the definitions.

LEMMA 4.1.3. If A is a complete lattice in a finite-dimensional R-vector space V, then A is
generated by a basis of V.

DEFINITION 4.1.4. Let A be a complete lattice in a finite-dimensional vector space V. The fun-
damental domain of A relative to a Z-basis {vi,...,v,} of A is the set

D= {i CiVi
i=1

The following is essentially immediate.

c,-E[O,l)foralllgign}.

LEMMA 4.1.5. If D is a fundamental domain of a complete lattice A in a vector space V, then
every element of V- may be written uniquely in the form x+y for some x € A and some y € D.

Of course, a finite-dimensional R-vector space V' has a Euclidean metric with respect to any basis
of V (as such a basis defines an isomorphism V = R" for some n). Though the metric depends upon
the choice of basis, the resulting topology is independent of the choice of basis.

DEFINITION 4.1.6. We say that a subgroup of an finite-dimensional R-vector space V is discrete
if it has the discrete topology as a subspace of V.

In other words, a subgroup A of a finite-dimensional real vector space V is discrete if for every
v € A there exists an open neighborhood U of v in V such that U NA = {v}. The following is
elementary.

LEMMA 4.1.7. A discrete subgroup of a finite-dimensional R-vector space V is a closed subset of
V.
65
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PROPOSITION 4.1.8. A subgroup of a finite-dimensional R-vector space is discrete if and only if

it is a lattice.

PROOF. Let V be an n-dimensional R-vector space for some n > 0, and let A be a subgroup. If
A is a lattice, then A =Y 7" , Zv; for some linearly independent v; € A and m < n. Extend these to an
ordered basis vy,...,v, of V. Letv= 3" a;v; € A for some a; € Z. Then

U= {v-l—icivi

i=1

ci€(—1,1) forall 1 §i§n}

1s an open neighborhood in V containing v but no other elements of A. Thus A is discrete.

Conversely, suppose A is discrete. Let W be the subspace of V spanned by A, and letvy,...,v,, €A
be linearly independent with m maximal, so that the v; necessarily span W. Let X =Y1" | Zv; < A. We
claim that ¥ is of finite index in A. By definition, X is a complete lattice in W, so so we may choose
a system S of representatives of the cosets A/X inside the fundamental domain D of X in W. That is,
S C AND. However, A is discrete and closed and D is a bounded set, so the intersection of A with
the closure of D is discrete and compact, hence finite. Since AN D is then finite, S has only finitely
many elements.

Now setd = [A: X]. Then A C %Z, and %Z = ¥ is a free abelian group of rank m, so A is free of
rank (at most) m. In other words, A is a lattice. ]

LEMMA 4.1.9. A lattice A in'V is complete if and only if there exists a bounded subset B of V

such that every element of V is the sum of an element of B and an element of A.

PROOF. If A is a complete lattice, we may let B be the fundamental domain of V relative to a
basis, and in fact every element of V may in that case be written uniquely as an element of B + A.

Suppose that there exists a B as in the statement of the lemma. Let W be the R-span of A, and let
v € V. For each k > 1, write kv = b, + x; with b, € B and x; € A. As B is bounded, we have

1
lim -5, =0
P A
SO
= lim —x;.
But %xk € W for all k and W is closed, sov € W. O

We will suppose now that our finite-dimensional vector space V comes equipped with a symmet-

ric, positive definite inner product
(,):VxV =R

In other words, V is an finite-dimensional real inner product space. The Euclidean metric defined by a
choice of an orthonormal basis of V is independent of the choice. The resulting Lebesgue measure uy
on V has the property that the cube defined by an orthonormal basis of V has volume (i.e., measure)
one.
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DEFINITION 4.1.10. Let V be an finite-dimensional real vector space with a symmetric, positive
definite inner product ( , ). Let A be a complete lattice in V. The volume Vol(A) of lattice is the
volume of the fundamental domain of A relative to a Z-basis of A.

REMARK 4.1.11. That the volume of A is indepedendent of the choice of basis is a consequence
of the following lemma.

LEMMA 4.1.12. Let V be an n-dimensional real inner product space. Let ey,... e, be an or-
thonormal basis of V. Let A be a complete lattice in V with basis vy, ...,vy,, write

n
Vi = Z a; je js
j=1
and let A = (a;;). Then
Vol(A) = |detA| = |det((v;,v;))|"/2.
PROOF. The first equality is a standard statement of linear algebra. The second is the fact that

n n
iv) =Y Y apajler. ey =Y anaj = (AAT);;,
i=1

k=11=1
since det(AAT) = det(A)>. O

DEFINITION 4.1.13. Let T be a subset of a finite-dimensional vector space V.
a. We say that T 1s convex if it contains the line segment
C={(1—c)v+cew]|cel0,1]}
between any two vectors v,w € T.

b. We say that T is symmetric about the origin if —v € T forallve T.
Now we come to the main theorem of this subsection.

THEOREM 4.1.14 (Minkowski’s theorem). Let V be an n-dimensional real inner product space,
and let A be a complete lattice in V. Let X be a convex, measurable subset of V that is symmetric

about the origin, and suppose that
NK@QR(X) > 2" Vol(A).
Then X NA # {0}.

PROOF. Let

y—ix-1! |xeX
—2 = ZXX .

If y € Y, then 2y € X, so —2y € X as X is symmetric about the origin. If y € Y as well, then

1

1
f—y==(2y)+=(-2y) €X
Y =y=52)+5(=2)€X,



68 4. GEOMETRY OF NUMBERS

since X is convex. We therefore have that the difference of any two points of Y is in X. Note also that

Hy(Y) = Ay (X) > Vol(A).
Let D a the fundamental domain for A. Suppose that the sets v+ Y for v € A were pairwise
disjoint. Then we would have

Vol(A) > Y uy(DN(v+Y)) =Y uy((D—v)NY)=puy(Y),
vEA vEA

the latter equality following since the sets D — v cover V. This does not hold by assumption, so there
exist distinct v,w € A such that (v+Y)N(w+Y) is nonempty. Butthenv—w € X,soXNA# {0}. O

4.2. Real and complex embeddings

Let K be an number field of degree n over Q. Then, since K/Q is separable and C is algebraically
closed, then we obtain the product

K‘—>K®Q(Cl> H C
o: K—C

of embeddings of K in C.

DEFINITION 4.2.1. Let K be a number field.

a. A real embedding (or real prime) of K is a field embedding of K in R.

b. A complex embedding of K is a field embedding of K in C that does not have image contained
in R.

c. A complex prime of K is an unordered pair {0, 6} of complex embeddings such that 6(o) =
o(a) for a € K, where 7 denotes the complex conjugate of z € C.

d. An archimedean prime of K is either a real prime or a complex prime.

NOTATION 4.2.2. The number of real (resp., complex) primes of a number field K is denoted
r1(K) (resp., r2(K)).

We can also apply Proposition 1.1.1 to obtain the following.

THEOREM 4.2.3. Let K be a number field. Then ri(K)+2ry(K) = [K : Q|. In fact, we have an
isomorphism of R-algebras
kr: K@gR S R 5 2 (K)
where kr(@ ® 1) for o € K is the product of the real embeddings of K applied to a. and one complex
embedding from each complex prime of Q applied to Q.

PROOF. Let K = Q(0) and f € K[x] be the minimal polynomial of 6. In R[x], we may write

f:n(x_ai)‘l_llfﬁ
i= j=
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for some ry,r» > 0 with r; +2r, = [K : Q], where o; € R and f; is irreducible quadratic. Note
that R[x]/(fj) = C for each 1 < j < r, via maps that take x+ (f;) to a chosen root of f; in C. By
Proposition 1.1.1, we then have

K@goR= lr—lIR X ﬁ(c
i=1 i=1

and the composition of the natural inclusion of K in K ®g R is the product of the real embeddings of
K and one choice of complex embedding of K among pairs of complex conjugate embeddings (i.e.,
complex primes). We therefore have r; = r;(K) and r; = ry(K). O

EXAMPLES 4.2.4.

a. The field Q(i) has one complex prime, corresponding to the two complex embeddings of Q(i)
taking i to =£i.

b. The field Q(+v/2) has one real prime and that takes v/2 to v/2 one complex prime corresponding
to the two complex embeddings taking v/2 to @*!v/2.

REMARK 4.2.5. Given a number field K, Theorem 4.2.3 provides us with a product of embeddings

Il 2
: K-> J[RxJ]C
i=1 i=1
corresponding to the real and complex primes of K.

4.3. Finiteness of the class group

Throughout this section, we let K be a number field of degree n over Q. We set r; = r;(K) and
r» = r(K). We let o; for 1 <i < r| be the real embeddings of K, and we let 7; for 1 <i<r; bea
choice of complex embedding from each complex prime of K. We identify K ®g R with R™ x C2 as
in Theorem 4.2.3.

We endow K ®g R with the Lebesgue measure figgr on R" = R x C2, where the inverse of
said isomorphism is defined by

(X1ye ey X320y 5 2ry) > (X150, X0, Re(21),Im(z1), ... ,Re(zy,),Im(z,)).

PROPOSITION 4.3.1. Let a be a nonzero ideal of O. Then 1x(a) is a complete lattice in K ®g R
and
Vol(1x(a)) =272 - Na- | disc(K)| /2.

PROOF. Let ay,..., 0 be a Z-basis of a. Consider the matrix A € M, (C) with ith row

(01(); .- 0 (), T1(06), T1 () - -+, Ty (061), Ty (047))

and the matrix B € M, (R) with ith row

(Gl(a,'), ceey G”l (OCi),Re(‘Cl(OC,'))Jm(ﬁ((X,')), - ,RC(TrZ(OCL')),II’H(T,Z(OCO)).
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Simple column operations yield that detA = (—2i)"2>detB, and Lemmas 1.4.10 and 1.4.6 imply that
|detA| = [D(a, ..., 0,)|"? = Na- |disc(K)|'/2.

In particular, detB # 0, so the rows of images of the @; in K ®g R are R-linearly independent, which
is to say that 1x(a) is complete. Since Lemma 4.1.12 implies that Vol(1x(a)) = |detB|, we have the
result. U

NOTATION 4.3.2. We define a norm on K ®g R = R x C" by

'

2
il =} il +2 ) Izl
j=1

i=1
forv = (x1,...,%,21,...,2,). Fort >0, let
D;={veK®qR||v|x <t}
We compute the volume of D;.

LEMMA 4.3.3. We have

n

it
Hiaqr(Dy) =271772m" -

PROOF. We treat this as a problem about the real inner product space V = R"! x C" of dimension
n=ry+2r. Let B,(r"rZ) be the subset of D, = Dt(r“rZ) inside V of elements with nonnegative real
coordinates. Then Ly (B,(r1 ’rZ)) =2""uy (D,(r1 ’rZ)). Suppose first that r, = 0 and the result holds for
(r; —1,0). Then we have

t t xnfl M

(r0)y _ / (r=10)y ;. _ / _
B = B dx = ——dx=—.
wy(BT) = | mv(Bin dx= | e
Next, suppose that r, > 0 and the result holds for (r1,7, — 1). By elementary calculation, we obtain
— -2 n
(r1,r2) "2 (ri,r2—1) (7;>r2 1/t/2 (2r)" <n>r2 !
B = B drd0 =21 = ————-2r)dr==) —.
v (B ) o G:O'LLV( i~y rdr T3 0 (n_z)!( r)dr 2/ n!
O

PROPOSITION 4.3.4. For any nonzero ideal a of U, there exists o0 € a — {0} such that

4

2 n! )
(@) < (3 ) 2o dise(6)]2

PROOF. Let ¢ be such that

Since 1x(a) is a lattice, Minkowski’s theorem ensures that D; contains g () for some nonzero o € a.
Note that Ng /Q(Oc ) is the product of images of & under the distinct field embeddings of K in C. Hence,

we have

[Nk g ()] = lor(@)]-|oy (@)llzi () |7, ()%,
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and since the arithmetic mean bounds the geometric mean, this is at most the nth power of

1 'l )
p (Z o) +2 ) yr,-(a)y> :
n\i= j=1

On the other hand, since & € Dy, the latter quantity is less than 7, so we have [Ng g(a)| < (};)". Now,
Lemma 4.3.3 and Proposition 4.3.1 allow us to rewrite (4.3.1) as

n

t
21— > 2" Na.- | disc(K)['/.
n:

Set AN
C= (-) " Na-|disc(K)|'/?,

x) nt
50 (£)" > C. We can and do choose (£)" to be less than the smallest integer greater than C. Since
[Nk q(e)| is an integer, we must then have that [Nk o ()| < C. O

DEFINITION 4.3.5. Let K be a number field of degree n over Q. The Minkowski bound B is the

quantity
L[4\
Bg = - (;) |disc(K)|'/2.

n
Proposition 4.3.4 has the following interesting corollary
COROLLARY 4.3.6. The discriminant of a number field K satisfies | disc(K)|'/? > (%) ;‘—’:
PROOF. Take a = O in Proposition 4.3.4, and note that [Ng q(a)| > 1 for all @ € Ok. O

THEOREM 4.3.7 (Minkowski). Let K be a number field of degree n over Q. Then there exists a
set of representatives for the ideal class group of K consisting of integral ideals a with Na < Bg.

PROOF. Let a be a fractional ideal of k. Let d € K* be such that b = da~! is an integral ideal.
By Proposition 4.3.4, there exists € b — {0} with |[Ng,q(B)| < Bk - Nb. Now, note that () = bc
for some ideal ¢ of Ok, and the ideal class of ¢ is the ideal class of b~!, which is the ideal class of a.
Furthermore, we have that |NK/Q([3)] = Nb-Nc, so Nc < By, as desired. O

As a consequence, we have the following theorem.
THEOREM 4.3.8. The class group of a number field is finite.

PROOF. In fact, the set of nonzero integral ideals a with Na < By is finite. To see this, write
a=p} ~-«p,€" for distinct prime ideals p; and r; > 1 for some 1 <i < k. Then

Na — p?fl _le’;kfk’

where Np; = plﬁ with p; prime. Since there are only finitely many positive integers less than Bk, there

are only finitely many primes that could divide Na, and the exponents of these primes are bounded
(e.g., by log, (Bk)). Since each prime (p) of Z has only finitely many primes of Ok lying over it, we
are done. U
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DEFINITION 4.3.9. The class number hx of a number field K is the order of the class group Clg.

The Minkowski bound allows us to actually give bounds on the class number of a number field
and sometimes, to actually compute the class group.

EXAMPLE 4.3.10. Consider K = Q(+/—5). Note that disc(K) = —20, so the Minkowski bound
is 5
B[( — E V 20 < 3

Since Z[v/—5] is not a UFD, it is not a PID, so hg > 2. Since 2 ramifies in Z[v/—5], the class of the
prime over it in K is the only nontrivial element in Clg. We therefore have hx = 2.

EXAMPLE 4.3.11. Consider K = Q(+/17). In this case disc(K) = 17, and the Minkowski bound
is :

Set o = @ so that Ok = Z[a]. Since the norm of any prime p of Z[ct] is at least the prime p with
pNZ = (p), there exists a set of representatives for Clg dividing 2. The minimal polynomial of ¢ is
x? —x — 4, which splits modulo 2. Therefore, the class group Clk is generated by the two primes over
2. Their classes are inverse to each other, so Clk is generated any one of them, which we denote p.

For a € Ok, we have p = (o) if and only if N(a) = £2. Note that

V17+5 2517
NK/@( = =2

2 4 ’

so p is principal and K is a UFD.

4.4. Dirichlet’s unit theorem

LEMMA 4.4.1. Let n,N > 1. The set of algebraic integers & such that [Q(c) : Q] < n and
|o(a)| < N for all archimedean embeddings & of Q(Q) is finite.

PROOF. Let @ be such an integer, and let f = Y a;x’ be its minimal polynomial in Z[x]. In C[x],
we have f = []5(x — o()), the product being taken over the archimedean embeddings. Then |a;|
is bounded: e.g., it satisfies |a;| < N”_i(’l?) for all i. As each g; is an integer, the number of minimal
polynomials of elements in the stated set, and hence the order of the set, is finite. OJ

COROLLARY 4.4.2. Let K be a number field. Then (K) is a finite group, equal to the set of all
o € Ok such that |o(a)| = 1 for all archimedean embeddings ¢ of K.

PROOF. If o € Ok satisfies |0 ()| = 1 for all o, then so does a” for all n. Since the set T of
such « is finite by Lemma 4.4.1, the group () is finite, and hence o € p(K). In particular, since a
root of unity has complex absolute value 1 under any archimedean embeddings, the set u(K) =T is
finite. U
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DEFINITION 4.4.3. The unit group of a number field K is the group & of units in .
DEFINITION 4.4.4. For a number field K, we let /x: K* — R"17"2 be defined on ot € K* as
lk(a) = (logloi(a)],...,log|oy, (@)],log|Ti(a)|,...,log|T, (a))),
where o7,...,0,, are the real embeddings of K and 71,...,7,, are the complex embeddings of K.

PROPOSITION 4.4.5. For a number field K, the set {x(0Y) is a lattice in R""™"2 that sits in the
hyperplane

r rn
H:{(xla"'axrl—l—rz) in+2zxj'+r1:0},
i=1 j=1

and ker (g = u(K).

PROOF. That ker/x = u(K) is just a rewording of Corollary 4.4.2. For o € 0%, we have that
'l 2
Y log|oi(a)[+2 ) log|7j(a)| = log|Nk g(e)| =0,
i=0 j=0
the latter equality by Corollary 2.5.18, so k() € H. For N > 0, consider the bounded subset
Dy =A{(x1,...,%r4r,) € H| |x;| <N for all i}

of H. By Lemma 4.4.1, the set of elements of ﬁ,? contained in Dy is finite, which means that there
exists an open neighborhood U in R"""2 such that the intersection U N ¢g (0% ) is {0}. This implies
that g (O ) is a discrete group: the set g (o) + U is also open and its intersection with {x (O ) is
{¢x(@)}. Finally, recall that a discrete subgroup of R"1™"2 is a lattice. O

Proposition 4.4.5 implies that the sequence
1= u(K) = 0% 55 0(65) — 0

is exact and that the set {x (0% ) is a free abelian group of finite rank. In particular, O is a finitely
generated abelian group of rank that of {x (0 ), and the sequence is split. If {x(OF ) is a complete
lattice in H, then we know that the rank of & 1? is 1 +rp — 1. Dirichlet’s unit theorem tells us that this
is in fact the case. For this, we require the following lemma.

LEMMA 4.4.6. Let A = (a;;) € Mi(R) for some k > 1 satisfy a;j <0 for all i # j and 2’;:1 a;; >0
foralli. Then A is invertible.

PROOF. Suppose by way of contradication that v = (v1,...,v) € R¥is a solution to Av = 0, scaled
so that v; = 1 for some j and |v;| < I for all i # j. Then

k k
“4.4.1) 0:Zaj,~vi:ajj+2aﬁv,~.
= ~
l i
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Note that a;;v; > aj; for i # j since aj; is negative and v; < 1. Thus, the right-hand side of (4.4.1) is
at least Z§:1 ajj > 0, which is the desired contradiction. U

For a number field K, let us use ki to identify K @R and R" x C? as rings. We can then make
the following definition.

NOTATION 4.4.7. For a number field K, we let
[-]: K®gR =R
denote the multiplicative function given by
(X1, s Xr5 2055 Z0)] = 21| P [t P 2 |2,

forx; c Rwithl <i<rjandz; €c Cwith1 <j<n.

The following rather complicated lemma is useful in showing the completeness of {x (O ) in H.

LEMMA 4.4.8. Let K be a number field of degree n. Set

D={veK®gR|1/2<[v] <1}
Let X be a bounded, convex subset of K Qg R that is symmetric about the origin and has volume
py (X) > 27472 | dise(K)|'/2.

There exist Ay, ...,0s € Ok for some s > 1 such that for each v € D, there exists some € € ﬁ,? and
1 < i < s such that vig(€) € 1x(o M)X.

PROOF. For w € K ®q R, the set
w- lK(ﬁK) = {W~ lK(OC) ’ o c ﬁ[{}
is a complete lattice with volume 22| disc(K)|!'/? - [w]. Suppose w € D. Since [w] < 1, we have
2" Vol(w- 15 (Ok)) < 2" Vol (1x (C) ) = 22| disc(K)|'/?,

the latter equality by Proposition 4.3.1. Minkowski’s theorem then tells us that there exists o €
Ok — {0} such that w-1x (@) € X.

Since X is bounded, there exists M > 0 such that [x] < M for all x € X. In particular, we have
[w- 1k (a)] <M, which since [w] > 7 forces [ix(a)] < 2M and then N(a0k) < 2M. As there are only
finitely many ideals of absolute norm at most 2M, there are only finitely many ideals o0k such that
w1k (aOk)NX # {0} for some w € D. Let a; Ok, ..., 05,0k be these ideals.

Finally, given v € D, let B € Ok — {0} have the property that v-1x(pB) € X. Then BOx = ;O
for some 1 <i<s,s0e=Ba; ' € OF andv-1k(€) € (o ")X. O

THEOREM 4.4.9 (Dirichlet’s unit theorem). Let K be a number field. Then we have an isomor-
phism
ﬁ; ngl(K)_"rZ(K)_l X ‘LL(K)
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PROOF. Let D, X, and «1,...,04 € Ok be as in Lemma 4.4.8. Set
N
Y = J (o HX.
i=1

Since Y is bounded, we may let N be such that if (A1,...,4,4,,) €Y, then [A;| <N forall 1 <i<
r1+mr.Forl<i<ri+mr,let

v = (vgi) i) )eK®gR

ye s Vri4m

be an element such that |v§~i)| > N for j # i but ()] = 1. Then v(!) € D, so there exists ') € % such
that v(!) - 15 (¢)) € Y. In particular, we must have

(€)= (e e )= (o1(e"),..., 00, (D), 11 (eD),..., 7, (1))

1S4

with yej(i)| < 1 for all j # i. In other words, ¢k (£\)) has negative coordinates for j # i.
Assume without loss of generality that r; +r, > 1. Set
log|o;(e)] for1<;j<n
a = ‘

" 2log|tj_p ()] forr +1<j<ri+r.

Consider the matrix A = (a; ;)i j € My, +r,—1(R). For i < r| +r, we have that the sum of the ith row
is

ri+r—1

Y aij=—aiyin>0
=1

as EK(S(i)) € H and i # ri +r,. Lemma 4.4.6 then tells us that A is invertible, so the EK(S(i)) for
1 <i<ry+r form a system of r; +r, — 1 linearly independent vectors in H. In other words,
Uk (OF) is a complete lattice. O

EXAMPLE 4.4.10. Let K = Q(+/d) for some square-free integer d € Z, d # 1. If K is a real
quadratic field, which is to say that d > 0, then r (K) =2 and r,(K) = 0. Since the complex conjugate
of a root of unity ¢ equals ¢ if and only if {? = 1, we have in this case that y(K) = {£1} and

Og =7)2Z X L.

If K is an imaginary quadratic field, which is to say that d < 0, then r|(K) = 0 and r,(K) = 1. In this
case, since [K : Q] = 2, the field K cannot contain any roots of unity aside from 4th and 6th roots of
1. But Q(i) = Q(v/—1) and Q(®) = Q(v/—3) for ® a primitive 3rd root of 1, so for d < 0, we have
Oy =7/27 unless d = —1 or d = —3, in which case O = 7 /47 and Z/6Z, respectively.

EXAMPLE 4.4.11. Let K = Q(+/2). In this case, we know that O is generated by & for some
€ € 0y of infinite order. To find a,b € Z such that € = a +b+v/2, we note that NK/@(a—i— b\/i) =
a*> —2b*> = +1. Suppose we choose € with a,b > 0, which can be done since

{+e,+e '} = {+a+bV2}.
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The € is known as the fundamental unit for K.

If we consider €" = a,, + b,\/2 for n > 1, it is not hard to check that a,, > a and b,, > b. Therefore,
we must find a solution to a* — 2b% = +1 with a > 0 or b > 0 minimal (and therefore both), e.g.,
a=>b=1. Thatis, 1 ++/2 is a fundamental unit for K.

EXAMPLE 4.4.12. Let n > 3 be a positive integer, and let m be n or 2n according to whether n is
even or odd, respectively. We have

o)
Zlp) =272 X .




CHAPTER 5

Valuations and completions

5.1. Global fields

DEFINITION 5.1.1. A global function field, or a function field in one variable over a finite field,
is a finite extension of IF,(¢) for some prime p.

REMARK 5.1.2. A function field K in one variable over the finite field I, is actually isomorphic
to a finite separable extension of I, () for some u € K, so we always suppose that such a field is a
separable extension of IF,(¢) in what follows.

REMARK 5.1.3. In these notes, we will often refer to a function field in one variable over a finite
field more simply as a function field.

DEFINITION 5.1.4. A field K is said to be a global field if it is either a number field or a function
field in one variable over a finite field.

DEFINITION 5.1.5. The ring of integers Ok of a finite extension K of IF,(¢) for a prime p is the
integral closure of F,[t] in K.

DEFINITION 5.1.6. Let p be a nonzero prime ideal in the ring of integers of a global field K. Its
ramification index (resp., residue degree) e, (resp., fp) is its ramification index (resp., residue degree)
over pNZ if K is a number field and over p NIF,[¢] if K is a function field of characteristic p.

In the case of function fields, the choice of ring of integers is not really canonical. For instance,
under the field isomorphism o: F,(¢) — F () taking ¢ to 1, the ring of integers FF,[t] is carried to
F, [t_l]. In particular, if we write u = t~!, then o restricts to an isomorphism

o Fylt,t ™' 5 Fplu,u].

This gives a one-to-one correspondence between the nonzero prime ideals of I, [¢] aside from () and
the nonzero prime ideals of F,[t~!] aside from (+!).

To phrase this in terms of algebraic geometry, one should view SpecF,[t] and SpecF,[t~!] as
two affine open neighborhoods of and covering the projective line ]P’IIFP over [, that have intersection
SpeclF), [t,t71]. The transition, or gluing map, between the two affine spaces along the intersection
is that induced by o. The point of ]P’]{?p that is not contained in SpecF,[t] is the prime ideal (+!) in
SpecF,[t~1], and this is known as the point o at infinity.

77
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DEFINITION 5.1.7. Let K be a global field of characteristic p. A prime of K over o is a prime
ideal of the integral closure of F,[r 1] that lies over (r1).

DEFINITION 5.1.8. Let K be a global function field. The primes of K are the nonzero prime ideals
of Ok, which are called finite primes, and the primes above < in K, which are also known as infinite
primes.

We compare this with the case of number fields.

DEFINITION 5.1.9. Let K be a number field. The finite primes of K are the nonzero prime ideals
in Ok. The infinite primes of K are the archimedean primes of K. The primes of K are the finite and
infinite primes of K.

The finite primes of a global field are exactly the nonzero prime ideals of its ring of integers.
However, the infinite primes of number fields and function fields are quite different. In the next
section, we shall see another classification of the primes that reflects this. For now, note the following.

Every finite prime in a global field K of characteristic p gives rise to a discrete valuation on K, as
does every infinite prime, being a prime ideal in a Dedekind ring that is the integral closure of I, [t 1]
in K.

EXAMPLE 5.1.10. The valuation attached to the prime oo of I, (z) for a prime p takes a quotient

[~

- of nonzero polynomials in F,f] to deg g — deg f by definition, so it equals Ve,.

o

REMARK 5.1.11. As with nonzero prime ideals in Ok, we can speak of the ramification index ey,
and residue degree f,, of a prime p of K over 0. In fact, if R is the integral closure of [, [t71]in K,
then p is a prime ideal of R lying over some prime ideal (f) = pNF,[t~!] of F,[t~!]. The residue
field of p is R/p, and so we may speak of its residue degree over (f). Similarly, the ramification index
is the highest power of p dividing fR.

5.2. Valuations
DEFINITION 5.2.1. A (multiplicative) valuation (or absolute value) on a field K is a function
| |: K — R>¢ such that
i. |a| =0if and only if a = 0,

ii. |ab| = |a||b|, and

iii. |a+b| <|a|+|b|
for all a,b € K.

REMARK 5.2.2. Every valuation | | on a field K satisfies |{| = 1 for all roots of unity { € K*.

DEFINITION 5.2.3. We say that a valuation | | on a field K is rivial if |a| = 1 for all a € K*, and
nontrivial otherwise.



5.2. VALUATIONS 79

Valuations on fields give rise to metrics. That is, given a valuation | | on a field K, it defines a
distance function d on K by
d(a,b) = |a—b|
for a,b € K. We can then give K the topology of the resulting metric space. For instance, the trivial
valuation on a field gives rise to the discrete topology on K.

DEFINITION 5.2.4. We say that two multiplicative valuations on a field K are equivalent if they
define the same topology on K.

PROPOSITION 5.2.5. Let | |; and | |3 be valuations on a field K. The following are equivalent:

i. the valuations | || and | |, are equivalent,
ii. any a € K satisfies |a|y < 1 if and only if |a|, < 1 as well,

iii. there exists s > 0 such that |a|, = |a|} for all a € K.

PROOF. If| |; is nontrivial, then there exists b € K with |b|; > 1, and the sequence b~" converges
to 0, so the topology | |; induces on K is not discrete. Therefore, the trivial valuation is equivalent
only to itself. By a check of conditions (ii) and (iii), we may assume that our two valuations are
nontrivial.

If the two valuations are equivalent, then a sequence a” converges to 0 in the common topology if
and only if |a"|; = |a|! converges to 0, which is to say exactly that |a|; < 1. Hence (i) implies (ii).

Suppose that (ii) holds. Let b € K be such that |b|; > 1, and set

,_ log|bl>
log |b|;
so that |b|, = |b|]. Choose a € K*, and let
_ loglal,
log by

so that |a|; = [b|}. Let m,n € Z with n # 0 be such that t < g = . Then
laly = [bl} < [bIf,

SO

al’l

by,
which implies |a"b™"|, < 1 and then |a|, < |b|] as well. Since this holds for all rational g > 7, we
have |a|y < |b|. On the other hand, if we assume instead that ¢ < 7, then we get |a|; > |b|{, which
implies in turn that |[a~"b™|; < 1, that |[a~"b™|, < 1, that |a|, > |b|%, and finally that |a|, > |b[5. We
therefore have that

<1,

lala = [bly = I} = al}.

Hence, (i1) implies (iii).
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For i € {1,2}, consider the ball
Bi(a,e) ={beK||a—Db|i <&}

of radius € > 0 about a € K. If s is as in (iii), then Bj(a,€) = B;(a, €°), so the topologies defined by

the two valuations are equivalent. That is, (ii1) implies (i). O
REMARK 5.2.6. If | |is a valuation and s > 1, then | |* need not be a valuation. For instance, let
|2

| | be the usual absolute value on R. Then | |? is not a valuation, as 2> > 124 12,

DEFINITION 5.2.7. A nonarchimedean valuation | | on a field K is a nontrivial multiplicative
valuation such that
|a+b| < max(al, |b])
forall a,b € K.

For our purposes, the following ad-hoc definition of an archimedean valuation will suffice.

NOTATION 5.2.8. An archimedean valuation on K is a nontrivial valuation on K that is not nonar-
chimedean.

REMARK 5.2.9. Every valuation in the equivalence class of a nonarchimedean valuation is also
nonarchimedean.

The following is a useful equivalent condition for a valuation to be nonarchimedean.

LEMMA 5.2.10. A nontrivial valuation | | on a field K is nonarchimedean if and only if |n-1| < 1
for all integers n > 2.

PROOF. We write n-1 € K more simply as n. If | | is nonarchimedean, then
n] < max(|1],...,[1]) = 1
for n > 2. Conversely, suppose that |n| < 1 for n > 2 (and hence for all n € Z). Let , B € K. For an

integer k > 1, note that
k k ] ]
|(X+ﬁ|k§2 (.)(Xlﬁk_l
i=01 \!

Taking kth roots, we obtain

k

<)

i=0

() max(a 1) < (4 1ymaxla. B

1
o+ Bl < (1+k)* max(|al,[B]),
and taking the limit as k tends to infinity provides the result. U

As the integer multiples of 1 in a field of positive characteristic are units and 0, Lemma 5.2.10
yields the following.

COROLLARY 5.2.11. Every nontrivial valuation on a field of positive characteristic is nonar-

chimedean.
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We also have the following notion, generalizing that of a discrete valuation.

DEFINITION 5.2.12. An additive valuation v on a field K is a function v: K — RU {eo} satisfy-
ing

i. v(a) = o if and only a =0,

ii. v(ab) =v(a)+v(b), and

iii. v(a+b) > min(v(a),v(b))
for all a,b € K.

The following gives the comparison between additive valuations and nonarchimedean valuations.

LEMMA 5.2.13. Let K be a field. Letv: K — RU{eo} and | |: K — R>¢ be such that there exists
a real number ¢ > 1 such that |a| = ¢\ for a € K (taking ¢~ = 0). Then v is an additive valuation

on K if and only if | | is a nonarchimedean valuation on K.

PROOF. Note that f(x) = ¢~* and g(x) = —log,(x) are inverse functions between R U {eo} and
R>¢. So, v(ab) = v(a) +v(b) if and only if

(@ +v(B) _ (@) (D)

Y

so if and only if |ab| = |a||b|. Moreover,
v(a+b) > min(v(a),v(b))

if and only if
C—v(a—i—b) < C—min(v(a).,v(b)) _ max(c_v(“),c_v(b))

)

a

so if and only if |a 4+ b| < max(|a| + |b|). Moreover, a = « if and only if ¢~% = 0, the property
that v(a) = oo if and only if a = 0 holds if and only if the property that |a| = 0 holds if and only if

a=20. O

DEFINITION 5.2.14. The value group |K*| of a valuation on a field K is the subgroup of R*
consisting of elements |a| fora € K*.

DEFINITION 5.2.15. A valuation on a field K is discrete if and only if its value group is a discrete
subset of R* (with respect to the subspace topology on R).

REMARK 5.2.16. Itis not so hard to show that any discrete valuation on a field is nonarchimedean.

REMARK 5.2.17. A nonarchimedean valuation | | on a field K is discrete if and only if there
exists ¢ € R such that v: K — RU{e} defined by v(a) = log.(]a|) for a € K is discrete (i.e., has
image Z U {eo}). In other words, a discrete (additive) valuation v corresponds to an equivalence class
of discrete, nonarchimedean valuations on K.
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REMARK 5.2.18. Since log,.: R+ — R is an isomorphism for any ¢ > 1 and a subgroup of R is
discrete if and only if it is a lattice, hence cyclic, a nonarchimedean valuation is discrete if and only
if its value group is cyclic.

As with discrete valuations, nonarchimedean valuations give rise to a number of structures on a
field.

LEMMA 5.2.19. Let K be a field and | | a nonarchimedean valuation on K. The set
O={acK]|l|a <1}
is a subring of K that is local with maximal ideal m = {a € K | |a| < 1}.

PROOF. If a,b € O, then |ab| = |a| - |b| < 1 and |a £ b| < max(|a|,|b|) < 1, so & is aring. Sim-

ilarly, m is an ideal. To see that it is maximal, note that if @ € & —m, then |a~!| = |a|™! =1, so

a~! € ¢. Thus a is a unit, so & is a local ring with maximal ideal m. U

DEFINITION 5.2.20. The valuation ring of a nonarchimedean valuation | | on a field K is the
subring & of K defined by

O =1{ackK||d <1).

REMARK 5.2.21. Similarly, we can speak of the valuation ring of an additive valuation v of K. It
is 0 ={a € K|v(a) >0}, and its maximal ideal is m = {a € K | v(a) > 0}.

LEMMA 5.2.22. Let K be a field and | | a nonarchimedean valuation on K. Then the valuation
| | is discrete if and only if its valuation ring O is a discrete valuation ring.

PROOF. If | | is discrete, then let 7 € m be an element for which || is maximal. Then |r|
generates the value group of | |, so any a € m may be written as a = *u for some k > 1 and u € 0.
In particular, m = (), so ¢ is a DVR.

Conversely, if €' is a DVR, let 7 € m be a uniformizer. Then any a € K* may be written a =
mku for some k € Z and u € ¢, and we have |a| = |7|¥, so the value group K* is cyclic, hence
discrete. U

LEMMA 5.2.23. Let K be a field and | | a discrete valuation on K. Let m be the maximal ideal of
the valuation ring O of K. Then

m" ={a €K ||a| <7},
forall n > 1, where r is the maximal value of | | withr < 1.
PROOF. That m is as stated follows Lemma 5.2.19 and the fact that | | is discrete. Conversely, let

7 € m be a uniformizer. For any a € &, we have a = nu for some k > 0 and u € €, and |a| = | |F,
sor=|x|,and a € m" if and only if |a| < . O
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It is useful to pick a canonical, or normalized, multiplicative valuation attached to some of the
discrete valuations we have studied. We define the p-adic absolute value for any nonzero finite prime
p of a global field.

DEFINITION 5.2.24. Let K be a global field, and let p be a finite prime of K, or an infinite prime
of K if K is a function field. Let p be the characteristic of the residue field of p, and let f, denote the
residue degree of p. The p-adic absolute value on K is the unique multiplicative valuation on K that
satisfies

lal, = pfeve(@)
fora € K*.

REMARK 5.2.25. If p is a finite prime of a global field K that is a principal ideal (7) of O, then
we denote | |, by | |z as well.
EXAMPLE 5.2.26. The p-adic absolute value | |, on Q is defined by |0], = 0 and
|a|p = pivp(u)
for a € Q*. Note that it is discrete with valuation ring consisting of reduced fractions with denomi-

nator not divisible by p.

EXAMPLE 5.2.27. Let g be a prime power. The absolute value | |. at infinity on Fy(¢) is defined
by |0]e. = 0 and
— qdeg f—degg

‘ f
g

[}

for nonzero f, g € F,[t].
As for archimedean valuations, we have the following.

DEFINITION 5.2.28. Let K be a number field, and let 6: K < C be an archimedean embedding
of K. Then the absolute value with respect to o is the multiplicative valuation | |5: K — R>( defined
by |a|s = |o(a)| (the complex absolute value of ¢(a)) fora € K.

In other words, archimedean primes give rise to archimedean valuations. We now make the
following definition.

DEFINITION 5.2.29. A place of a global field K is an equivalence class of nontrivial valuations
on K.

DEFINITION 5.2.30. A finite place (resp., infinite place) of a global field K is the equivalence
class of the absolute value attached to a finite (resp., infinite) prime of K.

We will see that every place of a global field is either finite or infinite. At present, let us prove this

for Q.
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THEOREM 5.2.31 (Ostrowski). The places of Q are exactly the equivalence classes of the p-adic

absolute values on Q for a prime number p and of the usual absolute value on Q.

PROOF. Let | | be a nontrivial valuation on Q. Let m,n > 2 be integers, and write m as

k
m = Z a,'ni
i=0

for some integers 0 < a; < n for 0 <i < k and some k > 0, with a; # 0. Note that n* <m, so

§ < logm.
~ logn
Let N = max(1,|n|). We also have |1| = 1, so |a;| < n, and we have
k
. 1 logm
m| < Y nln| < (1+k)nN* < (1 + Ogm> nN e
i=0 ogn

Replacing m by m' for some ¢ > 0 and taking ¢th roots of both sides, we have

1
| 0 logm
|m| < <1+t Ogm) ni N,
logn
As we let t — oo, we obtain
logm
(5.2.1) Im| < NTown .

If |n| <1 for some integer n > 2, then N = 1, and (5.2.1) with this n implies that |m| < 1 for
all m > 2, and hence for all m € Z. Since | | is multiplicative and nontrivial, and Z is a unique
factorization domain, we must then have |p| < 1 for some prime number p. Consider the set

m={a€Z]|l|a| <1}.

Since | | is nonarchimedean by Lemma 5.2.10, the set m is an ideal of Z. Since it contains p and is
not Z, it must equal (p). Let s > 0 be such that |p| = p~*. Any g € Q can be expressed as g = p"»(?) o
for some m,n € Z with p { mn. We then have

lq| = |p|"?@) = p~rlD) = |g|s.

In other words, | | is equivalent to | |,, and moreover, it is not equivalent to | |, for any prime
number ¢ # p, since ¢ ¢ m, nor is it equivalent to | |, since |2|. =2 > 1.
If |n| > 1 for all integers n > 2, then (5.2.1) implies that

| < [

1
n‘ logn

for all m,n > 2. Switching their roles of m and n gives the opposite inequality. In other words,
is constant for n > 2, equal to some s > 1. We then have

|n| — Slogn _ nlogs
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for all n > 2, and multiplicativity then forces |g| = |q]l£gs for all g € QQ, where | |. denotes the usual

absolute value on Q. Proposition 5.2.5 implies that | | is equivalent to | |c. O

We also have the following, which we leave as an exercise.

PROPOSITION 5.2.32. Let g be a prime power. The places of F(t) are exactly the equivalence
classes of the f-adic absolute values, for f an irreducible polynomial in F,[t], and the absolute value

at oo,

REMARK 5.2.33. We often index the set Vk of places of a global field K by a subscript, such as v.
Each place in Vi, as we have seen already for K = Q and stated for K = IF,,(¢), is represented by the
multiplicative valuation attached to a unique prime (as in Definitions 5.2.24 and 5.2.28). We write
| |, for for this valuation.

We note the following consequence of Theorem 5.2.31.

PROPOSITION 5.2.34. For any a € Q*, we have |a|, = 1 for all but finitely many prime numbers

H |lal, = 1.

veVp

p, and we have

PROOF. Since valuations are multiplicative, it suffices to prove this for —1 and every prime num-
ber p. But|— 1], = 1 forall v € Vg, and | p|, = 1 for primes ¢ # p, while |p|, = p~' and |p|w=p. O

We have a similar consequence of Proposition 5.2.32.

PROPOSITION 5.2.35. Let q be a power of a prime number. Let h € F(t)*. Then |h|; = 1 for all
but finitely many irreducible polynomials f € IF4[t], and we have
IT =1
VGV]F(I(t)
We end the section with the weak approximation theorem, which is an analogue of the Chinese
remainder theorem for valuations. This requires a lemma.

LEMMA 5.2.36. Let | |1,| |2,---,| |k be nontrivial, inequivalent valuations on a field K. Then
there exists an element a € K such that |a|; < 1 and |a|; > 1 for all j > 2.

PROOF. In the case k = 2, note that Proposition 5.2.5 provides one with elements &, 8 € K with
la|; < 1, |al > 1, |B|1 > 1,and |B]2 < 1. Then ¢ = % satisfies |c|; < 1 and [c[p > 1.

For k > 2, suppose by induction that we have found an element o such that |o¢|; < 1 and |a|; > 1
forall 2 < j <k—1 and an element B such that |3]; < 1 and |B|; > 1. If ||, > 1, then we simply
take a = a. If [ot|; = 1, then choose s > O sufficiently large so that o[ > |B|]_1 forall2 < j<k—1
and |af$ < |B|;'. Then a = B works.


http://math.ucla.edu/~sharifi/algebra.pdf#nameddest=theorem.3.8.23
http://math.ucla.edu/~sharifi/algebra.pdf#nameddest=theorem.3.8.23
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Finally, if |o¢|; < 1, let
em=B"1(1+am)!
for every integer m > 1. The sequence (1 + o”)~! has a limit of 1 under the topology of | |; if
lat|; < 1 and 0 if |e|; > 1. So, we have that |c,,|; — |B|", that |c,s|; — 0 for 2 < j < k— 1, and that
|cmlx — |BI;'. We then take a = c;," for a sufficiently large value of m. O

THEOREM 5.2.37 (Weak Approximation). Let | |1,| |2,...,| |« be nontrivial, inequivalent
valuations on a field K, and let ay,a; ... ,a; € K. For every € > 0, there exists an element b € K such
that |a; —b|; < € forall 1 <i<k.

PROOF. It follows from Lemma 5.2.36 that there exists for each i an element ¢; € K with |o;]; < 1

and |o;|; > 1 for all j # i. For each i and a chosen § > 0, let 3; = ﬁ for a value of m which is

sufficiently large in order that |B; — 1]; < & and |B;|; < & for j # i. We then set

k
b= Z ajﬁj,
j=1
which satisfies
k k
b —aili <laililBi— i+ Y lajlilBjli < Y lajli-6 <&
j=1 j=1
Vial
for a good choice of 3. O
5.3. Completions

DEFINITION 5.3.1. A pair consisting of a field K and a valuation | | on K is called a valued field.

REMARK 5.3.2. When the valuation is understood, a valued field (K,| |) is often simply denoted
K.

DEFINITION 5.3.3. A fopological field K is a field endowed with a topology with respect to
which the binary operations of addition and multiplication are continuous, as are the maps that take
an element to its additive inverse and a nonzero element to its multiplicative inverse, the latter with
respect to the subspace topology on K*.

REMARK 5.3.4. A topological field is in particular a topological group with respect to addition,
and its multiplicative group is a topological group with respect to multiplication. Moreover, multipli-
cation is continuous on the entire field.

We leave the proof of the following to the reader.

PROPOSITION 5.3.5. A valued field is a topological field with respect to the topology defined by

its valuation.
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REMARK 5.3.6. A nonarchimedean valued field K has a valuation ring &'. Terminology is often
abused between the two. For instance, the unit group of K would usually be taken to mean the unit
group of @. Or, if 0 is discrete, a uniformizer of K would mean a uniformizer of &'

DEFINITION 5.3.7. A valued field K is said to be complete if it K is complete with respect to the
topology defined by its valuation.

EXAMPLE 5.3.8. The fields R and C are complete with respect to their usual topologies.

DEFINITION 5.3.9. A field embedding t: K — K’, where (K,| |) and (K’,| |') are valued fields,
is an embedding of valued fields if [1(a)|" = |a] for all o« € K. If 1: K — K’ is an embedding of
valued fields, we say that t preserves the valuation on K.

DEFINITION 5.3.10. An isomorphism of valued fields is a field isomorphism that is an embedding
of valued fields.

We wish to study completions of a valued field K. The completion is a larger field that essentially
consists of the limits of Cauchy sequences in K, with field operations determined by the fact that they
should be continuous.

THEOREM 5.3.11. Let (K,| |) be a valued field. Then there exists a complete valued field (K| |)
and a embedding 1: K — K of valued fields such that the image 1(K) is dense in K.

PROOF. Let R be the set of Cauchy sequences on K. By definition, if (a,), € R, then for any
€ > 0, there exists N > 1 such that |a, — a,| < € for all n,m > N. Thus, But ||a,| — |an|| < |a, —am
s0 (|an|), is a Cauchy sequence in R, which therefore converges. In other words, we may define a

’

function || ||: R — R>¢ by
[ (an)nll = ,115130|a"|
Note that, in particular (|a,|), is bounded for any (a,), € R. It is easy to check that R is a ring: in
particular, if (ay),, (by)n € R, then
|anbn _ambm| < |an| : |bn _bm| + |bm|’an _am’7

and if |a,| < M and |b,| < M for all n, then given € > 0 we choose m, n sufficiently large so that
|an — @, |y — by| < 537, and the right-hand side is less than €.

Let 971 be the set of (Cauchy) sequences on K that converge to 0. We check that 97 is a maximal
ideal of R. Clearly, the sum of any two sequences that converges to 0 does as well. If (a,), € R and
(by)n € M, then for any € > 0, we have that

\anby| = |au| - |bn| < €

for n large enough so that |b,| < &, where |a,| < M for all n. If (a,), € R — 9, then a, # 0 for n
sufficiently large, so we can add an eventually 0 sequence (which necessarily lies in 907) to it to make
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a, # 0 for all n. The sequence (a;, '), is then defined, and it is Cauchy, as |a,| is bounded below, and
|an — am|

|an||am| -

! —ay'| =
In other words, R/ is a field.
Set K = R/9)t. We have a natural field embedding 1: K — K that takes a € K to the coset of the
constant sequence (a),.
For (ay)n, (bn)n € R, note that

[ -Bill = i b = i [ o] = @)l - | (B
and
I+l = i [, b] < 1 (1| + 1oal) = [[@n)ull + | (5)all
Moreover, ||(ay)s|| = 0 if and only if (a,), € 9. Thus, || || induces a valuation | | on K, and it

clearly preserves the valuation on K.

To see that K is complete with respect to || ||, let (¢ )m With ¢,y = (¢m.n)s be a Cauchy sequence
in R. If it has a limit in R, its image in K has a limit as well. For € > 0, there exists N > 1 such that
form > k > N, we have

. €
lem — ckl| = lim |cpp — ckn| < 5.
n—yoo

2
There then exists N,, > N such that for k < m, we have |c¢,,, — ¢k »| < § for all n > N,. On the other
hand, since each c,, is Cauchy, there exist /,, > max(Ny,, L, 1) (with [; > Ny) such that [0 — Cpp | <
% for n,n’ > I,,. Consider the sequence (ay, ), of elements a, = Cp,1, of K. Form > k > N, we have

|am — ax| = |em 1, — ca] < |Cmty = iyl + ks, — crg| < €

by our condition on ¢,,, so (ay,), € R. Moreover,

bl

lem — (an)nll = nlgrolo | — Cn,l,
and
|Cm,n - Cn,ln| < |Cm,n - Cm7lm| + Icm,lm - Cn,ln| <&

for n > m > N and n > ,,, which means that ||c,, — (a,)n|| < € for m > N’. That is, the sequence
(¢m)m of sequences converges to (ay), in R.
Finally, we show that the image of 1 is dense. That is, let (a,), € R. For each m > 1, we have

”(am)n - (an)n“ = lim |am - an|7
n—oo
and we saw that |a,, — a,| < € for m,n > N. But then

[ (am)n — (an)a| < €

so the sequence (1(a,,))m in K converges to the image of (ay,),. O
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PROPOSITION 5.3.12. Let K be a valued field and K a complete valued field for which there exists
a dense embedding 1: K — K that preserves the valuation on K. If L is a complete valued field and

o: K — L is an embedding of valued fields, then there is a unique extension of © to an embedding
6: K — L of valued fields.

PROOF. Let | | (resp., | |') denote the valuation on K and K (resp., L). For any Cauchy se-

quence (ay,), in K, the sequence o (ay,), is Cauchy as |6 (a,) — 6 (an)|" = |an — an|, and therefore it

is convergent. Define 6: K — L by
6 ((an)n) = ’}iglgod(an).

This is clearly a nonzero ring homomorphism, hence a field embedding, and it extends ¢. By defini-
tion, it preserves the valuation on K. Moreover, if 7: K — L is any field embedding extending ¢ and
preserving the valuation on K, then for any m > 1, we have

1T((an)n) — 0 (am)|" = ,}1_?30 |an — am|,

which since (ay,), is Cauchy implies that the sequence (o(ay,)), converges to T((ay,),) in L. On the
other hand, this limit is by definition 6((ay),), so T = 6. O

This allows us to make the following definition.

DEFINITION 5.3.13. Let (K,| |) be a valued field. Any complete valued field (K,| |) as in
Theorem 5.3.11 is called the completion of K.

REMARK 5.3.14. The completion of a valued field is unique up to unique isomorphism fixing K
by Theorem 5.3.11.

EXAMPLE 5.3.15. The completion of (Q with respect to the usual absolute value is isomorphic to
R. To see this, define i: Q — R via the map that takes the class of a Cauchy sequence in QQ to its
limit. This is clearly a field embedding preserving the valuation, and it is surjective since, for every
real number, there exists a sequence of rationals converging to it.

In fact, any complete archimedean valued field K is topologically isomorphic (i.e., isomorphic via
fields via a map which is a homeomorphism) to R or C. In other words, K is isomorphic as a valued
field to R or C with valuation given by some power of the usual absolute value.

THEOREM 5.3.16 (Ostrowski). Let K be a complete valued field with respect to an archimedean
valuation. Then K is isomorphic as a valued field to either (R,| |*) or (C,| |*) for some s € (0,1],
where | | denotes the usual absolute value on R or C.

PROOF. By Corollary 5.2.11, the field K must have characteristic zero. Let | | denote the valua-
tion on K, and in the proof let us use | |- to denote the absolute value on C. By Ostrowski’s theorem
on Q, the restriction of | | to Q is equivalent to the usual absolute value. Note that | |, satisfies the
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triangle inequality for a given s € R~ if and only s < 1. Let s € (0, 1] be such that |a| = |a[3, for all
a € Q. As K is complete, it must then contain the completion (R,| |5,) of Q with respect to | |.
Ifi =+—1 € K, then for 8 € R, we have

|e279| < |cos O]+ |sin 6] < V2,

but since this is true for all 8, we get [e**0|" = |¢?%n0| < /2 for all n € Z. Thus |¢**®| = 1. Since
we can write z € C as z = re?™9 with » > 0 and 6 € R, we have |z| = |z|5, forall z € C C K.

In general, we can replace K by K (i) and extend | | to K(i) by |a+bi| = \/]a]?> + |b[2, so we may
assume that in fact K contains (C,| |5,) as valued fields. Now let o € K, and let w € C be such that
|ot —w| is minimal: this exists since the infimum 7 occurs as a limit in the closed ball of radius |ct|+ u

about 0 in C for any u > 1.
Now suppose a ¢ C, which is to say that > 0. Replacing & by o —w, we may as well assume
that w = 0. Thenr = |a| < |ot —z| for all z € C. For z € C and n > 1, note that

n—1
"+ > o~ 2| = [T lo— §fel > o~z
j=0

n
|a—z|§t(ﬁ+l).
tn

Thus, taking z such that |z| < 7 and the limit as n tends to oo, we obtain that |&¢ — z| < 7. By minimality
of ¢, this forces |ot —z| =¢.
By the same argument with o — z replacing @, we see then that | —z —w| =1 for all w € C with

where &, = ¢2™/". We then have

lw| < t. Recursively, we then see in particular that |« —mz| =t for all m > 1 and z € C with |z| < a.
The set of all such mz being C, we see that |o¢ —z| = ¢ for all z € C. But then |z| < |z— o] + |a| = 2¢
for all z € C which contradicts |z| = |z|5, for any z € C with sufficiently large |z|. In other words, o
does not exist. O

LEMMA 5.3.17. Let (K,| |) be a nonarchimedean valued field, and let (K,| |) be its completion.
Then | | is a nonarchimedean valuation on K with the same value group as its restriction to K. If O
(resp., o ) denotes the valuation ring of K (resp., K) and m ( resp., W) denotes its the maximal ideal,
then the canonical map

1: 0/m— O/h
is an isomorphism. Moreover, if | | is discrete on K, then it is on K as well, and
,: 0/m" = &/@"

is an isomorphism for every n > 1.
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PROOF. That K is nonarchimedean is an immediate corollary of Lemma 5.2.10 (and can also be
seen directly). If a is nonzero, then |a, —a| < |a| for all sufficiently large n, so |a,| = |(an —a) +a| =
|a|, and thus the value groups of | | on K and K are equal.

Since the embedding K — K preserves the valuation, we have m = &' N1, so 1 is injective. If
acl , then since K is dense in K, there exists b € K with |b—al| < 1, so b—a € 1, which in particular
implies b € 0 NK = 0 with 1(b+m) = a+ 1. In other words, 1 is surjective.

If | |is discrete on K, then any Cauchy sequence in K has valuation that is eventually constant or
heads to 0. As a uniformizer 7 of K is also one of K, it follows immediately that I, is injective. We
have

m" = {a € Klla| <[x["},
and so if a € M" and we choose b € K with |b —a| < |x|", then |b| < |x|", so b € m". That is, 1, is
surjective. O

REMARK 5.3.18. A discrete additive valuation v on a field K extends to a discrete valuation on
K, usually denoted v as well.

DEFINITION 5.3.19. A valued field is said to be discretely valued if its valuation is discrete. A
complete discrete valuation field is a complete discretely valued field.

PROPOSITION 5.3.20. Let K be a complete discrete valuation field. Let O be its valuation ring,
and m the maximal ideal of O. Let T be a set of representatives of O /m that includes 0, and let T be

a uniformizer of O. Every element a € K is a limit of a unique sequence of partial sums of the form

n
k=m

form € Z and ¢y € T for all k > m, with c,, # 0. Moreover, the additive valuation of such an element

aism.

PROOF. Since each a,, must have valuation m and the a, must converge to a, we must have
m =v(a). So, we take a,,—1; = 0 and, inductively, for any n > m, we write a — a,_| = b, " for some
b, € O, and let ¢, € T be the unique element such that ¢,, = b, mod m. (Note that c,, # 0.) Then

a—a,=b,n" —cyt €M

and ¢, € T is unique such that this holds. By definition, a is then the limit of the a,, and the choice

n+1

of each ¢, is the only possibility for which this happens, as if a # a, mod m"™", then since a #

ay mod m"*! for all k > n, the sequence (a,), would not converge to a. O

NOTATION 5.3.21. Let (K,| |) be a complete discrete valuation field. The element

i Ckﬂ'k ek
k=m

with ¢ € & is the limit of the corresponding sequence of partial sums.
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EXAMPLE 5.3.22. By Proposition 5.3.20, the completion a field K(z) with respect to the z-adic
valuation on K is isomorphic to the field K((¢)) of Laurent series in 7. The valuation ring of K (7)) is
the ring K[¢] of power series in K.

DEFINITION 5.3.23. The field Q, of p-adic numbers is the completion of Q with respect to its
p-adic valuation. Its valuation ring Zj, is the ring of p-adic integers.

REMARK 5.3.24. An arbitrary element of Q,, has the unique form

(o]
i
Z cip,
i=m

where m € Z and 0 < ¢; < p — 1 for each i > m, with ¢,,, # 0. It is a p-adic integer (resp., unit) if and
only if m > 0 (resp., m = 0).

EXAMPLE 5.3.25. Theelement ¢ = 1+p+p?>+p>+--- € Ly is ﬁ To see this, note that
(I+p+p*+-+p")(1=p)=1-p"

and the sequence (1 — p"*1), converges to 1. In particular,

oo

-1=Y (p—1)p" €Zp.
n=0

Taking into account Lemma 5.3.17, the following gives an alternate description of the valuation
ring of the completion of a discrete valuation field.

PROPOSITION 5.3.26. Let K be a complete discrete valuation field, let O be its valuation ring,
and let m be the maximal ideal of O. Then the map

¢: 0 —lim O/m"
o
that takes a € O to the compatible sequence (a+wm"), is an isomorphism of rings.

PROOF. This is actually a corollary of Proposition 5.3.20, in that a, +m" for a, € € has a unique
representative of the form

n—1
Z CkTL'k
k=0

with ¢; € T, where T is a set of representatives of ¢'/m and 7 is a fixed uniformizer of &, and the ¢;
are independent of n > i. The element

CkTL'k X%
0

a =

k=

is the unique element of & mapping to (a, +m”"),. O
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DEFINITION 5.3.27. Let A be a discrete valuation ring, and let p be its maximal ideal. We say
that A is complete if the canonical map

A—limA/p".
o
is an isomorphism.
The reader will verify the following.

LEMMA 5.3.28. Let A be a DVR, and let K be its quotient field. Then K is complete with respect

to the discrete valuation induced by the valuation on A if and only if A is complete.

DEFINITION 5.3.29. Let K be a field, and let f =Y " ;a,x" € K[x]. For k > 1, the kth derivative
of f is the power series fK) € K[x] defined by

[}

R = Z(n—i— 1) (n+k)ay1x".
n=0
THEOREM 5.3.30 (Hensel’s Lemma). Let K be a complete nonarchimedean valuation field with
valuation ring O having maximal ideal wm. Let f € Olx], and let f € O /m|x] be the image of f.
Suppose that & € O Jw is a simple root of f. Then there exists a unique root o of f in O that reduces
to & modulo m.

PROOF. Let o € € be any lifting of @, and let 7 = f(a) € m. (If & is a DVR, we can instead
take 7 to be a uniformizer.) Suppose by induction that we have found oy € & for 0 < k < n such that
0, = 0y mod 72" for all such k and f(0,) =0 mod 72", Writing f = Z?i%f ax' with a; € O, we see
that

deg f - degf - degf )
fla,+x)— (flo) + f(04)x) = Z ai(o, +x)' — Z a; o, — Z iaioc,lflx
i=0 i=0 i=0

is an element of (x?) inside &'[x]. We therefore have that
flan+Br*") = f(o) + f' (o) - B> mod 7

for any B € 0. Note that f'(o,) # 0 mod 7 (and in fact is a unit), since @ is a simple foot of f
in 0/m. As f'(o,) is invertible and 7" divides f(a,), we may choose B € € such that f(a, +
ﬁﬂzn) =0 mod 72" , and this choice is unique modulo 72". We then set @, | = &, + 7> so that

2n+1

. +1 . .
Qi1 = 0, mod 72", and again we have f (ay+1) =0 mod n2"" . Note that o, is unique modulo

n+1 . . .
2""" with this property: in fact,

T
f(OCn) 2n+l
5.3.1 Oy = 0 — d .
(5.3.1) nt1 7(00) mod 7
Finally, letting
a = lim o,

n—o0
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we note that f defines a continuous function on &, so

fla) = lim f(a,) =0,

n—yoo

and o is by construction unique with this property among roots reducing to &. 0

EXAMPLE 5.3.31. The polynomial f = x> —2 has two simple roots in F;, which are 3 and 4.
Hensel’s Lemma tells us that it has two roots in Z7 as well. We may approximate such a root recur-
sively using (5.3.1) in the proof of said result. For instance,

322 1
— =3—--7=1 4
73 3 67 0 mod 49

3

is a root of f modulo 49, and

10— 102_2—10— 172:3+7+2 7> 4+6-7° =2166 mod 7*
210 0 -
is a root of f modulo 2401.

The following lemma provides another nice application of Hensel’s Lemma.

LEMMA 5.3.32. The group of roots of unity in Q, has order p — 1 for an odd prime p and 2 for
p=2

PROOF. The polynomial x?~! — 1 splits completely into distinct linear factors IF,[x], since ]F; is
cyclic of order p — 1. By Hensel’s Lemma, we see that each root of x*~! — 1 in [F,, lifts uniquely to a
root of x’~1 — 1 in Z,. That s, yt,_1(Q,) contains p — 1 elements.

Suppose that {, is a primitive nth root of unity ¢, in Q, (hence in Z) for n > 1. Then , reduces
to a root of unity in IF,,. If the order m of this root of unity is less than n, then g is trivial in F D>
so " — 1 € pZ,. In particular, there exists a prime ¢ such that Z[u,| C Z, and {; — 1 € pZ,,. Since
{¢ — 1 divides ¢, this would imply ¢ € pZ,, forcing £ = p. On the other hand, if {,, € Z,,, then Z,,
contains Zp[lp], and so p! (&op— 1)"’(2” ) e Z,, which contradicts the fact that p is a uniformizer in
Lp. O

The following is a strong form of Hensel’s lemma (without the uniqueness statement) that is
sometimes also referred to as Hensel’s lemma.

THEOREM 5.3.33 (Hensel). Let K be a complete nonarchimedean valuation field with valuation
ring O and maximal ideal m. If f € Olx] is primitive and its image f € O /wm|x| factors as f = gh,
where § and h are relatively prime, then f factors as f = gh in O|x], where g and h reduce to § and
h, and degg = degg.

Moreover, if ¢’ 0 € O|x] with degg’ = degg satisfy f = g’h’ mod b for some ideal b C m and
reduce to § and h respectively, then g and h can be chosen so that g = g’ mod b and h = i’ mod b.
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PROOF. Note that f € @|[x] is primitive if and only if f % 0 mod m. Let k be the degree of deg g,
and let d be the degree of f. Let go,ho € O/[x] be lifts of g and A, respectively, such that deggo = k
and deghg <d —k, so

f = gohp mod m.
Since g and h are relatively prime, there exist @,b € & /m[x| such that ag +bh = 1. Let a,b € O|[x] be
lifts of @ and b, respectively, so we have

ago+bhg =1 mod m.

Let a C m be the ideal of &' generated by the coefficients of ago + bho — 1, which will be generated by
an element 7 € a that can be taken as the coefficient of maximal valuation. (We use a in the argument
below to deal with the possibility that the valuation on K is not discrete.)

Suppose by induction that for n > 1 and m < n — 1, we have found polynomials g,, and A,, with
deg(gm — go) < k and and degh,,, < d — k such that

f = gmhy,;, mod am™ !

for m < n—1 and both

m—+1 m+1

gm+1 = &m mod a and Ay, = hy, mod a

form <n-—2. Let

Ja=7""(f — gn-1hn—1) € O[x].
Since g is a lift of ¢ with deggo = k, its leading coefficient is a unit. Hence, using the division
algorithm, we may write

bfn = qngo+ 1,
where gy, r, € O|x] and degr, < k. Then
(5.3.2) (afu+qnho)go + rnho = afugo +bfuho = f, mod a.

Let s, € O[x] be the polynomial with coefficients that agree with those coefficients of af;, + g,ho
that have nonzero reduction modulo a and which are 0 otherwise. Then set

gn=8n-1+a"ry and hy=hy_1+7"s,.
Note that
gnhn = gn—1hn—1+ 7" (rahn—1 + Sngn—1)
= gn—1hn—1+ 7" (rnho + sngo)
=gn-1thn1+7" fa
= f mod a"*!,

Since deg(g,—1 — go) < k and degr, < k, we have deg(g, — go) < k. Since deg(r,hg) < d and deg f,, <
d, we have by (5.3.2) that the reduction of (af, + gnho)go modulo a has degree at most d. Since
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deggo = k, we therefore have that the reduction of af, + g,ho has degree at most d — k. As the
nonzero coefficients of s,, which is congruent to a, f, + g,ho modulo a, are all units, we then have
deg(s,) < d — k. Hence, we have completed the induction.

Now, since the degree of g, is k, the degree of A, is bounded by d — k, and ﬂnz pat = (0), it
makes sense to consider the limits of these sequences of polynomials by taking the limits of their
coefficients, with the resulting quantity an actual polynomial. Defining g and /4 to be the limits of
the sequences (gy), and (h,), respectively, we obtain f = gh, as desired. The last statement follows
easily from the above argument. U

REMARK 5.3.34. A valuation ring satisfying Hensel’s lemma (without the uniqueness statement)
is called a Henselian ring. One may check that any Henselian ring satisfies the strong form of Hensel’s
lemma as well.

5.4. Extension of valuations

In this section, we study the extension of a valuation on a (complete) field to a larger field.

DEFINITION 5.4.1. Let K be a field, and let | |x be a valuation on K. If L is a field extension of
K, then an extension | | of | |k to L is a valuation on L such that |o|;, = ||k for all a € K.

In the case of global fields, we note the following.

REMARK 5.4.2. Let L/K be an extension of global fields, let p be a nonarchimedean prime of K
and ‘P a prime lying above it. The normalized B3-adic valuation is equivalent, but not always equal
to, an extension of the normalized p-adic valuation. That is, for o € K, we have

oty = pheve (@) — = fpeppvp(@) — |a|;q3/pf;n/p.

In the case that the extension field is of finite degree, the following proposition restricts the possi-
bilities for an extension of the valuation below to the extension field, up to equivalence.

PROPOSITION 5.4.3. Let (K,| |) be a complete valuation field, and let (V,| |) be a finite-

dimensional normed vector space over K such that |av| = |c||v| for all o € K and v € V. Then

V is complete with respect to |
¢: K" —V with

, and if vi,...,v, is an ordered basis of V, then the isomorphism

n
o(ay,...,ap) = Zaivi
i=1
is a homemorphism.

PROOF. The topology defined on K" by the maximum norm

l(ai,...,an)|| = max(|ai],-..,|an|)
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for ay,...,a, € K agrees with the product topology. Via the map ¢, this induces a norm
laivi + -+ ayvy|| = max(|ay|,.. ., |an|)

on V that we must show agrees with topology defined by the original norm | |on V.
It suffices to show that there exists real numbers c;,c; > 0 such that

civlf < Pl <eafvll

forall v € V. Take ¢ = |vi| + -+ |vn|. Then we have

n n
laivi+ -+ apvy| < Z |la;||vi] <max(|ai],...,|an|)- Z il = callarvi + - +anval|.
i=1 i=1

Suppose by the induction that we have the existence of ¢; for all vector spaces of dimension
less than n. The case n = 1 is covered by taking ¢; = |vi|. In general, let W; be the K-span of
{Vi,..yViz1,Vit1,---,Vn}. Then each W; is complete with respect to | |, hence is a closed subspace
of V. Let B be an open ball of radius € > 0 about 0 € V such that BN (v;+W;) = @ forall 1 <i<n. Let
v=Y" a;v; €V withv#0. Forany 1 < j <n with a; # 0, we have a}lv ev;+Wj, so |a;1v| > €.
In particular, we have |v| > €||(ay,...,a,)| = €|lv

, SO we may take c; = €. O

We will require the following lemma.

LEMMA 5.4.4. Let (K,| |) be a complete nonarchimedean valuation field. Let
n
f= Zaix’ € Kx|
i=0
be irreducible with a, # 0. Then either |ag| or |a,| is maximal among the values |a;| with 0 <i < n.

PROOF. By multiplying f by an element of K, we may assume that f € x|, where O is the
valuation ring of K, and at least one coefficient of f is a unit. Let j be minimal such that a; € 6. If
m denotes the maximal ideal of &, then

f=(aj+ajix+--+aX"/)x/ mod m.
Unless j = 0 or j = n, this contradicts Theorem 5.3.33, since f would be reducible in &'[x]. U

The following corollary of Lemma 5.4.4 is immediate.

COROLLARY 5.4.5. Let (K,| |) be a complete nonarchimedean valuation field. Let f be a monic,
irreducible polynomial in K[x| such that f(0) lies in the valuation ring O of | |. Then f € Ox].

This in turn, has the following corollary.

COROLLARY 5.4.6. Let (K,| |) be a complete nonarchimedean valuation field. Let L be a finite
extension of K. Let O be the valuation ring of K. Then the integral closure of O in L is equal to

{BeL|Nk(B)eO}.
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PROOF. Letn =[L: K]|. Let B € L™, and let f € K[x] be its minimal polynomial. Lemma 1.3.14
tells us that Ny k() € O for every integral § € L. On the other hand, we have

Ny/k(B) = (=1)"f(0)"4,

where d = [K(f) : K]. So, if N x(B) € O, then f(0) € &, and Corollary 5.4.5 tells us that f € O[x],
which means that f is integral. O

We now prove that an extension of a valuation in an algebraic extension of a complete field exists
and is unique.

THEOREM 5.4.7. Let (K,| |x) be a complete valuation field, and let L be an algebraic extension
of K. Then there is a unique extension of | |k to a valuation | |p on L. The valuation | | is

nonarchimedean if and only if | |k is. If L/K is finite, then L is complete with respect to | |1, and

this extension satisfies
1/|L:K
Bl = Ve (B

PROOF. If the valuation on K is archimedean, then by Theorem 5.3.16, we have that (K,| |) is
isomorphic to (R,| |*) or (C,| |*) with s € (0, 1], and the only extension of | |*onRto Cis| |°.

So, suppose that the valuation on K is nonarchimedean. First, we note that it suffices to assume
that the degree of L/K is finite, as any algebraic extension is the union of its finite subextensions. Let
n=|[L: K], and for B € L, define

Bl = Nk (B
Clearly, | 3|, =0 if and only if § =0, and |aB|. = |a|.|B]|L for o, B € L.

Let A be the valuation ring of K, and let B be the integral closure of A in L. Let ¢ € L. We
obviously have & € B if and only if a + 1 € B. By Corollary 5.4.6, this tells us that Ny /g () € A if
and only if N jx(a+ 1) € A, which says that by definition that [, < 1 if and only if |a+ 1], < 1.
If B € L* with (without loss of generality), ||z < |B|z, then @B~ ! < 1, so

oo+ Bl =Bl + 1| < |B]L = max(|alL,|BL).

Hence | |7 is a nonarchimedean valuation, and it clearly extends | |x. Moreover, L is complete with

respect to this valuation by Proposition 5.4.3.

If || || is any other valuation on L extending that on K, then let us let C be its valuation ring and
n be its maximal ideal. Note that the norm of any element of C lies in A, so C C B. Suppose that
y € B—C. Let f be the minimal polynomial of y over A, so f € A[x]. Moreover, y~! € n since C is
a valuation ring. But then —1 = y~ 98/ f(y) — 1 is an A-linear polynomial in y~! with no constant
coefficient that therefore lies in n, a contradiction. That is, B = C. By Proposition 5.2.5, we have that
|| || and | |z are equivalent. O

We have the following immediate corollary of the definition of the extended valuation in Theo-
rem 5.4.7.
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COROLLARY 5.4.8. Let K be a complete discrete valuation field, and let L be an finite extension

of K. Then the extension to L of the valuation on K is discrete.
Let us consider the specific case of global fields.
PROPOSITION 5.4.9. The places of a global field are exactly its finite and infinite places.

PROOF. Let K be a global field. Theorem 5.3.16 tells us that any archimedean prime on L must
arise from a real or complex embedding of L, so represents an infinite place. So, suppose | | is a
nonarchimedean valuation of K and note that its restriction to QQ in the case that K has characterstic 0
or Fy(¢) in the case that K has characteristic a prime ¢ must be equivalent to | |, for some prime p in
the former case and to either | |, for some irreducible f € F/() or | |« in the latter case. So, if the
latter restriction yields a finite place, coming from a finite prime p, consider 8 = {x € Ok | |x| < 1},
and otherwise consider 8 = {x € A | |x| < 1}, where A is the integral closure of Fy[t~!] in K. Then
B is a prime lying over p = (p), (f), or (t~1) in the respective cases. Note that the valuation | |
extends uniquely to the completion of Q or /() at p by continuity and then to a valuation on Ky that
is equivalent to | [q by Theorem 5.4.7. But then the latter valuation is equivalent to | | by uniqueness
of the extension, as desired. U

We mention in passing the useful notion of a Newton polygon, as it relates to Lemma 5.4.4.

DEFINITION 5.4.10. Let K be a complete nonarchimedean valuation field with additive valuation
v,and let f =Y" ja;x' € K[x] with a, # 0. The Newton polygon of f is the lower convex hull of the
points (i,v(a;)).

We omit the proof of the following.

PROPOSITION 5.4.11. Let K be a complete nonarchimedean valuation field with additive valu-
ation v, and let f =Y}, aix' € K[x] with a, # 0. Let —o < mj < my < ... < m, be the slopes of
the line segments of the Newton polygon of f, and let ty,. ..t be their respective horizontal lengths.
Then for each j with 1 < j < r, the polynomial f has exactly t; roots in an algebraic closure of K
with valuation —m under the extension of v.

PROOF. Let u; < --- < Uy be the valuations of the roots of f, and let k; be the number of roots of
valuation y; for 1 <i <. For such i, set {; = Zle k;, and set /o = 0.

Label the roots of f with multiplicity ¢, ..., o, in order of increasing valuation. Since a, ; for
0 < j < nis, up to sign, the sum of all products of j distinct roots of f, its additive valuation is at least
that of oy --- ;. The latter valuation will be less than all other valuations of products of j distinct
roots if and only if j = ¢; for some 1 <i <s. In other words, if /;_| < j < ¥;, then

—1

v(an—;) > Zkt.u't + (= lim1) i
t=1
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with equality guaranteed if j = ¢;. It then follows that the lower convex hull of the Newton polygon
consists of the line segments between the points (n — £;_;, Zf;i kep ) for 0 <i <s. It follows then that
r = s, and the ith line segment has length

ti=n—Le_ji)—(n—ly—i) =Lls—j—ls_ji1 =ks—i

and slope
s—i—1

ke, — Y57k T
m; = thl tut t=1 t.ut _ S zus 1 = — Uy
ti ks

O

EXAMPLE 5.4.12. Consider the polynomial f = 8x* 4 30x® — 4x? +7x — 2 € Qs [x]. Its Newton
polygon is the lower convex hull of the points (0,3), (1,1), (2,2), (3,0), and (4, 1), which means the
area above the piecewise linear function on [0,4] consisting of the three line segments between the
points (0,3), (1,1), (3,0), and (4, 1). The line segments have lengths 1, 2, and 1 and slopes —2, —%,
and 1, respectively, so f has one root of 2-adic valuation 2, two roots of valuation %, and one root of
valuation —1.

EXAMPLE 5.4.13. For n > 1 and a prime number p, the function x" — p € Q,[x] has a Newton
polygon with lower boundary the single line segment from (0, 1) to (n,0) of length n and slope —%.
Thus, x" — p has n roots of p-adic valuation ,11 in an algebraic closure of Q,, and these are of course
Cauxy/p for 0 <i < n, where (, is a primitive nth root of unity.

We provide some useful corollaries.

COROLLARY 5.4.14. In the notation of Proposition 5.4.11, the polynomial f factors as f =
fi-..fr where f; € K[x] has degree t; and the valuations of its roots are all —m,;.

PROOF. By uniqueness of the extension v of the valuation on K to the splitting field field L of K,
we have that vo 6 = v for any ¢ € Gal(L/K). Therefore, any two roots of an irreducible factor of f
must have the same valuation, hence the corollary. U

COROLLARY 5.4.15. Suppose that K is a complete discrete valuation field with corresponding
discrete additive valuation v. If f € K|[x| is monic of degree n and has a Newton polygon with lower

boundary a single line segment of slope —*., where ¢ > 1 is relatively prime to n, then f is irreducible.

PROOF. Let  be aroot of f in an algebraic closure of K. Since n is the minimal integer such that
nv(a) € 7, we have that a/ ¢ K for 1 < j < n, and therefore L/K has degree n. O

This gives a less-standard proof of the following well-known result.

COROLLARY 5.4.16. Let K be a global field, and let f € K[x| be an Eisenstein polynomial for a
nonarchimedean prime p of K. Then f is irreducible. Moreover, the prime p is totally ramified in the
extension of K generated by a root of f.
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PROOF. Suppose that f is Eisenstein for p, and consider the completion K, of K at p. Then f
is still Eisenstein for the ideal generated by p in the valuation ring of K, and therefore irreducible
by the previous corollary. Since f is irreducible over Kj,, it is irreducible in K[x]. The last statement
follows as every root of f has valuation %, as in the proof of Corollary 5.4.15. U

5.5. Local fields

DEFINITION 5.5.1. A Hausdorff topological space X is locally compact if for every x € X, there
exists an open neighborhood U, of x such that the closure of U, is compact.

Let us make the following definition.

DEFINITION 5.5.2. A local field is a valuation field that is locally compact with respect to the
topology defined by the valuation.

LEMMA 5.5.3. Local fields are complete valuation fields.

PROOF. Let (K,| |) be alocal field. Let € > 0 be such that the closed ball of radius € around 0
is compact, and note that by translation this applies to balls around every point. If (a,), is a Cauchy
sequence in K, then of course there exists N > 0 such that |a, — ay| < € for all n > N. Therefore all
a, with n > N lie in a compact set, and the Cauchy sequence (a,),>y has a limit. O

REMARK 5.5.4. If K is an archimedean local field, then being that it is complete, Theorem 5.3.16
tells us that K is isomorphic to R or C, and the resulting valuation on R or C is equivalent to the
standard absolute value.

REMARK 5.5.5. The term “local field” is often used to refer more specifically only to nonar-
chimedean local fields.

The definition we have given for a local field may not be that most familiar to algebraic number
theorists, so let us work to classify such fields.

PROPOSITION 5.5.6. Let K be a complete discrete valuation field with valuation ring O and
maximal ideal m. The following are equivalent:

i. Kisalocal field,

ii. O is compact, and

iii. O/mis finite.

PROOF. Let 7 be a unfiormizer of &. If K is locally compact, then m”, being an open and closed
neighborhood of 0 in &', must be compact for some n > 0. On the other hand, the map & — m”" given
by multiplication by 7" is a homeomorphism, since it is continuous with an apparent continuous

inverse. So (i) implies (ii). Conversely, (ii) implies (i) since the neighborhood a + & of any a € K
will be compact if & is.
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If &' is compact, then since &' is the disjoint union of its open subsets a + m for a in a set of coset
representatives of ¢'/m, we have that the number of such representatives must be finite, so (ii) implies
(iii). Conversely, if &'/m is finite, then there exists a finite set T of coset representatives of it in &.
Suppose we have a sequence (@), in &, which we write for each n as

oy = Zan,iﬂ:l
i=0

for some a,; € T for all i > 0. Among the coefficients a, o, some element of 7" must occur infinitely
many times, so we may choose a subsequence (0, ,)n Of (04), such that the ay, , o are all constant.
We then repeat, choosing a subsequence (0, ,)n Of (0%, ) such that the ay, , | are all constant, and
so forth. Then the subsequence (0, ,)n of &, converges to |

i
Z aki‘hﬂr .
i=0

Therefore, &' is a sequentially compact metric space, and so it is compact. U

PROPOSITION 5.5.7 (Krasner’s Lemma). Let K be a complete nonarchimedean valuation field.
We use | | denote the unique extension of the valuation on K to an algebraic closure K of K. Let
a,B € K. If o is separable over K(B) and

B —af <[o(a)-af
for every embedding o : K(a) — K fixing K but not o, then K(o) C K(B).

PROOF. We must show that K (a, 8) = K(B). Solet 6: K(o, ) — K be a field embedding fixing
K(B). We have

lo(a) =B =lo(a) —o(B)| = o — B,
the latter equality by the uniqueness of the extension, so
o) —a| = |o(a) = B+ B — | <max(|o(a) — B, |B —t]) = B — x].
By assumption, this forces o to fix K(a), hence the result. O

We can derive the following from Krasner’s lemma.

PROPOSITION 5.5.8. Let K be a complete nonarchimedean valuation field with valuation ring O.
Let f € O|x| be monic, irreducible, and separable of degree n > 1. There exists an ideal a of U such
that if g € O|x] is monic of degg = n and satisfies f = g mod a0|x|, and if B is a root of g in an
algebraic closure K of K, then f has a root & in K such that K(ot) = K(B). In particular, any such g
is irreducible.
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PROOF. Write f =Y, aix' and g = Yo bix'. Our assumption is that for some positive § < 1,
we have |a; — b;| < 0 for all 0 <i < n, where | | is the valuation on K (and its unique extension to
K). By choosing & small enough, we may insure that either |a;| = |b;| or |b;] < & (if a; = 0 or b; = 0)
for each i. So, there exists C > 0 with |b;| < C independent of the choice of g. If B is a root of g, then

[BI" < max{[b;]|B|"| 0 < i< n} < Cmax{1,|B]"""},
so |B| is bounded independent of g, say by D, which we take to be > 1. We then have

FB)] = If(B) — g(B)| < max{la; — bil|B|' | 0 < i < n} < Smax{L,|B[}"~" <&D",

and so by choosing § sufficiently small, we may make |f(f)| arbitrarily small, independent of 3, say
less than €" for some € > 0. Note that

£B) =ﬁ\ﬁ—a,-| <

where «y,...,q, are the roots of f. One must then have |B — o;| < € for some i. If we take &,
and hence €, small enough so that € < |o; — «;| for all j # i, and Krasner’s lemma tells us that
K(04) € K(B), which tells us that g is irreducible and K(o;) = K(f3). O

THEOREM 5.5.9. The following are equivalent for a nonarchimedean valuation field K :
i. Kisalocal field,

ii. K is complete, the valuation on K is discrete, and the residue field of K is finite,
iii. K is isomorphic to a completion of a global field, and

iv. K is isomorphic to a finite extension of Q, or F,(t)) for some prime p.

PROOF. That (ii) implies (i) is part of Proposition 5.5.6. That (iii) implies (ii) is a consequence of
Proposition 5.3.12 and Lemma 5.3.17.

Suppose that (iv) holds. Suppose that K is a finite extension of QQ, for some prime p. Then
K = Q,(«) for some o € K, and let f be its minimal polynomial. Choose g € Q[x] monic of degree
that of f and sufficiently close to f so that we may apply Proposition 5.5.8 to see that g is irreducible
over Q,, so Q,(B) = Q,(a) for some root B of g. Since B is algebraic over Q, we have that
K = Q,(p) is the completion of Q(f) in K. Similarly, if K is a finite extension of IF,,((7)), then it is a
finite, separable extension of F,((z!/ P ) for some k > 1, which is itself isomorphic to F,,((¢)). Hence,
we may assume that K = F,((#)) (o) for some & € K, and the above argument with F,((¢) replacing
Q, yields (iii).

To see that (1) implies (iv), suppose that K is a local field with residue field of characteristic a
prime p. If K has characteristic 0, then the restriction of the valuation to (Q cannot be trivial as
it would otherwise extend to the trivial valuation on K by Theorem 6.1.4. It must therefore be a
nonarchimedean valuation on Q with residue characteristic p, and Theorem 5.2.31 tells us that this
valuation is equivalent to the p-adic valuation. But then the completion @@, embeds canonically into
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K, so K is an extension of QQ,,. If K has characteristic p, then it cannot be an algebraic extension of
IF), since the valuation is nontrivial, so it must contain an element 7' that is transcendental over IF),.
We have that K is an extension of ]FP(T), and by Proposition 5.2.32, the restriction of the valuation
on K to IF,(T) is the f-adic valuation for some irreducible f € F,[T] or the c-adic valuation. The
completion of F,(T') with respect to this valuation is isomorphic to F,((#)) for some ¢ and embeds in
K, and the valuation on K is the unique extension of this valuation to K.

Next, suppose that K/F with F = Q, or IF,,((¢)) were an infinite extension. If K contains a tran-
scendental element x over F, then since the residue field of K is finite, x is still transcendental over
the largest extension E of F' in K in which the valuation of F is unramified. By Theorem 2.5.11, the
field extensions E(x)/E(x") all have ramification index n at the unique prime of the valuation ring
of E(x). Let h < 1 be the valuation of a uniformizer of E(x) C K under the unique extension of the
valuation on F to E(x). Then the valuation of a uniformizer of E(x") is #". Since the valuation of a
uniformizer of E is then less than A" for all n, it must be 0, which is impossible (in fact, it is pil).

If K /F is algebraic, we can let (K}, ), be an infinite tower of distinct subfields of K with union equal
to K. As K is a local field, its residue field is finite by Proposition 5.5.6. Therefore, the extension of
residue fields for K, /K, is trivial for sufficiently large n. Since there is only one nonzero valuation
on K, extending that of K, the degree formula then tells us that the ramification degree of the
prime of the valuation ring is [Kj,+ : K,|, and in particular nontrivial. Consider any sequence (7).
with 7@, € K, a uniformizer for each n. If

| is the valuation on K, then we have that |7, — 7,,| = |7,

for n > m, with n sufficiently large (independent of the choice of m). But |m,| has a limit of 1 as n
increases (as follows from Theorem 5.4.7), which means that the sequence (7,), has no convergent
subsequence. Therefore K is not compact, and therefore the extension had to be finite. U

DEFINITION 5.5.10. A p-adic field, or p-adic local field, is a finite extension of QQ,, for some
prime p.

DEFINITION 5.5.11. A Laurent series field (over a finite field) is a finite extension of F,((¢)).

REMARK 5.5.12. In fact, every finite extension K of F,(¢) is isomorphic to [F,(y) for some
power g of p under a map that takes a uniformizer of K to y.



CHAPTER 6

Ramification theory

6.1. Semi-local theory

NOTATION 6.1.1. We often use a subscript v to denote a valuation | |, on a field K, even when
that valuation is archimedean. When | |, is nonarchimedean, v also denotes an additive valuation
corresponding to v, and when it is discrete, the additive valuation is chosen to have image Z U {eo}.

NOTATION 6.1.2. We let K, denote the completion of K with respect to a valuation denoted | |,.

REMARK 6.1.3. Let A be a Dedekind domain and p a prime ideal of A. Let | |, be a valuation
on the quotient field K of A such that |al, = ¢~"»(@ for some ¢ € R~ and all @ € K*. Then we may
speak of the completion Kj, of K with respect to this valuation.

The following theorem explores extensions of valuations in the case that the ground field is not
complete. In this case, uniqueness of the extension need not hold, but we can classify the distinct
extensions.

THEOREM 6.1.4. Let K be a field and v a valuation on K. Let v be an extension of v to a valuation
on an algebraic closure K, of K,. Let L be an algebraic extension of K. For any extension of v to
a valuation w on L, there exists an embedding ©: L — K, fixing K such that w = v o T, by which we

mean that

1Blw=1[7(B)ls
forall B € L. Ift': L — K, is another embedding fixing K, then w' = vo T’ is equal to w if and only

if T and T’ are conjugate over K,,: i.e., T = o o T for some automorphism ¢ of K, fixing K.

PROOF. The valuation that w induces on the completion L,, can only be the unique valuation
extending the valuation that v induces on K,. If 7: L,, — K, is any field embedding fixing K,, then
vo T is a valuation on L,, that extends v on K,,, and hence it must be w.

For the second statement, suppose first that 7' = 0 o T with 0 € Autk, (K,). Again, ¥ is the unique
valuation on K, extending the valuation on K, so vo o = v. But then we have vo 7' = Vo7, and
restricting to L, this means that w' = w.

Conversely, suppose that w' = w. Note that 7 o7~ !: 7(L) — /(L) is an isomorphism fixing K.
Suppose that L/K is finite. As K is dense in K, and 7(L) is also a finite extension of K, we have that
7(L) is dense in 7(L) - K, (and similarly for 7). Define

o:17(L)-K,— 1 (L)-K,
105
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by

ola) = nli_rg;r’(an)

for o € 7(L) - K,,, choosing a sequence (o,), of elements of L such that (7(a,)), converges to c.
Note that this is independent of choice, as if ¢, is another such sequence, then the limits of (7’(ot,)),
and (7'(c,,)), are the same by continuity of 7. But then 7/ = 0 o 7, and 0 is the unique isomorphism
fixing K,, with this property. We then extend & to an element of Autg, (K, ), obtaining the desired map.

In general, L is a union of finite extensions E of K. For each such E, we have defined a unique
isomorphism og : T(E)K, — 7'(E)K, such that 7'|g = og o T|g. If E and E’ are two finite extensions
of K in L, then of and o agree on T(ENE')K, C 7(E)K, N T(E")K, by uniqueness. Together, the
collection of maps o defines an embedding of the compositum of the fields 7(E)K, into K,. We then
extend this embedding to an automorphism of K, fixing K, and by definition, it has the property that
7 =00T1. O

NOTATION 6.1.5. If L/K is an extension of fields, v is a valuation on K, and w is a valuation on
L, then we write w | v to denote that w is equivalent to an extension of v. The set of w | v will mean a
set of representatives of the equivalence classes of the extensions of v to L.

The following is in essence a consequence of Proposition 1.1.1.

PROPOSITION 6.1.6. Let L/K be a finite separable extension of fields and v a valuation on K.
Then there is an isomorphism

K: Log Ky = [[Lw

wlv
such that k(B ® 1) = (1,B)w for all B € L, where 1,,: L — L,, is the canonical embedding of a field
in its completion.

PROOF. As L/K is finite and separable, there exists an element 6 € L such that L = K(6). Let f
be the minimal polynomial of 8 over K, and let f =[], f; over K,, where the f; are irreducible (and
necessarily distinct by separability of f). Choose a root 6; of f;(x) for each i inside a fixed algebraic
closure K, of K. Proposition 1.1.1 provides an isomorphism

m
Lok K, = []K.(6)

i=1
such that 6 ® 1 is sent to 6; in the ith coordinate. By Theorem 5.4.7, the field K, (6;) is necessarily
complete with respect to a valuation w; extending v. The embedding 7;: L — K, (6;) sending 6 to 6;
and fixing K has dense image, so K,,(6;) is isomorphic to the completion of L with respect to w;.

If w is any valuation on L extending v, then Theorem 6.1.4 yields an embedding 7 of L into K,
such that w = vo 7, where ¥ is the unique extension of v from K, to K,. Then 7(60) is the root of f;
for some i, so there exists an automorphism ¢ over K, fixing K, such that T = ¢ o 7; and therefore
w=7VoO0oT,=VoT,=w,. ]
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COROLLARY 6.1.7. Let L/K be a finite separable extension of fields and v a valuation on K. Then

we have

[L:K]=Y[L,: K]

wlv

We can get more out of Proposition 6.1.6, which we will use later.

DEFINITION 6.1.8. Let L/K be a finite separable extension of fields and v a valuation on K.

a. The norm map for L/K at v is the map
LK [t — K

given by
L/K H Ly, /K, Bw

wlv
b. The trace map for L/K at v is the map
Tty i [ty — K
wlv
given by
TrL/K BW ZTer/K BW

When v is understood, these are denoted more smlply by Np/k and Tr k.

We have the following, which says that N} /K and Ny /g coincide on L (using its natural embedding
in each L,,), and similarly for trace maps.

PROPOSITION 6.1.9. Let L/K be a finite separable extension of fields, and let v be a valuation on
K. For B € L, we may view it as an element of L

Nijx(B) =[]Nw,/x,(B) and Trpx(B) =Y Try, /k, (B).

wlv wlv

14

PROOF. Letmg: L — L be left multiplication. This indues a K,-linear transformation mg & idg,
on K, and the characteristic polynomials of mg and mg ® idk, agree. Noting that the isomorphism of
Proposition 6.1.6 is one of L-vector spaces, the characteristic polynomial of mg ®idk, coincides with
the product of the characteristic polynomials of multiplication by 8 on the L,, for w | v. The result is
then a consequence of Proposition 1.3.3. U

The following result on valuation rings will later be useful to us.

PROPOSITION 6.1.10. Let L/K be a finite separable extension of fields and v a discrete valuation
on K. Suppose that (By,...,Bn) is an ordered basis for L/K such that |Bi|,, < 1 forall 1 <i<n and
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places w of L lying over v, and |D(By,...,Bu)|» = 1. Then the isomorphism

K: Log K, — []Lw

wlv
of Proposition 6.1.6 restricts to an isomorphism
n
K: PoBiel)=T]0w
i=1 wlv

where O), (resp., 0,,) denotes the valuation ring of K, (resp., L,,).

PROOF. First, we note that both the domain and codomain of k’ are free &,-modules of rank
n = [L: K]. Moreover, K is injective, so it suffices to show that k” is surjective. For this, note that the
trace pairing y: L X L — K given by

w(e,B) = Tryk(ap)
extends to a unique K,-bilinear pairing
v, (LegK,) x (Leg K,) = K,,
which is given on simple tensors by the equation

w(a®a,B®b)=abTrx(ap).

Let wy,...,w, be the places of L lying over v. Since &), is a PID, each valuation ring 0),, is a free
0,-module of rank n; = [L,, : K,]. So, for 1 <i<g, let

i—1
mi= Y n,
j=1

and let (Ay,41,...,An;,,) be an ordered basis of 0, as a free &,-module. We view each 4; as sitting
in the product [T{_, O, by taking the other coordinates to be zero. Let A = (a; j) € GL,(K,) be the
matrix such that

n

(6.1.1) Ai=Y k(Bj®a;),

=

for each 1 <i < n. We must show that A has entries in &,
Via k, the pairing y;, gives rise to a pairing

8 8
v [[Lw < [[Lw = Ko
i=1 i=1
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that is given on the basis (Ay,...,4,) by

V(4 4)) =

KI
>
KI
<

I
M=
M=

V(B ®aix, B ®aj;)

~

s
=
Il

ajk Z a;iTrrx(BiBr)
1 —

k

= Z kzaleTerh/K (BiBr)
=1

s

= TrL/K<li;Lj)‘

Here, of course, we have applied Proposition 6.1.9.
Note that A;A; has nontrivial component in L,,, if and only if mj, +1 <, j < my. If this is the
case, then

W (i, Aj) =Try, k,(Aid),

and otherwise §(A;,A;) = 0. It follows that the matrix M = ({(4;,A;)) is block-diagonal with deter-
minant
g

HD m;i+15 - mH_])

i=1
and this is exactly the discriminant of ¥ relative to the basis (A1,...,4,).

On the other hand, the discriminant of ¥ relative to the basis (Bi,...,B,) is D(Bi,...,B,) by

definition, and we have by (6.1.1) and Lemma 1.4.6 that

g
D(,Bl,...,ﬁn):det det HD YRR ml“)

Since D(A41,- -, Am;.,) € O, foreachiand D(By, ..., B,) € O, as well, we therefore have det(A) €

0. Since the inverse of A has coefficients in &), we therefore have that A does as well. O

Finally, let us treat the special case of valuations on global fields and prove a product formula
that generalizes the cases of Q and F,(¢) for prime numbers p. The following modification of the
complex absolute value is necessary to account for the fact that a complex embedding and its complex
conjugate have the same valuation.

NOTATION 6.1.11. Let K be a global field and v a place K. We set
I Ilv: K = Rxo
by | |l,=] | ifvis not complex, and || ||, =| |2 ifvis complex.

We have the following consequence of Proposition 6.1.9.
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LEMMA 6.1.12. Let L/K be a finite separable extension of global fields, and let v be a place of
K. For B € L, we have

1Nz (Bl = TTI Bllw-

wlv

PROOF. Remark 5.4.2 and the definition of || ||, tell us that for a place w of L over v, we have

L K,
el = J| o] 5

for all @ € K. Noting Proposition 6.1.9, we then have

Nk (B)llv = [T IVL, /. (B ||V—H||NLM/K YIS = TT1IB -

wlv wlv

THEOREM 6.1.13 (Product formula). Let K be a global field, and let oo € K*. Then

[ llellv=1.

veVk

PROOF. By Propositions 5.2.34 and 5.2.35, we have the result for Q and IF,,(¢) for all primes p.
The field K is in the general case a finite extension of exactly one of these fields, which we denote by
F. By Lemma 6.1.12, we have

[1llel=TTITllel =TT INg/r(@)ll=1.

veVk ueVr v|u ueVr

We make the following definitions.
DEFINITION 6.1.14. Suppose that L/K is a finite separable extension of complete discrete valua-

tion fields.

a. The ramification index ey ;i of L /K is the additive valuation on L of a uniformizer of K.

b. The residue degree frx of L/K is the degree of its residue field of L over the residue field of
K.

REMARK 6.1.15. In the case that L/K is a finite separable extension of complete discrete valua-
tion fields for which K = Q), or K = ((t)), we denote ¢; x and f7 /k by e and fL, respectively.

REMARK 6.1.16. The latter definitions agree with those previously given. That is, let L/K be a
finite extension of complete discrete valuation fields. Let my be the maximal ideal of L and mg that
of K. We then have ey jx = ey, /my and f1/x = fun; /mg-

For complete discrete valuation fields, the degree formula is rather simpler than before.
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LEMMA 6.1.17. Let L/K be a finite separable extension of complete discrete valuation fields. We
have [L . K] = eL/KfL/K‘

PROOF. There is only one nonzero prime ideal in the valuation ring of L, and it lies over the
maximal ideal of the valuation ring of K. Theorem 2.5.11 then yields the result. U

DEFINITION 6.1.18. We say that a finite separable extension L/K of complete discrete valuation
fields is unramified, ramified, or totally ramified if the maximal ideal of the valuation ring of L/K is
inert (e /x = 1), ramified (ez /x > 1), or totally ramified (e; /x = [L: K]) in the extension, respectively.

We compare these invariants with those defined previously.

PROPOSITION 6.1.19. Let A be a Dedekind domain with quotient field K, and let B be the integral
closure of A in a finite, separable extension L of K. Let p be a nonzero prime ideal of A, and let *3 be

a prime ideal of B lying over p. Then ey ), = €Ly /K,y and fo)p = fLm/Kp‘

PROOF. We know that the residue field of K for p is isomorphic to the residue field of K, and
similarly for L and Ly. Therefore, the second equality holds. As for the first, note that the valuation
on Ky, (resp., L) is just the unique extension of that on K (resp., L). If g (resp., &) is a uniformizer
of K, (resp., L), and & is the valuation ring of Ly then we have

so the ramification index of Ly /K, is vip(7x ) = eqz - O

DEFINITION 6.1.20. Let K be a field, let L be a Galois extension of K, and let w be a valuation
on L. For o € Gal(L/K), the conjugate valuation 6 (w) is defined by

Bloo) =10""(B)lw
for B € L.

REMARK 6.1.21. Definition 6.1.20 provides an action of the Galois group of L/K on the set of
valuations of L.

REMARK 6.1.22. Suppose that L/K is an extension of global fields. Let v be a valuation on K,
Ly:Ky]
|,

a. If v is the p-adic valuation of a finite prime p, then w is the *3-adic valuation of a prime ‘[ lying

and let w be a valuation on L lying over it (i.e., such that | |,, extends

over it, and o(w) is just the o (*J3)-adic valuation. If v is an infinite prime of a finite extension of
F,(t), then it arises as a prime ideal of the integral closure of F,[t~!] in K, and we have the analogous
description.

b. If v is an archimedean prime, then v arises from a real or complex embedding 7, of K, and
w arises from an embedding 7, extending it. We then have |B|s(,) = |Tw o o Y(B)|, and if 7, is
complex, the complex conjugate embedding 7,, yields the same absolute value.
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Given all this, we may speak of decomposition and inertia groups almost as before.

DEFINITION 6.1.23. Let L/K be a Galois extension of fields with Galois group G, and let w be a
valuation on L.

a. The decomposition group G,, of w is the set of o € G fixing w.

b. The inertia group I,, of w is the set of o € G, such that |6(B) — B|,, < 1 for all B € L with
|B|w < 1if w is nonarchimedean and the decomposition group if w is archimedean.

We leave the following simple check to the reader.

LEMMA 6.1.24. Let L/K be a Galois extension of fields with Galois group G, and let w be a
valuation on L. The inertia group I, is a normal subgroup of the decomposition group G,,.

The following is an immediate consequence of Proposition 2.6.14 in the case of discrete valuation
fields, but note that the analogous proof goes through in general.

PROPOSITION 6.1.25. If L/K is a Galois extension of complete nonarchimedean valuation fields,
then the decomposition group of the prime of K is all of G = Gal(L/K), and we have an exact sequence

l1—1—G— Gal(x(L)/x(K)) —1,
where I is the inertia group in G and k(L) (resp., k(K)) is the residue field of L (resp., K).

For the valuations attached to nonzero prime ideals in Dedekind domains, the decomposition and
inertia groups agree with Definitions 2.6.5 and 2.6.15, as seen from the following.

PROPOSITION 6.1.26. Let L/K be a Galois extension of fields, and let w be a valuation on L

extending a valuation v of K. Then the restriction map
Gal(L,,/K,) — Gal(L/K), o — Ol

is an injection with image the decomposition group of w. If w is nonarchimedean, the image of the

inertia subgroup of Gal(L,,/K,) under this map is the inertia group of w.

PROOF. Note that any o € Gal(L,,/K,) acts continuously on L, since w = ¢(w), as there is a
unique valuation on L,, extending the restriction of w to K,,. If 6() = 8 for all B € L, then continuity
forces o(B) = B for all B € L,,, since L is dense in L,,. So, the restriction map is injective, and its
image is by definition contained in the decomposition group G,, of G = Gal(L/K). Any 7 in the
decomposition group of w in G satisfies w = T(w) on L, so on L,, as well by continuity. Therefore,
T: L — L is continuous, and its composite with the natural inclusion L — L,, extends to a unique
element of Gal(L,,/K,) by continuity, as in Proposition 5.3.12. That is, the image of restriction is G,,.

For w nonarchimedean, it remains to show that the image of the inertia group in Gal(L,,/K,) is
the inertia group /,, in G. By definition, the image is contained in this group. Let 7 € [,,, and take
B € 0,. As L, is the completion of L, we have | — b|,, < 1 for some b € L with |b|,, < 1. Set
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B’ = B — b. Since w is nonarchimedean and |7(b) — b|,, < 1, we have |7(8) — B|,, < 1 if and only if
1T(B") — B'|w < 1. But |[t(B) — B'|w < |B'|w < 1 as |T(B’)|w = |B|w- Therefore, the extension of T
to an element of Gal(L,,/K,) lies in the inertia subgroup. O

6.2. Differents and discriminants

LEMMA 6.2.1. Let A be a integrally closed domain with quotient field K, let L be a finite separable
extension of K, and let B be the integral closure of A in L. Let

C={aeL|Trk(af)cAforall B €B}.
Then € is a fractional ideal of B.

PROOF. Let a,..., 0, be a basis of L as a K-vector space that consists of elements of B. Let
d=D(0y,...,04). By Lemma 1.4.19, we have that d€ C B, so € is a fractional ideal of B. O

Lemma 6.2.1 allows us to make this following definition.

DEFINITION 6.2.2. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, and let B be the integral closure of A in L. The different ©p,, of B over A is the
inverse of the fractional ideal

{oo € L|Tryx(af) € Aforall B € B}

REMARK 6.2.3. Since L/K is finite separable in Definition 6.2.2, the trace pairing of Exam-
ple 1.4.4 is nonnegenerate by Proposition 1.4.13. In particular, ©p/, is well-defined since it is the
inverse of a submodule of L.

REMARK 6.2.4. The inverse different ©p/4 of Definition 6.2.2 is the smallest nonzero ideal of B
such that
Try/k(Dy),) C A,

—1
B/A

LEMMA 6.2.5. Let A be a Dedekind domain with quotient field K. Let L/K and M /L be finite
separable extensions, let B be the integral closure of A in L, and let C be the integral closure of A in
M. We then have

and it is a nonzero ideal of B since ®,,, contains B by definition.

Dcja=9Dc/pPpja-
PROOF. We have
TrM/K(©E/]B©E/IA) = TYL/K(@E/]A TTM/L(@E/]B)) C TYL/K(@E/IA) CA,
which implies that D¢ /4 € Dc/pDp /4. On the other hand, we may compute

TrL/K(TrM/L(@E/IA>) = TTM/K(@E/IA) CA,
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50 Try /1 (D C/A) C @B/A We therefore have that

TYM/L(@B/A@E/IA) =Dp/a TrM/L(QE/lA) C B,
50 Dcyp C @,;;AQ)C/A, which is to say that D¢/pDp/4 € Dc/a- O

LEMMA 6.2.6. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, let B be the integral closure of A in L. For any multiplicatively closed subset S of A,
one has

@S*IB/S*IA - Sil@B/A.

PROOF. Note that
TI'L/K(S QB/A) SilTI'L/K(QB/A) C S 1B

S0 Dg-1p/5-14 © S_]QB/A. On the other hand, we have
Try/k(Dy-1/5-14) CS'B,

so foreach ¢ € © I,B/S 14> there exists s € S such that Try g (sot) = sTrp k(@) € B, so so € ’DB/IA
Therefore, we have the other containment. O

Somewhat more involved is the following.

LEMMA 6.2.7. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, let B be the integral closure of A in L. Let p be a prime ideal of A, and let °3 be a
prime ideal of B lying over it. Let Oy (resp., Oy) denote the valuation ring of Ly (resp., Kp). Then

Dp/aOp =Dy /0,

PROOF. Let o € @B/IA, and let B € Og. We claim that Try /g, (aB) € Op. Let By,..., B, be the

prime ideals of B lying over p, taking 3| = 3. For this, let (3,), be a sequence in B with limit f3 in
the P-adic topology and with limit O in the *J3;-adic topology for i > 2, which exists by the Chinese
remainder theorem. Since the trace map is continuous, we have

Ter/Kp(O‘ﬁ) = I}EEOTYLm/Kp(aﬁn)-
Moreover, we have by Proposition 6.1.9 that

Trry, /k, (Bn) = Trp k(o) ZTqug /K, (OBn)-

Note that Try /x(f3,) € A and that, for i > 2, the sequence of elements Trp, /x, (aB,) € K, tends to
0 in the p-adic topology, again by continuity of the trace map. Therefore, for sufficiently large n, the
element Try, /k, (aBy) lies in Oy, proving the claim. In particular, we have © B/l 1A CED ﬁ;} 16,
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On the other hand, if o € © ﬁl 2/ Oy then we may write o as the limit of a sequence (o,), in L that
has limit 0 in Ls, for i > 2. For [3 € B we have

hm TrL/K (XnB Z,}I_I&Trbﬁ /Ky ((Xnﬁ) TrL‘p/Kp ((Xﬁ) € ﬁp.

Since KN Oy = Ay, we have that Try /x (04,8) € Ay for sufficiently large n. By Lemma 6.2.6, we there—
B/A O
B / 4Oy and
therefore equality. Since the these fractional ideals in Oy agree, so do their inverses, proving the

fore have o, € S~1D ! B/A for all such n, where S is the complement of p in A. But then o € CD

as the limit of these elements. We therefore have the reverse containment O, ﬁ /0, cD,

lemma. O
The following is an immediate corollary.

COROLLARY 6.2.8. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, let B be the integral closure of A in L. For any prime ideal *8 of B, we will use p to
denote P NA and Dy )y, 1o denote the intersection with B of the local different ’D@B /6,» Where Op
(resp., Oy) is the valuation ring of Ly (resp., Ky). We then have

@B/A = g@%/pv

with the product taken over the nonzero prime ideals of B.

In the case that B/A is an extension Dedekind domains such that B is generated by a single element
as an A-algebra, we have the following explicit recipe for the different.

PROPOSITION 6.2.9. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K. Let B € L be integral over A, let f € A[x| be the minimal polynomial of B, and let
f' € A[x] be the formal derivative of f. Then f'(B)~" generates the A[B]-module

{o e L| Try x(aA[B]) CA}.

PROOF. Write f =Y jax' for some a; € A with a, = 1. Let By,..., [, be the roots of f in an
algebraic closure of L. We claim that for any nonnegative integer k < n, we have

n k
I B k
(6.2.1) L =x".
l-:z{ x—Bi f'(Bi)
To see this, note that the two sides of (6.2.1) are equal upon evaluation at each f3;, yet both sides are
polynomials of degree less than n, so their difference is identically zero.
We have

n—1 )
= Z bjx/
j=0
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for some b; € A[B], so

() . K bi i
,.ZOT”’(@ gy =

b;

Now, the elements 7(p) Shan {o € L | Try/x(aA[B]) C A} as an A-module. We therefore need
only show that the b; span A[f]. For this, note that

n—1 n
(x—PB) Z bix' = Zaix’,
i=0 i=0

sob,_1=1land b;—Bbj 1 =aj foreach 0 < j <n—1. Solving for the b;, we obtain

and therefore

n—j—1 '
bj= Z ai+jr1B',
i=0

for each j. Since the coefficients of the powers of B in the latter expression b; form the columns
of a unipotent matrix in A, each power B’ of B with 0 < i < n— 1 may be written as an A-linear
combination of the b;. Thus, the b; span A[f3]. O

COROLLARY 6.2.10. Let A be a Dedekind domain with quotient field K, let L be a finite extension
of K. Suppose that the integral closure of A in L equals A[B] for some B € L. Let f € Alx| be the
minimal polynomial of B, and let f' € Alx] be the formal derivative of f. Then Dpa = (f'(B)).

We will require the following.

LEMMA 6.2.11. Let K be a complete discrete valuation field with valuation ring Ok, and let L be
a finite extension of K, with valuation ring O}. Suppose that the corresponding extension k(L) /x(K)
of residue fields is separable. Then there exists B € Oy such that O = Ox|[B]. Moreover, any B’ € O,
sufficiently close to B in the topology of L also satisfies 01, = Ok[B'].

PROOF. Since k(L)/x(K) is separable, there exists B € k(L) such that k(L) = x(K)(B). Let
f € k(K)[x] be the minimal polynomial of 3, and let f € Ok[x] be any lift of f. We claim that there
exists a lift B € & of B to an element with f(f3) a uniformizer of L. For any lift &, we must have at

least that the valuation of f() is positive, since f(f) = 0. If it is not 1, then o + 71;, where 7y is a
uniformizer of L is another lift with

fla+m) = f(a)+ f(a)m, mod ().

Since f is separable, we have that f’(a) € ;. Therefore, we f(a + 7)) does indeed have valuation
1.

Now, with B chosen, we set 1, = f(f) and claim that the ﬁ’ﬂi =Bif(B) with0 < i< frk—1
and 0 < j <e¢f /K~ 1 form an Ok-basis of O, which will finish the proof, aside from the final
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statement. Given a uniformizer mx of K, it suffices to show that the elements ﬁlﬁi are a basis of
01/mg Op, as an k(K)-vector space. To see this, fix a set Sk of representatives of k(K) in Ok, and

note that the set Sy, of elements
Jrx—1

Y b

i=0
with ¢; € Sk is a set of representatives of k(L). While nZL/ ¥ is a multiple of 7k, the elements

eL/K—l

Z a,-?ti
i=0

with ¢; € S, clearly have distinct image in the quotient, which has dimension e x f; k. Hence, we
have the claim.

Finally, note that the proof that & = Ok[B] depended only on the facts that 8 lifts B and that
f(B) is a uniformizer. Since this holds true for any element in the congruence class of 8 modulo 77,
we are done. U

The latter lemma helps to extend the recipe of Corollary 6.2.10 to the general case. We omit the
proof of the following theorem.

THEOREM 6.2.12. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, and let B be the integral closure of A in L. The D, is the ideal generated by the
elements f'(B) with B € B such that L= K (), for f € A[x] the minimal polynomial of .

We may now show that the different detects ramification of primes.

THEOREM 6.2.13. Let A be a Dedekind domain with quotient field K, let L be a finite extension
of K, and let B be the integral closure of A in L. Let *|3 be a nonzero prime ideal of B, let p = AN*E,
and suppose that the corresponding extension of residue fields is separable. Then B is ramified over
A if and only if it divides Dp 4.

PROOF. By Lemma 6.2.7, we may replace B by its completion at 3 and A by its completion at p.
Therefore, we assume that A is a complete discrete valuation ring, as is B. By Lemma 6.2.11, we have
that B = A[B] for some 8 € B. Let f € A[x] be the minimal polynomial of 8. As D4 = (f'(B)), the
prime P does not divide D4 if and only if f(B) is a unit, which is to say if and only if the image
B € B/B of B is a simple root of the image f of f in (A/p)[x].

If ¥ is unramified, then B/ = (A/p)[B] is of degree [L : K] over A/p, so f is irreducible. Since
the extension of residue fields is separable, f is itself separable, so f/(B) is a unit.

Conversely, suppose that f/(f) is a unit. Then the minimal polynomial g of B is relatively prime
to fg~!. By Theorem 5.3.33, there is a lift g € A[x] of g that divides f and has the same degree as
2. As f is irreducible, this forces degg = [L : K], which means that f = g is irreducible. Thus, I3 is
unramified. U
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The different is closely is closely related to the discriminant, which we now define in greater
generality than before, though with slightly less specificity in the already defined case that the ground
ring is Z, since the different we now consider is an ideal, not an integer.

DEFINITION 6.2.14. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, let B be the integral closure of A in L. The discriminant 04 of B /A is the ideal
of A generated by all discriminants D(q, ..., ®,) of ordered bases (¢, ..., 0,) of L over K that are
contained in B.

PROPOSITION 6.2.15. Let A be a Dedekind domain with quotient field K, let L be a finite separa-
ble extension of K, let B be the integral closure of A in L. Then

08/a = Nr/x(Dp/a)-

PROOF. Let p be a prime ideal of A that divides dp/4. (By Proposition 2.5.15, the ideals of A
that ramify in B, hence lie below primes dividing ©p/,, divide 03/, so this suffices.) Let S =A —p,
and consider the localizations S_1©B/A and S_IDB/A. We know that S_IQB/A =Dg-1p/s-14 and that
S~1og /4 = 0g-1p/5-14 follows directly from the definition of the discriminant (since § is contained
in A and the discriminant function D is K-multilinear). Therefore, we may assume that A is a DVR,
from which it follows that B is a PID (as a Dedekind domain with only finitely many nonzero prime
ideals).

Since B is a torsion-free A-module of finite rank, it admits an A-basis (..., ), and we have
0g/a=D(au,...,0). Let (Bi,...,Bn) € L" be the dual basis to (o, . .., a) for which Try k(0 ;) =
0;j for 1 <i,j <n. Then (Bi,...,B,) is a free A-module basis of @E/IA. Let v € B be such that
(¥) = Dp/a, and note that (y 'ayq,...,y 'ay) is also an ordered basis of ’DE/IA as an A-module. We
therefore have

(6.2.2) (D(Bis--,Ba)) = (D(y ot ¥ o)) = (N (¥) 2(D(0us -, 0)).

Let o1,...,0;, be the K-linear embeddings of L in an algebraic closure K of K. Note that the
product of the transpose of the matrix (o;¢t;); ; and the matrix (o;8;); ; has (i, j)-entry

¥ on(@)ou(8;) = Trc(aif)).
so is the identity matrix. Therefore, we have that
D(Bi,...,Bu) = +D(0u,...,06) "
Combining this with (6.2.2), we have
(D(a,..., o)) = (N g (7)?,
so we obtain 0g/4 = Ny /x(Dp/a)- O

We derive a few corollaries.
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COROLLARY 6.2.16. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, let B be the integral closure of A in L. A prime ideal of A ramifies in B if and only if it
divides dp /4.

PROOF. This is immediate from Theorem 6.2.13 and Proposition 6.2.15. U

REMARK 6.2.17. Corollary 6.2.16 tells us that the ideal pZ generated by a prime p ramifies in
K /Q for a number field K if and only if p divides disc(K).

COROLLARY 6.2.18. Let A be a Dedekind domain with quotient field K. Let L/K and M /L be
finite extensions, let B be the integral closure of K in L, and let C be the integral closure of K in M.
We then have

M:L
Oc/a = 01[9/A }NL/K(OC/B)-
PROOF. By Lemma 6.2.5 and Proposition 6.2.15, we have

)[M:L}

0c/a =Nuk(Dcja) = Nyt (DOc/p)NL ik (Dp)a = NL/K(OC/B)DE;IAL}y

as desired. U
COROLLARY 6.2.19. Let A be a Dedekind domain with quotient field K, let L be a finite separable
extension of K, let B be the integral closure of A in L. For any prime ideal *3 of B, we will use p to

denote PN A and dy ), 10 denote the intersection with A of the local discriminant 0603/ Gy» where Oy
(resp., Oy) is the valuation ring of Ly (resp., Ky). We then have

%4 =] Jown

with the product taken over the nonzero prime ideals of B.
PROOF. By Lemma 6.1.9, Proposition 6.2.15, and Lemma 6.2.7, we have

08/40p = N1 x(Dpja) Op = slp—'INleg/K,D (DpjaOsyp) = QNng/Kp (Doy/0,) = ‘glaﬁm/ﬁp,
P P P

hence the result by intersection with A. U

In the case of global or complete discrete valuation fields, which come equipped with canonical
subrings, the ring of integers and valuation ring in the respective cases, we can use the field as the
subscript in the definition of the different and discriminant, which we will typically do below.

DEFINITION 6.2.20.

a. The different ©p /i (resp., discriminant 07 /i) of an extension L/K of global fields is the differ-
ent (resp., discriminant) of the corresponding extension & / Ok of rings of integers.

b. The different ®y /x (resp., discriminant 0y k) of an extension L/K of complete discrete valua-
tion fields is the different (resp., discriminant) of the corresponding extension of valuation rings.
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Combining the above results with Minkowski theory would allow us to derive the following fas-
cinating result, which we state without proof.

THEOREM 6.2.21. Let K be a number field and S a finite set of prime ideals of K. For eachn > 1,
there exist only finitely many extensions L/K of degree n in which the prime ideals of K that ramify in
L are all contained in S.

As a consequence of Theorem 6.2.21 and Corollary 4.3.6, one has the following.

THEOREM 6.2.22. For any N > 1, there exist only finitely many number fields K with |disc(K)| <
N.

DEFINITION 6.2.23. A separable algebraic extension L of a global field K is unramified if every
place of K is unramified in L.

We have the following corollary of Theorem 4.3.6.
COROLLARY 6.2.24. The field Q has no nontrivial extension that is unramified at all finite primes.

PROOF. Corollary 4.3.6 tells us that if [K : Q] > 2, then

22 /w2
disc(K >—-(—) o,
[dise(K)| = 373 g~

so K is not unramified. ]

6.3. Multiplicative groups of local fields

In this section, we study the structure of multiplicative groups of local fields. For the rest of
this chapter, “local field” should be taken to mean “nonarchimedean local field”. Let us make the
following definition.

DEFINITION 6.3.1. Let K be a complete discrete valuation field with valuation ring &' and maxi-
mal ideal m. Then the ith unit group U; = U;(K) of K is defined by Uy = 0 fori=0and U; = 1 +m’
fori > 1.

NOTATION 6.3.2. In this section, we let K be a local field. We let p be the characteristic of its
residue field, & its valuation ring, m its maximal ideal, 7 a fixed uniformizer, x the residue field, and
q the order of k. We let e = ex and f = fx.

LEMMA 6.3.3. The set of roots of unity of order prime to p in a local field K has order q — 1,
where q is the order of the residue field of K.

PROOF. The polynomial x? —x splits completely over the residue field k of K, so Hensel’s Lemma
tells us that u,_1(K) has order ¢ and maps isomorphically onto k(K)*. O
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PROPOSITION 6.3.4. Let K be a local field with residue field of order q. The canonical map
(1) % pg—1(K) x Ur(K) = K*
is an isomorphism.

PROOF. Since K is a discrete valuation field with valuation we denote v, we may write any a € K*
uniquely as a = 7@ for some b € U, By Lemma 6.3.3, each b € Uy may then be written uniquely
asb=¢& -uwithE € u, 1 and u € Uy. O

LEMMA 6.3.5. Let K be a local field. For a € O, let a denote its image in K. We have isomor-
phisms of groups

Uo /Ui = K*, uly — T,
and
Ui/Uis1 = K, (1+7'a) Uiy —a

fori> 1.

PROOF. The first statement follows from Proposition 6.3.4. The bijectivity of the second map is
clear, and that it is a homomorphism is simply that

(1+x'a)(1+7'b) =1+ 7' (a+b) mod m™*!.
U

LEMMA 6.3.6. Let K be a local field of residue characteristic p. We have an isomorphism of
Zp-modules

U1 l) 1&1’1 Ul/U,'
i
via the map induced by the universal property of the inverse limit.

PROOF. Since (;U; = {1}, the map in question is injective. Any sequence (a;); in U; with
ai+1af1 € U; for each i > 1 is the image of the limit of the sequence. U

Note also the following.
LEMMA 6.3.7. Let K be a p-adic field. Let e = v(p). Fori > 1 and a € 0%, we have
(1+7r'a)? = 1+ prla+ w'Pa? mod m* .
In particular, we have

14 wPa? mod m'™¢  ifi< 25T

(1+n'a)? = . .
1+ pria mod mitet! ifi> >4
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PROOF. The first statement is an easy consequence of the binomial expansion
. Lo\
1oy = ¥ ({)ete
k=0

since p exactly divides (’,z) for 0 < k < p. The second follows from the fact thati > e/(p — 1) if and
only if

v(pr) =i+e<ip=v(x'?).

LEMMA 6.3.8. The pth power map is an isomorphism U; = Ui, for i > lﬁ.

PROOF. For any o € Uj, and k > 1, suppose by induction that we have found f3; € U; with

Pyl _ i+k—1 i+etk
Bia " =1+pxm ax mod m

for some a; € 0. Set By = Bi(1 + 7+ 1gy) and
ﬁ = lim ,Bk.
k—yoo

Then f € U; with B? = @, and the pth power map U; — U is surjective.
Note that pZ,[u,] = (1 —&,)P~! for a primitive pth root of unity ¢, by Lemma 3.1.13. So, if
Cp € K, thenv({, —1) =e¢/(p—1). Thatis, §, & U,/(,—1)+1, S0 the map is injective as well. O

As a pro-p group, U (K) for K a local field of residue characteristic p is generated by any lift of
a set of generators of U; /U .

PROPOSITION 6.3.9. Let K be a p-adic field, let q be the order of the residue field of K, let mg
be a uniformizer of K, and let p" be the number of p-power roots of unity in K. Then we have an

isomorphism
Ui(K) =2y ¥ < 2/p'2,
of finitely generated Z,-modules. In particular, there are isomorphisms of topological groups

K* 2 (mg) x 0% = (mg) x g1 (K) x U (K) 2 Z x Z)(q—1)Z x T/ p"Z x ZF %)
where K* has the subspace topology from K, and the direct products are all given the product topol-
ogy, with (ntg), Z, and the finite groups involved given the discrete topology.

PROOF. Lemma 6.3.8 tells us that U, /U lp is finite, so U is a finitely generated Z,-module. Since
the p-power torsion in U is the group of p-power roots of unity in K, which is cyclic of order p”", we
have Uy = Z}, X Z /P"Z for some r > 0, and this is a topological isomorphism.
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No nontrivial p-power root of unity { lies in U; for any integer j > lﬁ, where e = v(p). Since

U; has finite index in Uy, we therefore have that U; = Z;,. By Lemma 6.3.8, we know that U J’.’ =Uje,
SO
jte—1
r=dimg U;j/Ujie= Y. dimp, Up/Ups1 =ef = [K: Q]
k=j
noting that Uy /Uy = F s for all k > 1, where f is the residue degree of K/Q,.
Finally, note that the U; form a basis of open neighborhoods of 1 in K* under both the subspace
topology and topology induced by the product topology in the isomorphism with K* of the theorem.
Therefore, these isomorphisms are of topological groups. U

Let us also mention the case of finite characteristic. We provide an outline of the proof.

PROPOSITION 6.3.10. Let K = F,(t). Then there exists a continuous Z,-linear isomorphism
from U, (K) to a countable direct product of copies of Z,,.

PROOF. Let B be a basis of IF, as an [ ,-vector space. Let I be the countable set
I={(c.i)|c€B.i>1,pti}.

Define a homomorphism

K((aci)en) = ] (1+ect')i

(c,i)el

This is easily seen to be well-defined, and one may check that every element of U; has a unique
expansion of this form.

The inverse image of U; under k contains the open neighborhood of 1 that is the direct product of
P"Z, is the (c,i)-coordinate for each (c,i) € I, where each n; > 0 is minimal satisfying p"ii > j. On
the other hand, the image of an open neighborhood

H pncAin

c,iel

with n.; = 0 for i sufficiently large contains U; for j with
j=max{p"i| (c,i) € I,n.; > 1},

which we leave to the reader to check. Therefore, k is in fact a topological isomorphism. U
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6.4. Tamely ramified extensions

Before studying the larger class of tamely ramified extensions of a local field, let us first consider
unramified extensions.

LEMMA 6.4.1. Let K be a local field. For each positive integer n, there exists a unique unramified
extension of K of degree n, equal to K(lg_1), where q is the order of the residue field of K.

PROOF. Let L/K be an unramified extension of degree n. Then k(L) is a degree n extension
of k(K) by the degree formula. That L contains K (i 1) is then simply Lemma 6.3.3. Moreover,
K(ugn—1) is then by definition of degree n over K, so equals L. 0

DEFINITION 6.4.2. We say that an algebraic extension L of a local field K is unramified if it is
separable and every finite degree subextension of K in L is unramified.

Similarly, we have the following.

DEFINITION 6.4.3. We say that an algebraic extension L of a local field K is totally ramified if it
is separable and every finite degree subextension of K in L is totally ramified.

DEFINITION 6.4.4. A Frobenius automorphism in a Galois extension L/K, with K a local field,
is any lift of the Frobenius automorphism of the extension of residue fields to L.

REMARK 6.4.5. If L/K is unramified in Definition 6.4.4, then there is a unique Frobenius auto-
morphism in Gal(L/K).

PROPOSITION 6.4.6. Let L be an separable extension of a local field K. Then there is a unique
maximal unramified extension E of K in L, and Gal(E /K) is topologically generated by its Frobenius
automorphism.

PROOE. It suffices to consider the case that L/K is finite. Let ¢ be the order of the residue field
of L. Set E = K(ly—1), which is unramified over K. Any unramified extension of K in L is generated
prime-to-p roots of unity, of which there are only ¢ in L. U

The following definition makes sense as the union of all finite unramified extensions of a local
field (in a fixed separable closure).

DEFINITION 6.4.7. The maximal unramified extension K** of a local field is the unique largest
unramified extension of K inside a given separable closure of K.

PROPOSITION 6.4.8. The maximal unramified extension K" of a local field K is given by ad-
joining all prime-to-p roots of unity in a separable closure of K. Its Galois group Gal(K" /K) is

isomorphic to 7, via the map that takes the Frobenius automorphism to 1.
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PROOF. By definition, K" is the union of the finite unramified subextensions of K in K**P, which
is to say the fields K, = K(,n—1). Since any prime-to-p integer m divides ¢" — 1 for some n, we have
that K"" is given by adjoining all prime-to-p roots of 1. Recall that Gal(K,,/K) = Z/n’Z via the map
that takes the Frobenius automorphism to 1. Therefore, the isomorphism in question is the composite
of the canonical maps

Gal(K""/K) = lim Gal(K,/K) = lim Gal(F,: /F,) = lim Z/nZ = 7.
O

DEFINITION 6.4.9. Let K be a local field and L a Galois extension of K. The inertia subgroup of
Gal(L/K) is the subgroup of elements fixing the maximal unramified extension of K in L.

The following is analogous to Remark 6.1.25 and almost immediate from Proposition 6.4.8.

PROPOSITION 6.4.10. Let K be a local field, and let Ik denote the inertia subgroup of Gg. Then
there is an exact sequence
1 —>IK—>GK—>GK(K) — 1,
where k(K) is the residue field of K, and the map Gg — Gy (k) is the composition of restriction
Gk — Gal(K"/K) with the continuous isomorphism that takes a Frobenius element of Gal(K"" /K)
to the Frobenius element of G ).

DEFINITION 6.4.11.

a. A separable extension L/K of local fields of residue characteristic p is tamely ramified if p 1
er/k-

b. A separable extension L of a local field K is tamely ramified if every finite extension E of K in
L is tamely ramified.

EXAMPLE 6.4.12. Let K be a local field, 7 a uniformizer, and e an integer not divisible by the
residue characteristic p of K. Then K (7r1/ ¢)/K is totally and tamely ramified, with ramification index

e.
In fact, every tamely ramified extension is given in essentially this way.

PROPOSITION 6.4.13. Let L/K be a tamely ramified extension of local fields of ramification index
e. Then there exists a finite unramified extension E of K and a unifomizer A of E such that L = E(u)
for an eth root U of A.

PROOF. Let E be the maximal unramified subextension of K in L. Then L/E is a totally ramified
extension of degree e. Let 77 be a uniformizer of L and 7g a uniformizer of K. A simple check of
valuations tells us that 77 = 7mx o for some o € ﬁ’LX. In turn, Proposition 6.3.4 allows us to write
o =& -u with & € L a root of unity of order prime-to-p, where p is the residue characteristic of K,
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and u € Uy (L). Since L/E is totally ramified, we actually have that & € E. Since pte and U;(L) is an
abelian pro-p group, the element « has an eth root 8 in L. Set A = mx &, which is a uniformizer in E.
We have (7 8')¢ = A, so L contains an eth root i of A. Since the degree of E(u)/E is e, we have
L=E(u). O

EXAMPLE 6.4.14. The extension Q,(u,)/Q), is totally ramified of degree p — 1, hence tamely
1
ramified. In fact, we have that Q,(u,) = Q,((—p)?1). To see this, note that

—1 —1
p=TI0-C)=(1-&) T +8 4+,
i=1 i=1

where {, is a primitive pth root of 1. We have

p—1
1= (p—l)! = —1 mod (1—&;),
=1

p—1 _
Z_I_I(1+<:p+---+c,5‘1>zl_

so —p = (1—¢,)P'u for some u € Uy (Q,(up)). Since any such u is a (p — 1)st power, we have the
claim.

If a separable extension of a local field is not tamely ramified, we say it is wildly ramified.

DEFINITION 6.4.15. A separable extension L of a local field K of residue characteristic p is wildly
ramified if p divides the ramification index of some finite extension E of K in L.

EXAMPLES 6.4.16. Let p be a prime number.
a. The extension Q,(p'/?)/Q, is wildly ramified.

b. The extension Q,( upz) /Q, is wildly ramified, since its ramification index is p(p — 1).

The compositum of any collection of tamely ramified extensions is tamely ramified, so we may
speak of the maximal tamely ramified extension of a local field inside a separable algebraic closure.

REMARK 6.4.17. We can make sense of exponentiation on Z; by elements 7. as follows: if u € Z p
and a € Z, then we set

u’ = lim u®,
n—oo

where (ay,), is any sequence of integers with limit a. We leave it to the reader to check that the limit
converges independently of the choice of sequence.

PROPOSITION 6.4.18. The maximal tamely ramified extension L of a local field K of residue
characteristic p is the Galois extension given by adjoining to K" the roots ml/m of a uniformizer ©

of K for all m > 1 with p t m. The Galois group Gal(L/K") is isomorphic to the direct product

7(p) — HZf’
t#p
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where { ranges over the prime numbers other than p. The Galois group Gal(L/K) is the semi-
direct product of Gal(L/K") with Gal(K" /K) = 7. under the map 7. — Aut(ZP)) taking a € 7. to
multiplication by q° in each coordinate of 7Z\P), where q = |k (K)|.

REMARK 6.4.19. The Galois group of any Galois extension of the maximal tamely ramified
extension of a local field is a pro-p group, where p is the residue characteristic. Any nontrivial such
Galois extension is by necessity wildly ramified with no nontrivial tamely ramified subextension.

6.5. Ramification groups
Ramification groups provide a measure of the level of ramification in a Galois extension of a local

field.

NOTATION 6.5.1. In this section, for a local field L, we use v;, to denote its valuation, &7 its
valuation ring, and 77 a uniformizer. If a is a fractional ideal of &7, it is generated by a power of 7z,
and vz (a) denotes that power.

DEFINITION 6.5.2. Let L/K be a Galois extension of local fields with Galois group G. For an
integer i > —1, the ith (higher) ramification group of L/K is the subgroup of G given by

Gi={rteG|v(t(a)—a)>i+1forall @ € O}.

REMARK 6.5.3. We have by definition that G_; = G and Gy is the inertia group of G. In particular,
G/Gy is the Galois group of the maximal unramified subextension of L/K.

REMARK 6.5.4. Let L/K be a Galois extension of local fields with Galois group G. By Lemma 6.2.11,
we have that 07 = Ok[f] for some 8 € O, so for any i > —1, we have

Gi={teGlv(t(B)-B)=i+1}.

LEMMA 6.5.5. Let L/K be a Galois extension of local fields with Galois group G. The ramifica-

tion groups G; are normal subgroups of G.
PROOF. This is easy: let 0 € G and T € G;. Then for any & € 0, we have
(6 (@) =0 () mod 7™,
SO
ot (@)= o mod 1.
U

LEMMA 6.5.6. Let L/K be a Galois extension of local fields with Galois group G. Let ¢ € Gy.
Then o € G; fori > 0 if and only if%?) e Ui(L).
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PROOF. First, we note that for ¢ € G;, we have ¢(r) = 7, mod 7", so we have %7?) e Ui(L).

(7ZL) € U;(L), then for any a € 0}, we may write

s O
Conversely, if =
a= Z CkTC;(I
k=0

for some ¢y € py—1(L)U{0}, where ¢ = |k(L)|. Since 6 € Gy, it fixes elements p,_1(L), so

o(a) = Z cxo(m)* =amod
k=0

the last step as o(7z) = 7z, mod 7, . That is, o is an element of G;. O

LEMMA 6.5.7. Let L/K be a Galois extension of local fields with Galois group G. For each i > 0,
we have an injection
pi: Gi/Giy1 — Ui(L)/Ui+1 (L)

given by
o(m)

pi(0-Gir1) = Uit1(L).

PROOF. Lemma 6.5.6 tells us immediately that p; is well-defined and sends only the coset G to
the coset U; 1 (L). Therefore, it remains only to see that p; is a homomorphism. For this, let 6,7 € G;,
and note that

osin) _olm) o)) _ o) 1) s
T, T, T, T, T,
the last step following from & € Gy since T(m.)7; | € Ui(L). O

Since the quotients G;/G; are abelian for all i > —1, we have the following corollary.
COROLLARY 6.5.8. The Galois group of any Galois extension of local fields is solvable.
The following lemma is immediate from the definition of ramification groups.

LEMMA 6.5.9. Let L/K be a Galois extension of local fields with Galois group G, and let H be a
subgroup of G. Then Hi=H NG; foralli > —1.

LEMMA 6.5.10. Let L/K be a Galois extension of local fields with Galois group G. Then G/G

is the Galois group of the maximal tamely ramified subextension of L/K.

PROOF. If L/K is tamely ramified, then each quotient G;/G; for i > 1 must be trivial. By
Lemma 6.5.7, each quotient G;/Gj4 for i > 1 is a p-group since since U;(L)/U;+1(L) is one. Thus,
G = Gal(L/L®") is a p-group. As G is contained in the inertia subgroup Gy of G, the field L°!
is totally ramified over L% and contains the maximal tamely ramified subextension of L/K. On the
other hand, G /G injects into Uy(L) /U (L), which has prime-to-p order, so LE1 /L% is in fact tamely
ramified. As L0 /K is unramified, L% /K is then tamely ramified. U
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DEFINITION 6.5.11. Let L/K be a Galois extension of local fields with Galois group G. The
subgroup of wild inertia for L/K is G|.

PROPOSITION 6.5.12. Let p be a prime and n > 1. Then

Gal(Qp(1pr)/Qp) if —1<i<0,
Gal(Qp(pp)/Qp)i = § Gal(Qp(upn) /Qp(uye)) if pF! <i<p—Twith 1 <k<n—1
1 ifi > p"1L.

PROOF. Let Fy = Q) and Fy = Qp () for k > 1. Let G = Gal(F,/Q)). Fix a primitive pFth root
of unity {  for each k > 1 such that { 5 w1 = G« for each k. Let o € G be nontrivial, let i € Z be such
that 6({n) = Clin, and let k > 0 be maximal such that i = 1 mod p¥. Set ¢ = (i — 1) /p*. We then have

0(Gp) = Gn = G = G = E P = G = Epr(Gai = 1),

Since p 1 ¢, this has valuation p* in F,. As the valuation ring of F, is Z,[{»], we then have that
0 € G| — G . On the other hand, the fact that pF exactly divides i — 1 (for k < n) says that o is
an element of Gal(F,/Fy) but not Gal(F;,/Fy.1). The result follows. O

Ramification groups have the following interesting property, which we state without proof.

PROPOSITION 6.5.13. Let L/K be a Galois extension of local fields with Galois group G, and let

i and j be positive integers. For any 6 € G; and T € Gj, the commutator [0,T| = octo 't Visan

element of Gy jy1.
Let us make the following useful definition.

DEFINITION 6.5.14. Let L/K be a Galois extension of local fields with Galois group G. Then we
define a function i /g : G — Z>oU {e} by

ir/k(0) =min{v,(o(a) —a)|a € 0L}
for o € G.
REMARK 6.5.15. In Definition 6.5.14, we have o € G; if and only if if /g (0) > i+ 1.

We now show how the ramification filtration determines the different of a Galois extension of
local fields.

PROPOSITION 6.5.16. Let L/K be a Galois extension of local fields with Galois group G. Then

we have

o)

vi(Dp k) = Z ir/k(0) = Z(|Gi| —1).

ceG—{1} i=0
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PROOF. Let B € O} be such that 07, = Ok[B]. We let f € Ok|x] be the minimal polynomial of f3.
Then
r'By= I B-a(B)

oceG—{1}
generates Dy /g by Corollary 6.2.10, and so

[} o] o)

v(fB)=3) igxlo)=) Y i=Y i(Gial-IGil)=} (IGi]-1).
oceG—{1} i=0ceG—{1} i=0 i=0
i/x(0)=i
0
COROLLARY 6.5.17. Let L/K be a Galois extension of local fields with Galois group G. Let H
be a subgroup and E = LY its fixed field. Then

1 :
VE(Dp k) = —— Z ir/k(0).
€L/E 6cG-H
PROOF. Note first that .
ve(Dg/k) = —vL(Dg/k)-
€L/E
By Lemma 6.2.5 and Proposition 6.5.16, we have

ve(Dg/k) =vi(®Dpk) —vi(Dp/e) = Y iyk(o)— ) ire(T) = Y ir/k(0)

ceG—{1} teH—{1} oceG-H

noting for the last step that iz /(7) = ik (7) for T € H by definition. O

Let us extend the definition of the lower ramification groups to all real numbers in the interval
[—1’00)_

DEFINITION 6.5.18. Let L/K be a Galois extension of local fields with Galois group G. Let
t € [—1,00). The tth ramification group G; of L/K in the lower numbering is defined to be equal to
the ramification group Gy,), where [ - | is the ceiling function.

We now define a function from [—1,00) to [—1,0) as follows.
DEFINITION 6.5.19. Let L/K be a Galois extension of local fields with Galois group G. We define

Ok [—1,00) = [—1,00)
by ¢p/k(t) =1t fort <0 and

t
ouyx(t) = [ [Go: G
fort > 0.

REMARKS 6.5.20.
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a. Definition 6.5.19 for an integer kK > —1 may be written as

1 k
k)= —— Gil.

b. The function ¢ is continuous, piecewise linear, increasing, and concave down. Its slope be-
tween kK — 1 and k for an integer k > 0 is |Gy|/|Go|, which is nonincreasing in k.

EXAMPLE 6.5.21. Let F;, = Q,(u,») for a prime p and n > 1. By Proposition 6.5.12, we have

: if —1<i<0,
Or,0, (1) = § St k=1 i Pl — 1< e < ph—Twith 1 <k<n—1,
t—p'+1 N : n—1 _
1) +n—1 ift>p 1.

Note that ¢, /g, (p¥—1) =k foreach 0 < k < n.

We intend to show that ¢ /x behaves well under composition in towers of extension, and to
investigate the behavior of ramification groups in quotients. For this, we first require several lemmas.

LEMMA 6.5.22. Let L/K be a Galois extension of local fields with Galois group G, and let E /K
be a normal subextension. Set N = Gal(L/E). For § € G/N, we have

: 1 :
ig/k(8) = m ZG ir/k(0)
oe
O"EZ

PROOF. Write &, = Ok|[B] for some B € &) and O = Ok|a] for some o € Of. Let g € Oglx]
be the minimal polynomial of 8 over E. We have
g=[]G—=(B)).
TEN
so letting g° € Ok |x] denote the polynomial obtained by letting ¢ € G act on the coefficients of g, we
have
g% =[] (x—o(B)).
TEN
Each coefficient of g° — g is the difference of values of a symmetric polynomial in |N|-variables on
the elements 7(f) and the elements 67(f). Since each coefficient of g lies in OF, it is a polynomial
in a, and the coefficients of g° are the same polynomials in (@), so o() — o divides the coefficient
of g° — g. In particular, o (o) — ¢ divides g°(B) —g(B) = g°(B).
Now, write a = f(f) for some f € Ok|[x]. Note that f(x) — « has 3 as a root, so

f(x) — = g(x)h(x)
for some i € Og[x]. Then
fx)—o(a) =g (x)h° (x).
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Plugging in f3, we obtain
a—o(a)=g%(B)-h°(B),
so g°(B) divides o (o) — . In particular, they have the same valuation.
Now, let § € G/N, which we may assume is not 1, since for § = 1 the result is obvious, with both
sides of the equation in the statement being infinite. As we have seen, §(o) — « and g% () have the
same valuation. Thus, we have

er/eig/k(0) =vi(8(a) — ) =v(g°(ax)) :VL< I1 (5—6(/3))> = Y ik(o)

oeG ocG
o|g=6 o|g=6

U

LEMMA 6.5.23. Let L/K be a Galois extension of local fields with Galois group G. Fort > —1,

we have

¢L/K(t)+l Z mln{zL/K ),t—|—1}
’(;|G€G

PROOF. Note that both sides of the equation in the statement are equal to 1 for # = 0. Also, both
sides are piecewise linear and continuous, with slopes for any non-integral ¢ equal to

Gyl
L) =[Go: Gl =
¢k (1) =[Go : Gyy] Gol
and
1 G
Loy Gl
Gol 426 |Gol
i/ (0)=]t]+1

Hence, we have the result. U

LEMMA 6.5.24. Let L/K be a Galois extension of fields with Galois group G, and let E /K be a
Galois subextension. For everyt > —1 and § € Gal(E /K), we have
ig/k(6) — 1 =max{¢ /(i /k(0) —1) | 6 € G,0|g = 6}.
PROOF. Let N = Gal(L/E). Let 6 € G/N. Let 0 € G with 6|g = & be such that i = if k(o) — 1
is maximal. Let B € O} be such that 0 = Ok|[f]. For any T € N, we have
ir/x(07) =ve(ot(B) — B) = min{vr(oT(B) —o(B)),ve(o(B) —B)} = min{ir /k(7),ir/k(0)}

with equality if i; jx(7) # irjx(0). In particular, if T & N;, then iy /x(07T) = i x(7), and if T € N,
then iy x(07T) > i+ 1 and then in fact equality so by maximality of i. We therefore have

iL/K(5 |N | Z lL/K oT) |N | Z mm{lL/K T),i+1}= ¢L/E(i)+17

TEN TEN
the first step by Lemma 6.5.22 and the last step by Lemma 6.5.23. U
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The latter lemma has the following corollary.

THEOREM 6.5.25 (Herbrand’s theorem). Let L/K be a Galois extension of fields with Galois
group G, let E /K be a Galois subextension, and set N = Gal(L/E). For any t > —1, one has

(G/N)g . = G:N/N.

Or/e(t) —

PROOF. Note that § € G/N lies in (G/N)(I,L/}E () if and only if ig /x(6) — 1 > ¢ /p(¢). This occurs
by Lemma 6.5.24 if and only if there exists o € G that restricts to § such that

Or/eipx(0) —1) > ¢p /()
and so if and only if if /g (0) — 1 > ¢ for some such o. In turn, this is exactly to say that ¢ € G; for

some lift ¢ € G of 8, or in other words that 6 € G;N/N. O

PROPOSITION 6.5.26. Let L/K be a Galois extension of local fields and E a normal subextension
of K in L. Then

Or/k = O£/ °PL/E-

PROOF. Note first that both sides agree at —1 and then that it suffices to consider the slope of
both sides at non-integral values t > —1. Let G = Gal(L/K) and N = Gal(L/E). The derivative of
the right-hand side at 7 is

0k (O/E()) - 01/p(t) = [(G/N)o: (G/N)g, ()] "[No: ]!
and that of the left is [Go : GM]*I, so it suffices to note by Lemma 6.5.9 and Theorem 6.5.25 that
[Gs : Ny] = [Gs : GsNN| = [GsN : N| = |(G/N)
fors=0and s =1. O

Or/E(s) |






Part 2

Class field theory



The goal of class field theory is to describe the structure of the Galois group of the maximal
abelian extension of a field in terms of the arithmetic of the field itself.

REMARK 6.5.27. The term “class field theory” will at times be abbreviated “CFT”.



CHAPTER 7

Global class field theory via ideals

In this chapter, we take the classical approach of comparing Galois groups of abelian extensions
of a number field to generalizations of class groups of the field. We use zeta and L-functions in
proving some of the key results.

7.1. Dedekind zeta functions

In this section, we shall be interested in the convergence of Dirichlet series.
DEFINITION 7.1.1. The Dirichlet series of a sequence (a,),>1 of complex numbers is the series
Z apn” >,
n=1
where s is a complex variable.

The following trick can be proven by a simple induction.

LEMMA 7.1.2. Let (b;);>1 and (ci)i>1 be sequences of complex numbers. For n > 1, set B, =
Y bi. Then

n n—1
Z bici = Bncn + Z Bi(ci—ciy1).
i=1 i=1

In particular, for n > m > 1, we have

n n—1
Z bic; = B¢y — Bpcpm + Z Bi(ci—ciy1)
i=m+1 i=m+1

PROOF. This is immediate for n = 1. Suppose it for n. Then the difference of the right-hand side
of the above equation for n+ 1 and n is

Byuiicnt +Bn(cn - Cn—l—l) — By, = bn+lcn+17

as required. U
NOTATION 7.1.3. For 5o € C, let Z(s9) = {s € C | Re(s) > Re(sp)}.

LEMMA 7.1.4. Suppose that a Dirichlet series Y ,._ann* converges at some sy € C. Then it
converges for all s € Z(so), and it converges uniformly on every compact subset of Z(s).

137
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PROOF. Let ) = Re(sp) and t = Re(s) for s € Z(sg), so t > tg. For m > 1, let D, > 0 be the
maximum of all | Y}, axk—*0| < D,, with n < m. These are bounded by some D > 0 since the partial
sums converge. Applying Lemma 7.1.2 to the sequences (a,n"*),>; and (n*0*),>, we obtain

n n—1
Z amn*| < D"+ Dm0 + Z D[k — (k+1)%7|
k=m+1 k=m+1

Note that
k+1
0= — (k+1)0| < |s — 0| / X011 g,
k

from which it follows that

n—1 n—1
Y Dk — (k1) < Dn1|s—s0|/ X011
k=m+1 m+1

Taking the limit as n — oo, we obtain

o0
Y

k=m+1

SDmtO_t+|s—s0|/ xto_t_ldxgDmto_t—l—w(m—f—l)to_t.
m+1

t—1

Thus Y " . a,n° approaches O uniformly as m increases for s in any fixed compact subset of
Z(s0)- O

LEMMA 7.1.5. Let (ay),>1 be a sequence in C, and suppose that C > 0 and u > 0 are such
that | Y} _ax| < Cn* foralln > 1. Then Y, an,n™* converges absolutely uniformly on any compact
subset of Z(t).

PROOF. For r = Re(s), the computation of Lemma 7.1.4 with so = 0 and D,, < Cn" gives

n
Y an

k=m+1

n—1 k+1 n
<cn''4+Cm" ' +Cls| Z k”/ x_’_ldxSCn”_t~|—Cm”_’+C|s|/ X
k=m+1 k m+1

Taking the limit as n — oo, we obtain

Z apmn”*| < Cm"! +Cﬂ(m+ 1)“
k=m+1 u—t
which again converges uniformly in any bounded subset of Z(s). U

We give an application to the Riemann zeta function.

DEFINITION 7.1.6. The Riemann zeta series is the Dirichlet series
C(s)= Z n*.
n=1

THEOREM 7.1.7. The zeta series §(s) defines an analytic function on s € C with Re(s) > 1, and
it has a meromorphic continuation to Re(s) > 0, in which region it is analytic aside from a simple
pole ats = 1.
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PROOF. The first statement is an immediate consequence of Lemma 7.1.5, the condition of which
holds for C = 1 and # = 1. Consider {,(s) = Yoo, (—1)""'n~*. We can again apply Lemma 7.1.5 for
C =1 and t = 0 to see that the latter series converges uniformly and absolutely on Re(s) > 0. Note

that

Z(_l)n—ln—s: Z Z n 1 211 A’

n=1 n=1

from which we see that & (s) = (1 —2!'7%){(s) for s € Z(0) aside from those with 2°~! =1, i.e., those
s of the form 1 + lzo’fgnzi for some n € Z. Similarly, the Dirichlet series {3(s) attached to the sequence
(an)n>1 With asgy1 = azro = 1 and azg3 = —2 for all k > 0 converges for Re(s) > 0 and satisfies
G3(s) = (1—3'"%){(s) on said region, aside from s with 3*~! = 1, those s of the form 1 + 3 2”’” . Thus

{(s) is analytic outside s = 1. Finally, we note that

1 < d © s
d < / Sdx =
s—1 / r= ; = 1 reET
Thus, limg_,; (s — 1) (s) = 1, so {(s) has a simple pole with residue 1 at s = 1. O

TERMINOLOGY 7.1.8. A product [T, (1 —apNp~ $)~1 over primes p of a number field F for com-
plex numbers ay, is known as an Euler product for s € C such that it converges. The individual term
(1 —apNp~*)~! for a prime p is known as an Euler factor at p.

PROPOSITION 7.1.9. For any s € C with Re(s) > 1, the Euler product [1,(1 — p~*)~! over all
primes p converges to (s).

PROOF. The logarithm of the Euler product is given by

)3H)

n=1p

npns’

with the latter sum taken over all prime numbers p. For r = Re(s),we have

YY <Y Yrr<

n=2 p n=2 p

n p}’lt

so converges uniformly on an closed interval inside the interval ¢ > % In particular, the series
Y1 X, # converges absolutely and uniformly on any compact subset of Z (%) on which },p™*
does. In particular, the Euler product defines an analytic function on Z(1).

We can then compare finite products and sums. Let S be a finite set of prime numbers and I be
the semigroup they generate. Then

H(l _p—S)—l _ Z ns

PES nelg

We then have {(s) =I],(1 — p~*)~! for Re(s) > 1 by taking the limit over all S. O



140 7. GLOBAL CLASS FIELD THEORY VIA IDEALS

NOTATION 7.1.10. For two meromorphic functions f and g on a neighborhood of s = 1 in C,
or which have meromorphic continuation to such a neighborhood, we write f ~ g if they differ by a
function analytic at 1.

We now turn to zeta functions of number fields.

DEFINITION 7.1.11. The Dedekind zeta series of a number field K is Dirichlet series

Ce(s)= ), (Na)™,

agﬁF

where the sum runs over nonzero ideals a of Ok.

THEOREM 7.1.12. For a number field K, the series (g (s) = Yqc g, (Na)~* converges absolutely
for all s € C with Re(s) > 1. Moreover, for such s, we have

Cr(s) = T(1-Np™)7",

p

where the product runs over all nonzero prime ideals p of Ok. It has a meromorphic continuation to
Z(1—[K : Q]™") that is analytic outside of a simple pole at s = 1.

PROOF. We sketch part of the proof. Again, we consider the logarithm of the Euler product,
noting that

lOg CK(S) ~ ZNP_S7
p

and the latter sum is at most [K : Q¥ p~* ~ [K : Q]log(s — 1)~!, from which we obtain conver-
gence of the Euler product on Z(1) to an analytic function. We can then compare the Euler product
over a finite sum of primes with the partial sum in the Dirichlet series over ideals divisible only by
those primes to obtain equality in said region. We omit the argument regarding its meromorphic
continuation and simple pole. U

From this, we obtain the following statement on the density of completely split primes.

DEFINITION 7.1.13. Let S be a set of prime ideals of a number field K. The Dirichlet density
0(8) of S, if it exists, is
5(s) = tim 2SR
s—1t Zp Np—*
where the sum in the denominator is taken over all prime ideals of K. The upper Dirichlet density
(resp., lower Dirichlet density) is obtained by replacing the limit in the definition of Dirichlet density
with the lim inf (resp., lim sup).

THEOREM 7.1.14. Let L/K be a Galois extension of number fields. Then the Dirichlet density of
1

the set Sy /x of primes of K that split completely in K is L]
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PROOF. As before, we have that log {; (s) ~ Yp N'B~°. At the same time, the sum over primes
that are not completely split is bounded absolutely by the finite sum over primes of degree > 2 at
s = 1, since [N ~9| is for such B is at least p? for the prime p with (p) =P NZ. Since each prime
over K that is completely split in K has [L : K] primes over it of the same absolute norm, we then have

logli(s)~[L:K] ), Np™*

peSL/K

At the same time, since both {7 (s) and {k(s) have a simple pole at s = 1, we have

log &1 (s) ~log(s—1)"" ~log &k (s) ~ Y Np~™,
p

and therefore 8 (S, /) = [L: K]~ O

We can attach a Dirichlet series to a finite-dimensional representation of a Galois extension L/K
of number fields as follows.

DEFINITION 7.1.15. Let L/K be Galois, and let xy be a character of a finite-dimensional C-
representation of Gal(L/K). Then the Artin L-function of ) is Euler product expansion

L(x,s) =] T det(1 —xey|V5) ™ yp-s
p

on Z(1), where ¢, denotes a Frobenius in Gal(L/K) of some prime 33 of L over p, and /, denotes the
inertia group at *J3 in Gal(L/K).

PROPOSITION 7.1.16. Let L/K be Galois, and let )} be a character of a finite-dimensional
C-representation of Gal(L/K). The Artin L-function L(),s) converges to an analytic function on
Re(s) > 1. In this range, we have

Cu(s) = [TLCe s,
X
where the product is taken over the characters of irreducible representations of Gal(L/K).

NOTATION 7.1.17. If x: Gal(L/K) — C* is an abelian character, we view x as the unique multi-
plicative function on the nonzero ideals of Ok such that (p) = O for a prime ideal p is O if p ramifies
in LX'X /K and is x(¢y) otherwise, where @, is a Frobenius in Gal(L/K) at any prime over p.

PROPOSITION 7.1.18. Let x: Gal(L/K) — C* be an abelian character of a Galois extension
L/K of number fields. Then

L) =TT =xpNe™) " = ¥ 2(a)Na™*

p aC0Ok

forRe(s) > 1.
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For y abelian, it is known that L(},s) is analytic on C (outside of a simple pole at s = 1 if y is
trivial), but we require only something weaker. We provide a proof of the following result, assuming
an input from the geometry of numbers.

PROPOSITION 7.1.19. Let L/K be an abelian extension of number fields, let m > 1, and let ¥

be a nontrivial, irreducible character of Gal(L/K). Then L(),s) has a unique analytic extension to
Z(1—[K:Q]™"), and L(x,1) is nonzero.

PROOF. Let n > 2 be the order of x, fix an nth root of unity {, and let d = [K : Q]. The geometry
of numbers can be used to show that the number of ideals a of Ok with Na < N for N > 1 and
x(a)=CisCN+O(N 1—a~"! ), where C is a constant independent of {. Given this, we note that

Y 2= Y {Na<N[z@=C}{= Y {-CN o'~ ) =o',
Na=<N Lt Let
By Lemma 7.1.5, we therefore have that ', ¥(a)Na™* converges absolutely and uniformly on
every compact subset of Z(1 —d ).

For the nonvanishing, write log (. (t) = ¥, log L(,t) and observe that, up to a bounded function
as 1 — 1%, the latter sum has absolute value at least (1 — Y, my)log(t —1)~!, where my is the order
of vanishing of L(),s) at s = 1. But if some my > 1, then 1 — Y., my <0, which is impossible since
log &1(s) ~log(s— 1)~ O

7.2. Chebotarev density theorem

We prove Chebotarev’s density theorem in something close to the original manner in which it was
proven, roughly following an exposition of Stevenhagen and Lenstra.

PROPOSITION 7.2.1. Let K be a number field, m > 1, and G = Gal(K (u,,)/K). For o € G, the
Dirichlet density of primes p of K with Frobenius & in G is |—é‘

PROOF. From Proposition 7.1.16 and Proposition 7.1.19, it follows that

Gis)= JI Lx.s
x: G—C*

for Re(s) > 1 —[L: Q]~!. For a prime p of K unramified in L, we have that ¢,(¢,) = ghP for a
primitive mth root of unity ,,, and therefore x (¢,) depends only on Np modulo m.

Much as before, we have

logL(x,s) ~ Y x(p)Np~*
p
for Re(s) > 1. Given o € Gal(F (u,)/F) with 6(,,) = £ for some a prime to m, we have

Y (o))t ={0 ez Npmodm

1: GCx |G| otherwise.
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Now, on the one hand we have
Y x(0) 'ogL(y,s NZZ% PNP ~IGl ), Np~,
X Np=a mod m

whereas on the other we have
Zx )" 'logL(y,s) ~ log &k (s) ~ log(s — 1),

since we know that L(}, ) # 0 for all nontrivial . Comparing the two equations, we obtain that the
Dirichlet density of p with ¢, = o is 1/|G] O

THEOREM 7.2.2 (Chebotarev). Let L/K be a Galois extension of number fields with Galois group

G. Let C be a conjugacy class in G. The Dirichlet density of prime ideals p of K such that the
conjugacy class in G of a Frobenius of a prime over p in L lies in C is %
PROOF. With Proposition 7.2.1 already in hand, we divide the remainder of the proof into two

steps.

Step 1. First, we shall show that the theorem for L/K and C follows from the theorem for a cyclic
subextension L/E, where E is the fixed field of an element of C. Let S be the set of prime ideals of K
unramified in L with class C. Let 6 € C and E = K‘°) so that L/E is cyclic of degree f = |(c)|. Note
that the latter order is independent of ©.

Let T be the set of primes P of E unramified in L and over K with Frobenius ¢p at a prime of L
over P equal to 0. If P € Ty, then @p = o fixes E, so P has degree one over F. As P is by definition
inert in L, there are exactly |G|/ f primes of L over PN K. As the Frobenius elements of such primes
are distributed evenly among the elements of the conjugacy class C of o, exactly |G|/ f|C| of these
have Frobenius o.

We may then compute the Dirichlet density of S:

§(5) — fim DoesNP " _AICH o Zrer, NP fIC]
s—1t Y, Np~™s |G| s—1+ Y,Np~s |G|

8(Ts),

recalling once again that y', Np~* ~ Y'p NP~*. Supposing the theorem for K /E, we have §(T5) = +

and we therefore obtain §(S) = %,

&H

as desired.

Step 2. It remains to prove the theorem for cyclic extensions, and we shall actually make the
weaker hypothesis that L/K is abelian. Choose m > 1 not dividing the discriminant of L so that H =
Gal(L(py,)/L) is isomorphic to (Z/mZ)* via the mod m cyclotomic character, and Gal(L(u,,)/K) =
G x H. For o € Gand 7 € H, let S be the set of primes of K unramified in L with Frobenius ¢ in G,
and let S5  be the set of primes of K unramified in L(L,) with Frobenius (0,7) € G x H. Then

3mf SG Z 61nf SG ’L')

teH
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Now suppose that |G| divides the order of 7. Then ((c,7)) N (G x {1}) = 1, which implies that
L(t,) is given by adjoining f,, to F = K (i,,){(®%). Since we have previously shown the theorem for
cyclotomic extensions such as F(L,,)/F, we have that the Dirichlet density of the set of unramified
primes in this extension with Frobenius (o, 7) is ﬁ From the argument of Step 1, we see that

0(Ss.7) exists and equals \G||H|

Now let H,, be the set of elements ’c € H of order divisible by n. By summing over all T € H,,, we
see that 8i,¢(Ss) > \‘GH,;H‘H Write n = p1 .- p* for distinct primes py,...,p, and kq,...,k, > 1. There
exists a prime m = 1 mod n/, since the Dirichlet density of completely split primes in Q(u,;)/Q is

positive. For such an m, let j; = v,,(m—1) > j. We then have

aN (-5 ) =110 )

SO %" tends to 1 as j increases. It follows that Oj¢(Ss) > ﬁ Since the sum of these over all 6 € G

is then at least 1, it must equal 1. Thus, we have that (S ) exists and equals |—é‘ O

As a consequence, we obtain Dirichlet’s theorem on primes in arithmetic progressions.

COROLLARY 7.2.3 (Dirichlet). Forn > 1 and a € Z> with gcd(a,n) = 1, the set {a+kn |k > 0}
contains infinitely many prime numbers. In fact, the Dirichlet density of the set of such primes is ﬁ
PROOF. The prime numbers with Frobenius ¢ in Gal(Q(u,)/Q) satisfying ¢(&,) = ¢ for a
primitive nth root of unity {, are exactly those in the arithmetic progression in question. Chebotarev’s
theorem then tells us that the Dirichlet density is the reciprocal of the degree ¢(n), as the extension
is abelian. U

7.3. Ray class groups

Let us fix a number field K.

DEFINITION 7.3.1. A modulus m for K is a formal product m = msm.. consisting of a nonzero
ideal ms of Ok and a formal product m.. of distinct real places of K. We refer to m; and m., as the
finite and infinite parts of m, respectively.

REMARK 7.3.2. A formal product of symbols is a tuple (or list) of symbols, written in product
notation.

REMARK 7.3.3. In a modulus m, the product composing m., can be empty, in which case we
simply write m = my.

We may define a notion of congruence modulo m.
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DEFINITION 7.3.4. Let m be a modulus for K. We say that a,b € K* are congruent modulo m,
and write
a="bmodm

if a = b mod m and the image of a/b is positive under the real embedding attached to any real place
in the formal product m.

We may now define ray class groups.

DEFINITION 7.3.5. Let m = msm., be a modulus for a number field K.

a. The m-ideal group I¢ is the subgroup of the ideal group Ix generated by the nonzero prime
ideals of Ok that do not divide m.

b. The unit group at m in K is the subgroup Ky, of K* defined by
Ky ={a € K™ | vy(a) =0 for all primes p | m}.

c. The ray modulo m in K is the subgroup Ky, 1 of K* consisting of elements congruent to 1
modulo m: that is,
Kn1={a€K*|a="1mod m}.

d. The principal m-ideal group Pg' is the subgroup of fractional ideals of Ok generated by ele-
ments of Ky, ;.

e. The ray class group CI¢ of K of modulus m is the quotient group
Clg =Ig/P¢.
f. The ray class [a]y for the modulus m of a fractional ideal a € I¥' is the image of a in CI.

REMARK 7.3.6. The reason for the term “ray” is surely as follows. The ray Q. i, where oo is
the unique real prime of ), is equal to the set of positive rational numbers, which is dense in the ray
[0,00) in R.

EXAMPLE 7.3.7. The class group of K is in fact the ray class group with modulus (1). That is,
taking m = (1), we have I} = Ix and Ky | = K™, so P¢' = Px and Clg = Cl.

REMARK 7.3.8. For any modulus m, we have the map I¢* — Clk that takes an ideal to its class.
Despite the fact that I is not the full ideal group of K unless m; = (1), this map is still surjective,
with kernel the principal fractional ideals in Ig'. To see this, first note that any fractional ideal of Ok
is a principal fractional ideal times an integral ideal a, and the Chinese remainder theorem tells us
that we can find an element a € Ok with exactly the same p-adic valuation as the maximal power of
p dividing a for each p dividing ms. Then a(a!) € I? has the same class of the original fractional
ideal.

From now on, let us fix a modulus m for K. The following is immediate from the definitions.


http://math.ucla.edu/~sharifi/algebra.pdf#nameddest=theorem.3.8.23
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PROPOSITION 7.3.9. We have an exact sequence

1 = Og NKn1 — Kn 1 gﬂ,‘}‘ — CIg =0,

where ¢ : K* — Ig takes an element to the fractional ideal it generates. In particular, we have
¢ (Km,l) = Fy.

We also have an exact sequence as in the following proposition.
PROPOSITION 7.3.10. There is an exact sequence
1= Og /(O NKy.1) = Kin/Km1 — Clg — Clg — 0,

where the first map is induced by the identity map on K*, the second is induced by the map that takes
an element to its m-ray ideal class, and the last is the quotient by Pk.

PROOF. Since CIg = I'/P¢'. We saw in Remark 7.3.8 that the natural map I§® — Cl is surjective
with kernel Px NIg'. Moreover, the natural map

Kn — (PkNIZ)/PE,

is by definition surjective. Since the elements of K, that generate classes in P are those in O K 1,
we have the result. 0

We also have the following.

PROPOSITION 7.3.11. The product of reduction modulo wmy and the sign maps for each of the r
real places dividing m., induces a canonical isomorphism

r

Km/KmJ l> (ﬁK/mf)X X H<—1>.

PROOF. The kernel of the reduction modulo m; map on Ky, is Kmﬁl and those elements of K, £l

with trivial sign at all real places dividing m. constitute Ky, ;. Therefore, we have an injective map
as in the statement. That this map is surjective is an immediate corollary of weak approximation. []J

The following is immediate from the exact sequence in Proposition 7.3.10, noting the finiteness
of the class group and the finiteness of Ky, /Ky, 1 implied by Proposition 7.3.11.

COROLLARY 7.3.12. The ray class group CIg is finite.

EXAMPLE 7.3.13. Let us consider the ray class groups of Q. Recall that Clg = (1) and that
7> = (—1). We will consider two cases for an f > 1: (i) m = (f) and (ii) m = (f)ce.
1. We have

Qn/Qpa =(2/f2),



7.3. RAY CLASS GROUPS 147

and if f > 3 so that this group is nontrivial, then —1 ¢ Q(s),1- Propositions 7.3.10 and 7.3.11 then tell
us for any f that we have an isomorphism

o CIY) 5 (Z/F2) /(~1).
with ¢¢([(a)](y)) the image of a for any a € Z relatively prime to f.

ii. We have
Q)oo/ Qo1 = (Z/fL)* x (1),

and —1 ¢ (@( f)eo,1- Again by Propositions 7.3.10 and 7.3.11, we then have an exact sequence

0 (1) = (Z/fZ)* x {~1) = CIY" — 0,

where the first map takes —1 to (—1,—1). It follows that we have an isomorphism
or: Q" = (2/f2)"
with ¢¢([(@)](f)e) = @ mod f for a € Z relatively prime to f.
We next show that norm maps descend to ray class groups.
LEMMA 7.3.14. Let L/K be a finite extension of number fields and m a modulus for K. Then
Npjk(Lm1) € K-

PROOF. Let & € Lyy;;. We have that Ny k() is the product of the (@) over all embeddings
7 of L fixing K in our fixed algebraic closure of K. Since the ideal my of O is fixed under these
embeddings, we have Ny g0t = 1 mod my.

As for the infinite part, if 6: K — R corresponds to a place dividing m. and S is the set of
embeddings 7: L — C extending o, then

o(Nyxa) =] (e
Tes
If T € Sisreal, then o € Ly ; tells us that (o) > 0. If T € S is complex, then the complex conjugate
embedding 7 is also in S, and
t(a)T(a) = |7(a)]* > 0.

As a product of positive numbers, o (Ny k@) is positive. O

DEFINITION 7.3.15. Let L/K be a finite extension of number fields and m a modulus for K. The
norm map Ny jx: Clf' — CIg is the map defined on a € I by

Nk ([a]m) = [Np/k (0)]m,

where Ny /k(a) is the norm from L to K of a.

Let us prove what is known as the first fundamental inequality of global class field theory.
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PROPOSITION 7.3.16. Let L/K be a finite abelian extension of number fields. For any modulus
m of K divisible by the primes that ramify in L/K, we have

PROOF. Let H = Ig /Pg'Ny k1T, and let Let x : H — C* be a nontrivial character. Much as with
nontrivial characters of Gal(L/K), we can define an L-function

La(x,s) =[]0 =2(m)Np™) "= Y x(a)Na™*

ptm al0Ok
a+m= ﬁK

which converges to an analytic function on Z(1—[K : Q]~1). Let my be its order of vanishing at s = 1.
On the one hand, we have

log &k (s) + Z logLn(x,s) ~ (1 —me> log(s—1)71,
X#1 X

while on the other hand, we have

log &k (s) + Z logLin(x,s) ~ Z Z x(A ZNp_S ~ |H| Z Np~—°.

xF#1 X AeH peA PEPR Nk IT

As the primes p which are norms from L/K and unramified are the completely split primes S;, /K> the
latter sum is, up to a constant (the sum of the reciprocals of the ramified primes), at least

—s_ A
[H| ), Np~ = log(s — 1)~
peSL/K [L K]
employing Theorem 7.1.14. We therefore have that every m, is zero and 1 > [|L I|<] which is what we
aimed to show. U

As we shall see later, the first fundamental inequality is actually an equality.

7.4. Statements

DEFINITION 7.4.1. Let K be a number field and m a modulus for K. Let L be a finite abelian
extension of K such that every place of K that ramifies in L/K divides m. The Artin map for L/K
with modulus m is the unique homomorphism

Tk IR — Gal(L/K)

such that \I’?/ X

of O that does not divide m .

(p) is the unique Frobenius element at p in Gal(L/K) for every nonzero prime ideal p

REMARKS 7.4.2.
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a. The Artin map ‘1‘2‘/ « 1s well-defined. To see this, note that I is freely generated by the prime
ideals of Ok not dividing my, so it suffices to define it on these primes. Moreover, L/K is abelian
and unramified at any such prime p, so there is a ungiue Frobenius element in Gal(L/K) at p. This
Frobenius element is often written (p,L/K).

b. For any two moduli m and m’ for K such that every prime that ramifies in L divide both m ¢ and

m}, the Artin maps ‘Pz‘/ x and ‘P?// ¢ agree on the fractional ideals on which they are both defined.

NOTATION 7.4.3. Given a modulus m for K and a finite extension K’ /K, we use m also to denote
the modulus m’ for K’ with m’, = m Ok and m;, the product of the real places of K’ lying over those
of K that divide m...

Artin maps satisfy the following compatibilities, analogous to the case of the local reciprocity
map.

PROPOSITION 7.4.4. Let K be a number field, and let K'/K be a finite extension. Let m be a
modulus for K. Let L be a finite abelian extension of K' such that every place of K’ that ramifies in
L' /K’ divides m, and set L = L' N\ K™. Then we have the following commutative diagrams:

a.

m
W
m

m 5 Gal(L//K)

NK’/KJ/ J/RL/K
Loy

K

I} — Gal(L/K),
where Ry i denotes the restriction map on Galois groups,

b.
lI]m
"% GalL/k)

l J/VK’ /K
m
lPL’ /K!

Ig, — Gal(L'/K')

if L' /K is Galois, where the map I — Ig, is the natural injection and Vi /g : Gal(L/K) — Gal(L' /K")

is the transfer map, and

C.
W
m—"" Gal(L/K)

GJ{ o*
lI,o(m) \

120 " Gal(o(L) /o (K)),



150 7. GLOBAL CLASS FIELD THEORY VIA IDEALS

where © is an automorphism of the separable closure of K and 6* is the map 6*(1) = o|po7To
671|G(L)’ and where o(m) is the modulus for (K) given by 6(m)s = o(my) and 6(me) is the
product of the applications of © to the real places dividing m...

PROOF. We verify only part (a). It suffices to check commutativity on a prime ideal ‘3 of Ok
that does not divide m. In this case, P}, /K (*B) is the Frobenius (P, L’'/K’) and P, and its restriction

to Gal(L/K) is (p,L/K)"/», where p = 3 N 0. On the other hand,

Ny B = p/¥,

and ¥, sends this to (p,L/K)'®/», so we are done. O

L/K

Note the following corollary.

COROLLARY 7.4.5. Let K be a number field, and let L/K be a finite abelian extension. Let m
be modulus for K that is divisible by every place of K that ramifies in L/K. Then ker‘PE‘/ x contains
Nkl

PROOF. Take K’ = L' = L in Proposition 7.4.4. Then the commutativity of the diagram in part (a)
therein forces ‘Pz‘/ x°Npjxk =0onl}. O

REMARK 7.4.6. Let K be a number field. We may speak of a formal product of places dividing
another such formal product in the obvious manner. Therefore, we say that a modulus m for K divides
a modulus n for K if the divisibility occurs as formal products of places.

DEFINITION 7.4.7. Let L/K be an abelian extension of number fields. A defining modulus for
L/K is a modulus for K that is divisible by the ramified places in L/K and is such that P§* C ker‘I’Z‘/ X

Given a modulus m for an extension L/K of number fields, the reciprocity map induces a reci-
procity map on the ray class group.

DEFINITION 7.4.8. Let L/K be an abelian extension of number fields and m a defining modulus
for L/K. Then the map
vk Clg — Gal(L/K)
induced by ‘Pz‘/ ¢ 1n the sense that
WF/K([a]m) = lP?/K(C‘)

for every a € I is also referred to as the the Artin reciprocity map for L/K (on Clg) with modulus m.

REMARK 7.4.9. When the defining modulus m for L/K is understood, we may at times denote
l//‘L“/ x more simply by y k.

REMARK 7.4.10. If L/K is a finite abelian extension with defining modulus m and E is a subex-
tension, then m is a defining modulus for E as well.
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Let us state the main theorems of global class field theory. The first is due to Emil Artin.

THEOREM 7.4.11 (Artin reciprocity). Every abelian extension L/K of number fields has a defin-
ing modulus m divisible exactly by the places of K that ramify in L. Moreover, l//l‘j‘/ x IS surjective with
kernel Ny jx (CI}), so induces an isomorphism

The following is due to Teiji Takagi, building on work of Heinrich Weber.

THEOREM 7.4.12 (Existence theorem of global CFT). Let K be a number field, let m be a modulus
for K, and let H be a subgroup of CI¢. Then there exists a (unique) finite abelian extension L of K
with defining modulus w such that H = Ny jx CIf.

In other words, every subgroup of CIg for a number field K and modulus m is the norm group
Ny /g CIf from a single finite abelian extension L of K. We have written “unique” in parentheses in
the theorem, as it is sometimes excluded from the statement of the existence theorem.

PROPOSITION 7.4.13. Let K be a number field and m a modulus for K. For finite abelian exten-
sions L and M of K for which m is a defining modulus, we have the following:

a. Np/x CIJ' NNy /k Cliyy = Niar/k Cliy (and wois a defining modulus for LM),
b. NL/KCI?} NM/KCIIT/[ = N(LﬂM)/KCI?ﬂM’ and
¢. Nyyk Clyy € Npg CIf if and only if L C M.

DEFINITION 7.4.14. Let K be a number field and m a modulus for K. The ray class field for K
with modulus m is the unique finite abelian extension L of K with modulus m such that m is a defining
modulus for L/K and the Artin map l//l‘j‘/ x 18 an isomorphism.

That is, the ray class field L of K for m is the unique finite abelian extension of K with defining
modulus m such that Ny /¢ CIj' = 1.

REMARK 7.4.15. As a consequence of Proposition 7.4.13c, every finite abelian extension L of
K for which a modulus m for K is a defining modulus is contained in the ray class field of K with
modulus m.

Using the existence theorem, Proposition 7.4.13, and the surjectivity of ‘Pz‘/ x We may now demon-

strate a part of Artin reciprocity.

PROOF THAT WI‘DK HAS KERNEL Ny /x(CI}'). Let M be the ray class field of K with modulus m.
Then Ny /x Clyy = 1 by Artin reciprocity. It follows from Proposition 7.4.13c that L C M. Consider
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the diagram

lelTl
m o Gal(M/L)
\ e
Nyk  CIf !

I¥

Gal(M /K) —— Gal(L/K)

N

cIp

By Proposition 7.4.4a, the diagram commutes. As Gal(M /L) is a subgroup of Gal(M/K) and yy; /K

is an isomorphism, an element of I}" lies in the kernel of ‘PX}I L

so m is a defining modulus for M /L, and

if and only if its image in CIf* has
trivial norm in CIg. In particular, we have P/ C ker W'} L
the dotted map in the diagram exists and is yy; L

Now, the kernel of 1//}} « consists of exactly those elements of Clg with image in Gal(M /L) under

Vi K- Since WY

M/L is assumed surjective, we have that y; /L is as well. Therefore, the composition

Ny = (qjﬂ/[()_l oto Wﬁ/L: CIf' — Clg
has image ker I//E‘/ k- finishing the proof. U

Alternatively, we could have used the entire Artin reciprocity law and the existence theorem to
prove Proposition 7.4.13 and the uniqueness of ray class fields, much as in the spirit of the case of
local class field theory.

EXAMPLE 7.4.16. We claim that the ray class field L of Q(i) with modulus (3) is Q(u;2). Note
that only the primes over 3 ramify in Q(u;2)/Q(i). To see the claim, suppose first that p = 3 mod 4
with p # 3. Then (p) is inert in Q(i) /Q. Since the Frobenius at p over Q(i) will fix Q(u;2) if and only
if it fixes t12, we have (p,Q(u12)/Q(i)) = 1 if and only if p> = 1 mod 12. But the latter congruence
holds for all p # 3. Since (p) = (—p), we actually have (p) € PI(S) for all p # 3 as well.

If p =1 mod 4, then p splits in Q(i). In fact, p = a® + b* for some a,b € Z and

PZL[i| = (a+ bi)(a— bi).
We have (a+ bi,Q(u12)/Q(i)) = 1 if and only if
p=Npk(a+bi)=1mod 12.

This will occur if and only if exactly one of a and b is nonzero modulo 3. For such a prime p, by
multiplying a+ bi by i if needed, we may assume that 3 | b, and by multiplying a + bi by —1 if needed,
we may then assume that @ = 1 mod 3. Conversely, a pair (a,b) witha = 1 mod 3 and 3 | b yields a
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prime p = 1 mod 12. In other words, (a+ bi) € P1(<3) for p = 1 mod 4 with p = a*> + b? if and only
if (a+bi) € kerWo(u,,)/0@)- It follows by multiplicativity that the kernel of W ,,,)/q(;) 1s exactly

P&)l.). Therefore, we have L = Q(u1») by the uniqueness of ray class fields.

We now show that there is a defining modulus for any abelian extension that is minimal in a
particular sense.

PROPOSITION 7.4.17. Every abelian extension L/K of number fields has a defining modulus that
divides all other defining moduli for L/K.

PROOEF. If {m; | i € I'} is a nonempty set of moduli for a number field K, where [ is some indexing
set, then we define a modulus
M = Zm,-
i€l
such that 91/ is the sum of the finite ideals (m;) over i € I and M., equal to the product of all real
primes dividing every (m;).. We then see from the definition that

Ko = HKm,,h
il
and so P2 is also the sum of the Pg".

Given an abelian extension L/K of number fields, we consider the set of moduli m that are di-
visible by all places of K that ramify in L and for which P¢' lies in the kernel of ‘Pz‘/ k- By Artin
reciprocity, this set is nonempty. The sum of these moduli is by construction the unique modulus that
is divisible by all places that ramify in L and is contained in ker‘Pz)} X U

DEFINITION 7.4.18. The conductor fy /x of an abelian extension L/K of number fields is the
unique defining modulus for L/K that divides all other defining moduli for L/K.

REMARK 7.4.19. It is possible for two distinct finite abelian extensions of a number field K to
have the same conductor. On the other hand, not all moduli for K need be conductors of finite abelian
extensions of K. In particular, the ray class field of K with modulus m is only guaranteed to have
conductor dividing m, and if this conductor does not equal the modulus, then that modulus is not
the conductor of any finite abelian extension of K with defining modulus m, since any such field is
contained in the ray class field.

EXAMPLE 7.4.20. The conductor of the ray class field Q(u2) of Q(i) with modulus (3) is (3),
since (3) ramifies in Q(u12)/Q(7).

The following gives the comparison between the conductor of an extension of global fields and
the conductors of the local extensions given by completion at a finite prime of the extension field.
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PROPOSITION 7.4.21. Let L/K be a finite abelian extension of number fields. Then
fLkr= IT(?CLm/Kp NOk),
p

where the product runs over all nonzero prime ideals p of Ok and for each such p, we choose a prime
ideal %} of Oy lying over it.

7.5. Class field theory over Q

DEFINITION 7.5.1.

i. A number field is said to be totally real if all of its archimedean embeddings are real.

ii. A number field is said to be purely imaginary if all of its archimedean embeddings are complex.

REMARK 7.5.2. A Galois extension of Q is either totally real or purely imaginary. On the other
hand, by way of example, Q(\3/§) has one real embedding and a pair of complex conjugate complex
embeddings.

EXAMPLE 7.5.3. For any n > 1, the field Q(u,)* = Q(&, + ¢, ') for a primitive nth root of unity
£, is a totally real field. In fact, it is the largest totally real subfield of the field Q(u, ), which is purely
imaginary if n > 3.

We consider the ray class fields of Q.

EXAMPLE 7.5.4. Let f > 1. Let {; be a primitive fth root of unity.

i. We claim that the ray class field for Q with modulus (f)ec is Q(ts). To see this, note that only
the places dividing (f)eo ramify in Q(us). Let a denote a positive integer relatively prime to f, and
let 0, € Gal(Q(py)/Q) be such that 6,(Ly) = {f. We then have that

() _
P /0((@) = 0a,

which is immediately seen by writing out the factorization of a and noting that 6, = (p,Q(us)/Q)
for any prime p not dividing f. In particular, we see that

(oo — gylf)eo
Fo" S Yoo

s0 (f)ec is a defining modulus for Q(ur)/Q.
Next, note that the cyclotomic character x provides an isomorphism

xr: Gal(Quy)/Q) = (Z/fZ)"

with ¥ (0,) = a. Recall also the isomorphism from Example 7.3.13(ii)

or: CIY" = (2)f2)"
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such that ¢¢([(a)](f)e) = a mod f. The composition
- (/)
@/rzy 2 ol E Gaaiu /@) % (2/52)"

is then the identity map. That is, we have

252 Yo a0 97 (@) = 270 W 1o (@] 7)) = 27(00) = @

ii. We next claim that the ray class field for Q with modulus (f) is

Qup) = Q&+,

Note that the image of the cyclotomic character y on Gal(Q(us)/Q(us)™) is (£1), so x induces an
isomorphism

xp: Gal(Q(uy)™/Q) = (Z/fZ)" /(1)

Recall also that Example 7.3.13(i) sets up an isomorphism

o CIY) 5 (Z/f2)" ) (£1).
Since the maps in question are all induced by those in part a, the composition

o ()
@2y (1) 2 ) T, G t/) s @5z o)

is the identity.

As a corollary of Example 7.5.4 and Artin reciprocity, we see that every abelian extension of QQ
is contained in some cyclotomic field. In other words, we have Q% = Q(u..). However, we can also
see this directly from the local Kronecker-Weber theorem, as we now show.

THEOREM 7.5.5 (Kronecker-Weber). Every finite abelian extension of Q is contained in Q(,)

for some n > 1.

PROOF. Let F be a finite abelian extension of Q. For k > 0, let py, ..., pi be the distinct primes
that ramify in F /Q, and choose primes py,...,p; of F such that p; lies over p; for each 1 <i < k. By
the local Kronecker-Weber theorem, we have for each i that F,, C Qpl.(,unl.) for some n; > 1, and let
us let r; > 0 be maximal such that p’i divides n;. Set n = p? p,r(", and let K = F(u,), an abelian
extension of Q. We claim that K = Q(u,), which will finish the proof.

Set G = Gal(K/Q), and let I,,, be the inertia group at p; in G. The completion of K at a prime *B3;
over p; is

Ky, = Fp,’(.un) = Qpi(nulcm(n,ni))'

Since p; exactly divides m = lcm(n,n;) by definition, we have

I, = Gal(Qp, (1) / Qo (,71)) = Gal(Q, (1,71)/Qp)-



156 7. GLOBAL CLASS FIELD THEORY VIA IDEALS

Let I be the subgroup of G generated by all its inertia subgroups: that is, I = I}, ---1,,. The order of
l1is
k k
Ti .
1) <TTlpl =Te!) = on) = [Qun) : Q.
i=1 i=1

However, since there is no nontrivial extension of (Q that is unramified at all primes in Z, the inertia
groups in G must generate G, so we have that I = G. Since Q(u,) C K, this forces K = Q(u,). O

EXAMPLE 7.5.6. Let K be a finite abelian extension of (Q, and let n be minimal such that K C
Q(un). Note that Q(iy) = Q(,2) if n is exactly divisible by 2, so the minimality of n forces
n to be odd or divisible by 4. Then the smallest ray class field in which K is contained is either
Q(uy)™, the ray class field of modulus (n), or Q(u,), the ray class field of modulus (1n)ee. Note that
Q(n) = Q(un)™ only for n = 1. Thus, if K is totally real, its conductor f g is (n). If K is purely
imaginary, then the conductor is (n)e. Note that (2m) and (2m)eo for m odd, as well as (o), never
occur as conductors of abelian extensions of Q.

7.6. The Hilbert class field

The most fundamental example of a ray class field is that with modulus (1), which was originally
considered by Hilbert.

DEFINITION 7.6.1. The Hilbert class field of a number field K is the maximal abelian extension
of K that is unramified at all places of K.

REMARK 7.6.2. To see that the Hilbert class field of a number field K is the ray class field of K
with conductor (1), note that the reciprocity law says that if L/K is finite abelian and unramified, then
(1) is a defining modulus, and the converse holds by definition. The ray class field with conductor
(1) is the largest field with defining modulus (1), hence is the Hilbert class field.

The following is immediate by Artin reciprocity.

PROPOSITION 7.6.3. Let E be the Hilbert class field of a number field K. By the Artin reciprocity
law, the Artin map
VE/K: Clgx — Gal(E/K)
is an isomorphism.

We have the following interesting corollary.

COROLLARY 7.6.4. Let E be the Hilbert class field of a number field K. Then a nonzero prime
ideal of O is principal if and only if it splits completely in E /K.

PROOF. To say that a nonzero prime p in O is principal is exactly to say its class [p] in Clg is
trivial, which is exactly to say that Yz x([p]) = 1. In turn, this just says that the Frobenius (p,E/K)
is trivial, which means that the decomposition group at p in Gal(E /K) is trivial, which is to say that
p splits completely in the abelian extension E /K. U
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EXAMPLE 7.6.5. Let K = Q(v/—5). Then Clg has order 2 and is generated by the class of
p = (2,14+/-5). The Hilbert class field E therefore has degree 2 over K. In fact, E = K(i). For this,
note that Q(i)/Q ramifies only at 2, so the extension K (i) /K can ramify only at the unique prime p

over 2 in Ok. Note that o0 = HT\@ has minimal polynomial x> —x— 1 over K, so & € O K(i)- Since

x* —x — 1 is irreducible over Ok(i)/P = F2, the extension of this residue field in K(i) is of degree 2,

so p is inert in K(i)/K. That is K(i)/K is unramified, and it clearly has degree 2, so we must have
E =K(i).

Every nonzero ideal in the ring of integers of a number field generates a trivial ideal in the ring
of integers of the Hilbert class field, as we will show. Key to this is the following lemma, which we
state without proof.

LEMMA 7.6.6. Let G be a group with commutator subgroup [G,G]| of finite index in G. Then the
transfer map V: G*® — [G,G]® is trivial.

We now prove the Hauptidealsatz of Emil Artin.

THEOREM 7.6.7 (Principal ideal theorem). Let K be a number field and E its Hilbert class field.
For every a € Ik, the fractional ideal aOF is principal.

PROOF. Let M be the Hilbert class field of £, and note that
Gal(M/E) = [Gal(M/K),Gal(M /K)]
and Gal(E /K) = Gal(M/K)®. By Lemma 7.6.6, the Verlagerung map
Ve/k: Gal(E/K) — Gal(M/E)

is trivial. The commutative diagram of Proposition 7.4.4(i1) then reads

v,
Clx —%, Gal(E/K)

lE/KJ/ J/VE/K:O

v,
Cly —%, Gal(M/E),

which forces 1z /x = 0, as W/ is an isomorphism. 0






CHAPTER 8

Class formations

8.1. Reciprocity maps

DEFINITION 8.1.1. Let K be a field. A class formation (A,inv) for K is a discrete Gg-module A
such that for each finite separable extension L of K, we have H!(G,A) = 0 and an isomorphism

inv: H*(G,A) = Q/Z
such that for any intermediate field E, we have
inv; oRes; /p = [L: E]invg,
where Res; / is the restriction map H?*(Gg,A) — H*(G,A).
For the rest of this section, fix a field K and a class formation (A,inv) a class formation for K.

REMARK 8.1.2. A class formation over K gives rise to a class formation over all finite separable
extensions of K. Thus, in several results below, we use K as the base field where it may be replaced
by a finite separable extension without actual loss of generality.

NOTATION 8.1.3. For a finite separable extension L of K, we set A; = ASL_If E is an intermediate
extension, we let Cory/r and Res; /r denote restriction and corestriction between G, and Gg. We
write the corestriction map Ay, — Ag more simply by Ny /.

REMARK 8.1.4. For a Galois extension L/K, we have H' (Gal(L/K),Ar) = 0 and an isomorphism

invy i H?*(Gal(L/K),AL) = ﬁZ/Z

induced by the commutative diagram

0 —— HX(Gal(L/K),Ar) —25 H2(Gg,A) —% H2(GL,A)

|
linvy g linVK linvL
v L:K]

0o—— ﬁZ/Z — Q/Z —— Q/Z.

REMARK 8.1.5. For all purposes below, we may weaken the statement that invy, is an isomorphism
in the definition of a class formation to being an injection, so long as inv,;/; is supposed to be an
isomorphism for all finite separable extensions M /L.

159
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DEFINITION 8.1.6. The unique element oy /¢ € H?(Gal(L/E),Ar) with invg /(0 /)
called the fundamental class for L/E.

As a consequence of Remark 8.1.4, we may apply Tate’s theorem to obtain the following result.

PROPOSITION 8.1.7. For any finite Galois extension L of K, there is an canonical isomorphism
Gal(L/K)™® = Ax /N, /k(AL) given by cup product with the fundamental class 0y jx:

6,k A~ 2(Gal(L/K),Z) — A°(Gal(L/K),AL), 6yx(B)= 0y /xUPB.

DEFINITION 8.1.8. Let L be a finite Galois extension of K. The reciprocity map for L/K with
respect to the class formation (A, inv) for K is the map

Pk Ak — Gal(L/K)*™
that factors through the inverse Ax /Ny kAL — Gal(L/K) of the isomorphism 6, /k of Proposition 8.1.7.

LEMMA 8.1.9. Let G be a finite group, let 6 € G with image & € G®, and let : G — Q/7 be a
homomorphism. Viewing & as an element of H=(G,Z) and y € H'(G,Q/Z), we have

6Ux=2x(0)€Q/Z,
noting that H='(G,Q/7) = % /Z.
PROOF. Consider the connecting homomorphisms & and 8" for the sequence
0—1Ic—2Z|G|-Z—0
and its Q/Z-dual
0 — Q/Z — Homgz(Z[G|,Q/Z) — Homy(Ig,Q/Z) — 0.

The image of 6 in H~!(G,Ig) is the image of ¢ — 1 in I/I%, and the inverse image of x in
H°(G,Hom(I5,Q/7Z)) is class of the homomorphism f that takes T — 1 for T € G to x(7). We
then have

GUx=38(6)u(8") ' (x)=f(o—1)=2x(0).
U

PROPOSITION 8.1.10. Let L be a finite Galois extension of K, and let 8 denote the connecting
homomorphism for the exact sequence 0 — Z — Q — Q/Z — 0 of Gal(L/K)-modules. For any
homomorphism y: Gal(L/K) — Q/Z, we have

invy x(aUd(x)) = x(Pr/k(a))

forall a € Ag.
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PROOF. Note that oy /x Upp/kx(a) = a by definition of p; x, viewing its image as the group
H~2(Gal(L/K),Z), where a denotes the image of a in Ak /Np/kAL. By the associativity of cup
products and property (iii) of their definition, we have

o gk U6(pr/k(@)Ux) =g xUprk(a)Ud(x) =aud(x).
The composition of the canonical maps

ﬁZ/Z = A Y(Gal(L/K),Q/7) = A°(Gal(L/K),Z) = Z/|L : K]Z

is the isomorphism induced by multiplication by [L : K] (since the norm for Gal(L/K) acts as multi-
plication by [L : K] on Q). By definition of & /x and the latter fact, we have

invy k(o xUo(prk(a)Uy)) = 0(pr/k(a)Ux)invy k(o k) = prjx(a) Ux = x(Pr/x(a)),
the final step from Lemma 8.1.9. U

COROLLARY 8.1.11. Let L C M be finite Galois extensions of K. Then

Pux(@)|L = pr/x(a)
forall a € Ag.

PROOF. Let x: Gal(L/K) — Q/Z be ahomomorphism, which we may view as a homomorphism
on Gal(M/K) (and its abelianization) as well. It suffices to show that for any such ), we have
X(Pm/k(a)) = 2(Pr/k(a)). For this, it sufficient by Proposition 8.1.10 to show that

invy/(@aUé(x)) =invy x(aUd(x)),
where abusing notation. Since invy x = invyy g o Inf, where
Inf: H (Gal(L/K),Ar) — H'(Gal(M/K),Ap)
is inflation, this is clear from the compatibility of cup products with inflation. U

We may now define the reciprocity map.

DEFINITION 8.1.12. The reciprocity map for K with respect to the class formation (A,inv) for K
is the map
Pk: Ax — G%b
defined as the inverse limit of the reciprocity maps pg /g : Ax — Gal(E/K)® over finite Galois ex-
tensions of E in a separable closure of K.

The following theorem, which is immediate from the definitions, is called a reciprocity law.

THEOREM 8.1.13 (Reciprocity law for class formations). Let K be a field and (A,inv) a class
formation for K, and let pg: K* — G‘}‘(b. For any finite Galois extension L/K, the composition of pk
with restriction induces a surjective map py jx: K* — Gal(L/K )2 with kernel Ny, kL™
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REMARK 8.1.14. A class formation for K gives rise to a class formation for any finite separable
extension L of K, with the same module A and with the subcollection of invariant maps for finite
separable extensions of L. Therefore, we obtain reciprocity maps pr.: Ap — Gib for all finite separable
L/K from a class formation for K.

We next turn to properties of the reciprocity map. First, we need to describe a certain abstract
group homomorphism.

LEMMA 8.1.15. Let G be a group and H a subgroup of finite index n. Let X = {x1,x3,...,x,} be
a set of left H-coset representatives in G. Given g € G and x; € X, let 1 < g(i) <n and t;(g) € H be
such that

gxi = Xg(jti(8)-

Then the element V(g) of H® that is represented by the element t1(g)t2(g) - - -1,(g) is independent of
all choices, and this induces a homomorphism V : G*® — H®.

PROOF. Note that G acts on the set of left H-cosets by left multiplication. If we replace a single
x; by x;h for some h € H, then gx;h = xt;(g)h, so t:(g) is replaced by h~'#;(g)h if g(i) = i and t;(g)h
if g(i) # i. In the latter case, gx,-1(;) = Xifg-1(;y(g), and then 7,1 (;)(g) is replaced by h’ltg_l(i) (g).
For all other j, the quantity 7,(g) is unchanged. As the product #,(g)t2(g) - - -t4(g) is taken in H?®, it is
unchanged since the overall effect of the change is multiplication by /-2 ~!. Similarly, if the ordering
of the x; is changed, then the order of the #;(g) is likewise changed, but this does not matter in H ab,
Thus V(g) is well-defined.

To see that V is a homomorphism, we merely note that
gg'xi = gxg/(i)ti(g/) = xgg’(i)ti(g)ti(g/)
and again that multiplication is commutative in H2°. U

DEFINITION 8.1.16. Let G be a group and H be a subgroup of finite index. The homomorphism
V: G — H®™ constructed in Lemma 8.1.15 is known as the transfer map (or Verlagerung) between
Gand H.

LEMMA 8.1.17. Let G be a group and H a subgroup of finite index. We have a commutative

diagram

Hi(G,Z) =% H\(H,Z)

L L

\%
Gab Hab ’
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where the vertical maps are the canonical isomorphisms and 'V is the transfer map and a commutative
diagram

Hi(H,2) = H\(G,Z)

| |
Hab Gab
where the lower horizontal map is induced by the inclusion map.

PROOF. Recall that the vertical isomorphism is given by the series of canonical isomorphisms
H\(G,Z) = Hy(G,Ig) = Ig/I; = G*.
As restriction is a -functor, we have a commutative diagram

H\(G,Z) 225 H{(H,7) —— H,(H,Z)

| [ I

Ho(G,16) —= Ho(H,Ig) «—— Ho(H, Iy)).

That is, our restriction map factors through I /Igly. By the definition of restriction on Oth cohomol-
ogy groups, we have

n n
Res(g™' 1) =) x (g7 = 1) =} ((gu) "' —x;")
i=1 i=1
where {x1,x2,...,x,} is a set of left H-coset representatives in G. For #;(g) as in the definition of the

transfer, this equals

'M=

- _1 Zx_] = Z ri(g) ' - 1))‘;&) =Y ((e) ' —1)=Vi(g) "' — 1 mod IgIy.
1 =1 ‘

Il
_

1

Thus, the restriction map and the transfer agree.
The second statement follows easily from the commutative diagram

Hy(H,Z) —— H,(H,Z) —> H,(G,Z)

I [ |

Ho(H, 1) —— Ho(H,Ig) == Ho(G. I5).

The reciprocity maps attached to a class formation satisfy the following compatibilities.

PROPOSITION 8.1.18. Let (A,inv) be a class formation for K, and let L be a finite separable

extension of K. Then we have the following commutative diagrams:
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oL
AL —— G

[NL/K lRL/K

Pk
Ag —— G,

where Ry i denotes the restriction map on Galois groups,

b.

Pk
Ay —— G®

L[

pL
AL —— G,

where the map Ax — Ay is the natural injection and Vp /i : G}b — Gib is the transfer map, and
c.

pL
AL ——— G®

J/ ° J' -
Pa(rL)

Aoty — Gy,

for each embedding 6: L — K*P, where 6* denotes the map induced by conjugation T — 6716~

for T € Gy

PROOF. Fix a Galois extension M of K containing L. The norm Np x: A — Ak induces core-
striction from Gal(M /L) to Gal(M/K) on zeroth Tate cohomology groups, and

Ryx: Gal(M/L)™ — Gal(M/K)™

coincides with corestriction on Tate cohomology groups of Z in degree —2 by Lemma 8.1.17. Part a
then follows from Proposition A.9.10c, which tells us that

Cor (oL UB) = oy yx UCor(B)

for B € H°(Gal(M/L),Ay), since Res(ouy/x) = O/1-

The injection Ax — Ay induces restriction on H°(Gal(M/K),Ar), and the transfer map V}, /K
coincides with restriction on H~2(Gal(M/K),Z), again by Lemma 8.1.17. Part b then follows from
Proposition A.9.10a, which tells us that

Res(oyy/x UP) = apjx URes(B)

for B € AY(Gal(M/K),Ay).
We leave part ¢ as an exercise for the reader. U
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8.2. Norm groups
Let us fix a field K and a class formation (A,inv) for K.

DEFINITION 8.2.1. A subgroup .4 of A is called a norm group for the class formation (A,inv) if
there exists a finite separable extension L of K with 4" = Ny JKAL-

NOTATION 8.2.2. For a finite extension L of K, let us set A7 = NL/KAL.
LEMMA 8.2.3. Let M and L be finite separable extensions of K with L C M. Then Ny C N].
PROOF. This is the following straightforward calculation using Proposition 1.3.6:
M = Ny kAL = Ny (NpjxAL) C NyyAk = Sk
O

LEMMA 8.2.4. Let L be a finite separable extension of K, and let E be the maximal abelian
extension of K in L. Then N, = NE.

PROOF. It suffices to show that any a € 4% is contained in .47. Let M be a finite Galois extension
of K containing L. Set G = Gal(M/K) and H = Gal(M/L). By definition, we have pg/x(a) = 1, so
T=py/k(a) € G maps trivially to Gal(E/K) = G/(|G,G]H) by Corollary 8.1.11. In other words
7 is the image of some element o in H°. By the surjectivity of the reciprocity map py, AL —H ab
and there exists b € Ay, such that py;/; (b) = 6. By Proposition 8.1.18a, we then have

Py x(Neyx (b)) = Pk (@),
s0 a— Ny /k(b) = Ny /k(c) for some ¢ € Ay It follows that a = Ny /g (b — Ny (c)), as desired. [

The following corollary is essentially immediate.

COROLLARY 8.2.5. Every norm group A of (A,inv) has finite index in Ak, with [Ag : V| <L
K] for & = N1, with equality if and only if L/K is abelian.

We next show that the map that takes a finite extension L of K to Ny /gAy is an inclusion-reversing
bijection from finite abelian extensions of K to norm groups.

PROPOSITION 8.2.6. For any finite abelian extensions L and M of K, we have the following:
a. NNy = Nwm,

b. N+ Ny = Nams

c. My C A ifandonlyif L C M,

d. for any subgroup <f of Ax containing N, there exists an intermediate field E in L/K with
o = Ng.

PROOF.
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a. Let a € Ax. We have a € A7y if and only if px(a)|py is trivial, which occurs if and only if
px(a)|L and pg(a)|py are both trivial, and so if and only if a € .47 and a € A},.

c. By Lemma 8.2.3, if L C M, then .4}y C .47. On the other hand, if .4); C .47, then by part (a)
we have

Nm = NN My = N
By Corollary 8.2.5, this implies that [LM : K| = [M : K|, so LM = M, and therefore L C M.

d. Let E = LPk”) Then pr/k induces an injective homomorphism
o | N, — Gal(L/E)

that must be an isomorphism as p; x (/) does not fix any larger subfield of L than E. The kernel of
PE /K- being that pg k is the composite of p; /x with restriction, is then pL_/lK(Gal(L/E )) = <. But
we know from the reciprocity law that the kernel is .

b. By part (d), the group & = A7 + )y is equal to A for some finite abelian E /K which by
part (c) is contained in both L and M. On the other hand, we clearly have that </ is contained in
1AM, S0 again by (c), the field E contains LN M as well.

O
The following corollary is nearly immediate from part (c) of Proposition 9.2.8.

COROLLARY 8.2.7 (Uniqueness theorem). For a norm subgroup A of Ak, there exists a unique
finite abelian extension L/K such that N = N].

NOTATION 8.2.8. For a finite separable extension L of K, we set D; = kerpy.

LEMMA 8.2.9. For any finite extension L of K in a fixed separable closure K*P, we have

Dr= () NujAu,
Meé&y

where &7, is the set of finite abelian (or separable) extensions of L in K*°P.

PROOF. We have a € kerpy, if and only if py;/; (a) = pr(a)|s = 1 for all finite abelian M over L,
and kerpM/L:NM/LAM. O

DEFINITION 8.2.10. We say that a class formation (A,inv) for K is fopological if A is given an
additional Hausdorff topology under which it becomes a topological Gx-module with the following
properties:

1. the norm map Ny, : Ay — Ar has closed image and compact kernel for each finite extension
M /L of finite separable extensions of K,
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ii. for each prime p, there exists a finite separable extension K, over K such that for all finite
separable extensions L of K),, the kernel of ¢,: Ay — Ar by ¢,(a) = pa for a € Ay is compact and
the image of ¢, contains Dy, and

iii. for each finite separable extension L of K, there exists a compact subgroup Uy of Ay such that
every closed subgroup of finite index in Ay, that contains Uz, is a norm group.

REMARK 8.2.11. The norm map Ny : Ay — A for a finite extension of finite separable exten-
sions 1s continuous if A is a topological Gg-module, since it is a sum of continuous maps induced by
field embeddings of M in its Galois closure over L.

The following proposition uses only the property (i) of a topological class formation.

PROPOSITION 8.2.12. Let (A,inv) be a topological class formation for K. For any finite separable
extension L of K, we have Np kDL = Dk.

PROOF. Let &7 be the set of finite abelian (or separable) extensions of L in K% (and likewise
with K). We have

NL/K< N NM/LAM> C () NukAu= [ Nu/xAu,

Meéy, Meéy, Meék
the last step noting Lemma 8.2.3, and thus N gDy, C Dk.
Fix a € Dg. For any finite separable M /L, the set

Yy = NM/LAM ﬂNL_/lK(a)

is compact since Ny /xApm is closed and NL_/lK(a) is compact by Definition 8.2.10(i). Since a € D,
there exists b € Ay with Ny /x(b) = a, and then Ny (b) € Yy. Thus Yy is nonempty. Note that if
M’ /M is finite separable, then Y3, C Yy, and so the Y, form a collection of subsets of the compact
space Yy, that satisfy the finite intersection property. We therefore have that the intersection of all Y,
is nonempty, so contains an element b. Then N, /K(b) =a,and b € Dy, as it lies in every Ny /1 Au.
Thus, we have Ny /g (DL) = Dkg. O

The next proposition uses properties (i) and (i1) of a topological class formation.

PROPOSITION 8.2.13. Let (A,inv) be a topological class formation for K. Then Dy is divisible,
equal to (,_; nAk.

PROOF. To see that Dk is divisible, it suffices to show that Dxg = pDg for all primes p. Fix
a € Dk. Let L be a finite separable extension of K containing K,. Set

XL:%Q¢[;1<a>7

where ¢,,: A — Ay is the multiplication-by-p map. By (i) of Definition 8.2.10, the set .47 is closed,
and by (ii), the set ¢, !(a) is compact, so Xy is compact. By Proposition 8.2.12, there exists x € Dy
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with a = N jgx. By Definition 8.2.10(ii), there exists y € Dy, with py = x, and we set b = Np k.
Then b € X}, so Xy is nonempty. Again, if M /L is finite separable, then Xj; C X;. It follows as in the
proof of Proposition 8.2.12 that the intersection of all X7 as L varies is nonempty, so contains some
element c. By definition, we have ¢ € Dk and pc = b. Thus Dg = pDg.

Since Dg C Ak, we have

[}

DK: ﬂnDKg ﬂnAK.

n=1 n=1
Suppose, on the other hand, that a € (,_; nAk. Let b € Ax with nb = a for n > 1. Take any finite
separable extension L/K, and set n = [L : K| Then Ny /x(b) = nb = a, so a € N gAr. Since L was
arbitrary, we have a € Dy. J

We are now ready to prove the existence theorem for topological class formations, which tells us
that given a closed subgroup .4 of finite index in Ag, there exists a finite separable extension L/K
with 4~ = 7. Since a topological class formation for K gives rise to a topological class formation
for any finite extension of K (in that the existence of Uy, in condition (iii) is assumed for all finite
separable L/K, and not just for K), this result for norm groups of K implies the analogous result for
norm groups over finite separable extensions.

THEOREM 8.2.14 (Existence theorem). Let (A,inv) be a topological class formation for K. A
subgroup of Ak is a norm group if and only if it is closed of finite index in Ak.

PROOF. If a subgroup is a norm group, then it is of finite index by the reciprocity law and is
closed in Ag by Definition 8.2.10(1).

Conversely, if .4/ is a closed subgroup of Ak of finite index, set n = [Ag : ./]. Then nAg C .47, so
Dg C ./ by Proposition 8.2.13. Let Uk be as in Definition 8.2.10(iii). Then for any norm subgroup
M of Ak, the sets .# N Uk are compact. The intersection of the .# N Uk over all norm groups
A is equal to Dg N Uk, so is contained in the open set .4". Since the intersection of all .#Z N Uk
with Ax — .4 would be nonempty if each intersection were, there exists a norm group .# with
MM NUg C AN,

Letae #N(Ux+.#NAN),and writea=u+vwithu € Uy andve .#ZN.A. Thenu=a—v €
M,soucUxNA,souc AN, and thus a € 4. Thus, we have

MO (Ug+MONN)C N

Since .Z N .4 is closed of finite index, so is Ux +.# N .4, and thus it is a norm group by Defini-
tion 8.2.10(iii). Then .#Z N (Ux + .4 N.4") is a norm group by Proposition 9.2.8a, and ./ is a norm
group by Proposition 9.2.8d. U

PROPOSITION 8.2.15. Let (A,inv) be a topological class formation for K. Then the reciprocity
map
PK : Ax — G?P
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is continuous with dense image.

PROOF. To see that pg is continuous, we need only note that the inverse image .47, of the open
neighborhood Gal(K®® /L) of 1, for L/K finite abelian, is open by property (i) of Definition 8.2.10.

The closure of the image of px is obviously a closed subgroup of G& = lim, Gal(L/K), so equal
to Gal(K? /M) for some M /K abelian. As it also surjects onto each of the finite quotients Gal(L/K)
since each py /x is surjective, we must have M = K. Thus, px has dense image. U

8.3. Class field theory over finite fields

Class field theory for finite fields is rather simple, the reciprocity map being injection of Z into
the absolute Galois group of the field that takes 1 to the Frobenius automorphism. However, it allows
us to give a toy example of a class formation that illustrates the theory we have developed.

PROPOSITION 8.3.1. For any prime p and all powers q of p, there are canonical isomorphisms
inv: HZ(G}Fq,Z) = Q/Z for all powers q of p such that (Z,inv) is a class formation for F .

PROOF. For positive n, we have
Hl (GFqn ’ Z) = HomCtS(GFqn 9 Z)?

and the latter group is zero since the image of any continuous homomorphism of a compact Hausdorff
group with values in a discrete group is finite, and the only finite subgroup of Z is trivial.
Consider the exact sequence

0-Z—-Q—Q/Z—0.

Fori > 1, we have

Hi(GFqan) = hgl Hi(Gal(qu/Fqn),@> =0,

where the direct limit is taken over multiples of n, since H'(Gal(Fyn /F,n),Q) has exponent dividing
= but is also a Q-vector space. Thus, we have isomorphisms

8.3.1)  H*(Gg,.,Z) < H'(Gg,,Q/Z) = Homes(Gr,,,Q/Z) = Homes(Z,Q/Z) = Q/Z,
the latter map being given by evaluation at 1, and through these we obtain a map

invg,, : HZ(GFqn,Z) = Q/Z.
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For n | m, we have a commutative diagram

Res]g m /Fqn

H*(Gr,,,Z)

i l
Res]qu /]Fqn

H'(Gg,,,Q/Z) —— H*(Gg,,.,Q/Z)

HZ(Gqu 5 Z)

i iIlV]Fqn 1 inV]qu
Q/Z Q/2Z.
To see the commutativity of the lower square, note that the homomorphism that sends the Frobenius

element @, in Gy, to 1 restricts to a homomorphism sending the Frobenius ¢, = o M to =, and the

invariant map for n (resp., m) sends the homomorphism that takes ¢, (resp., ¢,,) to 1 to the element
1 € Q/Z. Thus, (Z,inv) is a class formation for IF,,. O

Let us fix the class formation (Z,inv) of Proposition 8.3.1 each prime p in order to discuss reci-
procity maps and norm groups.

PROPOSITION 8.3.2. For a prime power q, the reciprocity map
qu L — GIFq
satisfies pr, (1) = @, where @ is the Frobenius element in Gp,.

PROOF. Let n > 1, and consider the homomorphism y: Gal(F,/F,) — Q/Z that takes (the
restriction of) @ to % Let 6 denote the connecting homomorphism arising from the sequence 0 —
7 — Q— Q/Z — 0. By Proposition 8.1.10, as required, we have

1 (P75, (1)) = inv,, 5, (1U8(2)) = inve s, (8(2)) =
the last equality following from the construction of the invariant map in (8.3.1). U
The following should already be clear.
PROPOSITION 8.3.3. Let q be a prime power.
a. For any n > 1, the reciprocity map
PF/F, Z — Gal(Fg /Fq)
is a surjection with kernel nZ.

b. The map pr, is injective with dense image. With respect to the discrete topology on Z, it is

continuous.

c. The map that takes nZ, for n > 1, to Fyn is a bijection between (closed) subgroups of Z (under

the discrete topology) and finite (abelian) extensions of ¥, in an algebraic closure of IF,.
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The third part of Proposition 8.3.3 does not provide such a great example of the theory of norm
groups, in that the discrete topology makes the class formation (Z,inv) topological, with Dp, and Uy,
in Definition 8.2.10 both the zero group.






CHAPTER 9

Local class field theory

9.1. The Brauer group of a local field

Fix a local field K and a separable closure K*P of K. All separable extensions of K will be
supposed to lie in K*°P. In this section, we construct invariant maps invy: Br(L) — Q/Z for finite
separable extensions L/K such that ((K*P)* inv) forms a class formation for K.

NOTATION 9.1.1. For a Galois extension E/F of fields, we set
Br(E/F) = H*(Gal(E/F),E*).

We construct invg by first defining it on the subgroup Br(K" /K) of Br(K) corresponding to the
maximal unramified extension K" of K. For this, note that the unique extension wg : (K")* — Z of
the additive valuation on K to K" is a map of Gal(K"" /K )-modules, hence induces a map

wk: Br(K"/K) — H*(Gal(K""/K),7Z),
where we identify Gal(K" /K) with Z via the isomorphism taking the Frobenius element to 1.

DEFINITION 9.1.2. The invariant map invgu /x : Br(K""/K) — Q/Z is the composition

Br(K"/K) vk, H*(Gal(K“ /K),Z) LN (Gal(K™/K),Q/Z) —*, /Z,

where 9 is the connecting homomorphism arising from 0 - Z — Q — Q/Z — 0, and ev, is evalu-
ation at the Frobenius ¢ in Gal(K""/K).

We will show that invgur /g is an isomorphism, which amounts to showing that wy is an isomor-
phism. We require a preliminary lemma.

LEMMA 9.1.3. Let G be a finite group, and let M be a G-module such that there exists a decreasing
sequence (My),>0 with My = M of G-submodules of M for which

M =1im M /M,,.
{% n

Let i > 0, and suppose that H(G,M, /M, 1) = 0 for all n > 0. Then H'(G,M) = 0 as well.
173
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PROOF. Let f € Z/(G,M). Suppose that we have inductively defined f, € Z'(G,M,) and h; €
C"~1(G,M;) for 0 < j < n— 1 such that

n—1
f:fn+ Zdl_l(hj>'
j=0

(Note that we take C~!(G,M;) = 0.) The image of f, in Z!(G,M,/M, 1) is a coboundary by as-
sumption, say of &, € C'~'(G,M, /M, ). Lifting h, to any h, € C'~'(G,M,), we then set f, | =
fo—d=(h;). Since M = im M /M., the sequence of partial sums Y% h; converges to an element
of C'~1(G, M) with coboundary f. O

PROPOSITION 9.1.4. Let L be a finite Galois extension of K. Then there exists an open Gal(L/K )-
submodule V of O} that is cohomologically trivial.

PROOF. Let G = Gal(L/K). By the normal basis theorem, there exists o € L such that {o() |
o € G} forms a K-basis of L. By multiplying by an element K*, we may suppose that o € &p. Let
N be the Ok-lattice in L spanned by the o(a). Let 7 be a uniformizer in 0. Then [0, : A'] is finite,
so "0, C A for n sufficiently large. Set A = n"*'A’. Then

A-A— 77:2("+1)A/ C 77:2(n+1)ﬁL C 7[”+2ﬁL C 7A.

Then V =1+ A is a G-submodule of ﬁLX, and V in turn has a decreasing filtration V; = 1 + TT'A for
i > 0 of G-submodules. We have isomorphisms

Vi/Vigrt S A/, (14 74V — A+ 7A.

Since A/mA is a free IF,[G]-module, it is induced, so cohomologically trivial. Lemma 9.1.3 then
tells us, in particular, that H i(Gp,V) =0 for all i > 1 for each Sylow subgroup G, of G, and the
cohomological triviality then follows from Theorem A.11.11. U

We use Proposition 9.1.4 first to study the case of cyclic, and then more specifically, unramified
extensions.

COROLLARY 9.1.5. Let L be a finite cyclic extension of K. Then the Herbrand quotient of O}
with respect to group Gal(L/K) is 1.

PROOF. Let V be as in Proposition 9.1.4. The exact sequence
1=V =0 =07 /V—1

gives rise to the identity of Herbrand quotients
h(O7) = h(V)R(OF V) = 1

since &) /V is finite as V is open. O
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COROLLARY 9.1.6. Let L/K be a finite unramified extension. Then O} is a cohomologically
trivial Gal(L/K)-module.

PROOF. It clearly suffices to show that H'(G,0;) = 0 for G = Gal(L/K) and all i, since any
subgroup of G is the Galois group of an unramified extension of local fields. The additive valuation
v on Oy restricts to the valuation vk on &, since L/K is unramified. The short exact sequence

160 L 570
then gives rise to a long exact sequence starting
1= 0 - K* %7 - H'(G,0)) = H'(G,L),

with the last group zero by Hilbert’s Theorem 90 and the map v surjective. Thus H' (G, 0;) =0, and
since L/K is cyclic, the result follows from the triviality of the Herbrand quotient and the periodicity
of Tate cohomology. [

PROPOSITION 9.1.7. The invariant map invgu x: Br(K" /K) — Q/Z is an isomorphism.

PROOF. For any i > 1, Proposition 9.1.6 implies that
H'(Gal(K"/K), Ofw) = lim H'(Gal(K, /K), 67) = 0
n
where K, is the unique unramified extension of K (in K*P) of degree n. The valuation map yields an
exact sequence
1 = O — (K" 257 0,
we therefore have that
wi: Br(K"/K) — H?*(Gal(K"“ /K),7Z)

is an isomorphism. The other maps in the definition of invgu x are clearly isomorphisms, so the
result holds. O

NOTATION 9.1.8. For a finite separable extension L of K, we use Res; /g to denote the map
Res; /x: Br(K"/K) — Br(L"/L)
defined by the compatible pair consisting of restriction Gal(L"" /L) — Gal(K""/K) and the inclusion
(K")* — (L")~
REMARK 9.1.9. For L/K finite separable, the map Res; /k fits into a commutative diagram

ReSL/K

Br(K" /K) — Br(L" /L)

llnf llnf
RCSL/K

Br(K) —— Br(L).
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The following describes how our invariant map behaves after finite extension of the base field.
PROPOSITION 9.1.10. Let L be a finite separable extension of K. Then
invzu/p oResy /g = [L: K]invgur /g -

PROOF. We claim that the diagram

Br(K"/K) W—z> H?(Gal(K" /K),Z) £> H'(Gal(K" /K),Q/Z) % Q/Z
lReSL/K leuk Res; /x leL/K Resy l LK
Br(L" /L) — = H2(Gal(L"/L),Z) LA H'(Gal(L" /K),Q/Z) 20 /Z

commutes (where Res; /g in the middle two arrows denotes the corresponding composition of re-
striction and inflation), from which the result follows. The commutativity of the middle square is
straightforward. Since the restriction of wy, to (K")* is e; xwg, the leftmost square commutes.
Since the restriction of @, to K" is the f7 /x-power of @k, the rightmost square commutes. O

Having defined the invariant map on Br(K""/K) and shown that it satisfied the desired property
with respect to change of base field, our next goal is to show that the inflation map

Inf: Br(K"/K) — Br(K)
is an isomorphism. At the finite level, we note the following.
COROLLARY 9.1.11. Let L/K be a finite Galois extension of local fields, and set
Br(L/K)" =Br(K"/K)NBr(L/K) < Br(K).
Then Br(L/K)"™ is cyclic of order [L : K.
PROOF. By the inflation-restriction sequence for Brauer groups, we have
Br(L/K)" = {a € Br(K" /K) | Res; /g (o) = 0}.

By Proposition 9.1.10, this coincides with the kernel of [L : K] on Br(K""/K), which is cyclic of order
n. U

We require a special case of the following cohomological lemma.

LEMMA 9.1.12. Let G be a finite group, let A be a G-module, and let i,r > 0. Suppose that for all
subgroups H of G, we have that H/(H,A) = 0 for all 1 < j <i— 1 and that the order H'(H /K ,AX)
divides [H : K" for all normal subgroups K of H of prime index. Then the order of H'(G,A) divides
GI".
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PROOF. If we replace G by a Sylow p-subgroup for a prime p, then the conditions of the lemma
are still satisfied. By Corollary A.8.24, we see that |[H'(G,A)| divides [, |H'(Gp,A)|, which if we
prove the lemma for each G, will divide [], |G,|" = |G|".

Thus, we can and do assume that G is a p-group. Let H be a normal subgroup of G of index p. By
hypothesis, we have that |A(G/H,A")| divides p”, and we may suppose by induction on the order of
G that |H'(H,A)| divides |H|". If i > 1, then by the triviality of H/(H,A) for 1 < j <i— 1, we have
an exact inflation-restriction sequence

0— H'(G/H,A") - H'(G,A) — H'(H,A),

so the order of H(G,A) divides |G|" = (p|H|)". For i = 0, we merely replace the inflation-restriction

sequence with the exact sequence
A°(H,A) <5 A%(G,A) — A°(G/H,A"),

where we recall that corestriction in degree 0 coincides with the sum over left coset representatives
of G/H. O

THEOREM 9.1.13. The inflation map Inf: Br(K"/K) — Br(K) is an isomorphism.

PROOF. It suffices to see that Br(L/K)" = Br(L/K) for every finite Galois extension L/K, since
the union under (injective) inflation maps of the groups Br(L/K)"" is Br(K""/K) and the union under
inflation maps of the groups Br(L/K) is Br(K). For this, it suffices by Corollary 9.1.11 to show that
Br(L/K) has order dividing n = [L : K].

First, suppose that L/K is cyclic. We consider Herbrand quotients for G = Gal(L/K). The exact
sequence defined by the valuation on L yields

h(L*) = h(6;)h(Z).

We have 1(0)) = 1 by Lemma 9.1.5, while 4(Z) = n since H°(G,Z) = Z,/nZ and H~'(G,Z) = 0.
Since k1 (L*) = 1 by Hilbert’s Theorem 90, we have |Br(L/K)| = ho(L*) = n.

Now take L/K to be any finite Galois extension. With G = Gal(L/K) and A = L*, the hypotheses
of Lemma 9.1.12 are satisfied with i =2 and r = 1 by Hilbert’s Theorem 90 and the case of cyclic
extensions. Consequently, Br(L/K) has order dividing n, as we aimed to show. O

By Theorem 9.1.13, we may make the following definition of the invariant map for K (and hence
for any local field).

DEFINITION 9.1.14. The invariant map invg : Br(K) — Q/Z for a local field K is the composi-
tion

Inf~! iIlVKur/K

) ——

invg: Br(K) — Br(K"' /K Q/Z.

THEOREM 9.1.15. The pair ((K*P)*,inv) is a class formation for K.
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PROOF. For L/K finite separable, we have H'(Gy, (K*P)*) = 0 by Hilbert’s Theorem 90. The
invariant map invy, is an isomorphism by Theorem 9.1.13 and Proposition 9.1.7. Moreover, we have

invi,oRes; /x = [L: K]invg
as a consequence of Proposition 9.1.10, noting Remark 9.1.9. Thus, the axioms of a class formation
are satisfied. 0
9.2. Local reciprocity

We continue to let K denote a local field and K*°P a separable closure of K.

DEFINITION 9.2.1. The (local) reciprocity map for K is the reciprocity map px: K* — G?(b
attached to the class formation ((K*°P)* inv) of Theorem 9.1.15.

Let us proceed directly to the statement of the main theorem.

THEOREM 9.2.2 (Local reciprocity). Let K be a nonarchimedean local field. Then the local
reciprocity map
px: K* — G®
satisfies

i. for each uniformizer & of K, the element pg(m) is a Frobenius element in G’}{b, and

ii. for any finite abelian extension L of K, the map
pL/K: I{>< — Gal(L/K)
defined by py jx(a) = px(a)|L for all a € K* is surjective with kernel Ny jxL*.

PROOF. By Theorem 8.1.13, the reciprocity map px satisfies (ii). We show that it satisfies (i). For
this, take any finite unramified extension L/K, and let G = Gal(L/K). Let ¢ denote the Frobenius
elementin G. Let x : G — Q/Z be an injective homomorphism. It suffices to show that x (o /k (7)) =
x(@). By Proposition 8.1.10, we have

X(pr/k(m)) =invp g (TUS(X)),

where 6 is the connnecting homomorphisms for 0 — Z — Q — Q/Z — 0. For the valuation v; on L,
we have

vi(rUd(x)) =ve(m)Ud(x) = 8(x)-

Since invy /g = eve 08 1o v; by definition, we have

invy g (TUS(x)) =eve(x) = x(9).

REMARK 9.2.3. Theorem 9.2.2 is also referred to as the local reciprocity law.
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We can quickly see a connection with class field theory over a finite field.
PROPOSITION 9.2.4. Let K be a nonarchimedean local field and ©t a uniformizer of K. Let
lr: Z — (m)
denote the isomorphism that sends 1 to . Let
Res: G}"(b — Gy(k)

be induced by the restriction map to Gal(K"'/K) and its natural isomorphism with G, as in
Proposition 6.4.10. Then

RCSO[)K olg: Z — GK‘(K)
is the reciprocity map py () for the finite field k(K).

REMARK 9.2.5. Given a nonarchimedean local field K and a finite abelian extension L of K, we
at times also denote by p; /g the induced isomorphism

~

pL/K: I(X/NL/KL>< — Gal(L/K)
and refer to it also as the local reciprocity map for L/K.

REMARK 9.2.6. In the case K is R or C, we can also define a reciprocity map. In the case of C,
the group G is trivial, so the reciprocity map is trivial pc: C* — 1. In the case of R, it is the unique
homomorphism

pr: R* — Gal(C/R)

with kernel the positive reals R~ .

We remark that the following compatibilities among local reciprocity maps follow immediately
from Proposition 8.1.18.

PROPOSITION 9.2.7. Let K be a local field, and let L/K be a finite separable extension. Then we

have commutative diagrams

P p P
L =G> KGR L ——— G
\NL/K JVRL/K J/iL/K J{VL/K lc lg*
K* Pk Gab IE pL Gab 1) Po(L) Gib
— Uk UL o(L) — Gy,

where Ry /g denotes the restriction map, iy /i is the inclusion map, Vi jk is the transfer map, and for
any embedding 6 : L — K*P, the map ¢* is induced by conjugation © — cto~! for T € Gy.
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It follows immediately from Theorem 9.2.2(ii), or Corollary 8.2.5, that we have

for any finite abelian extension L of K in K°P. Moreover, in the present context, Proposition 8.2.6
says the following.

PROPOSITION 9.2.8. Let K be a local field, and let L and M finite abelian extensions of K. Then
we have the following:

a. NpjkL* O NygM™ = Npyg e (LM)*,
b. NpjxL™ - NygkM™ = Ny g (LOM)™,
. NyyxkM™ C Ny L™ if and only if L C M,

d. for any subgroup A of K* containing Ny /KLX, there exists an intermediate field E in L/ K with
A - NE/KEX .

REMARK 9.2.9. The equality of degrees and the statements of Proposition 9.2.8 quite obviously
hold for archimedean local fields as well. The extension C/R is of course the only nontrivial extension
in that setting, with norm group N /gC* = RZ, of index 2 in R*.

9.3. Norm residue symbols

NOTATION 9.3.1. In this section, we fix an integer n > 1 and suppose that K is a local field of
characteristic not dividing » such that K contains L, the nth roots of unity in a separable closure K*P
of K.

DEFINITION 9.3.2. The nth norm residue symbol (or Hilbert symbol, or Hilbert norm residue
symbol) for the field K is the pairing

(, Jnk: K*XK* —

defined on a,b € K* by

_ px(b)(a'/™)
(aab)n,K — Ta

1/n

where a!/" is an nth root of o in K?°.

REMARK 9.3.3. Since K contains U, the nth roots of a lie in K ab and every element of G;‘(b acts

trivially on u,, so the quantity G(al/ ”)a’l/ "foro € G‘;‘<b is independent of the choice of nth root al/n

of a.

PROPOSITION 9.3.4. The nth norm residue symbol for K has the following properties:

a. it is bimultiplicative: i.e., for all a,b,a’,b' € K, we have

(aalub)n,K = (avb)n,K(alub)n,K and (a7bb/)n,K = (a7b)n,K(a7b/)n,K7
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b. (a,b)px =1 fora,b e K* ifand only if b € NK(al/n)/KK(al/")X,

c. (a,1—a)px=1forallac K—{0,1},

d. (a,—a)px =1foralla € K*,

e. it is skew-symmetric: i.e., (a,b), x = (b,a);}(for all a,b € K*,

f- it induces a perfect pairing on K* /K*": i.e., (a,b),x =1 for a fixed a € K* (resp., b € K*)
forallb e K* (resp., a € K*) if and only if a € K*" (resp., b € K*").

PROOF.

a. Note that we may choose (aa’)!/" to equal a'/"(a’)!/". Since pg(b) is a homomorphism, we
have

pr(b)((ad)''")  pr(b)(a'/") px(b)((d)'/")

/ —
(aa’,b)px = (ad )1/ = al/n (a)1/n

- ((l, b)n,K(a/7 b)l’l,K7

and since p is a homomorphism and px (b) € G¥ acts trivially on p,, we have

pe(bY)(@ ") _ pr®)@) ) (pK<b'><al/">

/ —
(a’bb )”’K - al/n al/n al/n

) = (a,b)nx(a,b)nk.

b. Note that (a,b), x = 1 if and only if pg(b)(a'/") = a'/", so if and only if pg(b) fixes K (a'/"),
and so if and only if pK(al/n)/K(b) = 1. But this occurs if and only if b is a norm from K(a'/") by
local reciprocity.

c. For any ¢ € K* and a primitive nth root {, of 1 in K, we may write

n—1

d'—a= q(c— igh/m) :NK(al/n)/K(c—al/”).

We then take ¢ = 1 and apply (b).
d. Take ¢ = 0 in the proof of (c) and again apply (b).
e. By (d) and (a), we have

1= (ab, _ab)mK = (aa _a)mK(a,b)n,K(bya)n,K(b7 _b)n,K = (aab)mK(bya)n,K-

f. If a € K*", then write a = ¢" with ¢ € K*, and note that (a,b), x = (c,b);, ¢ = 1. On the other
hand, if (a,b), x =1 for all b € K*, then Pk (al/n)/k is the trivial homomorphism by the argument of
(a). Local reciprocity then tells us that K (al/ ") =K, so a € K*". The analogous statement switching

the variables now follows immediately from (e).
O

REMARK 9.3.5. Part (b) of the Proposition 9.3.4, says that (a,b), x = 1 for a,b € K* if and only
if b 1s a norm from K (al/ ™). Tt is this property for which the norm residue symbol is named. Much
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less obvious from the definition is the fact then obtained using the skew-symmetry of the symbol in
part (e) of said proposition: that is, we also have (a,b), x = 1 if and only if a is a norm from K (b'/").
So, a is a norm from K (b'/") if and only if b is a norm from K (a'/").

Let us compute the norm residue symbol for n = 2, when p = 2, which is sometimes simply
referred to as the Hilbert symbol.

PROPOSITION 9.3.6. Let a,b € Z5. Then (2,2)20, = 1,
(a,b)2,g, = (—1) VDA and (2,b)yg, = (—1)*" D/,
PROOF. Note first that the expression f(a,b) = (a—1)(b— 1) mod 8 for a,b € Z5 satisfies
flad ,b) = (d'(a—1)+d —1)(b—1) = f(a,b)+ f(d',b) mod 8
and the expression g(b) = b*> — 1 mod 16 satisfies
g(bb') = (bb')* = 1= (') (> = 1)+ ((')> = 1) = g(b) +g(b') mod 16,

so the right-hand sides of the equations of interest are multiplicative in the variables a and b. Since
they are also continuous, it suffices to verify the formulas on a set of topological generators.

Recall that Q} is topologically generated by —1, 2, and 5. First, we claim that —1 is not a
norm from Q;(i), which is to say an element of the form a*+b?* with a,b € @ZX. For this, note
that it suffices to consider a,b € ZJ and then congruence modulo 4 eliminates the possibility. We
therefore have (—1,—1), g, = —1. Since 2 and 5 are norms from Q, (i), we have (2,—1), g, = 1 and
(5,—1)2,0, = 1. We then have (noting (d) of Proposition 9.3.4) that

(272)27Q2 = (27 _2)2,(@2 (25 _1)27(@2 =1
and similarly (5,5),, = 1. Finally we calculate (2,5),g,. The question becomes whether 5 =
a* —2b? for some a,b € 75, but a?,b* lie in {0,1,4} modulo 8, and a quick check shows that the
equality cannot hold modulo 8 and therefore (2,5), g, = —1. These values all agree with the stated
values, as needed. OJ

In the case that n and the residue characteristic of K are coprime, the norm residue symbol is also
not too difficult to compute. Note that in this case, the extensions K (al/ ") with a € K* are tamely
ramified.

DEFINITION 9.3.7. Suppose that n is relatively prime to the residue characteristic of K. Then
( , )nk is called a tame symbol.

THEOREM 9.3.8. Suppose that n is not divisible by the residue characteristic of K. Let q denote
the order of the residue field x of K, and note that n divides q — 1 since K is assumed to contain L.
For a,b € K*, let [a,b|g € K* be defined by

v (b)
_ (_qyxl@vk®) @t
[a7b]K = ( 1) K bk (@)

mod 7ig,
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where Tk is a uniformizer of K. We then have

(a,b)nk = [a bl " €
identifying elements of W,(K) with their unique lifts to nth roots of unity in K.

PROOF. Let us first compute (a, g ), x for a unit a € &% Let L = K(a'/"), and note that L/K
is unramified. Therefore, p; /x(7x) is the unique Frobenius element in Gal(L/K). In particular, we
have

px (1) (@™ = (a'™)? mod nx Oy,
SO
(a, nK)nJ{ = ql4=D/" mod Tk,

as desired. Note that if b € Oy as well, then py /x (b) is trivial since L/K is unramified, so (a,b), x =

1.

In general, take a,b € K*, and write a = n'lv((a)oc and b = nlz(b) B with o, B € 0. Writing v = vg

for short, the properties of the norm residue symbol and the cases already computed yield

(a,b)uk = (mx, 7)1 (o, 7)) (B, ) @

— (7, — 1)@ (0) g (B)a=1) /ng—v{a)(g=1)/n (1 )a)v(b) 2 (B) p=v(@)y(g=1)/m

Y

as originally asserted. U

REMARK 9.3.9. We may also speak of the 2nd norm residue symbol for R, which is defined in
the same manner as for nonarchimedean local fields. It satisfies

1 ifab<0,
(a7b)2,R: .
1 ifab>0,

since —1 is not a norm from C to R. We can also speak of nth norm residue symbols for C for any n,
but they are all of course trivial.

We end with a more cohomological description of norm residue symbols which can be useful.
From now on, let us identify Z/nZ with %Z /Z via the inverse of multiplication by n. We denote the
resulting injection Z/nZ — Q/Z by 1.

LEMMA 9.3.10. The invariant map on Br(K) induces a canonical isomorphism
HZ(GKa.un ®z .un) 1> WUp.

PROOF. First, note that L, is a trivial Gx-module since i, is contained in K. Set u*? = p,, @7 U,
First, there is a canonical isomorphism

H' (G, 1) @7ty — H' (Gi, u5?)



184 9. LOCAL CLASS FIELD THEORY
for all i € Z that is induced by the map of complexes

C(GK,,un) Kz Un — C(GKMU'I?Z)

that takes an f ® ¢, where f € C'(Gk, 1t,) and { € , to the cochain with value on x € G’ given by

fx)®¢.

Secondly, recall from Proposition B.5.4 that H*(G, ;) = Br(K)[n], and the invariant map in-
~ -1
duces an isomorphism Br(K)[n] — %Z /Z.“— Z/nZ. In total, we have

Hi(GKnur(lg)z) = :un@z/nz = Hn,
hence the result. O

Recall that Kummer theory provides an isomorphism K* /K*" = H ! (Gk, Un), hence a canonical
surjection from K* to the latter group.

PROPOSITION 9.3.11. The pairing ( , ) defined by the cup product through the composition
(1, ): KX XK* — H' (G, ) x H'(Gi, ttn) = H (G, o @2 ) = Ly
is equal to the norm residue symbol for K.

PROOF. Leta,b € K*. Let x,: Gk — U, be the Kummer character attached to a. Fix a primitive
nth root of unity §,, let ¥ : Gk — Z/n’Z be defined by y,(0) = C,%(G), andlety =10%: Gk — Q/Z.
By definition and Proposition 8.1.10, we have

(avb)n,K = Xa(pK( )) Cn mVK (bUsd(2)))

where 0 is again the connecting homomorphism for 0 — Z — Q — Q/Z — 0. On the other hand,

Y

XaYUXp = (XY xp) @ &,

and we see that
( ) CH IHVK (X))

by construction of the isomorphism in Lemma 9.3.10.
It thus suffices to see that bU () = ¥ U xp in Br(K)[n]. We compare 2-cocycles representing
these classes, noting the antisymmetry

XUxs=—(UX).

Lift } to amap ) : Gx — Z, and choose an nth root  of b. Let 6,7 € Gg. By construction of §, we
have

50)(0,7) = - (W(0) + ¥() ~ w(oT) € Z,

from which it follows that

(bUS(x))(0,7) = p°WN@D) = gy VBT
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while, via the identification u, ® Z/nZ = u,, we have

y(t)
mUD(eD) =@ 270 = (TF) €

The product of these 2-cocycles in Z2(G, (K5P)*) is
By g—¥e 5BV,
which is the value on (o, T) of the coboundary of the 1-cochain

o BV,

9.4. The existence theorem

Let K be a local field. We give its separable closure K*°P the topology defined by the unique
extension of the valuation on K to K*P and then endow (K*P)* with the subspace topology. We
will show that ((K*°P)* inv) is a topological class formation. Note that the Galois group Gk acts
continuously on (K*®P)* since it its action preserves the valuation of elements.

PROPOSITION 9.4.1. For any finite separable extension L of K, the norm map Np i L* — K*

has closed image and compact kernel.

PROOF. Recall from Proposition 5.5.6 that €/ is compact. Since vg o N /k = Jr/kVL, the kernel
of the continuous map Ny k is a closed subgroup of &, 7, hence is compact.
Since ;" is compact, N /x (07 ) is a closed subset of & . Note that

NL/KﬁZ - ﬁ);é ﬂNL/KLX,

SO

[0k Nk 071 < K™ : NpygL*] = [L: K]
is finite. Being of finite index in Oy, the closed subgroup Ny /(&) is open in Oy . Since O is
open in K*, the group Ny /x (&) is open in K* as well. Finally, as a union of N; /x (&} )-cosets, the
subgroup Nz /xL* is open in K™, hence closed. O

PROPOSITION 9.4.2. Let p be a prime, and suppose that the characteristic of K is not p. For any
finite separable extension L of K(u,), the pth power map on L* has finite kernel |, and image L*?
containing D = kerpy.

PROOF. The first statement is obvious. If a € kerpy, then a € Ny, M™ for every finite abelian
extension M of L. In particular, for all b € L*, we have that a € NL(bl/p)/LL(bl/p)X, so (a,b),1 =1.
Proposition 9.3.4f then implies that a € L*?. U
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PROPOSITION 9.4.3. Every closed subgroup of K* of finite index that contains O is a norm
group.

PROOF. Note that K* /¢ =2 7 via the valuation map, which is in fact a homeomorphism if we
give the left-hand side the quotient topology and the right-hand side the discrete topology. The closed
subgroups of finite index in Z are the nontrivial subgroups, so the closed subgroups of finite index in
K* that contain & are those of the form .4, = (1) O for some n > 1 and a fixed uniformizer 7.

If K, is the unramified extension of K of degree n, then every element of K, has the form for some
i€Zanduée ﬁXn, and we have

NKn/K(TL'iM) = ﬂ”iNKn/K(u) S %

The indices of the two subgroups N, K\ < A, of OF are both n, the former being the consequence
(9.2.1) of local reciprocity, so they must be equal. 0

THEOREM 9.4.4 (Existence theorem of local CFT). The closed subgroups of K* of finite index

are exactly the norm subgroups Ny kL™ with L a finite abelian extension of K.
We omit the proof of Theorem 9.4.4 for Laurent series fields and focus on the characteristic zero
setting.

PROOF FOR p-ADIC FIELDS. The three properties of Definition 8.2.10 are satisfied by Proposi-
tions 9.4.1,9.4.2,9.4.3, so the result follows from Theorem 8.2.14. O

We also have the following, which is actually immediate from part (c) of Proposition 9.2.8.

THEOREM 9.4.5 (Uniqueness theorem of local CFT). Let L and M be distinct finite abelian ex-
tensions of K. Then Ny gL # Ny /jxgM™.

REMARK 9.4.6. Taken together, the existence and uniqueness theorems that there is a one-to-one
correspondence between finite abelian extensions L of K and open subgroups of finite index in K*
given by taking L to Ny xL*. In part for historical reasons, we have stated them separately. We
have seen additional properties of this (inclusion-reversing) correspondence in parts (a) and (b) of
Proposition 9.2.8.

Next, we see that local reciprocity and the existence theorem imply the following.
THEOREM 9.4.7. Let K be a nonarchimedean local field.
a. The reciprocity map pk is continuous and injective with dense image.

b. The restriction of px to Oy provides a topological isomorphism between Oy and the inertia
subgroup of G}‘(b.

PROOF. That pg is continuous with dense image follows from Proposition 8.2.15. Recall that, by
definition, the groups U;(K) with i > 1 form a basis of open neighborhoods of 1 in the topology on
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K. They are not, however, of finite index in K*. However, the subgroups (7") x U;(K) with i,n > 1
are, and are clearly open. Moreover, their intersection is {1}. By the existence theorem, there exists
a finite abelian extension L, ;/K such that N; /L, = (7")U;(K). For a € K* with a # 1, we may

X
n,i’

then choose n and i large enough so that a ¢ Ny . /kL, ;» and therefore local reciprocity tells us that
Pr,,/k(a) is nontrivial, so px (a) is nontrivial. That is, p is injective. This proves (a).

That px maps Oy into the inertia group in G?(b is as follows. Every element u € 0 may be
written as a quotient of two uniformizers 7 and 7’ by taking 7’ = ux for any uniformizer 7. By

property (i) in the local reciprocity law, we have

P (1) ke = pic () g (P () [gor) ™' = e = 1,

where @k is the Frobenius element of Gal(K""/K). Hence, px (u) lies in the inertia subgroup, and for
the same reason, this occurs only when u is a unit. As for surjectivity onto inertia, the element pg (1)
gives a choice of Frobenius, hence a splitting of the surjection G‘}(b — Gal(K""/K). Via this splitting,
the reciprocity map is the direct product of the continuous maps from € to inertia and the group
generated by 7 to Gal(K"'/K). Since pg has dense image, the image of & in inertia is therefore
dense as well, and it suffices to see that pg (% ) is closed. But pk is continuous and & is compact
Hausdorff, so indeed this is the case, proving (b). O

We leave the following remark to the reader as an exercise.

LEMMA 9.4.8. Let K be a nonarchimedean local field, and let T be a uniformizer of K. Let
Ky denote the fixed field of pg(7) in K. Then K*® = K - K. Moreover, Ky is a maximal totally
ramified extension of K in K.

We next prove the uniqueness of the local reciprocity map to complete the proof of the local
reciprocity law.

THEOREM 9.4.9 (Uniqueness of the local reciprocity map). The reciprocity map Pk is the unique
map satisfying properties (i) and (ii) of Theorem 9.2.2.

PROOF. We prove that if a homomorphism ¢ : K* — G}b satisfies properties (i) and (ii) of Theo-
rem 9.2.2 with pg replaced by ¢, then it is pg. Consider the open subgroup A, = (w)U,(K) of finite
index in K*. By the existence theorem, there exists a finite abelian extension L, of K with norm
group equal to A,. The union of the fields L, is the field K; of Lemma 9.4.8. Being that & € A, for
all n, we have that by property (ii) of the local reciprocity law that ¢ ()|, = 1,. On the other hand,
by property (i), we have that ¢ (7)|gu is the Frobenius element of Gal(K"/K). On the other hand,
px (1) also has both of these properties and K% = K, - K, so px () = ¢ (7). Since this holds for every

1

uniformizer of K and any a € K* can be written as a = nvk(@=1. 7/ where 7’ is a uniformizer defined

by this equality, the two maps px and ¢ are equal. 0

We end with a few remarks on the topology of K*.
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PROPOSITION 9.4.10. Let K be a p-adic field. Then every subgroup of K* of finite index is open.

PROOE. Since A be a subgroup of finite index in K*, and let m be the exponent of K* /A. Then
K*™ C A, and Proposition 6.3.9 tells us that K* /K™ is a finite abelian group (in fact, isomorphic to a
subgroup of (Z/ mZ)[K ‘Qpl+2) Thus K™ has finite index in K*. As the mth power map is continuous
and Of is compact, Og™ is closed in O . Letting mx denote a uniformizer for K, we then have that
K" = 0™ (my) is closed in K*, therefore open. As A is a union K *-cosets, it is open as well. [

COROLLARY 9.4.11. Let K be a p-adic field. Then pk induces a topological isomoprhism
K =GR,
where K is the profinite completion of K*.

PROOF. By definition G¥ is isomorphic to the inverse limit of the system of groups Gal(L/K)
for L/K finite abelian with respect to restriction maps. On the other hand, local reciprocity provides
a series of isomorphisms

PL/K3 I{X/]VL/KL>< l} Gal(L/K)

that are compatible with the natural quotient maps on the left and restriction maps on the right. In
other words, local reciprocity sets up an isomorphism

(9.4.1) lim K* /Ny jxL* — G§,
L

but as L runs over the finite abelian extensions, Proposition 9.4.10 tells us that the groups N /xL*
run over all subgroups of finite index in K. Therefore, the inverse limit in (9.4.1) is just the profinite
completion of K*. O

REMARKS 9.4.12.

a. The converse to Proposition 9.4.10 is false: for instance, &5 is open in K* but not of finite
index.

b. If K is a Laurent series field, then its multiplicative group has subgroups of finite index that are
not closed. To see this, recall that K is isomorphic to IF;(#)) for some g. Recall from Proposition 6.3.10
that U, (K) and []7~, Z,, are topologically isomorphic. Note that @ ; Z,, is dense in [];>; Z, but not
closed. Any subgroup of finite index in the latter group containing the former group will therefore
not be closed. Choose such a group U, and consider (r)U. (We leave it as an exercise to apply Zorn’s
lemma to see that U exists.) This is a subgroup of finite index in K* that is not closed.

c. For a Laurent series field K, the isomorphism (9.4.1) still holds, but the inverse limit of the
multiplicative group modulo norm groups, while a profinite group, is no longer isomorphic to the
profinite completion of K*.
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9.5. Class field theory over Q,

In this section, we will determine the abelian extensions of (Q, and make explicit the reciprocity
law for Q,,. We shall not assume the results of the previous section.

LEMMA 9.5.1. Let p be a prime, and let K be a field of characteristic not equal to p. Let a €
K(up)*. Fora generator & of Gal(K (1) /K), let ¢ € Z be such that §(Cp,) = Cj for any generator
of Wp. Then M = K(,up,al/p) is abelian over K if and only if

O(a)a € K(up)™P.

PROOF. We may suppose without loss of generality that a ¢ K(u,)*?. Let T € Gal(M/K(u,))
be a generator such that t(a'/?) = {,a'/?.

Suppose first that M/K is abelian. Lift § to a generator of Gal(M/L), where L is the unique
abelian subextension in M /K of degree p over K, and denote this also by 8. We have

7(8(a"/?)) = 8(2(a'/7)) = 8(£)8(a"/?) = {8 (a'/?).

In terms of Kummer duality, this says that the Kummer pairing of 7 and 6(a) is {;. Since M/K (i)
is generated by a pth root of a and 7 pairs with a¢ to Cg as well, we have by the nondegeneracy of the
Kummer pairing that 6 (a)a™¢ € K(u,)*?.

Now, suppose that 6(a)a¢ = xP for some x € K(u,)”. Extend § to an embedding of M in K.
Note that §(a'/?) is a pth root of a‘x”, hence of the form Cg(al/l’)cx for some j € Z, and this is an
element of M. It follows that M /K is Galois. Moreover, we have

o(8(a/7)) = T(Lja7x) = & alPx = 55 (aV/P) = 8(La'/?) = 8(2(a' /7))

and
7(8(8p)) =, = 6((Ep))

since 7 fixes . Thus, the generators 0 and 7 of Gal(M/K) commute, and so M /K is abelian. O
The following is a straightforward exercise using Lemma 6.3.7.
LEMMA 9.5.2. For any prime p, we have
Ur(Qp(1p)) NQp(1p)*F = Up 1 (Qp(1yp))-
We also have the following.

LEMMA 9.5.3. Let p be an odd prime. Let 8 be a generator of Gal(Q,(u,)/Qp), and let ¢ € Z
be such that 6(C,) = G for G, generating ,. For any positive integer i < p and a € U;(Qp(Lp)) —

Ui1(Qp(Hp)), one has |
8(a) =a“ mod (1—¢,)" .
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PROOF. Set A =1— {,. Note first that for any kK > 1, one has
k=1
1-8=2Y &I =kA mod A°.
j=0

In particular, we have §(A) = cA mod A2. It follows from the binomial theorem that
S(A) = (cA+(8(A) —cA)) = (cA) mod A7
Write @ = 1 +uA' for some u € Z[,]*. One then has

§(a)=6(1+ur) = 14+uS(A) = 1+uc'd' = (1+ur)) =a mod A1+

PROPOSITION 9.5.4.

a. Let p be an odd prime. The maximal abelian extension of Q, of exponent p has Galois group
isomorphic to (7] pZ.)>.

b. The maximal abelian extension of Q of exponent 4 has Galois group isomorphic to (Z/ 4Z)2 X
7)27.

PROOF. Let p be a prime and L be the maximal abelian extension of Q,, of exponent p. The
restriction map

(9.5.1) Gal(L(up)/Qp(1p)) — Gal(L/Qp)

is an isomorphism since [Q,(1,) : Q,] and [L : Q,] are relatively prime,. By Kummer theory, there
exists a unique subgroup A of L(i,)* containing L(w,)*? such that L(p,) = Q,(i,, /A). By
Lemma 9.5.1, we have

A={acQp(up)" | 8(a)a € Qp(up)""}.
Now suppose that p is odd. Let us set U; = U;(Q,(,)) for each i > 1. Note first that since the

valuation of an element is unchanged by application of §, any element of A must lie in (A7)Z,[11,] .
Moreover, every element of 1, _1(Q,) is a pth power, so

9.5.2) A=Q,(y)"?- (Ui NA).

Now, it follows from Lemmas 9.5.1, 9.5.2, and 9.5.3, any non pth power in U; N A lies either in
Ui — Uy or Up — Upy1. We know that i, € A, in that the group (> generates an abelian extension of
Qp. If any other element x of U; — U, were in A, then there would exist a pth root of unity & such
that x§ = € Uy N A, which would imply x§ ~! € U,. Moreover, since Up+1 < Q,(1,)*?, we have that
U, itself is contained in A. It follows that Uy NA = u,U,. Recall that U, /U, = Z/pZ. Applying
(9.5.2), we see that

A/Qp(up) P = (Z/PZ)Z-
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Kummer theory tells us that

Gal(L(1p)/Qp(1p)) = Hom(A/Qp(1p) P, tp) = Hom((Z/ pZ)*, Z/ pZ) = (Z/ pZ)*.

Recalling (9.5.1), this implies the result.
If p =2, then we note that A = Q5 has a minimal set of topological generators consisting of —1,
2, and 3. Otherwise, we omit the proof of part b. U

We now turn to the local Kronecker-Weber theorem.

THEOREM 9.5.5 (Local Kronecker-Weber). Let p be a prime number. Then every finite abelian
extension of Q, is contained in Q,(l,) for some n > 1.

PROOF. Since any finite abelian extension of (Q, will be a compositum of such a finite abelian
extension of p-power and a finite abelian extension of prime-to-p power degree, it suffices to consider
such fields separately. We recall that finite abelian extensions of Q, of degree prime to p are tamely
ramified. The maximal tamely ramified abelian extension of Q,, is equal to Q¥ ((—p) 1/(p=1)), since
—p is a uniformizer of Q,,, and we know that Qp((—p)l/(l’_l)) = Qp(1p) while Q} is the field given
by adjoining to Q,, all prime-to-p roots of unity. Hence, we have the result for such fields.

So, let L be an abelian extension of Q,, of exponent p” for some r > 1, and set G = Gal(L/Q)).
First consider odd p. By Proposition 9.5.4a, the group G/G” is a quotient of (Z/pZ)>. By the
structure theorem for finite abelian groups, G is then isomorphic to a quotient of (Z/p’Z)?. On the
other hand, Q,( upr+1) is a totally ramified abelian extension of QQ,, with Galois group

Gal(Qp(1,+1)/Qp) = Z/p"Z x (L] pZ)*,

and the field Qp(,up,,rfl) is an unramified abelian extension of Q,, with Galois group isomorphic to
Z/p"Z. It follows that Qp(H,yr+1( " 1)) has a subfield with Galois group (Z/p"Z)* over Q,, and so
said field is L. The result follows for odd p.

In the case that p = 2, Proposition 9.5.4b tells us that G/G* = (Z /47)?* x 7./27. Tt follows that
G is isomorphic to a quotient of (Z/2"7Z)? x Z/27. Now, we know that

Gal(Qa(Hyri2)/ Qo) = Z/2"Z X 2 /27

As with p odd, we have an unramified cyclotomic extension of Q,, linearly disjoint from the totally
ramified Q(,r+2) over Q,, with Galois group Z/2"7Z. So, there exists a cyclotomic extension of Q,
with Galois group (Z/2"Z)? x Z /27, which must then be L. O

COROLLARY 9.5.6. For any prime p, the maximal abelian extension of Q, is given by adjoining
all roots of unity in @. That is, we have

Q;b = QP(HM)7

where U is the group of all roots of unity in @.
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With the knowledge of the maximal abelian extension of Q,, in hand, we are now prepared to give
an explicit construction of the reciprocity map for Q,,.

REMARK 9.5.7. If { is a p*th root of unity in QTD for some prime p and k > 1, then {“ for any
a € Z,, is the well-defined root of unity equal to { b for any b € Z with b = a mod pF.

PROPOSITION 9.5.8. For each n > 1, let {, denote a primitive nth root of unity in Q?,b. There
exists a unique homomorphism p : Q; — Gg?p which, for m > 1 prime to p and k > 1, satisfies

i (P (&) = L and p(p)(En) = o and
ii. p(u)(Cy) = CI’:,:I and p(u)(&n) = G for everyu € Z;;.

The map p takes uniformizers in Q, to Frobenius elements, and its restriction to Z; is an isomorphism
onto the inertia subgroup of G%’ .
P

PROOF. Recall that QY is given by adjoining all prime-to-p roots of unity in (QTD Corollary 9.5.6
then tells us that
Q) = Q) (1p=) = Q- Qplyp),
where 1~ is the group of p-power roots of unity in Q,. Since Q,(i,~)/Q, is totally ramified, we
have
» NQy(Hp=) = Qp,

and so

(95.3) G =Gal(Q}/Q,) = Gal(Q}’ /Qy) x Gal(Q/Qp (k)
= Gal(Qp(1p=)/Qp) x Gal(Q;r/Qp),

the latter isomorphism being the product of restriction maps.

We claim the automorphisms p(p) and p(u) for u € Z,, of U specified in the statement of the
theorem are actually restrictions of elements of Gf&fp. Given this, since every root of unity is the
product of roots of unity of prime-to-p and p-power order and Q; = (p) x Z;, it follows that p is
indeed a homomorphism to G?Ql@)p’ and it is uniquely specified by the given conditions.

For the claim, it suffices by (9.5.3) to see that these automorphisms define automorphisms of the
prime-to-p and p-power roots of unity that are the restrictions of Galois elements in Gal(Q}/Q)) and
Gal(Qp(up~)/Q)p), respectively. First, we note that p(p) has the same action as the trivial element
on p-power roots of unity and as the Frobenius element on prime-to-p roots of unity. In particular,
p(p) does extend to a Frobenius element of G%’p.

On the other hand, p () acts trivially on p-power roots of unity, so we need only see that its action
on p-power roots of unity is the restriction of a Galois element. Note that the cyclotomic character
The cyclotomic character

x: Gal(Qy(1y-)/Qp) = Im (Z/p2)* =2, 2(0)(Gp) = EA°)
k
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for Q is an isomorphism in that [Q, () : Q)] = p=1(p—1) for each k. Thus, we have that there
exists 0, € Gal(Q,(up=)/Qp) with x(0,) = u. We then have that p(u) as defined is indeed the
restriction of 6, ! on . That is p(u) does extend to a well-defined element of Gal(@?,b /Qp). with
P ()lo, (=) = Ou ! Moreover, as p on Z,, followed by restriction to Q,(i,~) is the inverse map to
the map taking o to x(o)~!, we have that p ]Z; is an isomorphism to inertia in Gal(@;‘,b/@p).
Finally note that p(p) is by definition a Frobenius element and p(u) for u € Z; has image in
inertia, so p(pu) is a Frobenius element as well. Since u was arbitrary, p takes uniformizers to
Frobenius elements. U

Though we omit the proof, it is possible to show using the uniqueness in Theorem 9.2.2 (after
computations of norm groups of abelian extensions of Q@) that the map p of Proposition 9.5.8 must
indeed be the local reciprocity map for Q,,.

THEOREM 9.5.9. The map p constructed in Proposition 9.5.8 is the local reciprocity map pg,.

9.6. Ramification groups and the unit filtration

DEFINITION 9.6.1. Let L/K be a Galois extension of local fields with Galois group G. Then
Ykt [—1,00) — [—1,00) be defined to be the inverse of the function ¢, sk of Definition 6.5.19.

This allows us to define ramification groups in the upper numbering.

DEFINITION 9.6.2. Let L/K be a Galois extension of local fields with Galois group G. For any
real number s > —1, we define the sth ramification group G* of L/K in the upper numbering (or upper
ramification group) by G* = Gy, Jk(s)*

REMARKS 9.6.3. Suppose that L/K is a Galois extension of local fields with Galois group G.
a. Since ¢)L/K = l//L_/lK, we have G, = Gk for all ¢ > —1.
b. For the same reason, we have
S
vuk(s) = [ 16°: @y
for any s > 0.

EXAMPLE 9.6.4. Let F, = Q,(u,») for a prime p and n > 1. As a consequence of Example 6.5.21,
we have

%)

if —1<s<0,
VE/Q,8) =4 P 1+ (p—1)(s—k+1))—1 ifk—1<s<kwithl <k<n-—1,
P+ (p—-D(s—n+1))—1 ifs>n—1
forall s > —1.

The following property of the y-function is immediate from Proposition 6.5.26.
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LEMMA 9.6.5. Let L/K be a Galois extension of local fields and E a normal subextension of K
in L. Then

Yk = VYL/ECVE/K-

We also see that ramification groups in the upper numbering are compatible with quotients.

PROPOSITION 9.6.6. Let L/K be a Galois extension of fields with Galois group G, let E /K be a
Galois subextension, and set N = Gal(L/E). For any s > —1, one has

(G/N)* = G°N/N.

PROOF. By definition of the upper numbering and the function y; /g, Herbrand’s theorem, and
Lemma 9.6.5, we have

(G/N)s - (G/N) Ve /k(s) — G‘VL/E(‘I/E/K(S))N/N - GWL/K(S)N/N - GSN/N‘
U

We therefore have the following example.

PROPOSITION 9.6.7. Let p be a prime and n > 1. Then for any s > —1, we have
Gal(Qp(up)/Qp) it —1<s<0,

Gal(Qp(p)/Qp)* = Gal((@p(upn)/(@p(upk)) ifk—1<s<kwithl <k<n-1

1 ifs>n—1.

PROOF. This is quickly calculated using Proposition 6.5.12 and Example 9.6.4. U

DEFINITION 9.6.8. Let L/K be a Galois extension of local fields with Galois group G. A real

number s € [—1,0) is said to be a jump in the ramification filtration of L/K (in the upper numbering)
if G° # G°T¢ for all € > 0.

EXAMPLE 9.6.9. The jumps in the ramification filtration of Q,(u,")/Q, are 0,1,2,...,n—1.

Note that the jumps in the ramification filtration of Q,(u,»)/Q), for a prime p and n > 1 are
always integers, though there may seem to be no a priori reason for them to be so. In fact, the jumps
in the ramification filtration of an abelian extension of local fields are always integers. The following
related result is known as the Hasse-Arf theorem: in the form stated it is actually due to Hasse. We
state it without proof.

THEOREM 9.6.10 (Hasse). Let K be a local field and L be a finite abelian extension of K with
Galois group G. Then the jumps in the ramification filtration of G (in the upper numbering) are all
integers.

We next state, also without proof, the following remarkable connection between the reciprocity
map and ramification groups in the upper numbering.
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THEOREM 9.6.11. Let K be a local field and L be a finite abelian extension of K with Galois
group G. Then py x(Ui(K)) = G' foralli> 0.

We have the following immediate corollary.

COROLLARY 9.6.12. Let L/K be a finite abelian extension of local fields with Galois group G.
Then G' is trivial for some i > 1 if and only if

U1<K) g NL/KLX.
We make the following definition.

DEFINITION 9.6.13. Let L/K be a finite abelian extension of local fields. The conductor §; /k of
the extension L/K is the ideal m}, where mg is the maximal ideal of the valuation ring of K and r is
the smallest positive integer such that U, (K) C N /g L*.

REMARK 9.6.14. By Corollary 9.6.12, the conductor of a finite abelian extension L/K of local
fields is mj}, where r is the smallest integer such that the upper ramification group Gal(L/K)" is
trivial. This r is one more than the last jump in the ramification filtration of Gal(L/K), recalling the
integrality of the jumps that is the Hasse-Arf theorem.

We leave as an exercise to the reader the computation of the conductor of an arbitrary finite abelian
extension of @, using local Kronecker-Weber and the computation of the upper ramification groups
of Q,(tpr)/Q,. The result is as follows.

EXAMPLE 9.6.15. The conductor of a finite abelian extension L of Q,, is (p"), where n is maximal
such that L is contained in an unramified extension of Q,, ().

Let us consider one nontrivial example.

PROPOSITION 9.6.16. Let p be an odd prime and K = Q,(u,). Set L = K((1— p)'/P). The
conductor of the extension L/K is (1 — ()%

PROOF. Note that L/Q,, is totally ramified of degree p(p —1). Let {, be a primitive pth root of
unity in K. We have that
P =N, pnyg,(1=1=P)'"7),
so £ = 1—(1— p)'/7 is a uniformizer of Q,((1 — p)!/7). It follows that v(m) = p — 1 and then,
since vy (1 —§,) = p, that A = (1 — {,,) /7 is a uniformizer of L.

For ¢ € Gal(L/K) with o ((1— p)'/?) = £,(1 — p)/P, we have

and
o(m) =1 (1= p)!/P =7+ (1= )1 - p)'7.
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Thus, noting that v (1 — {,) = p, we have

oA
Lo1) =1
n p)
It follows that the first (and last) jump in the upper numbering in the ramification filtration of Gal(L/K)
is at 1, and therefore by Remark 7.4.19, we have fL/K =(1— Cp)z, as asserted. O

9.7. Lubin-Tate formal groups
Let R denote a commutative ring.

REMARK 9.7.1. Consider the power series ring A = R[xj,...,x,] in n variables over R. The
composition fog of f,g € A is well-defined in A so long as g has zero constant term, i.e., g €

(xl, - ,X,,).
LEMMA 9.7.2. The following are equivalent for a power series f € xR[x]:

i. f has a left inverse under composition,

ii. f has a right inverse under composition,

iii. f=uxmod (x*) with u € R*.
Moreover, if f has an inverse, then it is unique.

PROOF. Suppose that f = ux mod (xz) with u € R*. Let g1 = u™'x, and suppose we have found

gn € R[x] of degree at most n such that fog, and g, o f are both x in R[x]/(x"T!). Write fog, =

1

x+ax""! mod (x**?) for some a € R. We then set g,,+1 = g, —u~ 'ax"*! and note that

fognii=folgn—utax™™) = fog, —ax"! = x mod (x"*2)

in that (g, —u 'ax"*1)* = gk mod (x*2) for any k > 2. Let g = lim,, ... g, € R[X] so that fog = x.
Now, g also has some right inverse 4, and so x = goh =go fogoh = go f. Moreover, note that g,
specified recursively as above is unique with the property that f o g, = x mod (x**1).

Finally, suppose that f,g € xR[x]. If f = ax mod (x*) and g = bx mod x?, then f o g = abx mod
X2, so if f og =x, then a and b must both be units in R. O

DEFINITION 9.7.3. A (commutative) formal group law over R is a polynomial F € R[x,y] such
that

i. F(x,y)=x-+ymod (x,y)?%,

ii. F(F(x,y),z) =F(x,F(y,z)) in R[x,y,z], and

iii. F(x,y) = F(y,x).

LEMMA 9.7.4. Let F € R[x,y| be a formal group law. Then

a. F(x,y) =x+y mod (xy), and
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b. there exists a unique 1p(x) € R[x] such that F (x,1r(x)) = 0.

PROOF. For part (a), set f = F(x,0), so f = x mod (x*). We also have F(F (x,0),0) = F(x,0), so
fof=f,which forces f = x. For part (b), we leave it to the reader to check recursively that for any
F € R[[x,y] having the form in part (a), there exists a unique 17 (x) = —x mod (x?) with the desired
property. U

EXAMPLES 9.7.5.

a. We have the additive formal group law F(x,y) = x+y. Here, we have 1p(x) = —x.

b. We have the multiplicative formal group law G(x,y) = x+y+xy. Note that i = (x+ 1)1 — 1,
as G(x,y) = (x+1)(y+1) - L.

DEFINITION 9.7.6. A homomorphism f: F — G of formal group laws F and G is a power series
f € xR[x] such that f(F(x,y)) = G(f(x),f(y)). We write f o F = Go f for to denote that f is such a
homomorphism.

We can compose homomorphisms of formal group laws by composing the power series which
define them, and we can add them as well.

DEFINITION 9.7.7. Let F and G be formal groups over R.

a. The group of homomorphisms from F to G is the set Hom(F, G) of homomorphisms from F to

G with the operation of addition of power series.

b. The ring of endomorphisms of F is the set End(F) of endomorphisms of F' with the operations
of addition and composition of power series.

REMARK 9.7.8. An isomorphism of formal group laws f: F = G is a homomorphism given by
a power series with an inverse f~! under composition.

If R is a complete local ring with maximal ideal m, any power series in R[x] converges on m.
Given the existence of the inverse power series of Lemma 9.7.4(b), a commutative formal group law
then defines the structure of an abelian group on m.

DEFINITION 9.7.9. For a complete local ring R with maximal ideal m, a formal group is m
together with the group law a +r b = F(a,b) for a,b € m, where F € R[x,y] is a formal group
law.

NOTATION 9.7.10.
a. The additive formal group, with formal group law x +y. is denoted G.
b. The multiplicative formal group, with formal group law x + y + xy, is denoted G,,.

Our interest is in a class of formal groups particularly useful for studying abelian extensions of
local fields. Let K denote a local field with valuation ring &', and maximal ideal m. Let ¢ denote the
order of the residue field x = &' /m.
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DEFINITION 9.7.11. A Lubin-Tate power series for K is a power series f € O'[x] such that f(x) =
x4 mod 7 and f(x) = mx mod (x?), where 7 is a uniformizer of K.

NOTATION 9.7.12. For a uniformizer 7 of K, we let § denote the set of Lubin-Tate power series
over K with f(x) = mx mod (x?).

Let us fix a uniformizer 7 of K. We omit, for now, the proof of the following key result.

PROPOSITION 9.7.13. Let f,g € Fy. Let { =Y, aix; with a; € O for 1 <i <n, and where the

x; are indeterminates. Then there exists a unique F € O[xy,...,x,] such that F = ¢ mod (x1,...,x,)?
andf(F(xl7' .. 7xi’l)) = F(g(X1), s 7g(xn))

PROOF. Let I = (xj,...,x,). Set {; = ¢ and Fy = 0, and suppose we have constructed F =
Fy—1 + ¢ for some k, where ¢, € O|xy,...,x,] is homogeneous of degree k, such that

fOFk EFkOg mod ﬂ[k+1.

Let H = 0 mod 7 be the homogeneous of degree k + 1 part of foF, = Fyog, and set £, = — (7w —
7l'k+1)_1H S ﬁ[x] Set Fii1 = Fy+ {;11. Then

foF1 = foF+ml mod IF2,
while
Fis108 = Feog+m*1¢ mod I
so subtracting the two equations, we have
foF1—F10g=H+ (n— 7rk+1)€k+1 =0 mod I**2.
Since f,g = x? mod 7, we also have
foF1—Fir108= (Frr1)?— Fr1(x?) =0 mod 7,

where (Fy1)? denotes gth power in the power series ring. Thus, the difference lies in £/**!, and we
may continue the recursion. Setting F =Y ;° ;| ¢, the uniqueness is clear from the uniqueness of H at
each step. U

DEFINITION 9.7.14. A Lubin-Tate formal group law associated to f € %, is a formal group law
Fy € O[x,y], where f € O|x] is a Lubin-Tate power series which is an endomorphism for F¢, which
is to say foFy=Fyof.

Taking the linear form in Proposition 9.7.13 to be x +y, we see that Fy is uniquely specified by f.

COROLLARY 9.7.15. Given f € F, there exists a unique Lubin-Tate formal group law associated

to f.
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PROOF. The proposition provides a power series Fy € O[x,y] with Ff = x+y mod (x,y)? such
that f is an endomorphism of Fy. That Fy(x,y) = Fy(y,x) follows by the uniqueness therein, since
x+y=x+y. Similarly, that Fr(x, Fr(y,z)) = Fr(Fr(x,y),z) follows as both commute with f and have
linear terms x +y+2z. U

We also have the following.

COROLLARY 9.7.16. Let f € F . For any a € U, there exists a unique power series [a]y € O[x]
with [a]; = ax mod (x?) and which commutes with f under composition. In particular, (%] = f.
Moreover, |a)y is an endomorphism of Fy, and the resulting map | |r: € — End(Fy) is an injective
ring homomorphism.

PROOF. We take n = 1, {(x) = ax, and g = f in Proposition 9.7.13 to define [a]s. To see that [a] s
is an endomorphism of Fy, note that Fyo[a] ; and [a] f o F both have linear terms ax+ ay and commute
with f, so we can again use uniqueness in the proposition. The rest follows similarly by uniqueness
of the power series [a] 7, aside from the injectivity of the ring homomorphism they determine, which
follows as [a] f = ax mod x?, and ax = bx mod x* if and only if a = b. O

COROLLARY 9.7.17. Let f,g € . be Lubin-Tate power series for K. Then Fy and F, are iso-

morphic.

PROOF. Suppose f € Z and g € .-%. Apply Proposition 9.7.13 with ¢ = x to get a power series
h € O[x] with foh = hog. Then Fyoh and ho F, both have linear terms x+y. Since fo (Froh) =
Fro(foh) = (Froh)og and similarly with /o F,, uniqueness gives that Froh =hoF,. As his
invertible, we have that /4 provides the isomorphism. U

EXAMPLE 9.7.18. For K = Q,, set f(x) = (x+1)? — 1 € .%,. Then the multiplicative formal
group law G = (x+1)(y+1) — 1 satisfies foF = (x+1)?(y+1)”? —1 = F o f, so G = Fy. That is,
the associated Lubin-Tate formal group to f is G,,. We have [a]f = (x+1)* — 1 € Z,[x] fora € Z,,.

The power series [u] s associated to a unit u € ' is an isomorphism of Fy, so it can have no zeros
in the maximal ideal of the valuation ring of the completion of an algebraic closure of K. On the other
hand, [7] s certainly can and does.

DEFINITION 9.7.19. For n > 0, the n"-torsion in the formal group associated to f is the kernel
W;, of [7"]; on the maximal ideal in the completion of an algebraic closure of K. We refer to
Wen—Wrpy for n > 1 as the primitive w"-torsion. The torsion in the formal group of f is Wy =

U::] W\f,n‘
THEOREM 9.7.20. Forn > 1 and f € F5, we have the following.

a. The field extension Ky , = K(Wy ) is a totally ramified Galois extension of K, independent of

f
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b. Any primitive n-torsion element @, € W;l is a uniformizer in K,,.
c. The group W} is a free (O /m™)-module of rank 1 for the action of O via | |y.

d. There is an isomorphism of groups Xy .: Gal(K,/K) — (O /m")* with inverse taking the im-
age of a € 0 to the Galois element & such that [a] /(®,) = o(®;).

PROOF. Suppose that f = 7x + x9, which is x times an Eisenstein polynomial. In general, we
see that [7"]y = fo fo---ofis [x""!| times an Eisenstein polynomial of degree ¢"~!(g — 1) which
has as its roots the primitive 7"-torsion of Fy. Setting K,, = K(Wy ), this forces K, /K to be not just
algebraic, but Galois and totally ramified of degree ¢"~'(g — 1), having any @, € WJ’Z — ijfl as a
uniformizer. As [a] ¢(®@,) = a®, mod @7 for a € O, we see that Wi — W;’*I is free of rank 1 over
(€0/m")* under the action of [ ]. It follows that o(@,) € W} equals [a]/(@,) for some a € 0,
unique modulo m”. It is then clear that ), defines an isomorphism.

In general, let g € .7, and suppose that /4 is an isomorphism from Fy to Fg so that ho f = goh.
Then [7"],(h(@,)) = 0, and it follows & defines an &-module isomorphism between Wy, and Wg ;.
Since i € O[x] with h = x mod x?, we have that h(@,) € Wy, — W, ,— converges to a uniformizer
in K(Wy ), and therefore K, = K(W, ,). For ¢ € Gal(K,/K), we have o (h(®,)) = h(c(®,)), and
if x¢(0) =a mod m”, then [a],(h(®@,)) = h([a] f(@n)) = h(0(@y,)) = o (h(@,)) mod m". Thus, the
proposition holds for g as it holds for f. U

Observing that 0 = @n(ﬁ /m"™)*, we have the following.

COROLLARY 9.7.21. The field Kz .. = K(Wy ) is a totally ramified Galois extension of K with,
independent of f € Fr, with Galois group isomorphic to 0.

We omit the proof of the following lemma.

LEMMA 9.7.22. Leth=Y"_,ax' € F,[x] be monic of degree n > 1 with gcd(q,n) = 1. Then there
exists k > 1 and r € Fy[x] with degr < k and r(0) = 1 such that g = xkh+ r has no multiple zeros.

PROOF. Let m > 1 be such that ¢ > n and F» contains the roots of #’. Then set k = g"*! and
r=—x%h+1. We then have g = (xqm+1 —x)h+1and g = (x4"" —x9)I'. If a is a root of x4 — x4,

then g(a) = 1. If o is a root of /', then it lies in Fyn, so g(a) = (a? —af)h(o) +1=1as well. [
PROPOSITION 9.7.23. Forn > 1, we have Ny xkKy , = (m)Up(K).

PROOF. We know that Kz , = K(W}) with f = mx+x9. Moreover, [1"]; = (7"~ - by, where hy,
is T+ [n"’l]?_l. This has leading coefficient 7, and its roots are the primitive 7"-torsion elements
for Fy. In particular, 7 = NKW / k(@) if Kz »/K is nontrivial (i.e., other than the case that ¢ even and
n=1).

It is now enough to show that the norms of units from Ky , are contained in U, (K) since local
reciprocity implies that ¢" (g —1) = [K* : Nk,,/kKz.,)- The norms of elements of i, are clearly
trivial, so it suffices to consider norms of 1-units.
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Letu=1+Y;", a;@! € U (Kzn) with a; € Ok, and set ap = 1. Let p = Z;.”:_Ol a,_ix', where
m=q"~!(g—1)n. Apply Lemma 9.7.22 to the reduction of p modulo 7, and then lift the result back
to Ok, obtaining P = x*p 4 r for some r € O with r(0) = 1 and k > degr. Since P has no multiple
zeros modulo 7, its roots lie in K. Write P =[]}_,(x — o;), where s = m+k — 1.

Now, note that

N oo
H(l —om,) =@ P(@, ) =1+ Zaiw,’l =umod @',
i=1 i=1
so there exists v € Uy (Kz5,) with [T (1 — 0;®@,)v = u. Since Ngur /gur(v) € U, (K"), it suffices to
check that [T;_; Ngur /gur (1 — i@,) € U, (K*"). Note that

gy [ ()
NK;%rn Kur(l - OC,G)',,) == alq P —
"/ 10 )

As P(0) = 1, we then have

o @)
i=1 [”n_l]f(ai_l)

As [m" 1 p(x) = x7""" mod , each (7"~ (") is a unit, so it suffices to show that

S
HNKjlgn/Kur(l - Ot,&fn) -
i=1 '

S N

H[”n]f(o‘ifl) =[]i#" "1y(0; ") mod " .

Note that in fact, both sides are contained in &, as the set of ¢; is a union of Frobenius conjugacy

|
—
I
—_

classes, and we have f(ocl.’l) = (xl._q = oc;l mod 7 Okuw for some 1 < j <s. Thus,
N N
[T =]]e " modz.
i=1 i=1
We then see that f applied to both sides gives a congruence modulo 72, and recursively we have the

desired congruence. U

We then have that the intersection of the norm groups for the K ,, is (). The following is then
an easy consequence.

THEOREM 9.7.24. The maximal abelian extension of K is equal to K" Ky .. for any uniformizer
7 of K.

THEOREM 9.7.25. Let &t be a uniformizer of K and f € % 5. The local reciprocity map pg for K
is the unique map such that

i. the value px(7) is the Frobenius element in Gal(K®® /K) fixing K,

ii. for u € 0%, the value px(u) is the unique element of Gal(K*®/K") such that pg(u)(®@) =
w1 (@) for all @ € Wy .






CHAPTER 10

Global class field theory via ideles

10.1. Restricted topological products

We begin by defining the notion of a restricted topological product.

DEFINITION 10.1.1. Let I be an indexing set. For each i € I, let X; be a topological space and A;
be an open subset. The restricted topological product of the spaces X; relative to the open subsets A;
is the set
H(X,-,A,-) = {(x,-),-el € HX,- | x; € A; for all but finitely many i € I},
icl icl

endowed with the topology which has as a (standard) basis the open sets of the form
{(xi)icr | xi € Uiforie Jand x; € A; fori € [ —J},

where J C I is finite and U is an open subset of X; for each j € J. This topology on the set [;;(Xi,A;)
is referred to as the restricted product topology.

REMARK 10.1.2. The standard basic open sets of a restricted topological product [];c;(X;,A;)
have the form
[Tuix I A
j€J icl—J
with J C I finite and U; open in X for each j € J. The subspace topology on these open sets is exactly
the product topology for the subspace topology from the X; on the sets that form its product.

REMARK 10.1.3. The restricted topological product [];c;(X;,A;) does not in general have the
subspace topology of the product topology on [];-; X;. That is, a standard basic open neighborhood
of [];c; X has the form

[Tviex 1 X

kek i€l-K
with K C [ finite and V} open in X for each k € K. Any such set contains a basic open neighbor-
hood in the restricted product topology on [];c;(X;,A;). On the other hand, no such set will have its
intersection with [];c;(X;,A;) contained in any set of the form

[Tuix IT A

jel iel-J

203
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with J C [ finite and U; open in X; for each j € J so long as there are infinitely many i € I for which
A; # X;. In other words, the restricted product topology on [];c;(X;,A;) is finer and can be strictly
finer than the subspace topology for the product topology.

The following simple lemma is quite useful.

LEMMA 10.1.4. Let I be an indexing set, and for eachi € I, let X; and Y; be topological spaces, let
A; be an open subset of X, let B; be an open subset of Y;, and let f;: X; — Y; be a continuous function.
Suppose that f;(A;) C B; for all but finitely many i € I. Then the product of the maps f; restricts to a
continuous function

H(Xi7Ai) — H(Yi,Bi).
icl icl

PROOF. For x = (x;)ic; € X, we have that x; € A; for almost all i, so f;(x;) € A; for almost all i,
and therefore []; fi(x) € [1;c;(Y:, Bi). Thus, it makes sense to let f denote the restriction of []; f; to a
map between the restricted topological products.

Consider a finite subset J of I and open subsets V; of Y; for each j € J, and suppose f(x) €
[1jesVj X Ilies—sYi. For each j € J, there exists an open neighborhood U; of x; in X such that
fi(U;) € Vj, as fj is continuous. Consequently, we have that f([Tjc;U; x [1ic;—s X;) is contained in
[1jesVj xIlier-sYi- Thus, f is continuous. U

LEMMA 10.1.5. Let I be an indexing set. For each i € I, let X; be a Hausdorf{f topological space,
and let A; be an open subset of X;. Then the restricted topological product [1;c;(Xi,A;) is Hausdorff.

PROOF. This is a consequence of either the discussion of Remark 10.1.3 or Lemma 10.1.5 applied
to the case that ¥; = B; = X;. The product [];c; X; is Hausdorff, and if distinct x,y € [];c;(X;,A;) are
contained in disjoint open neighborhoods in [];c;X;, then the intersection of these neighborhoods
with [;c;(X;,A;) are disjoint open neighborhoods of x and y in the latter space. U

We are often interested in the case that our sets are topological groups or rings. In the proof, we
treat only the case of groups, the case of rings being analogous.

LEMMA 10.1.6. Let I be an indexing set, and for each i € I, let G; be a locally compact, Hausdorff
topological group (resp., ring), and let K; an open subgroup (subring) of G; that is compact for almost
all i. Then the restricted topological product [1;c;(Gi, K;) is a locally compact, Hausdorff topological

group (resp., ring).

PROOF. That ¥ = [];c;(G;,K;) is a group is straightforward. That is, clearly 1 = (1); € G, and if
a = (a;); and b = (b;); are elements of ¢, then a;,b; € K; for all but finitely many i € I, so ab € 9.
Similarly, a=! € ¢ since a;l € K; if a; € K;. It is then a topological group by applying Lemma 10.1.4
to the multiplication and inverse maps on .
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That ¢ is Hausdorff is Lemma 10.1.5. Let J be a finite subset of I such that K; is compact for
i €I—J,and let U; be a compact neighborhood of 1 in G for j € J. Then [];c;U; X [I;/—; Ki is an
compact neighborhood of 1 in ¢ by Tychonoff’s theorem, so ¢ is locally compact. U

10.2. Adeles
We now define the ring of adeles of a global field K.

DEFINITION 10.2.1. Let K be a global field. The ring of adeles (or adele ring) Ag of K is the
restricted topological product

AK — H (K\Mﬁv)?

veVg
where V is the set of all places of K, where K, is the completion of K at the place v, and where O, is

the valuation ring of K,,, which we take to be K if v is archimedean. An element of A is referred to
as an adele.

REMARK 10.2.2. Let o be an adele in a global field K. Then o, for some v € Vi shall denote the
v-coordinate of o.

LEMMA 10.2.3. Let a € K. Then a € O, for all but finitely many places v of K.

PROOF. It suffices to check this on the cofinite subset of finite places of K in Vx. Only those
finitely many finite primes p occur in the factorization of a0, so only finitely many have negative
valuation vy (a). The result follows. O

As an immediate consequence of Lemma 10.2.3, we see that every element of a global field gives
rise to an element of its adele ring (since units are in particular integers).

DEFINITION 10.2.4. The diagonal embedding 8 : K — Ak is the homomorphism Og (a) = (a)ycvy-
We note also that we have embeddings of adele rings into adele rings of extension fields.

DEFINITION 10.2.5. For L/K finite, the canonical embedding of Ak in Ay is the map ik Ak —
Ay given by 17 /x(a),, = @, for every place w of L and the place v of w lying below it.

We will show that the diagonal embedding has discrete image. This is rather straightforward for
K = Q, for example, so we proceed by reduction to this case, using the following result. Note that
the diagonal embedding provides Ag with the structure of a K-vector space.

PROPOSITION 10.2.6. Let L/K be a finite, separable extension of global fields. Then there is a

canonical isomorphism of topological L-algebras
K: L®g Ag = Ap
given on simple tensors of b € L and o € Ak by

K(b@at) = 8u(b)y k(o) = (baw)w,
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where v is used to denote the place of K lying below a place w of L. Here, a choice of K-basis of
L provides an isomorphism Ag Qg L = A%:K] of Ax-modules, and we give Ax Qi L the topology

]

induced via this isomorphism from the product topology on A%:K .

PROOF. Recall that Proposition 6.1.6 says that there is, for each place v of K, an isomorphism

K0 Lok K, = [ ]Luw,
wlv
and the map « as defined is the restriction of the product of these to L ®g Ag, which has image in Ay
since both d, and 17 /¢ do.

Since the product of the maps x; is an isomorphism, the map x is an injection that we claim is
surjective. For this, let by, ...,b, be a K-basis for L. For all but finitely many finite primes v of K, we
have for all places w of L over v both that b; € 0, for 1 <i <n and that w(D(by,...,b,)) = 0. For
any such v, the map x, restricts to a map

K, é(l ®0,)(bi21) =[] Ow

i=1 wlv
of free &\,-modules of rank n, which by Proposition 6.1.10 is an isomorphism.
Given this, choose a finite set S of places of K containing the infinite places and those finite places
v with b; ¢ 0, for some i or w(D(by,...,b,)) # 0 for some w dividing v, and let T be the finite set of
places of L above it. Since k; is surjective for all v € S and «, is surjective for all v ¢ S, the image of

[Tz x [T o

weT weV,—T

K contains

Since any arbitrary finite set of places of L is contained in some such set 7, it follows that x is
surjective.

For continuity of &, note that each f;: Ax — Ay defined by fi(o) = 6..(bi)1; /(@) is continuous,
noting that 17 /x is continuous by Lemma 10.1.4. Then k viewed as a map

ALK Ay

using this basis is continuous as a sum of the continuous maps f;, since Ay is a topological group
under addition. ]

We next show that K sits discretely in its adele ring.
PROPOSITION 10.2.7. The diagonal embedding Ok : K — Ak has discrete image.

PROOF. If K is a number field, Proposition 10.2.6 for the extension K/Q identifies k1o O for
the map k therein with the map

id[{®6@Z K®9Q — K®qgAg.
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Therefore, it suffices to show that 8g has discrete image. (Similarly, for function fields of character-
istic p, it suffices to consider i (), for which we omit the proof.)
We identify Q with its image in Ag under 8g and endow it with the subspace topology. The
intersection of the open neighborhood
[T Z,x{acR||al <1}
p prime
of 0 in Ag with Q consists of elements with nonnegative valuation at p for every p, which to say
integers, that also have absolute value less than 1. In other words, the intersection is {0}. Since Ag
is a topological ring and Q is a subring, we have by translation that Q has discrete image. U

NOTATION 10.2.8. We use the diagonal embedding dx to identify a global field K with a subring
of Ak, denoted also by K.

We also have the following.

PROPOSITION 10.2.9. Let K be a global field. Then there exists a finite set S of places of K
including the archimedean places and positive real numbers €, for each v € S such that
(10.2.1) X= ] O x[[{ack|la <&}

veVkx—S vesS

satisfies Ax = K+ X.

PROOF. First consider the case K = Q. In this case, we claim that the set

Y = H Zpx{acR||al <1}
p prime

satisfies Ag = Q+Y. Let a € Ag. Let py,...,p, be the finite list of prime numbers p such that

op ¢ Zp. Let ki = —vp,(0,) for each i with 1 <i<n. Letb = p]f' ... pkn. Let a € Z be the unique
integer such that

IS

~L<a—bo. <
and
a = bay, mod pfini
for each i. Then o — % €Y, as desired.

For an arbitrary number field, choose a basis by,...,b, of K as a Q-vector space, and note that
Proposition 10.2.6 tells us that every element 3 € Ag has the form

B= Zn:bilK/@(Oti)
i=1

for some a,...,0, € Ag. In turn, each @; may be written as ¢; = y; +c¢; with y; €Y and ¢; € Q. We

then have
n

BeK+ ZbilK/Q(Y),
i=1
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and we let X’ denote the latter sum. We let S be the set consisting of the archimedean places of K and
the nonarchimedean places of K such that b; ¢ ¢, for some i, and we note that every element o € X’
satisfies o, € 0, for all v ¢ S. For each nonarchimedean (resp., archimedean) v € S, let €, be such that
|bily < &, (resp., |bi|, < 2¢,) for all 1 <i < n. Then X as defined by (10.2.1) contains X’ and satisfies
A =K+X.

The case of a function field is similarly derived from the case K = IF,,(¢), and the proof is left to
the reader. U

COROLLARY 10.2.10. Let K be a global field. Then the quotient K-vector space Ak /K is compact
Hausdorff.

PROOEF. The compact (Hausdorff) set X of Proposition 10.2.9 maps onto the quotient Ax /K under
the continuous projection map from Ag. The space Ak /K is Hausdorff as K is closed in Ag, so Ax /K
is compact as well. U

Since an adele necessarily has valuation less than or equal to 1 in all but finitely many places, the
infinite product in the following definition converges.

DEFINITION 10.2.11. Let K be a global field. Let o € Ag. The content cx(@) of a is defined to
be

ex(0) = [T llow]l

veVk
where we recall that || ||, = |0, unless v is complex, in which case ||o, ||, = | |2.
LEMMA 10.2.12. Let K be a global field. Then there exists a positive real number C such that for

every a. € Ag with cx(a) > C, there exists an element a € K* with |a|, < ||, for all places v of K.

SKETCH OF PROOF. Since A is a locally compact abelian group, it has an invariant Haar mea-
sure. Letting S denote the set of archimedean places of K, we set

Z= HSﬁVXHBI/Z(O)

veVg— veS

where B />(0) denotes the closed ball of radius 1/2 around O under the usual absolute value corre-
sponding to v. We normalize our Haar measure so that Z has volume 1. As Ag /K is compact, it has
finite quotient measure, and we take C to be this measure.

Now let & be as in the statement. The set aZ has measure cx (o) > C (which we leave to the
reader to verify, using uniqueness of Haar measure and noting that local Haar measures will scale by
the multiplicative valuation used in defining the content), so it follows that there exist two distinct
elements 3, B’ of aZ with the same image in Ag /K, which is to say that the difference a = § — 8’
lies in K. For each v € Vi, we clearly have |3 — '], < |et|, by choice of Z, so the result holds. [

The lemma has the following corollary.
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COROLLARY 10.2.13. Let K be a global field and u be a place of K. Let S be a finite set of places
of K not including u, and choose a real number €, > 0 for each v € S. Then there exists an element
a € K* such that |a|, < €, forallv € S and |a|, < 1 for all v ¢ S with v # u.

PROOF. Let C be as in Lemma 10.2.12. Choose elements a, € K, for each v with |, |, < g, for
each v € S and |, |, = 1 for all other places v # u of K. Let o, € K, be such that
~1
lotllu > CT T llewlls "
ves

Setting o = (o), € Ag, we then have cx (o) > C, so there exists an element a € K* with |a|, < |0y,
for all v and therefore |al, < €, forall v € S and |a,|, < 1 forv ¢ SU{u}. O

While any global field K sits discretely in A, if we exclude one prime from Ag, the result is very
different.

THEOREM 10.2.14 (Strong Approximation). Let K be a global field, and let u be a place of K.
Set

A= ] (k.6
veVg—{u}

Then K is embedded diagonally as a dense subset of A?’.

PROOF. Let o € A?é”, let § > 0, and let T be a finite subset of V;, — {u} that includes its archimedean
places and places with o, ¢ €),. We claim that there exists a € K such that |a — o, |, < 6 forallve T
and |a|, <1 for all v ¢ T, which will prove the result.

By Proposition 10.2.9, we have a set X of the form in (10.2.1) such that Ax = K + X. We use the
notation S and &, for v € S found therein. Setting €, = 1 for v ¢ S, there exists by Corollary 10.2.13
an element b € K* with

g 18 ifver,
<™ %
£, ifveé TU{u}.
Note that
Ax =DbAx =bX +K.
Write oo = bx+a for some x € X and a € K. Since |bx,|, < J for all v € T and |bx,|, < 1 for all
v & T U{u}, the element a = o, — bx, for any v # u has the desired properties. O

Let us record the rephrasing of the strong approximation theorem found in its proof. The statement
is more clearly a direct generalization of weak approximation.

COROLLARY 10.2.15. Let K be a global field, and let u be a place of K. Let o, € K, for each
place v # u of K and suppose that o, € O, for all but finitely many such v. Then for every € > 0
and finite set of primes S of K with u & S, there exists a € K such that |a— |, < € for all v € S and
la|, < 1 for all finite places v ¢ S with v # u.
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We next investigate how adele rings behave in extensions. For a finite extension of L of K, we
identify Ag with a closed subgroup of Ay via the canonical embedding.

LEMMA 10.2.16. Let L/K be a finite Galois extension of global fields. Then Agal(L/K) = Ag.

PROOF. The Galois group G = Gal(L/K) permutes the places of L lying over a place v of K. Let
(o) € [ L

wevy
wlv

be G-invariant. Since the decomposition group G,, at w | v preserves the w-coordinate, it fixes a,.
Thus, oy, € K,, and this holds for all w | v. Moreover, G acts on HW|V K, by permuting the coordinates,
and the action of G on the set of places is transitive, so all of the a,, must be equal. That is, (o, )
is in the image of some a € K, in the product [],,, L. If, moreover, (o) € [Ty O, then clearly
a€ 0,.
With respect to inclusion maps, we have
AK: llg (HKVX H ﬁv>,
SCcVkg \vesS veVg—S

where S runs over the finite sets of places of K. For such a set S, let Sy be the subset of V7 of places
lying over places in S. Every finite set of places of L is contained in some Sy, so

G G G
SCVg weSr weVr—St SCVg veS \ wevy, veVg—S W€|VL
wiv w

O

Let us consider norm and trace maps on adeles.

DEFINITION 10.2.17. Let L/K be an extension of global fields.

a. The norm map Ny i : Ap — A is the multiplicative function defined by

Nk(B) = (HNL/K(BW))

wlv
onf3 €Ay
b. The trace map Try ;i : A — Ak is the homomorphism

TfL/K(ﬁ) = <ZTTL/K(ﬁw)> .

wlv

onf3 €Ay

REMARKS 10.2.18. Let L/K be a finite extension of global fields.
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a. That the norm and trace for L/K on adeles have images inside the adeles follows from the fact
that B € A has B, in the valuation ring of L,, for all but finitely many w, and hence for all w dividing
v for all but finitely many places v of K, and therefore Ny /x(By) and Try x(By) lie in the valuation
ring of K, for all w dividing v for all but finitely many v.

b. In the notation of Definition 6.1.8, the norm and trace maps on adeles have v-coordinates on
B € Ap given by

NL/K(ﬁ)v = NZ/K((ﬁW)W) and TrL/K(ﬁ)v = TTZ/K((ﬁw)w),

where w runs over the places dividing v.

c. It follows form Lemma 10.1.4 that N; /x and Try x are continuous maps on adeles.

10.3. Ideles

In this section, we define the idéles, the elements of which are the units in the adeles. We continue
to let K denote a global field.

DEFINITION 10.3.1. Let K be a global field. The group of idéles (or idéle group) Ik of K is the
restricted topological product
Ix = H (Kvx7ﬁv><)7
veVk
where V is the set of all places of K, where K, is the completion of K at the place v, and where O, is
the valuation ring of K, for which we set &, = K if v is archimedean. An element of Ik is referred
to as an idele.

REMARK 10.3.2. Note that Ig = A¢ as sets, but [x does not have the subspace topology from A.
For each finite prime v, fix a uniformizer 7, in K, and let o, be the adele that is 7, in its v-coordinate
and 1 in every other coordinate. Then every open neighborhood of 1 in Ag contains all but finitely
many @,. On the other hand, the basic open neighborhood

[1 o
veVi

of 1 in I contains not a single a,. On the other hand, the intersection of a basic open neighborhood
of Ag with [k is an open neighborhood of [k, so the topology on I is strictly finer than the subspace
topology from Ag.

We leave it to the reader to check the following.

LEMMA 10.3.3. The restricted product topology on the idele group I of a global field agrees
with the subspace topology induced by the injection

Ix — Ag X Ag, o (o, ).
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REMARK 10.3.4. Note that the content cx(a) of an idéle @ is a positive real number, as all but
finitely many coordinates of o will have multiplicative valuation 1 and the valuations of the other
coordinates will be nonzero. In fact, the property that of having nonzero content characterizes the
ideles as a subset of the adeles, as the reader may quickly check.

We may then make the following definition.

DEFINITION 10.3.5. Let K be a global field. The content homomorphism ck: Ix — R~ is the
function that takes an idele o to its content

cx(a) = [ llowll.

veVk

Let I, denote the kernel of ck.

PROPOSITION 10.3.6. Let K be a global field. Then the content homomorphism ck: Tx — R

Is continuous.

PROOF. We leave it to the reader to verify the following simple claim, which implies the state-
ment. For any £ > 0, there exists a sufficiently small § > 0 such that c;'((1 —¢&,1+ €)) contains
[Tyev,—s O xIlesBs(1), where S is the set of archimedean places of K and Bs(1) C K* is a ball
of radius & about 1. O

COROLLARY 10.3.7. The group ]I}< of ideles of content 1 is a closed subgroup of Ik
We have the following result on the kernel of the content homomorphism.
LEMMA 10.3.8. The topology on ]I}< from g agrees with its subspace topology from Ag.

PROOF. By Remark 10.3.2, the subspace topology on ]I}< from [k is finer than the subspace topol-
ogy from Ag, so we need only show that the intersection of a basic open neighborhood of 1 in Ig
with ]I}< contains the intersection of an open neighborhood of 1 in Ag with ]I}<.

Let S be a finite set of places of K containing the archimedean places, and for each v € S, let U,
be an open subset of K containing 1. Then

u=[Ju.x [] o

veS veVg—S
is a basic open in Ig containing 1. We may suppose that the sets U, are chosen to be balls of suffi-
ciently small radius such that the products of the (modified) valuations of any elements in [],c5U, is
less than 2. Since every element &, — ¢, has valuation at most %, we then have

uniy=JJuvx [] 6)nik,

ves veVkx—S

and [T,es Uy X [1yev,—s Oy is a basic open neighborhood of 1 in Ag. U
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Note that we may think of K> as a subgroup of I via the diagonal embedding. By the product
formula for valuations on global fields, every element of K* lies in ]I}(.

PROPOSITION 10.3.9. The image of K* in ]I}( is discrete, and ]I}(/K>< is compact Hausdorff.

PROOF. The first statement follows from Corollary 10.2.10, since Lemma 10.3.8 tells us that ]I}{
has the subspace topology from Ag. For the second statement, let & € Ag be an adele with cx (o) > C,
where C is as in the statement of Lemma 10.2.12. We define a compact subset of Ag by

X={Belk||B <|ow|, forall v e Vg},

where here we use the fact that ]I}( is closed in Ag. For an arbitrary y € 1L, Lemma 10.2.12 tells us
that there exists a € K* with |a|, < |y ', for all places v of K. We then have ya € X, so X surjects
onto the Hausdorff space ]I}< /K™, and therefore the latter quotient is compact. U

DEFINITION 10.3.10. The principal ideles of a global field K are the elements of I that lie in
K> (under its diagonal embedding).

DEFINITION 10.3.11. Let K be a global field. Then the idéle class group Ck of K is the quotient
topological group Ix/K*. The image [¢t] of o € Ik in Ck is the idele class of c.

NOTATION 10.3.12. For a global field K, we shall use Vi r to denote its set of finite places.

DEFINITION 10.3.13. Let K be a global field. The fractional ideal of Ok defined by an idele a of
K is the finite product

H pz(a)7

VGVK,f

where p, denotes the prime corresponding to a finite place v of K.

PROPOSITION 10.3.14. Let K be a number field. Let ng: lx — Ix be the homomorphism that
takes an idele to the fractional ideal it defines. Then EK(H}{) = Ik, and wy is continuous if we endow
Ix with the discrete topology.

PROOF. For the first statement, we need only show that every nonzero prime p is the image of
an element of ]I}<. We may take an idele o of content 1 that is a uniformizer 7, in the coordinate
corresponding to p, that in a fixed archimedean place w satisfies ||, ||\ = |7, I, and which is 1 in
all other coordinates.

For the second statement, we need only note that

e ({(}) =[] o

veVk

is open in . U
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REMARK 10.3.15. Proposition 10.3.14 enables us to give a second proof that Clg is finite. That
is, since mx in the proposition takes K> onto Pgx, we have an induced continuous, surjective map
]I}< /K* — Clg. It follows that Clg is both compact as the continuous image of a compact space and
discrete as a quotient of /g, and therefore Clk is finite.

NOTATION 10.3.16. For a finite extension L/K of global fields, we use 17 /x: Cx — C, also to
denote the map induced by the canonical embedding 17 /x: Ix — Ir.

LEMMA 10.3.17. For a finite extension L/K of global fields, the map i/x: Ck = Cp is injective.

PROOF. Identifying l[x and L* with their images in I, we need only see that [x NL* = K*. Let
M be a finite Galois extension of K containing L. We claim that [x "M* = K*, which will prove the
result. But Lemma 10.2.16 gives us the first equality in

]IKﬂMX — ]IZ(\}/Ial(M/K) AM* = (MX)Gal(M/K) _ KX,

the second equality following from the compatibility of the Galois action on M and I}; under the
diagonal embedding. U

NOTATION 10.3.18. We identify Cx with a (closed) subgroup of C;, via the embedding 17,
noting Lemma 10.3.17.

As a consequence of Lemma 10.2.16, we have that ]ISal(L/ K) Ik for any finite Galois extension

L/K. We claim that the same holds for idele class groups.
LEMMA 10.3.19. Let L/K be a finite Galois extension of global fields. Then CSal(L/K) = Ckg.

PROOF. We have an exact sequence of modules for G = Gal(L/K) given by
0—-L* =1, —-CL—0,
and this gives rise to a long exact sequence starting
0—K* —=1Ig—CY—HY(G,LY).

Since the latter group is zero by Hilbert’s Theorem 90, the resulting short exact sequence yields the
result. D

Since the ideles are the units in the adele ring, the norm map on adele ring is immediately seen to
define a norm map on the idele group. Continuity of the norm follows from Lemma 10.1.4, as with
adeles.

DEFINITION 10.3.20. Let L/K be an extension of global fields. The norm map Npg: I —Igis
the homomorphism that is the restriction of N /g : Ap — Ag.

Since the norms of principal ideles are principal, we may make the following definition.
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DEFINITION 10.3.21. The norm map Ny jx: Cr — Ck is the map induced on quotient groups by
the corresponding norm map on idele groups.

REMARK 10.3.22. The norm map is continuous on idele groups and idele class groups.

10.4. Statements

The reciprocity map in the idele-theoretic approach to global class field theory is constructed out
of the local reciprocity maps of the completions of the global fields in question. We provide the
preliminary results to its construction.

LEMMA 10.4.1. Let K be a global field, let L be a finite abelian extension of K, and let o € Ig.
Then pr/KV(OcV) =1 for all places w lying over v for all but finitely many places v of K.

PROOF. All but finitely many v are unramified in L/K and for all but finitely many v, the valuation
v is nonarchimedean and o, is a unit in its valuation ring &,. Since p; /g, (0)) is contained in
the inertia subgroup of Gal(L,,/K,) for any v and this inertia subgroup is trivial in an unramified
extension, we have the result. O

REMARK 10.4.2. Suppose we start with a global field K and a place v of K. Consider the canonical
map from G?}’v to a decomposition group D, in G%b at a place w over v. (Note that, while the map
Gk, — Gk identifying Gk, with the decomposition group at a place of K*P is injective, the map
G}bv — Gﬁ‘(b it induces may not be.) The resulting map G%bv — G‘}{b is independent of the choice of w
since conjugation by an element of G}‘{b is a trivial automorphism of G}b. We may then view the local
reciprocity map as producing global elements via the composition

Pk, ~
K} =5 G 5Dy — GY

that takes o € K to pk, (@) |ga, and since all of the maps in the composition are independent of w,
this map is as well.

The following lemma is now an immediate consequence of Remark 10.4.2.

LEMMA 10.4.3. Let L/K be a finite abelian extension of global fields, let v be a place of K, and
let @ € K*. The quantity

Pr,/k,(@)|L € Gal(L/K)

for a place w of L lying over v is independent of w.

Lemmas 10.4.1 and 10.4.3 allow us to define the reciprocity map for a finite abelian extension of
global fields.
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DEFINITION 10.4.4. Let L/K be a finite abelian extension of global fields. The (global) reci-
procity map for L/K is the homomorphism ®; /¢ : Ix — Gal(L/K) defined by

CI’L/K H pLW/K o)l

veVg

where for each valuation v of K, we have chosen a valuation w of L lying over v.
We note the following compatibility among the global reciprocity maps.

LEMMA 10.4.5. Let K be a global field, and let L and M be finite abelian extensions of K with
L C M. Forevery o € Ig, we have ®p g (a) = Py /g ()|

PROOF. For each v € Vg, we choose w € Vp, lying over v and u € Py lying over w. By property
(i1) of local reciprocity, we have

pLW/Kv(aV) = pMu/Kv(aV)|Lw7
and the result is then an immediate consequence of the definition of the global reciprocity map. [J

COROLLARY 10.4.6. Let K be a global field. Then for each o € Ik, the quantity

im @y k()
L

with the inverse limit taken over finite abelian extensions L of K with respect to restriction maps, is
well-defined.

We may therefore make the following definition.

DEFINITION 10.4.7. Let K be a global field. The (global) reciprocity map for K is the homomor-
phism &g : [x — GZI‘}’ given by

O = lim @/,
L
where the inverse limit is taken over finite abelian extensions L of K with respect to restriction maps.

REMARK 10.4.8. For o € I, we have

O (o) = Lq)L/K( H oLk (o)L= T] (@PLW/KV(%))Rab = [1 px.(o)lgw,

L veVk veVk L, veVk

where the first two inverse limits run over the finite abelian extensions of K and the third runs over
the completions of the finite abelian extensions of K at a fixed prime of K% over v.

Our key result is now a reworking of Artin reciprocity.

THEOREM 10.4.9 (Global reciprocity). Let K be a global field.
a. We have ®k(a) =1 foralla € K*.
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b. For every finite abelian extension L of K, the reciprocity map @y k is surjective with kernel
K*Ny k(1)
L/K\1L)-

In other words, the global reciprocity map factors through the idele class group.

DEFINITION 10.4.10. Let K be a global field.

a. The global reciprocity map ¢g: Cx — G%b is the homomorphism induced on the quotient Cg
of [x by the global reciprocity map P on ideles.

b. The global reciprocity map ¢ x: Cx — Gal(L/K) for L/K is the composition of ¢x with
restriction to Gal(L/K).

The following is then just a rewording of global reciprocity.

THEOREM 10.4.11. Let L/K be a finite abelian extension of global fields. The global reciprocity

map @k induces an isomorphism
CK/NL/K(CL = Gal(L/K).

REMARK 10.4.12. For a number field K, the reciprocity map ¢ is surjective, and its kernel is the
connected component C of 1 in Cg. This connected component is the closure of the image of the
subgroup of [ consisting of ideles that are zero in all nonarchimedean coordinates and positive in all
real coordinates.

We have the following compatibilities between reciprocity maps, which are quickly derived from
the analogous result in local reciprocity.

PROPOSITION 10.4.13. Let K be a global field, and let L/K be a finite separable extension. Then

we have the following commutative diagrams:

a.

where Ry /i is the restriction map on Galois groups,

b.

Cx —25 G

\ /K lVL/K
oL

CL —— G,

where the map 1k is induced by the natural injection map lx — I, and
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c. for any embedding ¢ : L — K*°P,

where the map 6™ is induced by conjugation by ©.

PROOF. We prove only part a, in that parts b and c is similar. For f € Cy, we have

B)lgw = H L, (Bw) g = H HPLw(ﬁw)|Kab = H HPKV Lo /K Bw) [ o

wevy, veVk wlv veVk wlv

= [T px. (N ((Bu)wpp)) ks = 9 (NLyxB).

veVk
where Remark 10.4.8 is used in the first and last equality and Proposition 9.2.7 is used in the third
equality. U

Much as in the case of local class field theory, we have a one-to-one correspondence between
norm subgroups of Cg and finite abelian extensions of K. That norm subgroups are open follows by
the same arguments as in the case of local fields.

THEOREM 10.4.14 (Existence theorem of global CFT). The open subgroups of Ck of finite index
are exactly the norm subgroups Ny xCr with L a finite abelian extension of K.

The following consequences of the global reciprocity law and existence theorem can then be
obtained much as before.

PROPOSITION 10.4.15. Let K be a global field. For finite abelian extensions L and M of K, we
have the following:

a. NpykCrLNONykCum = N /xCru,

b. NpjkCr-NyxCwm = Nzom) jxCrom, and

¢. Ny/kCu €Ny xCr if and only if LC M.

THEOREM 10.4.16 (Uniqueness theorem of global CFT). Let L and M be distinct finite abelian
extensions of a global field K. Then Ny ;xCr, # Ny /xCu.

10.5. Comparison of the approaches

In this section, we compare the ideal-theoretic and idele-theoretic approaches to global class field
theory for number fields. For this, we begin by comparing ideal groups with groups of ideles. This
requires a good deal of notation.
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NOTATION 10.5.1. Let K be a number field, and let m be a modulus for K. For a finite place v
such that the associated prime ideal p divides my, set m, = v(my). For a real place v such that the
associated absolute value divides m., set m, = 1, and let U; (K,) denote the positive real numbers in
K, = R. For exactly those v of either sort, we say that v divides m and write v | m.

DEFINITION 10.5.2. Let K be a number field and m a modulus for K.
a. The m-idele group is the open subgroup I¢ of ¢ given by
x ={aclk|a, €Uy/(K,) forallv|m}.

b. The congruence subgroup of I with modulus m is the open subgroup

Wi =[] Un (&) x TT &)
veVk veVk
vjm vim

PROPOSITION 10.5.3. Let K be a number field and m be a modulus for K.

a. The homomorphism wg : Ig — Ig* given by

) = H p‘V}(av)_
VEV[(J‘
vim

is surjective with kernel Wy,.
b. The inclusion of I¢ in Ik induces an isomorphism

PROOF. That ¢ is surjective is immediate from the definitions, since elements of I have arbi-
trary coodinates (with all but finitely many unit coordinates) for v{ m. The kernel is also clearly W,
as the requirement that an element of I lie in the kernel is exactly that it be a unit in all finite v not
dividing m. This proves part a.

As for part b, note that K* NI = Ky, 1, since the condition that a € K™ lie in I is exactly that it
lie in each U,y (K,) for v | m, which is to say that it lies in Ky 1. For o € Ik, we may choose b € K~
such that o,,b~! € Un,(K,) for all v dividing m by weak approximation. It follows that ab~! € I
and therefore that o € IFK™. Since this tells us that Ix = Ig K™, the map 1§ is onto. O

NOTATION 10.5.4. Let us use 1ng to denote the composition
e =alo (1) ': Cx — CIP,

where g : I¢ /K 1 — CI is the surjection induced by 7g', and where 7g' and 1 are as in Proposi-
tion 10.5.3.

The following now gives the comparison between the Artin map l[/l‘j‘/ x: Clg — Gal(L/K) for
an abelian extension L/K with defining modulus m and the global reciprocity map ¢; ik Cx —
Gal(L/K).
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THEOREM 10.5.5. Let L/K be a finite abelian extension of number fields and m a defining mod-
ulus for L/K. Then
Pr/x = ‘I’E‘/K ong
as maps from Cg to Gal(L/K).

PROOF. Choose an idele class in Cg, let o € I represent it, and let a € I be the product

a= [T o',

veVk ¢
vim
which implies that [a]m = n}}‘([a]). We have
(10.5.1) vik(lalm) = [T wEk(pile) ™ = TT (0, /K™ = TT pr,/x (0)-
veVk. s veVk s veVi. r
vim vim vtm

Now, note that the conductor f; /x divides m and that, by Proposition 7.4.21, we have f x r0, =
f1,,/k,- Since for any finite v dividing m and w a place of v lying over it we have by choice of o that
a, = 1 mod 7, /k, . the definition of the local conductor tells us that py , (o) = 1. Moreover, if
T is a real embedding such that | [; divides m, we have that 7(a,) > 0, so py, /k, (o) = 1 as well.
Therefore, we have

H pLW/K o) HPLW/K (o) = q)L/K(a)7

veVk ¢ veVk
vim
and this together with (10.5.1) yields the result. U

REMARK 10.5.6. The global reciprocity map is defined a product of local reciprocity maps and
computes the Artin maps for all finite abelian extensions. The Artin maps avoid much of the difficulty
of ramification, as they arise from ideal groups that exclude ramified primes. The connection with
local reciprocity is then much weaker, as one only sees the local maps for unramified extensions,
whereby any uniformizer is taken to the unique Frobenius in the Galois group of the local extension.
In that sense, the Artin maps then miss much of the complexity of the maps of local class field theory,
which on the other hand is seen in the idelic viewpoint.

Let us end this section by examining the case of class field theory over Q).

EXAMPLE 10.5.7. Let us verify the global reciprocity law for Q via our computation of the local
reciprocity map over Q,. The computation is given in Proposition 9.5.8, and we use it repeatedly.

Let p be a prime and k > 1. By the Kronecker-Weber theorem, it suffices to demonstrate that each
®( carries —1 and each prime number £ to Galois elements that act trivially on a primitive pkth root
of unity & x.

For all primes g & {p,(}, we have that pg, (¢) fixes . Also, since £ > 0, we have pr(£) = 1. If
¢ = p, then we have

Do () (Epr) = Py (6)(Gpr) = Gt
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On the other hand, if ¢ # p, then we have
-1
Do (0) (&) = P, () P, (O)(E) = Pa, () ) = Lt
As for —1, we have that pg, (—1) fixes . for all g # p, that pg,(—1) inverts {x, and that pg(—1)
is complex conjugation, so

Do (~1)(E) = pr(—1) g, (—1)(Gpr) = pr(=1)(E 1) = .

p

REMARK 10.5.8. Recall that we did not actually prove Theorem 9.5.9 that the map constructed
in Proposition 9.5.8 equals the local reciprocity map pg,. Via the argument of the last lemma, noting
that local reciprocity maps for unramified extensions will be trivial on units and take uniformizers
to the Frobenius element, we can actually use the global reciprocity law to give a short proof of this
theorem.

EXAMPLE 10.5.9. We refer to the subspace

i,= 1 @z

p prime
of Ig as the group of finite ideles. Note that
_7f
Ig = ]IQ x R*.

Since R is the kernel of pg, the map ®g factors through 116 x {#+1}. We have

Io/Q*Rso = (I x {£1})/Q* 2 I /Qs0.

Now, consider the map ]Ié — Q0 that takes a finite idele to the unique positive generator of the ideal
to which it gives rise: that is, o is taken to [, p'»(®)_ This is surjective with kernel

2 =11z,
p
and splits the natural inclusion Q< — ]Ié. In other words, we have an identification

HQ/Q><IR>0 = ZX)

and the global reciprocity map ¢g: Cg — G%’ factors through 7~
The resulting map ¢ : 7* - Gﬂan? is the inversion of the inverse map to the cyclotomic character
xX: Gg —s 7%, That is, we have

o(a)(§)=¢""

forall a = (ap), € 2 and roots of unity §. To see this, note that if Cpk is a primitive p*th root of
unity for some prime p and k > 1, then Theorem 9.5.9 and our definition of ¢ imply that

1

9(a)(Ep) = pg, (ap)(E) = Ck
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where we may make sense of a~! modulo p*. In particular, ¢ is an isomorphism, so the image of
R~ is the kernel of ¢q.

10.6. Cohomology of the ideles

Let L/K be a finite Galois extension of global fields with Galois group G. For a place w of L, let
G,, denote the decomposition group of w in G.

LEMMA 10.6.1. Let v be a place of K and u denote a fixed place of L lying over it. We have

isomorphisms of G-modules
Indg (L) =[JL; and Indg (0,;) =[]0
wlv wlv

PROOF. The elements o € G induce isomorphisms 0': L, — Lg(,) of K-algebras that in particular
preserve valuations. The maps are then the restriction of the map

Indg (L.) = Z[G) ®z;G,) Lu = [ [ Lw
wlv

induced by the biadditive map taking (0,) for 6 € G and 8 € L, to 6(f) € Ly(,). That this is
well-defined follows from the fact that if o = 6’7 for some 7 € G,, then (o, ) and (¢’, 7(f)) map to
the same element. It is then easily seen to be an isomorphism of G-modules, and then the restrictions
are isomorphisms as well. U

By Lemma 10.6.1 and Shapiro’s lemma, we have isomorphisms

A(G,, L)) = FI"(G,HL;) and H'(G,,0°)= A (G,H ﬁj)
wlv wlv

for all i € Z. Together, these enable us to describe the Tate cohomology groups of the idele group 1.

NOTATION 10.6.2. For a finite set of places S of K, we set

Is = TTI1L: < T1T1 2%

vesS wiy veS wlv
REMARK 10.6.3. We have [} = ligs I;.s, where S runs over all finite subsets of Vg, with the

injective maps induced by inclusions of sets of places. We can of course use any cofinal set of finite
sets of places here.

PROPOSITION 10.6.4. Let S be a finite set of places of K containing the archimedean places and
those places that ramify in L/K. We have isomorphisms
Fli<G7]IL,S> = @FIZ(GWaLé)
vesS

for alli € Z, where w denotes a choice of place over v € S.
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PROOF. As Tate cohomology commutes with products by construction, we have

A(G,Is) = Hﬁ”(G,I"IL;) x ]gsﬁi (a.ITe)

vesS
= [14'(Gw.L3) <[ 1A (Gw. Gy,
ves VS

where in the latter step we have fixed a place w over each place v € Vk. Since each v ¢ S is unramified
in L, we have H'(G,,, 0%) = 0 for all i € Z by Lemma 9.1.6. The result follows. O

By (9.2.1), Hilbert’s Theorem 90 and via the isomorphisms given by the local invariant maps, we
have the following.

COROLLARY 10.6.5. Let S be a finite set of places of K containing the archimedean places and
those places that ramify in L/K. We have |[H°(G,I5)| = NG, 1) is trivial,
and

2(G,ILs) @

v€S| W’

for any choice w of place of L over v € S.
PROPOSITION 10.6.6. We have
A(GI.) = P H(Gw,L})
veVk

for all i € 7, where w denotes a choice of place over v € V.

PRrROOF. It follows from Remark 10.6.3 that

H'(G,IL) =1im A'(G, I.5),
S

where § runs over the finite sets of places of K containing the archimedean places of K and those
places that ramify in L/K. By Proposition 10.6.4, we then have

H'(G,I.) =lim [TH' (G, Ly) = @ (G, Ly,).

S veS veVk

Again, we have the following.

COROLLARY 10.6.7. We have H'(G,1;) = 0 and

*(G,IL) = @ Z/Z

VEV[(
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10.7. The first inequality

We will restrict our proofs of the reciprocity laws of global class field theory to number fields.
We remark that the proofs we give carry over with little-to-no change to the function field setting for
extensions of degree prime to the characteristic, but the proof of the second inequality in the case of
equal characteristic requires some additional work.

So, we now let L/K be a finite Galois extension of number fields, still with Galois group G. Our
interest is in the G-cohomology of Cy, in that we would like to define invariant maps that make it into
a class formation. Recall that we have a surjection [; — I taking an idele to the fractional ideal it
defines, and this map induces a surjection C; — Cly.

We will use S to denote a finite set of places of K, which we consistently suppose contains the
archimedean places of K. (In the function field setting, S should be taken to be nonempty and the
class group considered below should be replaced by a certain divisor class group.)

LEMMA 10.7.1. Suppose that S contains a set of finite places generating the ideal class group of
Or. Then g = ]IK’SKX.

PROOF. The kernel of the surjection [x — Ix is generated by the product of the local units at
finite places and local multiplicative groups at infinite places, so the kernel of Cx — Clg is as well.
We then note that the class group is generated by the classes of the chosen set of finite representatives
p, and these are the images of ideles in [k g that are 1 in places but that for p and the uniformizer at
the prime. Thus Ix/Ix sK* = 0. (Since we take &, = L;5 for archimedean places w, it is not strictly
necessary to include these places in our set.) U

DEFINITION 10.7.2. The ring of S-integers Ok s of K is the set of elements of K that lie in the
valuation ring at all nonarchimedean places of K not in S. The S-unit group of K is Oy .

REMARK 10.7.3. We have Ix sNK* = O .

NOTATION 10.7.4. We use 0} s to denote the S;-integer ring of &}, where Sy denotes the set of
places of L lying over those in S.

We have the following extension of Dirichlet’s unit theorem. It also holds for function fields,
though we restrict to the case of number fields.

PROPOSITION 10.7.5. For a finite set S of places of a number field K containing its archimedean

places, we have
rankz, O¢ ¢ = |S| — 1.

PROOF. By Dirichlet’s unit theorem, we know that ranky, O = r(K) +r(K) — 1, one less than
the number of archimedean places of K. We have an exact sequence

ZVES v
X X f
1 ﬁK ‘3 ﬁK,S @Z’
vesy
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where Sy denotes the set of finite places in S. It then suffices to exhibit an S-unit with nonzero additive
valuation at a given v € S and trivial valuation at all other finite places of K. For this, note that some
power of the prime p corresponding to v is principal, and any generator is then an S-unit with the
desired property. U

As with local class field theory, much can be gained from the study of cyclic extensions.
THEOREM 10.7.6. If L/K is cyclic, then h(Cr) = [L : K|, for G = Gal(L/K).

PROOF. Let S contain the ramified places in L/K and a set of finite places lying below primes
generating the ideal class group of 0. We have C; =1 /0", by Lemma 10.7.1. Thus, we have

h(Is)

h(Cp) = WOy

Now, consider the R-vector space V with basis the elements of the set Sz of places of L over those
in S. Let G act on V by its canonical permutation of the standard basis. Consider its Z[G]-submodule
A generated over Z by the standard basis of V. We have A = @, ¢ Indi(Z), where w is again used
to denote a place over v. Then

h(A) = [ [r(Gw, Z) = [ v,

ves ves
where n, denotes the local degree of L/K at a prime over v.

We define a second lattice as follows. We have the homomorphism ¢, s: 0} ¢ — V given by

lLs(B) = (log|Bl[w)wes, -

By Corollary 4.4.2, we have that ker/; g is finite and, by the product formula, the image BY of lLs
is contained in the hyperplane V° of elements that sum to zero. The & LX ¢ is the rank of &) plus
the number of finite places in S, as some power of any finite prime is principal, and from this and
Theorem 10.7.5, we see that B” must be a complete lattice in the hyperplane V.
Letx = (1),es, € VY, and set
B=17Zx+B,

which is a complete lattice in V. We have an exact sequence of G-modules
0— B = B—Zx—0,

s0 h(B) = h(BY)h(Z) = nh(CO LX ). On the other hand, any two complete lattices in a finite-dimensional
R-vector space are isomorphic upon tensor product with @@, from which one can see that their Her-
brand quotients are equal. Thus we have h(A) = h(B), which tells us upon application of Corol-
lary 10.6.5 that
WO7s) = ThA) = [T
7 n nyes
Combining this with our computation of A(I s) yields the theorem. U
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As a corollary of this, we obtain what is known as the first inequality of global class field theory.

COROLLARY 10.7.7 (The first inequality). For any finite cyclic extension L/K, we have [Ckg :

PROOF. The quantity on the left-hand side of the inequality is the order of H°(G,Cp), which is a
multiple of the Herbrand quotient. U

The following is a simple consequence of the much stronger Cebotarev density theorem. We
prove it using the first inequality.

COROLLARY 10.7.8. Let L/K be finite abelian and S be a finite set of places of K containing the
archimedean places and the ramified places in L/K. Then G is generated by the Frobenius elements
in G of places not in S.

PROOF. We may by enlarging S suppose that it contains a set of representatives of the class
group of K. Let E be the fixed field of the subgroup of G generated by the Frobenius elements
of nonarchimedean places not in S. Then for any v ¢ S and place w lying over v in G, we have
that the local extension E,, /K, is trivial, and in particular that Ng, / Kvaf = K,*. Thus, we have that
Ng/klgs = I s, and by Lemma 10.7.1 we have that K*lg 5 = Ik, so Ng/xCg = Cg. This implies
the same equality with E replaced by any cyclic subextension, and then by the first inequality, such
an extension must be trivial, so £ = K. U

We leave it to the reader to prove the following additional consequences in a similar fashion, using
Corollary 10.7.8.

COROLLARY 10.7.9. Let L/K be cyclic of prime power degree. Then there exist infinitely many
primes of K that remain inert in L/K.

COROLLARY 10.7.10. Let Ly,...,L; be cyclic extensions of K of prime degree p such that each
L; is disjoint from the compositum of the L; for j # i. Then there are infinitely many primes of K that
are inert in Ly and split completely in L; for i > 2.

10.8. The second inequality

We turn to the opposite inequality, known as the second inequality, for general Galois extensions
of number fields, beginning with Kummer extensions of prime exponent.
For now, let us fix n > 1. For a subset 7" of §, we set

=[] &< []&"x]]or

veS—-T veT véeS

LEMMA 10.8.1. Suppose that W, C K and S contains the primes dividing n. Let T be a finite
subset of S, and set A = K* N I7 and L = K(AY"). Then L/K is unramified outside of the places in
S — T and completely split at the places in T.
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PROOF. It suffices to see that for all a € A, the extension K, (a'/")/K, is unramified if v € § — T
and trivial if ve T. If v ¢ S, then a € 0, so K, (al/ ")/K, is tamely ramified, being of prime-to-p
degree. Its is moreover unramified as the group (a)K " contains no mth power of a uniformizer of K,
for m properly dividing n. If v € T, then a € K", so clearly K, (a'/") =K, O

The following simple group-theoretic lemma will be of use to us shortly.
LEMMA 10.8.2. For subgroups A, B, and C of a group with A < B of finite index, we have
[A:B] =[AC:BC|[ANC:BNC(].

PROOF. By the second and third isomorphism theorems and the fact that A < B, we have

AC _AC/C ,  A/(ANC) _ A _ A/B

BC  BC/C  (ANBC)/(ANC)  (ANC)B~ (ANC)B/B’
and (ANC)B/B=(ANC)/(BNC). O

LEMMA 10.8.3. Suppose that U, C K and S contains the primes over n and a set of representatives
for Clg. Let S| be a subset of S and Sy =S —Sy. Let Aj = K* N s, and L; = L(Al-l/n)for ie{l1,2}.
Then

a. Is, C NLz/K]ILZ and Is, C NLI/K]ILp and

b. [C[( : Kxfsl][(cl( . KXJSZ] = [Ll IK] [Lz : K]

PROOF. For part a, let oo = (o), € I, with i € {1,2}. Let j be such that {i,j} = {1,2}, and
let E = L; for brevity. For v € S;, we have o, € K;"*. By the the local reciprocity law, the quotient
of KX by the norm group Ng, / x,E,s for w| v has exponent dividing n, so therefore ¢, lies in it. Any
v € S; splits completely in E /K, so @, is automatically a local norm for all places w | v. For all v ¢ S,
the extension E /K is unramified at v, and o, € &)°. Since the local extension is unramified, its norm
group contains &, (and in fact is generated by it and the uniformizer of K, to the power of the residue
degree of the extension). Thus, & € N klg. That is, we have Is, C Ng /¢ lE.

As for part b, by Lemma 10.7.1 and the group-theoretic equality of indices that is Lemma 10.8.2,
we have

ks : s ] lg.s: Fs,]
Ig:K* I | =K lgg: K* I | = : 1 =T o
e K2 Is) = 1K s - K25 = AT s B ] — [0 A

Note that
Ixs/7s =[] K /K™

VES]
For a place v over p we have

K K™ =n?- |In]l
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since K 2 Z x u(K,) x ZLK“:Q”} by Propositions 6.3.4 and 6.3.9 and u, C u(K,). In fact, for any
place v, we have we still have the equality, noting that the only archimedean places for n > 3 are
complex. Letting s = |S|, we then have
[Ixs: s )Iks : Is,) = n® [T lInlly " = n* [T lInlly = n*
ves ve¢S

by the product formula and the fact that every place that divides »n and all archimedean places lie in S.

We also have [0k s : O] = n’ by Proposition 10.7.5 (which says that O ¢ = 7571 x u(K)), and
(A1 : O%'5] = [Ly : K] by Kummer theory. Thus,

[0 s Al[OF s 2 Ao] = n*([L1 : K][La : K]) 7,

and we then have
Ik s: s lk.s: Is,)

Ix: KX e g KX e ] =
[T il 3 (05 M0 52 )

= [Ll ZK][L2 . K],

as claimed. O

We now specialize to the case that n equals a prime p.

PROPOSITION 10.8.4. Let K be a number field that contains the pth roots of unity for a prime p.
Let L/K be finite abelian of exponent p. Then [Ck : N jxCy] divides [L : K].

PROOF. Let k be such that [L: K] = p*, and let ay, ...,a; € K* be such that L = K(ai/p, . ,a,l(/p).
We aim to construct finite disjoint sets §; and S, of primes such that S = §| U S satisfies the conditions
of Lemma 10.8.3 with K* %5, = Ix and L, = L. We will then have [C : NLI/KCLl] = 1, which by
the first inequality forces L; = K, and Lemma 10.8.3 then implies the desired divisibility.

To start, choose S to consist of the archimedean places, the primes over p, a set of representatives
of Clg, and every finite place v such that v(a;) # 0 for 1 <i <k. Then K*Ig 5, =[x by Lemma 10.7.1,
and a; € 6”1?.51 for 1 <i<k. Letby,...,b; € ﬁ’;’sl be such that the images of ay,...,ax,by,...,b;
form a basis of ﬁl?,sl /ﬁ;gl. Now, by Corollary 10.7.10, we may choose S, = {vy,...,v;}, where for
each v; splits completely in L/K, remains inert in K (bl1 /p )/K, and splits completely in K (b;-/ Py /K for
J#L

Recalling that we have set n = p, we have

]IK7SI ﬂfsz = HKVX X H ﬁVXp XHﬁVX.
VeS| veSy veS
We then have

t
Iks,/(Ixs,NIs,) =[]0/ 0x7,
i=1

and since the residue characteristic of K, is not p and u, C K¢, we have 0/ OyP = 7./p7. Note
that b; € g s,, and for 1 <i,j <t, we have b; ¢ ﬁ’vxjp if and only if i = j. Thus, the images of the
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b; generate Ix s, /(Ix.s, N Fs,). Since the b; lie in K, this tells us that K* 7, = K*Ig 5, = I, as
desired.
Next, note that

I, Cl s T = Ik.s, (K I 5,)7 =T 5, K7
by what we have just shown. In particular,
Ay = s, NK* C ﬁ)[?SIKXp,
and ApK*P /K*P is generated by the S;-units that are locally pth powers at all v € S,. Recall that
ﬁl?,sl K*P /K*? is generated by the images of ay,...,ax,by,...,b,. Since each v; splits completely in
the subfield K (al-l /p ) of L, we have that g; € ﬁvf.p , 80 a; € Ay for 1 <i < k. On the other hand, any

non-pth-power in (by,...,b;) has nontrivial image in ﬁvxj / ﬁ’vxjp for some j, so does not lie in ApK*P.
Thus, the images of the a; generate ApK*” /K*P, which is to say that L, = L. O

We now turn to more general extensions, no longer supposing t,, C K.

LEMMA 10.8.5. For any finite extension L/K, the index [Cx : Ny jxCy] is finite and divisible only
by primes dividing [L : K]|.

PROOF. Once we have finiteness, the divisibility statement follows from the fact that for any
a € Ck, we have allKl e N, /kCr. For finiteness, we may suppose that L/K is Galois, since the
norms of idele classes from the Galois closure of L to K will also be norms from L. By Lemma 10.7.1,
we may find a finite set of primes S of K containing the primes that ramify in L such that I; = I gL~
and I[x = Ix sK*. Then

[Ck : NpjkCr] = [Ig : K*Npgli] = [K*Ig,s - K* Nyl s] < [lk,s : Npjgles] = [ JILw 2 Ko,
ves

where w is any place of L over v, with the last equality by Proposition 10.6.5. U

For brevity, for a finite extension E/F of number fields, we let ng/p = [Cr : Ng/pCg].

LEMMA 10.8.6. Let M/K be a finite Galois extension and L an intermediate field. Then ny, /K
divides nM/LnL/K'

PROOF. Note that
ny/x = [INL/kCr s NyyxCulng -
The map Ny /k induces a surjective map
CL/Ny/rCm — NpjxCr/NyxCu
SO [NL/KCL . NM/K(CM] divides nM/L' O

The following is then immediate from the multiplicativity of degrees of field extensions.
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COROLLARY 10.8.7. Let M /K be a finite Galois extension and L an intermediate field. Ifny |
M : L] and ny g | [L: K], then ny g | [M : K].

THEOREM 10.8.8. Let L/K be a finite Galois extension of number fields with Galois group G.
Then H°(G,Cyr) and H*(G,Cp) have order dividing [L : K|, and H' (G,Cp) = 0.

PROOF. By Lemma 9.1.12 applied in the cases (i,r) = (0,1),(1,0),(2,1) in that order, the result
follows for arbitrary Galois extensions from the case of cyclic extensions of prime degree. So, sup-
pose that L/K is cyclic of degree a prime p. If we can show that n; jx = |A%(G,Cy)| divides p, then
the 2-periodicity of Tate cohomology and Theorem 10.7.6 give the result.

By Lemma 8.2.3, we have that n /¢ | L) /K> and by Lemma 10.8.6, we have that

AL () K | L () K (1) PR (1) K

Since MK (1) /K is prime to p and ny /g is a power of p by Lemma 10.8.5, we have that ny x divides
L) /K (1y)> Which is p by Proposition 10.8.4.
0

COROLLARY 10.8.9 (The second inequality). For any finite Galois extension L/K, we have
[(CK : NL/K(CL] < [L : K].

From the fact that H' (G, Cp) = 0, we obtain the interesting consequence that in cyclic extensions,
global elements that are local norms everywhere are global norms.

COROLLARY 10.8.10. Suppose that L/K is cyclic. If a € K* and a € Ny /k, Ly, for some w | v for
all places v € Vi, then a € Ny jxL™.

PROOF. Since H'(G,Cy) = 0, the map
H*(G,L*) — H*(G,I;)

is an injection. Since G is cyclic, we have that the corresponding map on Oth Tate cohomology groups
is injective as well. In other words, the map
K* /Ny kL™ — €D K* /Ny, jx, Ly
veVk

is injective, noting that the norm group for L,, /K, is independent of the choice of w | v (as L/K is
Galois). This is exactly what was claimed. U

10.9. The reciprocity law

We continue to let K denote a number field and S a finite set of places of K containing the
archimedean places. In this section, we use L to denote a finite abelian extension of K with Ga-
lois group G.
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As noted in the proof of the Corollary 10.8.10, the triviality of H' (G,Cp) implies that the map
Br(L/K) = H*(G,L”*) — H*(G,I.) = (PBr(L,/K,)
ves
is injective. In the direct limit over all Galois extensions L of K, we obtain an injective map
K) = & Br(k,)
veVk
Let us use inv, : Br(K) — Q/Z to denote the composition of the map Br(K) — Br(K,) with the local
invariant map invg,. (Here, invg is the unique injection of the group Br(R) of order 2 in Q/Z.) We
see from the fact that Br(K) maps to the direct sum that
Z inv,: Br(K) > Q/Z
veVk
is well-defined. We will show that this map is zero.
In the following, we also use the notation inv, to denote the composition
invg, @ / 7.
LEMMA 10.9.1. For a € Ik and y € Hom(G,Q/Z), we have

Y inv,(@Udy) = 2 (P /k(a)),

veVg

where §: H'(G,Q/Z) — H*(G,Z) is the connecting homomorphism for 0 — 7. — Q — Q/Z — 0,
and @ denotes the class of o in H*(G,1Ip).

inv,: H*(G,I;) — Br(K,)

PROOF. By definition and the compatibility of cup products with restriction, we have
inv,(@USY) = invg, (0, US Y, ),

where @, denotes the image of o, in H°(G,, L) for a place w over v, where x, € H'(G,,Q/Z) is the
restriction of y to the decomposition group G,,, and where 6 continues to denote the corresponding
connecting homomorphism. By Proposition 8.1.10, we have that

invg, (06, Ud%y) = 2 (P, /k, (O0))-
By definition of ®; /¢ and the fact that  is a homomorphism, we have that

X(@rx(a) =Y x(pr,/x (00)),

veVk

hence the result. ]

From the global recirpocity law for Q, we may easily prove the global reciprocity law for cyclo-
tomic extensions.

LEMMA 10.9.2. Let L be an extension of K contained in K () for some N > 1. Then @y jx(a) =1
foralla e K*.
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PROOF. For E = Q(uy), we have @y /x(a)|r = Pg /q(Nk/g(a)) by part a of Proposition 10.4.13.
Since the restriction map G — Gal(E /Q) is injective, we are reduced to the already proven reciprocity
law for Q. O

LEMMA 10.9.3. For any n > 1, let S denote the set of places of K dividing n and all real places.
Then there exists a cyclic extension L of K contained in K(ly) for some N > 1 such that the local
degree of L/K is divisible by n for all v € Sy and is equal to 2 for all real places of K.

PROOF. Without loss of generality, we may suppose that 2 divides n. Let n = p}'--- p,rf be the
prime factorization of n. If p; is odd, let L; be the maximal pro-p subextension of the field given by
adjoining to K all p;-power roots of unity. Otherwise, let L; be the extension of K given by adjoining
¢ — ¢! for all 2-power roots of unity {. The unique degree 2 subextension of the latter field has no
real places. For each i, the completions of the fields L; at places v € Sy are infinite pro-p; procyclic
extensions. In particular, the compositum L of the fields L; is a procyclic extension of K that contains
a finite degree extension that is the desired subfield. U

We require the following simple cohomological lemma, the proof of which is left to the reader.

LEMMA 10.9.4. Let G be a finite cyclic group of order n and x: G — Q/Z be an injective
character. Let 6 be the connecting map for 0 — 7Z — Q — Q/Z — 0. Let g be a generator of
G, and let ug € H%(G,Z) be as in Proposition A.10.3. Viewing H*(G,7) and 7./nZ, and letting
X: G — Z/nZ be the isomorphism obtained from ) by multiplication by n, we have

ugJox =x(g) € Z/nZ.

In other words, we have the following, the map being inverse to cup product with u, for a generator
g € Gwith y(g) =1

=

COROLLARY 10.9.5. Let G be a finite cyclic group of order n and x: G — Q/Z be an injective
character. Let 8 be the connecting map for 0 — Z — Q — Q/Z — 0. For any G-module A and and
i € Z, the map

A(G,A) — A™2(G,A), c—dxUc
is an isomorphism.

PROPOSITION 10.9.6. The map ¥ cy, inv,: Br(K) — Q/Z is trivial.

PROOF. Let B € Br(K), and let n be the least common multiple of the orders of the elements
inv,(fB) for v € Vk. Let S contain the places where inv, () is nonzero, and let L be as in Lemma 10.9.3.
Then for each v € S, the group Br(L,,/K,) sits in Br(K,) as as a cyclic subgroup of order a multiple
of n, and hence it contains the image of . It follows that € Br(L/K). Since L/K is cyclic, we have
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an injective character : G — Q/Z. Corollary 10.9.5 then tells us that there exists b € K* such that
such that bU Sy = B. By Lemma 10.9.1, we have

Z inv, (8 CDL/K( )

veVk

and @k (b) = 0 by Lemma 10.9.2. O

We can now prove that the global reciprocity map factors through Cg.
COROLLARY 10.9.7. We have ®k(a) =1 forall a € K*.

PROOF. It suffices to show that ®; /x(a) = 1 for all finite abelian extensions L/K, and for this, it
suffices to show that y (P, /x(a)) =0 for all characters x : G — Q/Z for all such L. By Lemma 10.9.1,
the latter quantity equals Y.y, inv,(@U &), but this is zero by Proposition 10.9.6. O

Note that for any finite extension L of K, we have an injection Cx <— C; by Lemma 10.3.17. We
aim to construct an invariant map inv: H?(Gg,Cgse) — Q/Z to show that Cgsep = li_ngL Cr together
with the invariant maps associated for finite separable extensions of K forms a class formation.

Since since H'(G,C;) = 0 and

*(G,I) = €P Br(Lw/K,),
veVk
the latter by Proposition 10.6.6, we have an exact sequence
0 — Br(L/K) — €P Br(L./K,) — H*(G,Cp).
veVk

Recall that we have an isomorphism

inv k,: Br(L,/K,) = YAYA

1
[em
where G,, is the decomposition group at any w | v. The sum of these local invariant maps

Z invy, . @Br(LW/K‘,) — ]G\Z/Z

veVk veS

is surjective due to the existence of an inert prime w over some v € Vk. Let

1
—7)7
|Gl

denote the composr[e map. By Proposition 10.9.6, we have that Br(L/K) is contained in the kernel of

invyx: H*(G,IL) —

anL k- Thatis, invy /g factors through a surjective global invariant map

inVL/[(: BL/K

from the image By /g of H?(G,1) — H*(G,Cr). We aim to show that H>(G,1;) — H*(G,Cy) is
surjective so By jx = H?*(G,Ck), and inv,, /k 1s an injective. We start with cyclic extensions.
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LEMMA 10.9.8. Let L/K be finite cyclic. Then H*(G,1,) — H?*(G,Cy) is surjective, and the
invariant map

inVL/KZ HZ(G,CL) Z/Z

|Gl

is an isomorphism.

PROOF. We have H*(G,L*) = H'(G,L*) = 0 by the periodicty of Tate cohomology, so Bk =
H?(G,Cp). Since H?(G,Cp) has order |G| by the first and second inequalities, the result follows. [

The next lemma shows that global invariant maps behave as expected under restriction.

LEMMA 10.9.9. Let E be a finite extension of K contained in L, and set H = Gal(L/E). The
diagram

nvy /g

H2(G.1) S1Z/Z

J/Res J/[EK}

anL/E

HA(H 1) —> & Z/Z
commutes.

PROOF. Since the global invariant maps are sums of local invariant maps, this reduces to the
commutativity of the diagram

Yopinve, /k,

Hz(Ga Hw\vai) . €] Z|Z

lRes l[E:K]
Yo

2 wlv anLW/KV
H (H7Hw|va>;) - ‘H‘Z/Z
where v € Vg and w denotes a place of L over v. By Lemma 10.6.1 and Shapiro’s lemma, this reduces
to the commutativity of

invLWo/KV
Br(Luy /Ky) —— s 22

\Res l[E:K]

Yupinvy,, /k,
@u\vBr(LW/Eu) - \H\Z/Z
where u runs over the places over v in E, we use w to denote a place over u, and wq denotes a fixed
place of L over v. Here, each w is conjugate to wg over K, and the u-coordinate fo the restriction map
Res is induced by conjugation by o € G with o(wg) = w followed by restriction. We remark that
invy, sk, 00" = inVLwO /K, by definition. The local invariant maps have the property that

invy, /g, oResg, /k, = [E, : K] invg, /k,,
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so we have

(Zjnva/Eu> oResg, /k, = Y [E.: K] inv, ik, = [E: K]invy ik,

ulv ulv

the latter step as the sum of local degrees is the global degree. U

We next treat the general case.

PROPOSITION 10.9.10. The map H*(G,1;) — H?*(G, (CL) is surjective, and the invariant map

invy /g H*(G,Cp) = Z/Z

|G|
is an isomorphism.
PROOF. Since H'(G,Ar) = 0, where A € {L*,1;,C}, the inflation maps
Inf: H*(G,AL) — H*(Gg,Ags»)

are injective, being part of the inflation-restriction sequences. The direct limit of the maps {IR/L /K
over Galois extensions L/K provide a surjective map

i/IR/KZ HZ(GK,]IKsep) — Q/Z
which factors through a surjective map
invg: Bx — Q/Z,

where Bx = @L B k- By Lemma 10.9.3,

GK,HK?ep @ BI’

veVk

is the union of its subgroups H?(Gal(F /K),Ir), where F runs over the set & of cyclic cyclotomic
extensions of K. From the map of exact sequences

0 —— Ures Br(F/K) —— Upes H(Gal(F /K),Ir) —— Upes HA(Gal(F/K),Cr) —— 0

K

0O———— BI'(K) Hz(GK,]IKSEP) Hz(GK,CKsep),

we see that Br(K) = Upcs Br(F/K) is the kernel of invg and Bx = Upee H?(G,Cr). In particular,
we have an induced isomorphism invg : Bx — Q/Z.

Since By /k injects into Bx = Q/Z with image |G‘Z/Z we see that By jx has order [L: K]. On
the other hand, By /x divides the order of H?(G,Cp), which divides [L : K] by Theorem 10.8.8. So
Bk = H?(G,Cy) is mapped isomorphically to ﬁZ/Z by invy /k, as asserted. O

We have now constructed our global class formation.
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THEOREM 10.9.11. Given a number field K, the pair (Cgsen,inv), where inv is the collection of
invariant maps
invg: H*(Gg,Cgser) — Q/Z
for finite separable extensions E of K in K*P forms a class formation for K. Moreover, the reciprocity
map defined by this class formation is the map @k : Cg — G?(b induced by the product g of local
reciprocity maps on the ideles.

PROOF. That we have a global class formation is an immediate corollary of Proposition 10.9.9
and Lemma 10.9.10. Let ¢y /x be the resulting reciprocity map. We know by Proposition 8.1.10 that

inv x(@U6(x)) = x(9r/k(a))

for all ¥y € Hom(G,Q/Z) and a € Ckg. On the other hand, we showed in Lemma 10.9.1 that
invy g (0U6x) = x(Pr/x(@)),

for all such x and o € [. Since ¢y /x and @y /g are completely determined by their compositions with

characters of G, we must have that @ /x factors through Cg and induces ¢ /x on the quotient. U

10.10. Power reciprocity laws

In this section, we consider higher reciprocity laws that generalize quadratic reciprocity. For this,
we introduce the notion of an nth power residue symbol for a number field.

NOTATION 10.10.1. In this section, n will denote a positive integer, and K will denote a number
field that contains the full group ,, of nth roots of unity.

DEFINITION 10.10.2. The nth power residue symbol for K is a function with values

(6), .5 1

9

defined on pairs (a, b) consisting of a nonzero element a of Ok and a nonzero ideal b of Ok such that
b is relatively prime to (na) defined as follows. For a prime p not dividing (na), its value is the unique
nth root of unity in K* satisfying the congruence

(f) = g™/ mod p,
b n,K

and for an arbitrary b with prime factorization b = p? . -p;", its value is given by

k Ti
(0).-1(5)

NOTATION 10.10.3. If @ and b are nonzero elements of Ok such that (b) is relatively prime to

(na), then we set
() ().
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REMARK 10.10.4. The 2nd power residue symbol for QQ is none other than the Jacobi symbol,
since N(p) = p for a prime (p) of Z.

We will derive an nth power reciprocity law for the power residue symbols, generalizing quadratic
reciprocity. To begin with, we have the following.

LEMMA 10.10.5. Suppose that p is a nonzero prime of K not dividing n and that a € Ok with
vp(a) = 0. Let m, be a unifomizer of Ky. Then

a
(E)n,l( = (@ TC”)”KP‘

PROOF. Since Np is the order of the residue field of K, and a is a unit in the valuation ring of K,
that the two sides are equal are an immediate consequence of our formula for the tame symbol. [

COROLLARY 10.10.6. Let a,b € Ok be nonzero, and suppose that (b) is relatively prime to (na).

Then
<g>n7[< - H (a’b)npr7

pl()

where the product is over nonzero primes of Ok dividing (D).

PROOF. Write (b) =p/'---p;* for distinct primes py . .., py and positive integers r; for some k > 0.
Letting 7, denote a uniformizer for K, we have by Lemma 10.10.5 that

k Ti k
(l) a -
— = I I — = | | a,j'[; K.
<b nK i3 (pi>n,l( i:l( i Jn Pi

Since b is 71:5; times a unit in the valuation ring of K,;, we have (for instance by the formula for the
tame symbol) that

(a77r£i:)n7Kpi = (Cl,b)nVKpi

for each i, and the result follows. U
Note also that global reciprocity gives us the following product formula for norm residue symbols.

LEMMA 10.10.7. For every a,b € K*, we have

H (a,b)n,Kv =1.

veVk

PROOF. We have py. (,1/m /., (b) = 1 outside of a finite set S = {vy,...,v;} of places of K, so the
product is finite, and global reciprocity then says that

HpKv(al/")/Kv (b) = 1

ves
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It follows that

al/n
[T (@0, = [T bl = [T 220

veVk veS vesS
" (pKVi(b)(al/”)> (Hvesp,(v(auw,(v(b))(a“")

al/n - al/n =1

We are now in a position to prove the nth power reciprocity law for K.

THEOREM 10.10.8 (Higher reciprocity law). Let K be a number field containing the group W, of

nth roots of unity. Let a,b € Ok elements relatively prime to each other and to n. We then have

)., (Z) o T1(5:@)nx,.

an V‘I’ZW

where the product is over the places of K extending a prime dividing n or the real infinite place of Q.
Moreover, if ¢ € Ok is relatively prime to a and divisible only by primes dividing n, then

<£>n71< - Vl|;£(bac)n,1<v.

PROOF. Corollary 10.10.6 tells us that

a p\ ! -
(), (2), = Tt Tk, = T @b,

nK  p|(b) pl(a)
Note that (a,b)pr = 1 unless the prime p of Ok divides one of a, b, or n, since otherwise the
extension K (a'/™)/ K, is unramified and b is a unit in K. Applying Lemma 10.10.7, we then have

[T @bk, = (TT(@bns) =TTk,

p|(ab) v|neo v|noo

finishing the proof in this case. In the remaining case, the same argument, but now noting that
(a,b)nk, = 1 unless p divides b or n, we have

(g) K = H (va)n,l(p = H (b,C)npr,
R ) Voo
O

EXAMPLE 10.10.9. Take the case that K = QQ and n = 2. Let a and b be positive, odd integers.
Then Theorem 10.10.8 implies that

(g> (g) = (b,a)2q,(b,a)2 k.
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The first symbol is (—1)(“_1)(b_1)/ 4 by Proposition 9.3.6, and the second symbol is trivial by Re-
mark 9.3.9. Similarly, we have

(%) = (—1)®=D/2 and (%) = (—1)P*=D/8,

Thus, the power reciprocity law for K = QQ and n = 2 is simply quadratic reciprocity.

The following special case of a result of the author serves as an entertaining example of the use
of higher reciprocity laws.

PROPOSITION 10.10.10. Let p be an odd prime number, and let m be an integer. Suppose that

¢ = ®,(pm) is a prime number. Then every divisor of m is a pth power residue modulo {.
PROOF. Let a be a divisor of m. Note that

= Ng(u,)/0(1 —pmép)

and can only be prime if m is nonzero. The definition of the pth power residue symbol says that

a
(10.10.1) (—) =a"“ /P mod (1 - pm¢,),
L=pm&p ), auy)

Since a is an integer, this implies that the symbol in (10.10.1) is the unique pth root of unity congruent

0—1)

to a~1/P modulo £. Thus, it will be trivial if and only if a is a pth power residue modulo .

So, we compute the symbol. We have

a l_pmgp)
= (e (1= pm&p.a)pq,uy) = (1= PMCp,a)p 0, (,)-
(1 _meP>p,@(‘up) ( a p:Q(up) e At

If p divides m, then 1 — pm{), is a pth power in Q,(u,), and we are done. If a is a pth power in
Z,, we are done as well. So, we may assume that a is not a pth power in Z ;. Then Qp(cp,al/p) =
Qp(&p, (1 — p)'/P), and the conductor of the latter extension of Q,(u,) is (1 — &,)? by Proposi-
tion 9.6.16. Since 1 — pm{p, € Up—1(Qp(1p)) and p—1 > 2, we then have that (1 — pmy,a), 0, u,) =
1, which completes the proof. U






APPENDIX A

Group cohomology

A.1. Group rings
Let G be a group.

DEFINITION A.1.1. The group ring (or, more specifically, Z-group ring) Z[G] of a group G con-
sists of the set of finite formal sums of group elements with coefficients in Z

{ Z agg | ag € Z for all g € G, almost all a, = O} :
geG

with addition given by addition of coefficients and multiplication induced by the group law on G and
Z-linearity. (Here, “almost all” means all but finitely many.)

In other words, the operations are

Z agg + Z beg = Z (ag+bg)g

geG geG geG

(Z agg) (Z bgg) =Y (Y abyi)e

g8eG geG gcG keG
REMARK A.1.2. In the above, we may replace Z by any ring R, resulting in the R-group ring R[G]
of G. However, we shall need here only the case that R = Z.
DEFINITION A.1.3.
i. The augmentation map is the homomorphism €: Z[G] — Z given by
€ (Z agg> = Z aq.
geG geG

ii. The augmentation ideal I is the kernel of the augmentation map €.

LEMMA A.1.4. The augmentation ideal I is equal to the ideal of Z|G| generated by the set
{e—1|geG}.

PROOF. Clearly g — 1 € kere for all g € G. On the other hand, if } ,c5ag = 0, then
Y agg=) ag(g—1).
geG geG
241
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DEFINITION A.1.5. If G is a finite group, we then define the norm element of Z[G] by Ng =
ZgGG 8-

REMARK A.1.6.

a. We may speak, of course, of modules over the group ring Z[G|. We will refer here to such
Z|G]-modules more simply as G-modules. To give a G-module is equivalent to giving an abelian
group A together with a G-action on A that is compatible with the structure of A as an abelian group,
1.e., a map

GxA—A, (g,a)—g-a
satisfying the following properties:
(i) 1-a=aforallac A,
(i) g1-(g2-a) = (g1g2)-aforalla € A and g1, g, € G, and
(iii) g- (a1 +az) =g-a1+g-ap forallaj,a € Aand g € G.

b. A homomorphism k: A — B of G-modules is just a homomorphism of abelian groups that
satisfies x(ga) = gk(a) for all a € A and g € G. The group of such homomorphisms is denoted by
HomZ[G] (A, B) .

DEFINITION A.1.7. We say that a G-module A is a trivial if g-a = a for all g € G and a € A.
DEFINITION A.1.8. Let A be a G-module.
i. The group of G-invariants A® of A is given by
AC={acA|g-a=aforallge G,acA},
which is to say the largest submodule of A fixed by G.
il. The group of G-coinvariants Ag of A is given by
Ag=A/IGA,
which is to say (noting Lemma A.1.4) the largest quotient of A fixed by G.

EXAMPLE A.1.9.
a. If A is a trivial G-module, then A® = A and Ag = A.

b. One has Z[G]g = Z. We have Z[G|® = (Ng) if G is finite and Z[G]® = (0) otherwise.

A.2. Group cohomology via cochains

The simplest way to define the ith cohomology group H'(G,A) of a group G with coefficients in
a G-module A would be to let H'(G,A) be the ith derived functor on A of the functor of G-invariants.
However, not wishing to assume homological algebra at this point, we take a different tack.
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DEFINITION A.2.1. Let A be a G-module, and let i > 0.

i. The group of i-cochains of G with coefficients in A is the set of functions from G’ to A:

C'(G,A) = {f: G' = A}.
ii. The ith differential d' = d: C'(G,A) — C'*!(G,A) is the map
d'(f)(80,81,---,8) = g0~ f(81,---&)
i
+ Z (_l)jf(g07 c 9 8j-2,8j-18j8j+1s- - 7gi) + (_1)l+lf(g07 cee vgifl)'
j=1

We will continue to let A denote a G-module throughout the section. We remark that C°(G,A) is
taken simply to be A, as G is a singleton set. The proof of the following is left to the reader.

LEMMA A.2.2. Foranyi> 0, one has d ' od' =0.

REMARK A.2.3. Lemma A.2.2 shows that C'(G,A) = (C'(G,A),d") is a cochain complex.

We consider the cohomology groups of C'(G,A).

DEFINITION A.2.4. Leti > 0.

i. We set Z/(G,A) = kerd', the group of i-cocycles of G with coefficients in A.

ii. We set B°(G,A) =0 and B'(G,A) = imd'~! for i > 1. We refer to B/(G,A) as the group of
i-coboundaries of G with coefficients in A.

We remark that, since d’od’~! = 0 for all i > 1, we have B(G,A) C Z(G,A) for all i > 0. Hence,
we may make the following definition.

DEFINITION A.2.5. We define the ith cohomology group of G with coefficients in A to be
H'(G,A) =Z'(G,A)/B(G,A).

The cohomology groups measure how far the cochain complex C'(G,A) is from being exact. We
give some examples of cohomology groups in low degree.

LEMMA A.2.6.
a. The group HO(G,A) is equal to AC, the group of G-invariants of A.
b. We have
Z'(G,A)={f: G—=A| f(gh)=gf(h)+ f(g) for all g,h € G}

and B'(G,A) is the subgroup of f: G — A for which there exists a € A such that f(g) = ga — a for
all g € G.

c. If A is a trivial G-module, then H'(G,A) = Hom(G,A).


http://math.ucla.edu/~sharifi/homalg.pdf#nameddest=theorem.2.7.1

244 A. GROUP COHOMOLOGY

PROOF. Let a € A. Then d(a)(g) = ga—a for g € G, so kerd” = A®. That proves part a, and

part b is simply a rewriting of the definitions. Part ¢ follows immediately, as the definition of Z!(G,A)
reduces to Hom(G,A), and B'(G,A) is clearly (0), in this case. O

We remark that, as A is abelian, we have Hom(G,A) = Hom(G®,A), where G* is the maximal

abelian quotient of G (i.e., its abelianization). We turn briefly to an even more interesting example.
DEFINITION A.2.7. A group extension of G by a G-module A is a short exact sequence of groups
0-AHE5G—1
such that, choosing any section s: G — & of &, one has
s(gas(g) ' =g-a

forall g € G, a € A. Two such extensions & — &” are said to be equivalent if there is an isomorphism
0: & = &' fitting into a commutative diagram

0 A & G 0
|l
0 A &' G 0,

We denote the set of equivalence classes of such extensions by &'(G,A).

We omit the proof of the following result, as it is not used in the remainder of these notes. We
also leave it as an exercise to the reader to define the structure of an abelian group on & (G,A) which
makes the following identification an isomorphism of groups.

THEOREM A.2.8. The group H?>(G,A) is in canonical bijection with & (G,A) via the map induced
by that taking a 2-cocycle f: G* — A to the extension &r = A x G with multiplication given by

(Cl,g) ’ (b7h) = (Cl—f—gb—f—f(g,h),gh)

This identification takes the identity to the semi-direct product A X G determined by the action of G

on A.

One of the most important uses of cohomology is that it converts short exact sequences of G-
modules to long exact sequences of abelian groups. For this, in homological language, we need the
fact that C'(G,A) provides an exact functor in the module A.

LEMMA A.29. If a: A — B is a G-module homomorphism, then for each i > 0, there is an
induced homomorphism of groups

a': C'(G,A) — C'(G,B)
taking f to oo f and compatible with the differentials in the sense that

[ i_ i+l i
dgoot’ =0 ody.
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PROOF. We need only check the compatibility. For this, note that

di(aof)(g()agla"'agi) :goaof(gl,“'gi)
l. . . 1
—1—2(_1)Jaof(g07"'7gj—27gj—1gj7gj—i-17‘-'7gi)—i_(_l)l+ aof(g(),"'7gi—l)
j=i
= a(di(f)(g07g17"'7gi))7

as o is a G-module homomorphism (the fact of which we use only to deal with the first term). U

In other words, o induces a morphism of complexes a": C'(G,A) — C (G, B). As a consequence,
one sees easily the following

NOTATION A.2.10. If not helpful for clarity, we will omit the superscripts from the notation in
the morphisms of cochain complexes. Similarly, we will consistently omit them in the resulting maps
on cohomology, described below.

COROLLARY A.2.11. A G-module homomorphism o: A — B induces maps

a*: H(G,A) — H'(G,B)
on cohomology.

The key fact that we need about the morphism on cochain complexes is the following.

LEMMA A.2.12. Suppose that
0A5BEC—0

is a short exact sequence of G-modules. Then the resulting sequence
0— C'(G,A) 5 C'(G,B) % C'(G,C) =0
Is exact.
PROOF. Let f € C'(G,A), and suppose 1o f = 0. As 1 is injective, this clearly implies that f = 0,
so the map 1’ is injective. As wo1 = 0, the same is true for the maps on cochains. Next, suppose that

f' € C'(G,B) is such that o f' = 0. Define f € C'(G,A) by letting f(g1,...,8) € A be the unique
element such that

l(f(g17"'7gi)) :f/(gh"'agi)a

which we can do since imt = ker 7. Thus, im1’ = ker 7’. Finally, let f” € Ci(G, C). As 7 is surjective,
we may define ' € C'(G,B) by taking f'(g1,...,gi) to be any element with

n(f'(g1,---,8)) = f"(81,---.8)-
We therefore have that 7' is surjective. U

We now prove the main theorem of the section.
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THEOREM A.2.13. Suppose that
0ASB5HC—0
is a short exact sequence of G-modules. Then there is a long exact sequence of abelian groups
0 H(G,A) 55 HO(G,B) %5 HY(G,C) &5 H'(G,A) — ---

Moreover; this construction is natural in the short exact sequence in the sense that any morphism

0 AP c’ 0,

gives rise to a morphism of long exact sequences, and in particular, a commutative diagram

. H(G,A) —“ H(G,B) —F— HI(G,C) — H(G,A) —— -

R N N

... —— H(G,A) o H(G,B") AN H(G,C" 2, H*(GA) — -

PROOF. First consider the diagrams
0 —— C/(G,A) ——— C/(G,B) —— CI(G,C) —— 0
| | |«
0 —— C/t1(G,A) —— CI1(G,B) —— C/T(G,C) — 0

for j > 0. Noting Lemma A.2.12, the exact sequences of cokernels (for j =i — 1) and kernels (for
Jj=1i+1) can be placed in a second diagram

0 —— Z(G,A) —— Z(G,B) - ZI*1(G,C)

(recalling that B°(G,A) = 0 for the case i = 0), and the snake lemma now provides the exact sequence

H(G,A) % HI(G,B) 25 Hi(G,0) &5 B (G,A) % B (G,B) 2 HY(G,0).

Splicing these together gives the long exact sequence in cohomology, exactness of
0— H(G,A) — H(G,B)

being obvious. We leave naturality of the long exact sequence as an exercise. U
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REMARK A.2.14. The maps &': H'(G,C) — H'"!(G,A) defined in the proof of theorem A.2.13
are known as connecting homomorphisms. Again, we will often omit superscripts and simply refer to

0.

REMARK A.2.15. A sequence of functors that take short exact sequences to long exact sequences
(i.e., which also give rise to connecting homomorphisms) and is natural in the sense that every mor-
phism of short exact sequences gives rise to a morphism of long exact sequences is known as a
o-functor. Group cohomology forms a (cohomological) §-functor that is universal in a sense we omit
a discussion of here.

A.3. Group cohomology via projective resolutions

In this section, we assume a bit of homological algebra, and redefine the G-cohomology of A in
terms of projective resolutions.
For i > 0, let G'*! denote the direct product of i + 1 copies of G. We view Z[G'*!] as a G-module
via the left action
g (80,81:---.8i) = (880,881 - -,88i)-
We first introduce the standard resolution.

DEFINITION A.3.1. The (augmented) standard resolution of Z by G-modules is the sequence of
G-module homomorphisms

—Z[6GT % Z[G] — - - Z|G) 5 Z,

where
l

d g()a 7gl Z g07 7gj*17gj+17"'7gi)
foreach i > 1, and € is the augmentatlon map.

At times, we may use (go,...,&),---,8) € G' to denote the i-tuple excluding g;. To see that this
definition is actually reasonable, we need the following lemma.

PROPOSITION A.3.2. The augmented standard resolution is exact.

PROOF. In this proof, take dy = €. For each i > 0, compute

i+1 i+1

diodi+1(g07"'7gi+l ZZ J+k Sjk(goa"'7<§\j7"'>§7<7"'7gi+1)7
Jj= 0%7&0
J

where s(j,k) is 0 if k < j and 1 if kK > j. Each possible (i — 1)-tuple appears twice in the sum, with
opposite sign. Therefore, we have d;od; | = 0.
Next, define 6;: Z[G'] — Z[G"*!] by

0i(g1,...,&)=(1,81,-..,8i)


http://math.ucla.edu/~sharifi/homalg.pdf#nameddest=theorem.3.1.1
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Then
l

dioei(g07"'7gl) g07 7gl Z 1 , 805 - '75/’\]'7"'7gi>
j=0

= (80,---,81) — Gi—10di—1(80; - - -, &),
which is to say that
d;o 6+ 61 odi_1 = iy,
If o € kerd;_; for i > 1, it then follows that d;(6;(¢)) = o, so & € imd;. O

For a G-module A, we wish to consider the following complex
(A3.1) 0 — Homgg (Z[G],A) — -+ — Homg (Z[G'"'],A) o, Hom 6(Z[G?],A) —
Here, we define D' = D', by D'(¢) = @ od;;1. We compare this with the complex of cochains for G.

THEOREM A.3.3. The maps
y': Homy g (Z[G"'],A) — C'(G,A)
defined by
v (0)(g1,---,8) = 0(1,81,8182,---,8182" - 8i)

are isomorphisms for all i > 0. This provides isomorphisms of complexes in the sense that Y+ o D' =
d oy for all i > 0. Moreover, these isomorphisms are natural in the G-module A.

PROOF. If I[/l((p) =0, then (p(l,gl,glgz,...,glgz- . 'gi) =0forall g1,...,gi € G. Lethg,...,h; €
G, and define g; = hjlllhj for all 1 < j <i. We then have
@(ho,h1,....hi) = ho@(L,hg ' hy,... by i) = ho@(1,81,....81++ i) = 0.
Therefore, ¥’ is injective. On the other hand, if f € C/(G,A), then defining

(P(h(),hl,.. ) ) hOf( 1h17 7hi__1]hi)7

we have

@(gho,ght,...,ghi) = ghof((gho) 'ghi,. .., (ghi1) " ghi) = g@(ho,hi,. .., hi)

and y'(@) = f. Therefore, Y is an isomorphism of groups.
That ¥ forms a map of complexes is shown in the following computation:

Wi+1(Di((p>)(g17"'7gi+1) :Di((p)(lngl?'-'vgl "'gH—l)

=@odiy1(1,81,..-,81 - 8i+1)
i+1
_Z 1g17 -, 81 "gja"wgl"'gi-i-l)-
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The latter term equals

g1V (@)(g2,- -, 8i41) + Y. (=)W (Q)(81:---,8j-1,8j8j+1,8)42- - -, Gi+1)
=1

+ (_I)H—lwi(q))(gla' i 7gi)7
which is d'(y'(@)).

Finally, suppose that oc: A — B is a G-module homomorphism. We then have

ao‘l/i(‘P)(gb---agi) :ao(p(l7g17"'7g1"'gi) = wi(ao(p)<g17"'agi);

hence the desired naturality. U

COROLLARY A.3.4. The ith cohomology group of the complex (Homgg (Z[G™] ,A),D\) is nat-
urally isomorphic to H'(G,A).

In fact, the standard resolution is a projective resolution of Z, as is a consequence of the following
lemma and the fact that every free module is projective.

LEMMA A.3.5. The G-module Z.[G™] is free.

PROOF. In fact, we have

z[6H = @B z[G)(1.g1,.-,8),
(81,8 €G!

and the submodule generated by (1,g1,...,g;) is clearly free. O

REMARKS A.3.6.
a. Lemma A.3.5 implies that the standard resolution provides a projective resolution of Z. It
follows that
H'(G,A) = Exty (Z,A)

for any G-module A. Moreover, if P — Z — 0 is any projective resolution of Z by G-modules, we
have that H'(G,A) is the ith cohomology group of the complex Homyg, ¢ (P,A).

b. By definition, ExtiZ[G] (Z,A) is the ith right derived functor of the functor that takes the value
Homgy ;) (Z,A) on A. Note that Homy g (Z,A) = AG, the module of G-invariants. Therefore, if
0 — A — I' is any injective Z[G]-resolution of A, then H'(G,A) is the ith cohomology group in the
sequence

0— 199 = (NG = ()¢ — ...


http://math.ucla.edu/~sharifi/homalg.pdf#nameddest=Item.123
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A.4. Homology of groups

In this section, we consider a close relative of group cohomology, known as group homology.
Note first that Z[G™*!] is also a right module over Z[G] by the diagonal right multiplication by an
element of G. Up to isomorphism of G-modules, this is the same as taking the diagonal left multipli-
cation of Z[G'*1] by the inverse of an element of G.

DEFINITION A.4.1. The ith homology group H;(G,A) of a group G with coefficients in a G-
module A is defined to be the ith homology group H;(G,A) = kerd;/imd; | in the complex

d
= Z[GY @gig A B Z[GH @i A D Z[G) @1 A 2 0
induced by the standard resolution.

We note that if f: A — B is a G-module homomorphism, then there are induced maps f, : H;(G,A) —
H;i(G,B) for each i > 0.

REMARK A.4.2. It follows from Definition A.4.1 that H;(G,A) = ToriZ[G] (Z,A) for every i > 0,
and that H;(G,A) may be calculated by taking the homology of P, ®z[c) A, where P. is any projective
Z[G)-resolution of Z. Here, we view P; as a right G-module via the action x-g = g~ 'x for g € G and
xeX.

As a first example, we have
LEMMA A.4.3. We have natural isomorphisms Hy(G,A) = Ag for every G-module A.
PROOF. Note first that Z[G] ®z/6)A = A, and the map d; under this identification is given by
d1((g0,81) @a) = (g0 — 81)a-
Hence, the image of d; is IgA, and the result follows. U

As Ag = Z ®7/G) A, we have in particular that H;(G,A) is the ith left derived functor of Ag. As
with cohomology, we therefore have in particular that homology carries short exact sequences to long
exact sequences, as we now spell out.

THEOREM A.4.4. Suppose that
0+A-B5C—0

is a short exact sequence of G-modules. Then there are connecting homomorphisms 8, : H;(G,C) —
H;_1(G,A) and a long exact sequence of abelian groups

S HI(G,C) S Hy(G,A) 5 Hy(G,B) =5 Hy(G,C) — 0.

Moreover; this construction is natural in the short exact sequence in the sense that any morphism of

short exact sequences gives rise to a morphism of long exact sequences.
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The following result computes the homology group H(G,Z), where Z has the trivial G-action.

PROPOSITION A.4.5. There are canonical isomorphisms H\(G,Z) = Ig/I% = G*®, where G
denotes the abelianization of G, the latter taking the coset of g — 1 to the coset of g € G.

PROOF. Since Z[G] is Z[G]-projective, we have H;(G,Z[G]) = 0, and hence our long exact se-
quence in homology has the form

0 — H,(G,Z) — Hy(G,1s) — Hy(G,Z[G]) — Hy(G,Z) — 0.

Note that Hy(G,Ig) = Ig/I% and Hy(G,Z[G)) = Z[G)/Ig = Z via the augmentation map. Since
Hy(G,Z) = Z and any surjective map Z — Z (in this case the identity) is an isomorphism, we obtain
the first isomorphism of the proposition.

For the second isomorphism, let us define maps ¢ : G — I / 1(2; and y: I/ 1(2; — G*®. Forg € G,
we set

9(3[G,G)) = (g—1) +1z,
where |G, G| denotes the commutator subgroup of G. To see that this is a homomorphism on G, hence
on G?_ note that
(gh=1)+1g=(g= D+ (h-D+(g=Dh—D+IG=(g—1)+(h-1)+Ig
for g,h € G.

Next, define y on & =} a8 € I by

y(a+12) =[] ¢“IG.Gl.
geG

The order of the product doesn’t matter as G is abelian, and y is then a homomorphism if well-
defined. It suffices for the latter to check that the recipe defining y takes the generators (g—1)(h—1)
of 1% for g,h € G to the trivial coset, but this follows as (g —1)(h—1) = gh—g—h+ 1, and for
instance, we have

gh-gt-ntelG,G

Finally, we check that the two homomorphisms are inverse to each other. We have

O(w(a+1g) =Y ag(g—1)+15=0+I¢
geG

since o € I implies ):geG ag =0, and

w(9(g[G,G)) = 0((g—1)+1§) = g[G,G].
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A.S. Induced modules
DEFINITION A.5.1. Let H be a subgroup of G, and suppose that B is a Z[H|-module. We set
Indfj(B) = Z[G] ®zy B and Colndf(B) = Homg(Z[G], B).
We give these G-actions by
g (a®b)=(ga)®b and (g-¢)(a)=0¢(a-g).

We say that the resulting modules are induced and coinduced, respectively, from H to G.

REMARK A.5.2. What we refer to as a “coinduced” module is often actually referred to as an
“induced” module.

We may use these modules to interpret H-cohomology groups as G-cohomology groups.

THEOREM A.5.3 (Shapiro’s Lemma). For each i > 0, we have canonical isomorphisms
H;(G,Ind%(B)) = H;(H,B) and H'(G,Colnd$(B)) = H'(H,B)

that provide natural isomorphisms of 8-functors.

PROOF. Let P. be the standard resolution of Z by G-modules. Define

y;: Homy g (P, CoInd%(B)) — Homy, (P, B)
by v;(0)(x) = 0(x)(1). If O € ker y;, then
6(x)(g) = (¢-0(x))(1) = 8(gx)(1) = 0.

for all x € P, and g € G, so 6 = 0. Conversely, if ¢ € Homgyy) (P, B), then define 6 by 6(x)(g) =

¢(gx), and we have y;(0) = ¢.
As for the induced case, note that associativity of tensor products yields

P ®76) (Z|G] @z B) = P @z B,

and P, = Z[G'"] is free as a left H-module, hence projective. (We leave it to the reader to check that

usual ®-Hom adjunction can be similarly used to give a shorter proof of the result for cohomology.)
O

In fact, if H is of finite index in G, the notions of induced and coinduced from H to G coincide.

PROPOSITION A.5.4. Suppose that H is a subgroup of finite index in G and B is a H-module.

Then we have a canonical isomorphism of G-modules

x: Colndfj(B) = Indj(B), x(p)= Y g '®0lg),
gEH\G

where for each g € H\G, the element g € G is an arbitrary choice of representative of g.
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PROOF. First, we note that y is a well-defined map, as

(he) '@ o(hg) =g 'h ' @hp(g) = g® (g)
for ¢ € CoInd%(B), h € H, and g € G. Next, we see that ¥ is a G-module homomorphism, as

1))=Y '@ =¢ Y (g) ' ®o(gs)=52(0)
gGH\G geH\G

for ¢’ € G. As the coset representatives form a basis for Z[G] as a free Z[H]-module, we may define
an inverse to ) that maps

Y ¢ '®b, € Indj(B)
geH\G

to the unique Z[H|-linear map ¢ that takes the value b, on g for the chosen representative of g €
H\G. O

In the special case of the trivial subgroup, we make the following definition.
DEFINITION A.5.5. We say that G-modules of the form
Ind®(X) = Z[G] ®2X and ColInd’(X) = Homy(Z[G],X),
where X is an abelian group, are induced and coinduced G-modules, respectively.

REMARK A.5.6. Note that Proposition A.5.4 implies that the notions of induced and coinduced
modules coincide for finite groups G. On the other hand, for infinite groups, Colnd® (X) will never be
finitely generated over Z[G] for nontrivial X, while Ind® (X) will be for any finitely generated abelian
group X.

THEOREM A.5.7. Suppose that A is an induced (resp., coinduced) G-module. Then we have
H;(G,A) =0 (resp., H(G,A) = 0) forall i > 1.
PROOF. Let X be an abelian group. By Shapiro’s Lemma, we have
Hi(G,Ind“(X)) = H;({1},X)
for i > 1. Since Z has a projective Z-resolution by itself, the latter groups are 0. The proof for
cohomology is essentially identical. U

DEFINITION A.5.8. A G-module A such that H!(G,A) = 0 for all i > 1 is called G-acyclic.

We show that we may construct induced and coinduced G-modules starting from abelian groups
that are already equipped with a G-action.

REMARK A.5.9. Suppose that A and B are G-modules. We give Homy (A, B) and A ®7, B actions
of G by

(8-9)(a)=gp(g 'a) and g-(a®b)=ga®gh,

respectively.
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LEMMA A.5.10. Let A be a G-module, and let A° be its underlying abelian group. Then
Homy,(Z[G],A) = CoInd®(A°) and Z[G]®zA = Ind%(A°).
PROOF. We define
x: Homy(Z[G],A) — Colnd®(4%),  x(9)(g) =5 @(g™").
For g,k € G, we then have
(k-x(9))(g) = k(@) (gk) = gk-@(k™'g7") =g (k-9)(g™") = k(k-9)(8),

so K is a G-module homomorphism. Note that x is also self-inverse on the underlying set of both
groups, so is an isomorphism. In the induced case, we define

v: Z[G] ®7A — Ind®(A°), v(g®Ra) =gog la
For g,k € G, we now have
k-v(gwa) = (kg)®g 'a=v(kg@ka) = v(k- (g®a)),
s0 v is a G-module isomorphism with inverse v~ !(g®a) = g® ga. U

REMARK A.5.11. Noting the lemma, we will simply refer to Homy(Z[G],A) as CoInd®(A) and
Z[G) ®7A as Ind®(A).
A.6. Tate cohomology

We suppose in this section that G is a finite group. In this case, recall that we have the norm
element Ng € Z[G], which defines by left multiplication a map Ng: A — A on any G-module A. Its
image NGA is the group of G-norms of A.

LEMMA A.6.1. The norm element induces a map Ng: Ag — AC.

PROOF. We have N ((g— 1)a) =0 for any g € G and a € A, so the map factors through Ag, and
clearly imNg C AC. U

DEFINITION A.6.2. We let H(G,A) (resp., Hy(G,A)) denote the cokernel (resp., kernel) of the
map in Lemma A.6.1. In other words,

A°(G,A) =A%/NgA and Hy(G,A) = NA/IGA,
where yA denotes the kernel of the left multiplication by Ng on A.

EXAMPLE A.6.3. Consider the case that A = Z, where Z is endowed with a trivial action of
G. Since Ng: Z — Z is just the multiplication by |G| map, we have that A°(G,Z) = Z/|G|Z and
Hy(G,7) = 0.
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REMARK A.6.4. In general, when we take cohomology with coefficients in a group, like Z or Q,
with no specified action of the group G, the action is taken to be trivial.

The Tate cohomology groups are an amalgamation of the homology groups and cohomology
groups of G, with the homology groups placed in negative degrees.

DEFINITION A.6.5. Let G be a finite group and A a G-module. For any i € Z, we define the ith
Tate cohomology group by

(H_; 1(G,A) ifi<—2
Hy(G,A) ifi=—1
H(G,A) ifi=0

| H'(G,A) ifi>1.

H(G,A) =

We have modified the zeroth homology and cohomology groups in defining Tate cohomology so
that we obtain long exact sequences from short exact sequences as before, but extending infinitely in
both directions, as we shall now see.

THEOREM A.6.6 (Tate). Suppose that
0+A5B5C—0
is a short exact sequence of G-modules. Then there is a long exact sequence of abelian groups
o AHG,A) S AYG,B) 5 RB(G,C) S AN (G,A) — -

Moreover, this construction is natural in the short exact sequence in the sense that any morphism of

short exact sequences gives rise to a morphism of long exact sequences.

PROOF. The first part follows immediately from applying the snake lemma to the following dia-
gram, which in particular defines the map & on A~!(G,C):

3 HI(G,C) -2 Hy(G,A) — Ho(G,B) = Ho(G,C) ——— 0
[e e
00— HY(G,A) - HO(G,B) = HO(G,C) —> H'(G,A) — ---,
and the second part is easily checked. U

Tate cohomology groups have the interesting property that they vanish entirely on induced mod-
ules.

PROPOSITION A.6.7. Suppose that A is an induced G-module. Then I:Ii(G,A) =0forallicZ.
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PROOF. By Theorem A.5.7 and Proposition A.5.4, it suffices to check this for i = —1 and i = 0.
Let X be an abelian group. Since Z[G]® = NgZ|[G], we have

H°(G,Ind% (X)) = NGZ[G] ®7, X ,
so H%(G,Ind®(X)) = 0 by definition. We also have that
(A.6.1) Ho(G,Ind%(X)) = (Z[G] ©2X )6 2 Z Rz X =X,
Let ¢ = ¥ ,c(g ®x,) be an element of Ind%(X). Then
Ngot = N ® Z Xg
g<€G

is trivial if and only if },cxg = 0, which by the identification in (A.6.1) is to say that a has trivial
image in Ho(G,Ind®(X)). Hence Hy(G,Ind%(X)) = 0 as well. O

The Tate cohomology groups can also be computed via a doubly infinite resolution of G-modules.
The proof of this is rather involved and requires some preparation.

LEMMA A.6.8. Let X be a G-module that is free of finite rank over Z, and let A be any G-module.
Then the map

v: X ®zA — Homz(Homy(X,Z),A), vix®a)(@) = @(x)a
is an isomorphism of G-modules.

PROOF. We note that
V(g (x®a))(9) = ¢(gx)ga,
while
(g-v(r®a))(9) =gv(x®a)(g'9) = (¢ '9)(x)ga = p(gx)ga,

so v is a homomorphism of G-modules.

Let xp,...,x, be any Z-basis of X, and let x],...,x;, be the dual basis of Homgz(X,Z) such that
xf(x;) = 0;j for 1 < i, j < m. We define

m

®: Homz(Homgz(X,Z),A) — X ®7A, o(y) =) xoyx).
i=1

Then
(vow)(y)(p) =V (ﬁx,@ w(x?)) ()= i‘P(xi)W(x;k) =y (i w(xi)x?) = y(9).

On the other hand,
m m
(wov)(x®a) =Y xi®xi(x)a=) xj(x)xi®a=x®a.
i=1 i=1

Hence, v is an isomorphism. U
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LEMMA A.6.9. Let X and A be G-modules, and endow X with a right G-action by x-g = g~ 'x.
Then we have a canonical isomorphism

X®Z[G]A :> (X ®ZA)G
induced by the identity on X ®z7 A.

PROOF. First, note that X ®z[g] A is a quotient of the G-module X ®7 A, which is endowed the
diagonal left G-action. By definition of the tensor product over Z[G], we have

g*1x®a:x~g®a:x®ga,

so G acts trivially on X ®gz;5) A, and hence the latter group is a quotient of (X ®7A)g. On the other
hand, the Z-bilinear map

XxA— (X®zA)q, (x,a) »x®a

is Z[G]-balanced, hence induces a map on the tensor product inverse to the above-described quotient
map. U

We are now ready to prove the theorem.

THEOREM A.6.10. Let P. % 7 be a projective resolution by G-modules of finite Z-rank, and
consider the Z-dual 7. %> P;, where P: = Homy(P;,Z) for i > 0 and G acts on P! by (g- @)(x) =

@(g~'x). Let Q. be the exact chain complex

Goa
iP5 PRSP P

where Py occurs in degree 0. (That is, we set Q; = P; for i > 0 and Q; = P~ for i < 0.) For any G-
module A, the Tate cohomology group H' (G,A) is the ith cohomology group of the cochain complex
C = HOI‘I]Z[G]<Q.,A).

PROOF. As P, is projective over Z[G], it is in particular Z-free, so the Z-dual sequence Z — P; is
still exact. Let us denote the ith differential on P; by d; and its Z-dual by d'. We check exactness at Qo
and Q_. Let B = & o . By definition, imd; = ker«, and as & is injective, we have imd; = ker 3.
Similarly, we have kerd” = im &, and as « is surjective, we have kerd” = im B. Therefore, Q. is
exact.

That Homyg (Q.,A) computes the Tate cohomology groups H'(G,A) follows immediately from
the definition for i > 1. By Lemma A.6.9, we have an isomorphism

P, ®7i61A = (P, ®@7A)G.
By Proposition A.6.7 and Lemma A.5.10, we have that

N
(P®zA)G —> (PzA)°
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is an isomorphism as well, and following this by the restriction
(P,®7A)¢ — Homg(P.,A)° = Homgg (P.,A)
of the map v of Lemma A.6.8, we obtain in summary an isomorphism
Xi: Pi®7z)6)A — Homgg (PL,A).

Next, we check that the maps v of Lemma A.6.8 commute with the differentials on the complexes
P.®7 A and Homgz(P;,A), the former of which are just the tensor products of the differentials d; on
the P, with the identity (then also denoted d;), and the latter of which are double duals d; of the d;,
i.e., which satisfy

di(y)(9) = y(pod),
for y € Homgz(Pi,A) and ¢ € Homgz(P_1,7Z). We have

(vedi)(x®a)(@) = v(di(x) @a)(@) = ¢(di(x))a.

On the other hand, we have

(diov)(x®a)(@) =di(v(x®a))(9) = v(x®a)(¢ odi) = ¢(di(x))a,
as desired. Moreover, the d; commute with Ng on (P, ®7A)g, being that they are G-module maps.
Hence, the maps y; for all i together provide an isomorphism of complexes. In particular, the ith
cohomology group of Homgy g (Q.,A) is Hi(G,A) for all i < —2, and we already knew this for all
i>1.
It remains to consider the cases i = 0, —1. We need to compute the cohomology of
(A.6.2) P ®Z[G] A— P ®Z[G] A i) HomZ[G] (P(),A) — HOIIIZ[G} (Pl,A)
in the middle two degrees, and
T(x®a)(y) = (xo(x®a)odoa)(y) = ) (Goa)(y)(gx)ga= Y a(y)o(x)ga,
8€G geG

noting that o(gx) = a(x) for every g € G and &(n)(x) = na(x) for every n € Z. On the other hand,
viewing o and & as inducing maps

A

APy ®zi6)A = AG and A:AY — Homyg (Py,A),

respectively, we have

(RoRgo)xa)) =ARNolaa)) =A( L alxsa)0)
= Z,G&(O‘(x))()’)ga: Z’GOC(X)OC(y)ga.

In other words, we have T =1 o NgoA. As the cokernel of the first map in (A.6.2) is Hy(G,A) = Ag
and the kernel of the last is H°(G,A) = AC, with these identifications given by the maps A and
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A . . N, .
A respectively, we have that the complex given by Ag — A® in degrees —1 and 0 computes the
cohomology groups in question, as desired. U

As what is in essence a corollary, we have the following version of Shapiro’s lemma.

THEOREM A.6.11. Let G be a finite group, let H be a subgroup, and let B be an H-module. Then
for every i € 7, we have canonical isomorphisms

H'(G,CoInd%(B)) = A'(H,B)
that together provide natural isomorphisms of O-functors.

PROOF. The proof is nearly identical to that of Shapiro’s lemma for cohomology groups. That is,
we may simply use the isomorphisms induced by

v HomZ[G}(Qi,Colndg(B)) — Homy ) (0;, B)
by v;(6)(x) = 0(x)(1), for Q. the doubly infinite resolution of Z for G of Theorem A.6.10. O

A.7. Dimension shifting

One useful technique in group cohomology is that of dimension shifting. The key idea here is to
use the acyclicity of coinduced modules to obtain isomorphisms among cohomology groups.
To describe this technique, note that we have a short exact sequence

(A.7.1) 0— AL Colnd®(A) — A* — 0,

where 1 is defined by 1(a)(g) =a fora € A and g € G, and A* is defined to be the cokernel of 1. We
also have a short exact sequence

(A.7.2) 0—A, —Ind%A) B A0,
where 7 is defined by (g ®a) =a fora € A and g € G, and A, is defined to be the kernel of 7.

REMARK A.7.1. If we view A as Z ®7 A, we see by the freeness of Z as a Z-module and the defi-
nition of Ind®(A) that A, = I; ®7 A with a diagonal action of G. Moreover, viewing A as Homyz(Z,A),
we see that A* = Homy(I,A).

PROPOSITION A.7.2. With the notation as above, we have
HT(G,A) = H(G,A*) and Hi,(G,A)=H;(G,A,)
foralli> 1.

PROOF. By Lemma A.5.10, we know that CoInd®(A) (resp., Ind®(A)) is coinduced (resp., in-
duced). The result then follows easily by Theorem A.5.7 and the long exact sequences of Theo-
rems A.2.13 and A.4.4. U
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For Tate cohomology groups, we have an even cleaner result.

THEOREM A.7.3 (Dimension shifting). Suppose that G is finite. With the above notation, we have
AY(G,A) = A (G,A*) and H'(G,A)=H'(G,A,)
forallieZ.

PROOF. Again noting Lemma A.5.10, it follows from Theorem A.5.4 and Proposition A.6.7 that
the long exact sequences associated by Theorem A.6.6 to the short exact sequences in (A.7.1) and
(A.7.2) reduce to the isomorphisms in question. U

This result allows us to transfer questions about cohomology groups in a certain degree to analo-
gous questions regarding cohomology groups in other degrees. Let us give a first application.

PROPOSITION A.7.4. Suppose that G is a finite group and A is a G-module. Then the groups
H'(G,A) have exponent dividing |G| for every i € Z.

PROOF. By Theorem A.7.3, the problem immediately reduces to proving the claim for i = 0 and
every module A. But for any a € A%, we have |G|a = Nga, so H(G,A) has exponent dividing |G|. O

This has the following important corollary.

COROLLARY A.7.5. Suppose that G is a finite group and A is a G-module that is finitely generated
as an abelian group. Then H'(G,A) is finite for every i € Z.

PROOF. We know that H/(G,A) is a subquotient of the finitely generated abelian group Q; ®7(G)
A of Theorem A.6.10, hence is itself finitely generated. As it has finite exponent, it is therefore
finite. U

We also have the following.

COROLLARY A.7.6. Suppose that G is finite. Suppose that A is a G-module on which multiplica-
tion by |G| is an isomorphism. Then H'(G,A) = 0 fori € 7Z.

PROOFE. Multiplication by |G| on A induces multiplication by |G| on Tate cohomology, which is
then an isomorphism. Since by Proposition A.7.4, multiplication by |G]| is also the zero map on Tate
cohomology, the Tate cohomology groups must be O. U

A.8. Comparing cohomology groups

DEFINITION A.8.1. Let G and G’ be groups, A a G-module and A" a G’-module. We say that a
pair (p,A) withp: G’ — G and A: A — A’ group homomorphisms is compatible if

Alp(g)a) =g'A(a)
forall g € G’ anda € A.
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Compatible pairs are used to provide maps among cohomology groups.

PROPOSITION A.8.2. Suppose that p: G' — G and A : A — A’ form a compatible pair. Then the
maps
C(G,A) = C(G,A"), f—Aofo(px---xp)
induce maps on cohomology H'(G,A) — H'(G',A") for all i > 0.
PROOF. One need only check that this is compatible with differentials, but this is easily done
using compatibility of the pair. That is, if f” is the image of f, then to show that

d'f'(80,---.81) = A(d'f(p(80), - - P(80)),
immediately reduces to showing that the first terms on both sides arising from the expression for the
definition of the differential are equal. Since the pair is compatible, we have

80.f'(81,---81) = 8oA (f(P(81):---p(81))) = A (p(80) £ (P(81):---,P(80)));
as desired. U
REMARK A.8.3. Using the standard resolution, we have a homomorphism
Homy g (Z[G'"],A) = Homyg(Z[(G')'],A)),  wAoyo(px--xp)
attached to a compatible pair (p,A) that is compatible with the map on cochains.

REMARK A.8.4. Given a third group G”, a G”-module A”, and compatible pair (p’,A’) with
p': G" — G and A': A’ — A”, we may speak of the composition (p o p’,;A" o A), which will be a
compatible pair that induces the morphism on complexes that is the composition of the morphisms
arising from the pairs (p,A) and (p’,1’).

EXAMPLE A.8.5. In Shapiro’s Lemma, the inclusion map H < G and the evaluation at 1 map
CoIndg (B) — B form a compatible pair inducing the isomorphisms in its statement.

We consider two of the most important examples of compatible pairs, and the maps on cohomol-
ogy arising from them.

DEFINITION A.8.6. Let H be a subgroup of G. Let A be a G-module.

a. Let e: H — G be the natural inclusion map. Then the maps
Res: H'(G,A) — H'(H,A)
induced by the compatible pair (e,id4) on cohomology are known as restriction maps.

b. Suppose that H is normal in G. Let ¢: G — G/H be the quotient map, and let 1: A — A be
the inclusion map. Then the maps

Inf: H (G/H,A") — H'(G,A)

induced by the compatible pair (g,1) are known as inflation maps.
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REMARK A.8.7. Restriction of an i-cocycle is just simply that, it is the restriction of the map
f: G'— AtoamapRes(f): H — A given by Res(f)(h) = f(h) for h € H'. Inflation of an i-cocycle
is just as simple: Inf(f)(g) = £(g), for g € G’ and g its image in (G/H)'.

EXAMPLE A.8.8. In degree 0, the restriction map Res: A® — A is simply inclusion, and the
inflation map Inf: (A7)G/# — A¥ is the identity.

REMARKS A.8.9.

a. Restriction provides a morphism of d-functors. That is, it provides a sequence of natural trans-
formations between the functors H (G, -) and H'(H, -) on G-modules (which is to say that restriction
commutes with G-module homomorphisms) such that for any short exact sequence of G-modules,
the maps induced by the natural transformations commute with the connecting homomorphisms in
the two resulting long exact sequences.

b. We could merely have defined restriction for i = 0 and used dimension shifting to define it for
all i > 1, as follows from the previous remark.

THEOREM A.8.10 (Inflation-Restriction Sequence). Let G be a group and N a normal subgroup.
Let A be a G-module. Then the sequence

0— H'(G/N,AV) ™ H'(G,A) 2 H' (N, 4)

Is exact.

PROOF. The injectivity of inflation on cocycles obvious from Remark A.8.7. Let f be a cocycle
in Z'(G/N,AN). If f(g) = (g— 1)a for some a € A and all g € G, then a € AV as (1) = 0, so Inf is
injective. Also, note that ResoInf(f)(n) = f(7) =0 foralln € N.

Let f' € Z'(G,A) and suppose Res(f’) = 0. Then there exists a € A such that f'(n) = (n—1)a
for all n € N. Define k € Z'(G,A) by k(g) = f'(g) — (¢ — 1)a. Then k(n) = 0 for all n € N. We then
have

K(gn) = gk(n) + k(g) = k(g)
forall g € G and n € N, so k factors through G/N. Also,

k(g) = k(g-g~'ng) = k(ng) = nk(g) +k(n) = nk(g),
so k has image in AV. Therefore, k is the inflation of a cocycle in Z! (G/N,AN), proving exactness. [

In fact, under certain conditions, we have an inflation-restriction sequence on the higher coho-
mology groups.

PROPOSITION A.8.11. Let G be a group and N a normal subgroup. Let A be a G-module. Let
i > 1, and suppose that H'(N,A) = 0 for all 1 < j < i— 1. Then the sequence

0— H'(G/N,AV) ™ Hi(G,A) X HI(N,A)
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Is exact.

PROOF. LetA* beasin (A.7.1). By Theorem A.8.10, we may assume that i > 2. Since H! (N,A) =
0, we have an exact sequence
(A.8.1) 0 — AN — Colnd®(A)N — (AN =0
in N-cohomology. Moreover, noting Lemma A.5.10, we have that
CoInd%(A)N 2 Homyy) (Z[G],A°) = Homg (Z[G/N],A°) = CoInd/V (A),
where A° is the abelian group A with a trivial G-action. Thus, the connecting homomorphism
st H™Y(G/N,(A"N) = HY(G/N,AV)

in the G/N-cohomology of (A.8.1) is an isomorphism for i > 2.
Consider the commutative diagram

(A.8.2) 0 —— HY(G/N,(AH)N) 25 gi-1(G,A*) 25 BV (N,A%)

vai—l J{gi—l vai—l

0 —— HI(G/N,AY) — ™ Hi(G,A) — 2= HI(N, A).

We have already seen that the leftmost vertical map in (A.8.2) is an isomorphism, and since CoIndG(A)
is an coinduced G-module, the central vertical map in (A.8.2) is an isomorphism. Moreover, as a coin-
duced G-module, CoInd®(A) is also coinduced as an N-module, and therefore the rightmost vertical
map in (A.8.2) is also an isomorphism. Therefore, the lower row of (A.8.2) will be exact if the top
row is. But the top row is exact by Theorem A.8.10 if i = 2, and by induction if i > 2, noting that

H/7Y(N,A*) 2 H/(N,A) =0
for all j < i. O

We consider one other sort of compatible pair, which is conjugation.

PROPOSITION A.8.12. Let A be a G-module.
a. Let H be a subgroup of G. Let g € G, and define p,: gHg ' — H by pe(k) = g kg for
k € gHg '. Define Ay: A — A by Ag(a) = ga. Then (pg, A) forms a compatible pair, and we denote
by g* the resulting map
¢+ H'(H,A)— H'(gHg ', A).
We have giog5 = (g1082)* forall g1,82 € G.

b. Suppose that N is normal in G. Then H'(N,A) is a G-module, where g € G acts as g*. We
refer to the above action as the conjugation action of G. The conjugation action factors through
the quotient G/N and turns N-cohomology into a §-functor from the category of G-modules to the
category of (G/N)-modules.
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c. The action of conjugation commutes with restriction maps among subgroups of G, which is to
say that if K < H < G and g € G, then the diagram

Res

Hi(H,A) —28  Hi(K,A)
|« |«
Hi(gHg ™', A) — H(gKg ™' ,A)
commutes.

PROOF.

a. First, we need check compatibility:

Ae(pg(h)a) = g- g 'hga = hga = hi,(a).

Next, we have

Agigy = Ag 0 g, and  Pgyg, = Pg, © Py

so by Remark A.8.4, composition is as stated.

b. Suppose that k: A — B is a G-module homomorphism. If & € H(N,A) is the class of f €
Zi(N,A), then k* o g*(t) is the class of

(n1,...,m) = k(gf(g 'mg,....g 'nig)) = gx(f(g 'mig.....g 'nmig)),
and so has class g* o K*().
Moreover, if

0ASBEC—0

is an exact sequence of G-modules, then let
§: H'(N,C) — H(N,A)

Let v € H'(N,C). We must show that § 0 g*(y) = g* o (7). Since 1 and & are G-module maps, by
what we showed above, we need only show that the differential on C'(N,B) commutes with the map
g induced by g on cochains. Let z € C'(N,B). Then

g od'(z)(no,...,n;) = gd'(z) (g 'nog,...,g 'nig)

=nogz(g 'nog,...,g 'nig) + 2: 1)/ f(g 'nog,....8 'nj—injg,....g 'nig)
j=1

+ (=" f(g 7 nog, . ...g " nim1g) = d'(g7(2)) (no, ... ,mi).
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It only remains to show that the restriction of the action of G on Tate cohomology to N is trivial.
This is easily computed on H?: for a € A and n € N, we have n*(a) = na = a. In general, let A* be
as in (A.7.1) for the group G. The diagram

HI(N,A*) —25 HITI(N,A)

Hi(N,A*) —25 HIL(N,A),

which commutes what we have already shown. Assuming that n* is the identity on H'(N,B) for
every G-module B by induction (and in particular for B = A*), we then have that n* is the identity on
HTH(N,A) as well.

c. Noting Remark A.8.4, it suffices to check that the compositions of the compatible pairs in
question are equal, which is immediate from the definitions.

U
We note the following corollary.
COROLLARY A.8.13. The conjugation action of G on H'(G,A) is trivial for all i: that is,
¢ H(G,A) = H'(G,A)
is just the identity for all g € G and i > 0.

On homology, the analogous notion of a compatible pair is a pair (p,A) where p: G — G’ and
A: A — A’ are group homomorphisms satisfying

(A.8.3) A(ga) = p(g)A(a)
for all g € G and a € A. These then provide morphisms
pRA: LG ®g6A = ZI(G) g6 A,

where p is the induced map Z[G™"!] — Z[(G')'*!]. By the homological compatibility of (A.8.3),
these are seen to be compatible with the differentials, providing maps

H;(G,A) — H;(G',A")
for all i > 0. As a consequence, we may make the following definition.
DEFINITION A.8.14. For i > 0 and a subgroup H of G, the corestriction maps
Cor: H;(H,A) — H;(G,A)

are defined to be the maps induced by the compatible pair (e,id4), where e: H — G is the natural
inclusion map.
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EXAMPLE A.8.15. In degree 0, corestriction Cor: Ay — Ag is just the quotient map.

DEFINITION A.8.16. For i > 0 and a normal subgroup H of G, the coinflation maps
Colnf: H;(G,A) — H;(G/H,Ax)

are defined to be the maps induces by the compatible pair (¢, ), where g: G - G/H and t: A — Ay
are the quotient maps.

REMARK A.8.17. For a G-module A and any normal subgroup H of G, the sequence

Hy(H,A) <% Hy(G,A) <2 H\(G/H,Ay) — 0.

is exact.

REMARK A.8.18. For a subgroup H of G, the pair (pg_ I Ag) is a compatible pair for H-homology,
inducing conjugation maps
g« Hi(H,A) — Hi(gHg ' A).
If H is a normal subgroup, then these again provide a (G/H )-action on H;(H,A) and turn H-homology
into a d-functor. Conjugation commutes with corestriction on subgroups of G.

If H is of finite index in G, then we may define restriction maps on homology and corestriction
maps on cohomology as well. If G is finite, then we obtain restriction and corestriction maps on all
Tate cohomology groups as well. Let us first explain this latter case, as it is a bit simpler. Take, for
instance, restriction. We have

Res: H'(G,A) — H'(H,A)
for all i > 0, so maps on Tate cohomology groups for i > 1. By Proposition A.7.3, we have
A7YG,A) = H(G,A,),
and the same holds for H-cohomology, as Ind®(A) is also an induced H-module. We define
Res: A7 1(G,A) — A" (H,A)
to make the diagram

H~Y(G,A) —— H'(G,A.)

lRes lRes

A~Y(H,A) — H(H,A.)
commute.
If we wish to define restriction on homology groups when G is not finite, we need to provide first
a definition of restriction on Hy(G,A), so that we can use dimension shifting to define it for H;(G,A)
with i > 1. Similarly, we need a description of corestriction on H’(G,A).
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DEFINITION A.8.19. Suppose that H is a finite index subgroup of a group G and A is a G-
module.

i. Define
Res: Hy(G,A) — Hyo(H,A), x— Y g%

where x € Ag and ¥ € Ay is any lift of it, and where g denotes any coset representative of g € H\G.

ii. Define
Cor: H'(H,A) — H°(G,A), a— Z g-a

where a € AY and g is as above.

PROPOSITION A.8.20. Let G be a group and H a subgroup of finite index. Then there are maps
Res: H;i(G,A) — H;(H,A) and Cor: H'(H,A) — H'(G,A)

for all i > 0 that coincide with the maps of Definition A.8.19 for i = 0 and that provide morphisms of
O-functors.

PROOF. Again, we consider the case of restriction, that of corestriction being analogous. We have
a commutative diagram with exact rows

0 — H{(G,A) —— Hy(G,A,) —— Hy(G,Ind%(A))

|
| Res l Res lRes
NE

0 —— Hy(H,A) — Hy(H,A,) — Ho(H,Ind®(A)),

which allows us to define restriction as the induced maps on kernels. For any i > 2, we proceed
as described above in the case of Tate cohomology to define restriction maps on the ith homology
groups.

That Res gives of morphism of d-functors can be proven by induction using dimension shifting
and a straightforward diagram chase and is left to the reader. U

REMARK A.8.21. Corestriction commutes with conjugation on the cohomology groups of sub-
groups of G with coefficients in G-modules. In the same vein, restriction commutes with conjugation
on the homology of subgroups of G with G-module coefficients.

COROLLARY A.8.22. Let G be finite and H a subgroup. The maps Res and Cor defined on both
homology and cohomology above induce maps

Res: A'(G,A) — H'(H,A) and Cor: H'(H,A) — H'(G,A)

for all i € Z, and these provide morphisms of 6-functors.
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PROOF. The reader may check that Res and Cor defined in homological and cohomological de-
gree 0, respectively, induce morphisms on the corresponding Tate cohomology groups. We then have
left only to check the commutativity of one diagram in each case.

Suppose that

0sASBEC—0

is an exact sequence of G-modules. For restriction, we want to check that

A-1(G,C) 2= AY(G,A)

lRes lRes

A-'(H,C) > A%H,A)

commutes. Let ¢ be in the kernel of Ng on C, and denote its image in H~!(G,C) by ¢. Choose b € B
with 7(b) = ¢ and considering Ngb € B®, which is 1(a) for some a € AS. Then §(c) is the image of
ain H°(G,A). Then Res(8(¢)) is just the image of a in H(H,A). On the other hand,
Res(¢) = Z 8¢,
gEH\G

where ¢ is the image of ¢ in H~!(H,C). We may lift the latter element to ) zgc in the kernel of Ny
on C and then to Y5 gb € B. Taking Ny of this element gives us Ngb, which is 1(a), and so 5(Res(¢))
is once again the image of a in H°(H,A).

The case of corestriction is very similar, and hence omitted. O

The following describes an important relationship between restriction and corestriction.

PROPOSITION A.8.23. Let G be a group and H a subgroup of finite index. Then the maps
CoroRes on homology, cohomology, and, when G is finite, Tate cohomology, are just the multipli-
cation by |G : H| maps.

PROOF. It suffices to prove this on the zeroth homology and cohomology groups. The result then
follows by dimension shifting. On cohomology we have the composite map

AG Res, gl Cor 4G
where Res is the natural inclusion and Cor the map of Definition A.8.19. For a € A%, we have
Z ga=[G:Hla,
geG/H

as desired.

On homology, we have maps

Res Cor
AG — AH — AG,
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where Res is as in Definition A.8.19 and Cor is the natural quotient map. For x € Ag and X € Ay
lifting it, the element

), gf

gEH\G

has image [G : H]x in Ag, again as desired. O
Here is a useful corollary.

COROLLARY A.8.24. Let G, be a Sylow p-subgroup of a finite group G, for a prime p. Then the
kernel of

Res: H'(G,A) — H'(G,,A)

has no elements of order p.

PROOF. Let o € H'(G,A) with p"ot = 0 for some n > 0. Then Cor(Res(ct)) = [G : G,]a, but
|G : G is prime to p, hence Cor(Res(a)) is nonzero if & # 0, and therefore Res(a) cannot be 0
unless @ = 0. U

We then obtain the following.

COROLLARY A.8.25. Let G be a finite group. For each prime p, fix a Sylow p-subgroup G, of G.
Fix i € Z, and suppose that

Res: H'(G,A) — H'(G,,A)
is trivial for all primes p. Then H'(G,A) = 0.

PROOF. The intersection of the kernels of the restriction maps over all p contains no elements of
p-power order for any p by Corollary A.8.24. So, if all of the restriction maps are trivial, the group
H'(G,A) must be trivial. O

Finally, we remark that we have conjugation Tate cohomology, as in the cases of homology and

cohomology.

REMARK A.8.26. Suppose that G is finite and H is a subgroup of G. The conjugation maps
on H°(H,A) and Hy(H,A) induce maps on H°(H,A) and Hy(H,A), respectively, and so we use the
conjugation maps on homology and cohomology to define maps

g PAI"(H,A) — I—AI"(gHg*I,A).

for all i. Again, these turn Tate cohomology for H into a §-functor from G-modules to (G/H)-
modules when H is normal in G. Conjugation commutes with restriction and corestriction on sub-
groups of G.
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A.9. Cup products
We consider the following maps on the standard complex P:
Kij: Prj = Pi®nPi, K j(80s-:8itj) = (805---,81) @ (8ir---+&i+j)-
That is, there is a natural map
Homy ) (F;,A) ®z Homg g (P, B) — Homgy g (P; ®z Pj,A ®7 B)
defined by
PR — (a@f > o(a)®¢'(B)).

Composing this with the map induced by precomposition with k; ; gives rise to a map
U
HOl’l’lZ[G] (Pi,A) X7 HOl’l’lZ[G] (Pj,B) — HOl’l’lZ[G] (Pi+j,A X7 B),
and we denote the image of ¢ ® ¢’ under this map by ¢ U ¢’. Let us summarize this.

DEFINITION A.9.1. Let ¢ € Homgy g (P;,A) and OIS Homg, ) (Pj, B). The cup product ¢ U S
HOI‘IIZ[G] (PH_]',A X7 B) is defined by

(‘PU (p/>(g07 cee ;gi+j) = (p(g0> cee 7gi) ® (p/(gi; cee 7gi+j)'
LEMMA A.9.2. Let ¢ € Homgq (F;,A) and ¢' € Homy (P}, B). Then

D\ (eUe) =D\ (@)U +(~1)pUDp(¢),

where the differentials D' are as in (A.3.1).

PROOF. We compute the terms. We have

i

ZgB(QDU(P )(80,- -+ 8itjtr1) = Z(_l)kq)(g()?'“7g7€7"'7gi+1)®(p/(gi+la-"agi—i—j—l—l)
k=0
i+j+1
+ Z ?(80s--+8) QO (&iv- - 8k -+ &itj+1),s
k=i+1
while
i+1
(A9.1) (DlA(q))U(p,)(gO?ng-j-i-l) = Z(_l)k(p(g()7"'7g/7€7"'7gi+1)®(p/(gi+17'~'7gi+j+1)
k=0
and
, JHit1 .
(A92)  (QUDR(9))(g0,-- s gitjr) = Y, (=1 0(g0,- -, 8) © @' (8ir- -, &js- - &itj+1)-

k=i
As (— 1)1 (—~1)! =0, the last term in (A.9.1) cancels with the (—1)’ times the first term in (A.9.2).
The equality of the two sides follows. U
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REMARK A.9.3. On cochains, we can define cup products
C'(G,A)®7C/(G,B) = C/(G,A®yB)
of f € C/(G,A) and f' € C/(G,B) by
(FUS)(81,82,---8irj) = F(81,--,8) 8182 --8if (8it1,---1&it))-
To see that these match up with the previous definition, note that if we define @ and ¢’ by

¢(17g17"'7g1 gl) :f(gl7"'7gi) and (p/(17g17"'7g1 g]) :f/(gla'“agj)a
then
(FUF)(g1s-- 8itj) = 01,81, 81 8)UgI82 - &iP(1, 841,81 &itjtr1)

= ¢(17817---ag1"'gi)U(P(gl"‘ghgl"‘8i+17---agl"‘8i+j+l)
= (@U@ (1,81,---,81" it j+1);

so the definitions agree under the identifications of Theorem A.3.3. As a consequence of Lemma A.9.2,
the cup products on cochains satisfy

(A93) dyp(fUS) = dA(NUS + (=1) fUdR(f):
LEMMA A.9.4. The sequences

(A.9.4) 0— A®zB — Colnd®(A)®zB — A*®7zB — 0
(A.9.5) 0—A,®2B—Ind%(A)@,B—ARzB —0

are exact for any G-modules A and B.

PROOF. Since the augmentation map &€ is split over Z, it follows using Remark A.7.1 that the
sequences (A.7.1) and (A.7.2) are split as well. It follows that the sequences in the lemma are exact.
O

THEOREM A.9.5. The cup products of Definition A.9.1 induce maps, also called cup products,
H(G,A) @7 H/(G,B) = H/(G,A®yB)

that are natural in A and B and satisfy the following properties:

(i) Fori= j =0, one has that the cup product
AG K7 BG — (A K7 B)G

is induced by the identity on A 7, B.
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(ii) If
0—2A—-A—>A,—0

is an exact sequence of G-modules such that
0—>A1®B—AR7B—A,®7B—0

is exact as well, then

S(aUB)=(8op)UB € HTY(G,A®2B)
forall ap € H'(G,Ay) and B € H (G, B). (In other words, cup product on the right with a cohomology
class provides a morphism of d-functors.)

(iii) If
0—By—B—B,—0

is an exact sequence of G-modules such that
0>A®zB -ARzB —-A®zB, —0
is exact as well, then
§(aUBr) = (—1)'aU(8B) € H (G Az B1)

forall a € H(G,A) and B, € H' (G, By).
Moreover; the cup products on cohomology are the unique collection of such maps natural in A and
B and satisfying properties (i), (ii), and (iii).

PROOF. Let f € C/(G,A) and f' € C/(G,B). By (A.9.3), it is easy to see that the cup product of
two cocycles is a cocycle and that the cup product of a cocycle and a coboundary is a coboundary.
Thus, the cup product on cochains induces cup products on cohomology. The naturality in A and B
follows directly from the definition. Property (1) is immediate from the definition as well. Property (i1)
can be seen by tracing through the definition of the connecting homomorphism. Let f> represent .
Then 8(0,) is obtained by lifting f> to a cochain f € C/(G,A), taking its boundary d f € C'*!(G,A),
and then noting that df is the image of some cocycle z; € Zi*1(G,A;). Let f' € Z/(G,B) represent
B. By (A.9.3), we have df U f' = d(f U f"). Note that z; U f has class 6 (o) U and image df U f’
in C'*/+1(G,A ®z B). On the other hand, d(f U f’) is the image of a cocycle representing &(ap U ),
as fU f is a cocycle lifting f>» U f. Since the map

CH(G,A; ®zB) = CTTTH(G, A%y B)

is injective, we have (i1). Property (iii) follows similarly, the sign appearing in the computation arising
from (A.9.3).

The uniqueness of the maps with these properties follows from the fact that given a collection of
such maps, property (i) specifies them uniquely for i = j = 0, while properties (i1) and (ii1) specify
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them uniquely for all other i, j > 0 by dimension shifting. For instance, by (ii) and Lemma A.9.4, we
have a commutative square

H(G,A*) ®7, H/(G,B) ——— H*J(G,A* ®y,B)
H*(G,A) @7 H/(G,B) —— H*(G,A®yB)

in which the lefthand vertical arrow is a surjection for all i (and an isomorphism for i > 1). Thus, the
cup products in degrees (i, j) for i > 1 and j > 0 specify by the cup products in degrees (i+ 1, ).
Similarly, using (iii), we see that the cup products in degrees (i, j) specify the cup products in degrees
(i,j+1). U

REMARK A.9.6. Associativity of tensor products and Lemma A.5.10 tell us that
Ind®(A ®7B) = Ind®(A) ® B,
so in particular the latter modules is induced. This also implies that we have isomorphisms
(A®zB): = A, ®7B.
If G is finite, Proposition A.5.4 tells us that we have
CoInd®(A®z B) = Colnd®(A)®zB and (A®zB)* = A*®yB
as well.
COROLLARY A.9.7. Consider the natural isomorphism
sAB: A®zB - B®zA

given by a® b+ b®a, and the maps that it induces on cohomology. For all o € H'(G,A) and
B € H/(G,B), one has that

sip(@UB) = (-1)7(BUa).
PROOF. We first verify the result in the case i = j = 0. For a € A® and b € B®, we have
syp(aUb) =sap(a®b) =b®a=>bUa.

Suppose that we know the result for a given pair (i — 1, j). Let « € H'(G,A) and B € H/(G, B). Recall
that the maps H'~!(G,A*) — H'(G,A) are surjective for all i > 1 (and isomorphisms for i > 2), and
write o = §(o*) for some o € H'~1(G,A*). Since (A.9.4) is exact, we have by Theorem A.9.5 that

sap(@UB) = sa5(8(a")UB) = s35(8(a" UB)) = (sap(a” UB))
= (=D)V§(Buar) = (1) (—1)Bus(a) = (-1)/Bua.
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Suppose next that we know the result for a given pair (i, j— 1). Let « € H'(G,A) and B € H/~(G,B),
and write 8 = 8(B*) for some B* € H/(G,B*). Since (A.9.4) is exact, we have by Theorem A.9.5
that
sap(@UB) = sip(aUS(B*)) = (—1)'shp(8(aUB*)) = 8(sap(aUB"))
= (~1)/(=1) V8 (B Ua) = (~1)78(8") U = (~1)IB U
The result now follows by induction on i and j. U

Cup products also have an associative property, which can be checked directly on cochains.

PROPOSITION A.9.8. Let A, B, and C be G-modules, and let « € H'(G,A), B € H/(G,B), and
y € H*(G,C). Then

(@UB)UY=aU(BUy) € H™(G,A®,B®yC).

Often, when we speak of cup products, we apply an auxiliary map from the tensor product of A
and B to a third module before taking the result. For instance, if A = B = Z, then one will typically
make the identification Z ® 7 Z = 7. We codify this in the following definition.

DEFINITION A.9.9. Suppose that A, B, and C are G-modules and 0: A ®7 B — C is a G-module
homomorphism. Then the maps

H'(G,A)®7H/(G,B) - H/(G,C), a®B— 6(aUp)

are also referred to as cup products. When 6 is understood, we denote 6(c U ) more simply by
oaUp.

Cup products behave nicely with respect to restriction, corestriction, and inflation.

PROPOSITION A.9.10. Let A and B be G-modules. We then have the following compatibilities.
a. Let H be a subgroup of G. For « € H'(G,A) and B € H/(G,B), one has

Res(otUB) = Res(a) URes(B) € H/(H,A®yB),
where Res denotes restriction from G to H.
b. Let N be a normal subgroup of G. For oo € H(G/N,AN) and B € H(G/N,B"), one has
Inf(oUB) = Inf(a) UInf(B) € H/(G,A®yz B),

where Inf denotes inflation from G/N to G. (Here, we implicitly use the canonical map AN @7 B" —
(A®gz B)N prior to taking inflation on the left.)

c. Let H be a subgroup of finite index in G. For a € H'(H,A) and B € H/(G,B), one has
Cor(a) UB = Cor(aURes(B)) € H/(G,A®zB),

where Res denotes restriction from G to H and Cor denotes corestriction from H to G.
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PROOF. We can prove part a by direct computation on cocycles. That is, for f € Z/(G,A), f' €
Z'(G,B), and hy,...,hi j € H, we have

Res(FUS ) (... hiv) = (FUS) (1, hivj) = f(hy, .o hi) @by hif (hig, - hig )
= Res(f)(h1 .. ,]’ll') Qhy-- -hiRes(f )(hi—i—lw .. 7hi+j) = (Res(f) URCS(fI))(hl,. .. 7hi+j)'
Part b is similarly computed.

We now prove part c. Consider the case that i = j = 0. Then a € A and b € B®. By property (i)

in Theorem A.9.5 and the definition of corestriction on H°, we have
Cor(a)Ub = Z (ga)®b= Z (ga®gb) = Z gla®b) = Cor(aURes(D)).
geG/H geG/H geG/H

As corestriction and restriction commute with connecting homomorphisms, and as cup products be-
have well with respect to connecting homomorphisms on either side, we can use dimension shifting
to prove the result for all i and j. That is, suppose we know the result for a fixed pair (i — 1, ). We
prove it for (i, j). Letting § the connecting homomorphism induced by (A.7.1) for A, and choose
a* € H1(G,A*) such that §(a*) = a. We then have

Cor(a) UB = §(Cor(a™))UB = 6(Cor(a™)UP)
= 6(Cor(a* URes(B)) = Cor(d(a* URes(B))) = Cor(ax URes(f3)).

Similarly, take & for the sequence analogous to (A.7.1) for the module B and assume the result for
(i,j—1). Choosing B* € H/~!(G,B*) with §(B*) = B, we have
Cor(ot) UB = Cor(a)US(B*) = (—1)'8(Cor(a) UB*) = (—1)'8(Cor(a URes(B*)))
= (—1)'Cor(8(aURes(B*))) = Cor(arU 8(Res(B*))) = Cor(ar URes(B)).
t

NOTATION A.9.11. We may express the statement of Proposition A.9.10a as saying that the dia-
gram

H(G,A) @7 H/(G,B) —— H'(G,A®7B)

l Res lRes lRes

Hi(H,A)®7H/(H,B) —— H'(H,A®72B)
commutes (with a similar diagram for part b) and the statement of Proposition A.9.10c as saying that

the diagram

Hi(G,A) @7 H/(G,B) —— H'(G,A®yzB)

CorT lRes CorT

Hi(H,A)®z H/(H,B) —— H(H,A®yB)
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commutes.
For finite groups, we have cup products on Tate cohomology as well.
THEOREM A.9.12. Let G be finite. There exists a unique family of maps
H(G,A)®7,H/(G,B) = H*/(G,A®yB)
with i, j € Z that are natural in the G-modules A and B and which satisfy the following properties:
(i) The diagram
H°(G,A) ©7 H*(G,B) —— H(G,A %y B)

l l

A%(G,A) @7, H°(G,B) —— H°(G,A %y B)
commutes.
(ii) If
04 —-A—>A,—0
is an exact sequence of G-modules such that
0—>A®zB—A®RzB— A Q7B —0
is exact as well, then
§(aaUB) = (on)Up € HHH(G,A 27 B)
forall oy € H(G,A>) and B € H/(G,B).
(iii) If
0—-B —B—B,—0
is an exact sequence of G-modules such that
0>A®RzB] 2 A®zB —>A®zB, =0
is exact as well, then
S(aUpy) = (—1)'aU(8B) € HH*(G,A®yBy)
forall « € H(G,A) and B, € H/(G, By).
PROOF. Consider the complex Q. of Theorem A.6.10, obtained from the standard resolution P.
The proof goes through as in Theorem A.9.5 once we define maps Q; ; — Q; ®z Q; satisfying the

formula of Lemma A.9.2. There are six cases to consider (the case i, j > 0 being as before), and these
are omitted. O

REMARK A.9.13. Corollary A.9.7, Proposition A.9.8, and Proposition A.9.10 all hold for cup
products on Tate cohomology as well. We can also compose cup products with G-module maps from
the tensor product, and we again denote them using the same symbol, as in Definition A.9.9.
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A.10. Tate cohomology of cyclic groups

In this section, let G be a cyclic group of finite order. We prove that the Tate cohomology groups
with coefficients in a module A are periodic in the degree of period 2, up to isomorphisms determined
by a choice of generator g of G.

The first thing that we will observe is that for such a group G, there is an even nicer projective
resolution of Z than the standard one: i.e., consider the sequence

(A.10.1) .. » 216 Y% z16) 275 z16) 2% z16) 2L Zj6) S Z — 0,

where the boundary maps are multiplication Ng in even degree and by g — 1 in odd degree. We can
splice this together with its dual as in Theorem A.6.10.

PROPOSITION A.10.1. The G-cohomology groups of A are the cohomology groups of the complex
SRR NI N N
with a map g — 1 following the term in degree 0.

PROOF. Note first that for i € {—1,0}, the group H(G,A) is by definition isomorphic to the ith
cohomology group of the complex in question. Let C. denote the projective resolution of Z given by
(A.10.1). The complex C. ®7] A that ends

osaf a8 A Lo

computes H;(G,A), yielding the result for i < —2.
Multiplication by g induces the endomorphism

HomZ[G] (Z[G]7A) - HomZ[G](Z[G]vA)v ¢ — (x = (p(gx) = g(p(x))

Via the isomorphism of G-modules Homg¢(Z[G],A) = A given by evaluation at 1, the latter en-
domorphism is identified with multiplication by g on A. The complex Homy,(C.,A) that computes
H'(G,A) is therefore isomorphic to

0sASalo g8y
providing the result for i > 1. U
COROLLARY A.10.2. For any i € Z, we have

H°(G,A) ieven

H(GA)=q
HY(G,A) iodd

We show that, in fact, these isomorphisms can be realized by means of a cup product. As usual,
consider Z as having a trivial G-action. We remark that

H2(G,2) =2 H((G,Z)=G*=G
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by Proposition A.4.5. Any choice of generator g of G is now a generator u, of this Tate cohomology
group. Note that Z ®z A = A for any G-module A via multiplication. Here then is the result.

PROPOSITION A.10.3. Let G be cyclic with generator g, and let A be a G-module. Then the map
H(G,A) — A" 2(G,A), c—ugUc
is an isomorphism for any i € 7.
PROOF. Consider the two exact sequences of G-modules:
016 —=ZGl| S Z—0 and 0—Z 2% 7[6] £ 16— 0.
As H'(G,Z[G]) = 0 for all i € Z, we then have two isomorphisms
A72G,2) 387G, 15) % AYG, 7).

(In fact, tracing it through, one sees that the image of u, under this composition is 1 modulo |G|. This
is not needed for the proof.)
Since we have

8(8(ug)) Uc = 8(8(ug Uc)

by property (ii) of Theorem A.9.12, it suffices to show that cup product with the image of 1 in
H°(G,Z) is an isomorphism. For this, using property (iii) of Theorem A.9.12 to dimension shift, the
problem reduces to the case that i = 0. In this case, we know that the cup product is induced on H°
by the multiplication map on H"’s:

Z®ZAG—>AG, m®a+— ma.

However, 1-a = a, so the map H°(G,A) — H"(G,A) induced by taking cup product with the image
of 1 is an isomorphism. ]

Given the 2-periodicity of the Tate cohomology groups of a finite cyclic group, we can make the
following definition.

DEFINITION A.10.4. Let G be a finite cyclic group and A a G-module. Set /ip(A) = |H°(G,A)|
and K1 (A) = |H'(G,A)|, taking them to be infinite when the orders of the Tate cohomology groups
are infinite. If both h(A) and h;(A) are finite, we then define the Herbrand quotient h(A) by

_ ho(A)
hi(A)

h(A)

Clearly, if A is finitely generated, then 4(A) will be defined. The following explains how Herbrand
quotients behave with respect to modules in short exact sequences.
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THEOREM A.10.5. Let
0—A—>B—C—0

be an exact sequence of G-modules. Suppose that any two of h(A), h(B), and h(C) are defined. Then
the third is as well, and

PROOF. It follows immediately from Proposition A.10.3 that we have an exact hexagon

H°(G,A) — A°(G,B)
- ~
A'(G,0) A°(G,0)

. -~

H'(G,B) — H'(G,A)

Note that the order of any group in the hexagon is the product of the orders of the image of the map
from the previous group and the order of the image of the map to the next group. Therefore, that
any two of h(A), h(B), and h(C) are finite implies the third is. When all three are finite, an Euler
characteristic argument then tells us that

ho(A) -ho(C)-mi(B) _

ho(B) -hi(A)-m(C)

hence the result. More specifically, the order of each cohomology group is the product of the orders

(A.10.2)

of the images of two adjacent maps in the hexagon, and the order of the image of each such map then
appears once in each of the numerator and denominator of the left-hand side of (A.10.2). U

As an immediate consequence of Theorem A.10.5, we have the following.
COROLLARY A.10.6. Suppose that
0—-A —A)— - —A,—0

is an exact sequence of G-modules with h(Ay) finite for at least one of each consecutive pair of
subscripts k, including at least one of A, and Ay. Then all h(Ay) are finite and

n k
[T =1.
k=1
Next, we show that the Herbrand quotients of finite modules are trivial.
PROPOSITION A.10.7. Suppose that A is a finite G-module. Then h(A) = 1.

PROOF. Let g be a generator of G, and note that the sequence

0540 5455 A S A0
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is exact. As A is finite and any alternating product of orders of finite groups in exact sequences of
finite length is 1, we therefore have |[A®| = |Ag|. On the other hand, we have the exact sequence

0 A(G,A) = Ag 2% A6 - AY(G,A) — 0
defining H(G,A) fori = 0,—1. As h1(A) = |H~'(G,A)|, we therefore have h(A) = 1. O
We therefore have the following.

PROPOSITION A.10.8. Let f: A — B be a G-module homomorphism with finite kernel and cok-
ernel. Then h(A) = h(B) if either one is defined.

PROOF. This follows immediately from the exact sequence
0—kerf—A— B —cokerf —0,

Corollary A.10.6, and Proposition A.10.7. 0

A.11. Cohomological triviality

In this section, we suppose that G is a finite group.

DEFINITION A.11.1. A G-module A is said to be cohomologically trivial if H (H,A) = 0 for all
subgroups H of G and all i € Z.

In this section, we will give conditions for a G-module to be cohomologically trivial.

REMARK A.11.2. Every free G-module is also a free H-module for every subgroup H of G
and any group G, not necessarily finite. In particular, Z[G] is free over Z[H] on any set of cosets
representatives of H\G.

We remark that it follows from this that induced G-modules are induced H-modules, as direct
sums commute with tensor products. We then have the following examples of cohomologically trivial
modules.

EXAMPLES A.11.3.

a. Induced G-modules are cohomologically trivial by Proposition A.6.7.

b. Projective G-modules are cohomologically trivial. To see this, suppose that P and Q are pro-
jective G-modules with P & Q free over Z[G], hence over Z[H|. Then

A'(H,P)— A'(H,P)®A'(H,0) = A'(H P& Q) =0
forall i € Z.

We need some preliminary lemmas. Fix a prime p.
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LEMMA A.11.4. Suppose that G is a p-group and that A is a G-module of exponent dividing p.
Then A = 0 if and only if Ag = 0 and if and only if A® = 0.

PROOF. Suppose A® =0, and let a € A. The submodule B of A generated by « is finite, and
BY = 0. The latter fact implies that the G-orbits in B are either {0} or have order a multiple of p.
Since B has p-power order, this forces the order to be 1, so B = 0. Since a was arbitrary, A = 0. On
the other hand, if Ag = 0, then X = Homy(A,F),) satisfies pX = 0 and

XY = Homg)(A,F),) = Homgg(Ag, Fp) = 0.
By the invariants case just proven, we know X =0, so A = 0. U

LEMMA A.11.5. Suppose that G is a p-group and that A is a G-module of exponent dividing p.
If H\(G,A) =0, then A is free as an F ,[G]-module.

PROOF. Lift an F-basis of Ag to a subset X of A. For the G-submodule B of A generated by
Y, the quotient A/B has trivial G-coinvariant group, hence is trivial by Lemma A.11.4. That is, £
generates A as an IF,,[G]-module. Letting F be the free F,|G]-module generated by X, we then have a
canonical surjection w: F — A, and we let R be the kernel. Consider the exact sequence

0—)R(;—>FG£>AG—>O

that exists since H;(G,A) = 0. We have by definition that the map 7 induced by 7 is an isomor-
phism, so we must have Rg = 0. As pR =0, we have by Lemma A.11.4 that R =0, and so 7 is an
isomorphism. 0

We are now ready to give a module-theoretic characterization of cohomologically trivial modules
that are killed by p.

PROPOSITION A.11.6. Suppose that G is a p-group and that A is a G-module of exponent dividing
p. The following are equivalent:

(i) A is cohomologically trivial

(ii) A is a free F,|G|-module.

(iii) There exists i € 7 such that H' (G,A) = 0.

PROOF.

(1) = (ii1) Immediate.

(i) = (ii) This is a special case of Lemma A.11.5, since H;(G,A) = H?(G,A).

(i) = (i) Suppose A is free over IF,,|G] on a generating set /. Then

A= 7[6] & F,,

icl

so A is induced, hence cohomologically trivial.
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(iii) = (ii) We note that the modules A, and A* that we use to dimension shift, as in (A.7.2) and
(A.7.1) are killed by p since A is. In particular, it follows by dimension shifting that there exists a
G-module B such that pB = 0 and

H/72(H,B) = A/T(H,A)

for all H < G and j € Z. In particular, H,(G,B) = H %(G,B) is trivial. By Lemma A.11.5, B is
[F,[G]-free. However, we have just shown that this implies that B is cohomologically trivial, and
therefore so is A.

O

We next consider the case that A has no elements of order p.

PROPOSITION A.11.7. Suppose that G is a p-group and A is a G-module with no elements of
order p. The following are equivalent:

(i) A is cohomologically trivial.

(ii) There exists i € 7 such that H'(G,A) = H1(G,A) = 0.

(iii) A/pA is free over Fp[G].

PROOF.
(1) = (i1) Immediate.
(i1) = (iii) Since A has no p-torsion,

05A5A—A/pA—0

is exact. By (ii) and the long exact sequence in Tate cohomology, we have A/(G,A/pA) = 0. By
Proposition A.11.6, we have therefore that A/pA is free over F,[G].

(iii) = (i) By Proposition A.11.6, we have that A/pA is cohomologically trivial, and therefore
multiplication by p is an isomorphism on each H(H,A) for each subgroup H of G and every i € Z.
However, the latter cohomology groups are annihilated by the order of H, so must be trivial since H
is a p-group.

U

We next wish to generalize to arbitrary finite groups.

PROPOSITION A.11.8. Let G be a finite group and, for each p, choose a Sylow p-subgroup G, of
G. Let A be a G-module. Then A is cohomologically trivial if and only if A is cohomologically trivial
as a Gp-module for each p.

PROOF. Suppose that A is cohomologically trivial for all G,. Let H be a subgroup of G. Any
Sylow p-subgroup H, of H is contained in a conjugate of G, say ngg’l. By the cohomological
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triviality of G, we have that H'(g~'H,g,A) = 0. As g* is an isomorphism, we have that H'(H,,A) =
0. Therefore, we see that the restriction map Res: H'(H,A) — H'(H,,A) is 0. Since this holds for
each p, Corollary A.8.25 implies that A'(H,A) = 0. O

In order to give a characterization of cohomologically trivial modules in terms of projective mod-
ules, we require the following lemma.

LEMMA A.11.9. Suppose that G is a p-group and A is a G-module that is free as an abelian group
and cohomologically trivial. For any G-module B which is p-torsion free, we have that Homz(A, B)
is cohomologically trivial.

PROOF. Since B has no p-torsion and A is free over Z, we have that
0 — Homy(A, B) s Homy (A, B) — Homy(A,B/pB) — 0
is exact. In particular, Homy(A, B) has no p-torsion, and
Homy(A/pA,B/pB) = Homy(A,B/pB) = Homy(A,B)/pHomyz(A,B).

Since A/pA is free over F,[G] with some indexing set that we shall call /, we have

Homg(4/pA, B/ pB) = [ [Homy(F ,[G], B/ pB) = Homy, (Z[G],HB/pB),
icl icl
so Homy(A,B/pB) is coinduced, and therefore F,[G]-free. By Proposition A.11.7, we have that
Homy (A, B) is cohomologically trivial. O

PROPOSITION A.11.10. Let G be a finite group and A a G-module that is free as an abelian
group. Then A is cohomologically trivial if and only if A is a projective G-module.

PROOF. We have already seen that projective implies cohomologically trivial. Suppose that A is
cohomologically trivial as a G-module. Since A is Z-free, it follows that Ind®(A) is a free G-module,
and the sequence

(A.11.1) 0 — Homy,(A,A,) — Homy(A,Ind%(A4)) — Homy(A4,A) — 0

is exact. Moreover, A, is rather clearly Z-free since A is, so it follows from Lemma A.11.9 that
the module Homy(A,A,) is cohomologically trivial. In particular, by the long exact sequence in
cohomology attached to (A.11.1), we see that

Homg, (A, Ind%(A)) — Homy ) (A,A)

is surjective. In particular, the identity map lifts to a homomorphism A — Ind®(A), which is a splitting
of the natural surjection Ind® (A) — A. Tt follows that A is projective as a G-module. U

Finally, we consider the general case.

THEOREM A.11.11. Let G be a finite group and A a G-module. The following are equivalent.
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(i) A is cohomologically trivial.
(ii) For each prime p, there exists some i € 7 such that H'(G,,A) = H(G,,A) = 0.

(iii) There is an exact sequence of G-modules
O0—=>P—>P—>A—0
in which Py and P, are projective.

PROOF.
(i) = (i1) This follows from the definition of cohomologically trivial.

(i1) = (i11) Let F be a free G-module that surjects onto A, and let R be the kernel. As F is
cohomologically trivial, we have H/~1(G,,A) 2 H/(G,,R) for every j € Z. It follows that H/ (G, R)
vanishes for two consecutive values of j. Since R is Z-free, being a subgroup of F, we have by
Propositions A.11.7, A.11.8, and A.11.10 that R is projective.

(iii) = (i) This follows from the fact that projective modules are cohomologically trivial and the
long exact sequence in Tate cohomology.

O

A.12. Tate’s theorem

We continue to assume that G is a finite group, and we choose a Sylow p-subgroup G, of G
for each prime p. We begin with a consequence of our characterization of cohomologically trivial
modules to maps on cohomology.

PROPOSITION A.12.1. Let k: A — B be a G-module homomorphism. Viewed as a G,-module
homomorphism, let us denote it by K,. Suppose that, for each prime p, there exists a j € Z such that

K. H'(Gy,A) — H'(G,,B)
is surjective for i = j— 1, an isomorphism for i = j, and injective for i = j+ 1. Then
x*: H'(H,A) — H'(H,B)
is an isomorphism for all i € 7 and subgroups H of G.
PROOF. Consider the canonical injection of G-modules
K®1: A— BHColnd(A),
and let C be its cokernel. As CoInd®(A) is H-cohomologically trivial for all H < G, we have

H'(H,B®Colnd“(A)) = A'(H,B)
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for all i € Z. The long exact sequence in G,-cohomology then reads

i Ko, pyi i 8, pyi+l Ko, Fyit
---—=H'(Gp,A) — H'(G,,B) - H'(G,,C) = H" (G),A) — H"(Gp,B) = ---.

Consider the case i = j — 1. The map &, being surjective on A7~ and injective on A/ implies that
Flj_l(Gp,C) = 0. Similarly, for i = j, the map k), being surjective on H/ and injective on H/*!
implies that A/ (Gp,C) = 0. Therefore, C is cohomologically trivial by Theorem A.11.11, and so
each map x*: H'(H,A) — H(H,B) in question must be an isomorphism by the long exact sequence
in Tate cohomology. U

We now prove the main theorem of Tate and Nakayama.
THEOREM A.12.2. Suppose that A, B, and C are G-modules and
0:A®zB—C
is a G-module map. Let k € 7 and o, € H* (G,A). For each subgroup H of G, define
('*);La: H'(H,B) — FI”"(H,C), @;LOC(B) = 0" (Res(a)UP).

For each prime p, suppose that there exists j € 7 such that the map @gp o I8 surjective for i = j—1,
an isomorphism for i = j, and injective for i = j+ 1. Then for every subgroup H of G and i € Z, one

has that @;{7 o 18 an isomorphism.

PROOE. First consider the case that k = 0. Then the map y: B — C given by y(b) = 8(a®b),
where a € AY represents «, is a map of G-modules, since

v(gb) = 0(a®gh) = 0(ga®gh) = gb(a®b) = gy(D).
We claim that the induced maps on cohomology
v*: H'(H,B) — H'(H,C)

agree with the maps given by left cup product with Res( ). Given this, we have by Proposition A.12.1
that the latter maps are all isomorphisms in the case k = 0.

To see the claim, consider first the case that i = 0, in which the map y* is induced by w: B —
CH. For b € B, we have w(b) = 8(a®b), and the class of the latter term is 8*(Res(a) Ub) by (i) of
Theorem A.9.12. For the case of arbitrary i, we consider the commutative diagram

(A.12.1) 0 — (A®zB)y — Id°(A®zB) — A®zB —— 0

lé l[ndc(e) le

0 C. Ind%(C) C 0,
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where IndG(G) = idz) ®6, and where 6 is both the map making the diagram commute and id;, ®0,
noting Remark A.7.1. In fact, by Remark A.9.6, we have an exact sequence isomorphic to the top
row of (A.12.1), given by

0—>A®zB, »A®;Ind°(B) 5 A®,B—0

and then a map : B, — C, given by {(b') = 8(a®Db') for b’ € B,. We then have two commutative
diagrams

AV(H,B) —— Hi(H,B,)

| l

A-Y(H,0) -2 AlH,C).
In the first, the left vertical arrow is G)j; }x and the right vertical arrow is the map (:)fq‘a given on
B’ € Hi(H,B.) by |

Oly.o(B') = 6" (Res(a) UB).
In the second, the left vertical arrow is y* and the right is {*. Supposing our claim for i, we have
Ut = (:)}{7 o~ As the connecting homomorphisms in the diagrams are isomorphisms, we then have that
Y= @j}{. o 1-€., if the claim holds for i, it holds for i — 1. The analogous argument using coinduced
modules éllows us to shift from i to i+ 1, proving the claim for all i € Z, hence the theorem for k = 0.

For any k € Z, the result is again proven by dimension shifting, this time for A. Fix o €
H*'(H,A),and let o/ = §(o) € H*(H,A,). We note that the top row of (A.12.1) is also isomorphic
to
0—A,®zB—Ind°(A)®,B— ARz B — 0.

Much as before, define ©%, ,: H'(H,B) — H'"K(H,C.) by ©}, ,,(B) = 6*(Res() U B), where

0: A, ®7 B — C, is the map determined by 6. The diagram

H(H,B) ——— H(H,B)

EX |

a1, c) 2 A, C,)

then commutes as

o 0(9;1,(1([3) =§00*(Res(a)UB) = 0*8(Res(ax) UB) = 8*(Res(a')UB) = ®§'—I,(x’(ﬁ)'
There exists by assumption j € Z such that the map @gm o, 18 surjective for i = j — 1, an isomorphism
. é}p,(x"
Assuming the theorem for k, we then have that all of the maps @}_17 o are isomorphisms, and therefore

for i = j, and injective for i = j+ 1. By the commutativity of the diagram, the same holds for ®

again by commutativity that so are the maps ®j'q. o Thus, the theorem for a given k implies the
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theorem for k — 1. By the analogous argument using coinduced modules, the theorem for k implies
the theorem for k+ 1 as well. U

The following special case was first due to Tate.

THEOREM A.12.3 (Tate). Let A be a G-module, and let o« € H*(G,A). Suppose that, for every
p, the group H'(G,,A) is trivial and HZ(GP,A) is a cyclic group of order |G,| generated by the
restriction of &. Then the maps

H(H,Z) — A" (H,A), B+ Res(a)UPB

are isomorphisms for every i € Z and subgroup H of G.

PROOF. For H = G, the maps in question are surjective for i = —1, as H'(G,,A) = 0, and
injective for i = 1, as

H'(G,,Z) = Hom(G,Z) = 0.
For i = 0, we have
H°(G,,2) = Z/|G,|Z,

and the map takes the image of n € Z to nRes(o) (which is straightforward enough to see by di-

mension shifting, starting with the known case of cup products of degree zero classes), hence is an
isomorphism by the assumption on H%(G,,A). O






APPENDIX B

Galois cohomology

B.1. Profinite groups

DEFINITION B.1.1. A topological group G is a group endowed with a topology with respect to
which both the multiplication map G X G — G and the inversion map G — G that takes an element to

1ts Inverse are continuous.

EXAMPLES B.1.2.
a. The groups R, C, R*, and C* are continuous with respect to the topologies defined by their

absolute values.

b. Any group can be made a topological group by endowing it with the discrete topology.

REMARK B.1.3. We may consider the category of topological groups, in which the maps are
continuous homomorphisms between topological groups.

DEFINITION B.1.4. A homomorphism ¢: G — G’ between topological groups G and G’ is a
topological isomorphism if it is both an isomorphism and a homeomorphism.

The following lemma is almost immediate, since elements of a group are invertible.

LEMMA B.1.5. Let G be a topological group and g € G. Then the map mg: G — G with mg(a) =
ga for all a € G is a homeomorphism.

We also have the following.

LEMMA B.1.6. A group homomorphism ¢ : G — G’ between topological groups is continuous if
and only if, for each open neighborhood U of 1 in G’ with 1 € U, the set ¢~ (U) contains an open
neighborhood of 1.

PROOF. We consider the non-obvious direction. Let V be an open set in G’, and suppose that
g € Gis such that h = ¢(g) € V. Then 2~V is open in G’ as well, by Lemma B.1.5. By assumption,
there exists an open neighborhood W of 1 in G contained in ¢ ~!(h~'V), and so gW is an open
neighborhood of g in G such that ¢ (¢gW) C V. Hence, ¢ is continuous. U

LEMMA B.1.7. Let G be a topological group.

a. Any open subgroup of G is closed.
289
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b. Any closed subgroup of finite index in G is open.

PROOF. If H is an open (resp., closed) subgroup of G, then its cosets are open (resp., closed) as
well. Moreover, G — H is the union of the nontrivial cosets of H. Therefore, G — H is open if G is
open and closed if G is closed of finite index, so that there are only finitely many cosets of H. U

LEMMA B.1.8. Every open subgroup of a compact group G is of finite index in G.

PROOF. Let H be a open subgroup of G. Note that G is the union of its distinct H-cosets, which
are open and disjoint. Since G is compact, there can therefore only be finitely many cosets, which is
to say that H is of finite index in G. O

We leave it to the reader to verify the following.

LEMMA B.1.9.
a. A subgroup of a topological group is a topological group with respect to the subspace topology.

b. The quotient of a topological group G by a normal subgroup N is a topological group with
respect to the quotient topology, and it is Hausdorff if N is closed.

c. A direct product of topological groups is a topological group with respect to the product topol-
0g)y.

Recall the definitions of a directed set, inverse system, and the inverse limit.

DEFINITION B.1.10. A directed set I = (I,>) is a partially ordered set such that for every i, j € I,
there exists k € I with k > iand k > j.

DEFINITION B.1.11. Let I be a directed set. An inverse system (G;,¢; ;) of groups over the
indexing set / is a set
{G;|iel}
of groups and a set
{9ij: Gi—Gjli,jeli>j}

of group homomrphisms.

DEFINITION B.1.12. An inverse limit

G:lé'r_nGi
i

of an inverse system of groups (Gj, ¢; ;) over a directed indexing set / is a pair G = (G,{m; | i € I})
consisting of a group G and homomorphisms 7;: G — G; such that ¢; jo m; = 7; for all i, j € I with
i > j that satisfy the following universal property: Given a group G’ and maps 7/: G’ — G fori € I
such that ¢; jo m; = 7} for all i > j, there exists a unique map y: G' — G such that 7} = m; 0 y for all
icl
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By the universal property, any two inverse limits of an inverse system of groups are canonically
isomorphic (via compatible maps).

REMARK B.1.13. We may make the latter definition more generally with any category % replac-
ing the category of groups. The groups are replaced with objects in 4 and the group homomorphisms
with morphisms in . Moreover, we may view the system of groups as a covariant functor to the
category ¢ from the category that has the elements of / as its objects and morphisms i — j for each
i,jelwithi>j.

We may give a direct construction of an inverse limit of an inverse system of groups as follows.
The proof is left to the reader.

PROPOSITION B.1.14. Let (Gj, ¢; j) be an inverse system of groups over an indexing set I. Then

the an inverse limit of the system is given explicitly by the group

G= {(gi)i e [16Gi1¢1(s) :gj}

i€l
and the maps 7;: G — G; for i € I that are the compositions of the G — [|;c; Gi — G; of inclusion
followed by projection.

We may endow an inverse limit of groups with a topology as follows.

DEFINITION B.1.15. Let (G, ¢; ;) be an inverse system of topological groups over an indexing set
I, with continuous maps. Then the inverse limit topology on the inverse limit G of Proposition B.1.14
is the subspace topology for the product topology on [];c; G;.

LEMMA B.1.16. The inverse limit of an inverse system (Gj,@; ;) of topological groups (over a
directed indexing set I) is a topological group under the inverse limit topology.

PROOF. The maps
HG,’ X HG,’ — I_IG,' and HG,' — HG,'
il il icl i€l il
given by componentwise multiplication and inversion are clearly continuous, and this continuity is
preserved under the subspace topology on the inverse limit. U

REMARK B.1.17. In fact, the inverse limit of an inverse system of topological groups and contin-
uous maps, when endowed with the product topology, is an inverse limit in the category of topological
groups.

When we wish to view it as a topological group, we typically endow a finite group with the
discrete topology.

DEFINITION B.1.18. A profinite group is an inverse limit of a system of finite groups, endowed
with the inverse limit topology for the discrete topology on the finite groups.
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Recall the following definition.

DEFINITION B.1.19. A topological space is fotally disconnected if and only if every point is a
connected component.

We leave the following as difficult exercises.

PROPOSITION B.1.20. A compact Hausdorff space is totally disconnected if and only if it has a
basis of open neighborhoods that are also closed.

PROPOSITION B.1.21. A compact Hausdorff group that is totally disconnected has a basis of
neighborhoods of 1 consisting of open normal subgroups (of finite index).

We may now give a topological characterization of profinite groups.

THEOREM B.1.22. A profinite topological group G is compact, Hausdorff, and totally discon-

nected.

PROOF. First, suppose that G is profinite, equal to an inverse limit of a system (G, ¢; ;) of finite
groups over an indexing set /. The direct product [];c; G; of finite (discrete) groups G; is compact
Hausdorff (compactness being Tychonoff’s theorem). As a subset of the direct product, G is Haus-
dorff, and to see it is compact, we show that G is closed. Suppose that

()i []Gi
icl

with (g;); ¢ G, and choose i, j € I with i > j and ¢; ;(g;) # g,. The open subset

{(hk)k e [1Gk | hi=gi,h; :gj}

kel

of the direct product contains (g;); and has trivial intersection with G. In that the complement of G
is open, G itself is closed. Finally, note that any open set [[;;U; with each U; open in G; (i.e., an
arbitrary subset) and U; = G; for all but finitely many i is also closed. That is, its complement is the
intersection

N <(Gj -Upx I1 Ui)

Jel iel—{j}
of open sets, which is actually equal to the finite intersection over j € I with U; # G;. It is therefore
open, and by Proposition B.1.20, the group G is totally disconnected. U

REMARK B.1.23. We leave it to the reader to check that the converse to Theorem B.1.22 also
holds. They key is found in the proof of part a of the following proposition.

PROPOSITION B.1.24. Let G be a profinite group, and let % be the set of all open normal sub-

groups of G. Then the following canonical homomorphisms are homeomorphisms:
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a. G—1lim,_ G/N,
b.H—lim, H/(HNN), for H a closed subgroup of G, and
c. G/IK — l'gnNe% G/NK, for K a closed normal subgroup of G.

PROOF. We prove part a. The continuous map ¢ from G to the inverse limit Q of its quotients
has closed image, and ¢ is injective since %/ is a basis of 1 in G as in Proposition B.1.21. Suppose
that (gyN)yes is not in the image of ¢, which is exactly to say that the intersection of the closed
sets gy is empty. Since G is compact this implies that some finite subset of the {gyN | N € % } is
empty, and letting M be the intersection of the N in this subset, we see that gyyM = @, which is a
contradiction. In other words, ¢ is surjective. 0

The following is a consequence of Proposition B.1.24a. We leave the proof to the reader.

COROLLARY B.1.25. Let G be a profinite group and V" a set of open normal subgroups of G that
forms a basis of open neighborhoods of 1. Then the homomorphism

G — lim G/N
Ne¥

is a homeomorphism.
The following lemma will be useful later.

LEMMA B.1.26. The closed subgroups of a profinite group are exactly those that may be written
as intersections of open subgroups.

PROOF. In a topological group, an open subgroup is also closed, an arbitrary intersection of
closed sets is closed, and an arbitrary intersection of subgroups is a subgroup, so an intersection of
open subgroups is a closed subgroup. Let %7 denote the set of open subgroups of a profinite group G.
Let H be a closed subgroup of G. It follows from Proposition B.1.24b and the second isomorphism
theorem that the set of subgroups of the form NH with N open normal in G has intersection H. Note
that each NH is open as a union of open subgroups, so it is open. 0

We may also speak of pro-p groups.

DEFINITION B.1.27. A pro-p group, for a prime p, is an inverse limit of a system of finite p-
groups.

We may also speak of profinite and pro-p completions of groups.

DEFINITION B.1.28. Let G be a group.

a. The profinite completion G of G is the inverse limit of its finite quotients G/N, for N a normal
subgroup of finite index in G, together with the natural quotient maps G/N — G/N’ for N < N'.
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b. The pro-p completion GP) of G, for a prime p, is the inverse limit of the finite quotients of
G of p-power order, i.e., of the G/N for N < G with [G : N| a power of p, together with the natural
quotient maps.

REMARK B.1.29. A group G is endowed with a canonical homomorphism to its profinite com-
pletion G by the universal property of the inverse limit.

REMARK B.1.30. We may also speak of topological rings and fields, where multiplication, ad-
dition, and the additive inverse map are continuous, and in the case of a topological field, the multi-
plicative inverse map on the multiplicative group is continuous as well. We may speak of profinite
rings as inverse limits by quotients by two-sided ideals of finite index (or for pro-p rings, of p-power
index).

The next proposition shows that Z, is the pro-p completion of Z.

PROPOSITION B.1.31. Let p be a prime. We have an isomorphism of rings

00 k—1

y:Z, = UmZ/p'z, Y ap'e | Y aip' ]
k>1 i=0 i=0 k

where the maps 7./ Pz —7 / P*7. in the system are the natural quotient maps. Moreover, W is a

homeomorphism.

PROOF. The canonical quotient map yy: Z, — Z/ p*7Z is the kth coordinate of y, which is then
a ring homomorphism by the universal property of the inverse limit. The kernel y is the intersection
of the kernels of the maps y;, which is exactly

mkap =0.
k

Moreover, any sequence of partial sums modulo increasing powers of p has a limit in Z,, which maps
to the sequence under y. The open neighborhood p"Z, of 0 in the p-adic topology is sent to the
intersection
n oo
(H{O} < 1 Zp/pkzp> N (Lgn Z/pkz),
k=1 k=n+1 k>1
which is open in the product topology. On the other hand, the inverse image of a basis open neigh-
borhood
n oo
(HUk < I] Zp/pkzp) N (1&1 Z/ka)
k=1 k=n+1 k>1
with 0 € Uy for all 1 <k < n under y clearly contains p"Z,. It then follows from Lemma B.1.6 that
Vv is a homeomorphism. U
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DEFINITION B.1.32. The Priifer ring 7 is the profinite completion of Z. That is, we have
7= gril Z/nZ
n>1

with respect to the quotient maps Z/nZ — 7Z./mZ for m | n.

Since Z/nZ may be written as a direct product of the Z/p*7Z for primes p with p* exactly dividing
n, we have the following.

LEMMA B.1.33. We have an isomorphism of topological rings
2= 1] z,
p prime
EXAMPLE B.1.34. The free profinite (or pro-p) group on a generating set S is the profinite (resp.,
pro-p) completion of the free group on S.

REMARK B.1.35. As with free groups, closed subgroups of free profinite (or pro-p) groups are
free profinite (or pro-p) groups. Moreover, every profinite (resp., pro-p) group is a topological quo-
tient of the free group on a set of its generators, so we may present such groups via generators and
relations much as before.

DEFINITION B.1.36. A subset S of a topological group G is said to be a topological generating
set of G if G is the closure of the subgroup generated by S.

DEFINITION B.1.37. We say that a topological group is (topologically) finitely generated if it has
a finite set of topological generators.

REMARK B.1.38. If G is a free profinite (or pro-p) group on a set S, then it is topologically
generated by S.

We leave a proof of the following to the reader.

LEMMA B.1.39. Let G be a topological group, and let H be a (normal) subgroup. Then the
closure H of H is also a (normal) subgroup of G.

DEFINITION B.1.40. The Frattini subgroup ®(G) of a pro-p group G, where p is a prime, is
smallest closed normal subgroup containing the commutator subgroup [G, G] and the pth powers in
G.

The following lemma is a consequence of the well-known case of finite p-groups.

LEMMA B.1.41. Let G be a pro-p group for a prime p. Then ®(G) is normal in G, and a subset
S of G generates G if and only if its image in G/®(G) generates G/P(G).

REMARK B.1.42. In the case that G is an abelian pro-p group, the Frattini subgroup ®(G) in
Lemma B.1.41 is G”.
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Finally, we state without proof the structure theorem for (topologically) finitely generated abelian
pro-p groups. In fact, this is an immediate consequence of the structure theorem for finitely generated
modules over a PID.

THEOREM B.1.43. Let A be a topologically finitely generated abelian pro-p group. Then there
exist yk > 0and ny > ny > --- > ni > 1 such that we have an isomorphism

A= Z;@Z/p’”Z@“-EBZ/p”"Z
of topological groups.
B.2. Cohomology of profinite groups
In this section, G will denote a topological group.

DEFINITION B.2.1. A fopological G-module A is an abelian topological group such that the map
G X A — A defining the action of G on A is continuous.

DEFINITION B.2.2. A G-module A is discrete if it is a topological G-module for the discrete
topology on A.

PROPOSITION B.2.3. Let G be a profinite group, and let A be a G-module. The following are

equivalent:

i. Ais discrete,
ii. A=yecqy AN, where U is the set of open normal subgroups of G, and
iii. the stabilizer of each a € A is open in G.

PROOF. Let m: G X A — A be the map defining the G-action on A. For a € A, let G, denote the
stabilizer of a. If A is discrete, then 7! (a) N (G x {a}) is open and equal to G, x {a}, so G, is open
as well. Thus, (i) implies (iii). Conversely, suppose that (iii) holds. To see (i), it suffices to check that
for any a,b € A, then set X, , = {g € G|ga = b} is open. If X, is nonempty, then for any g € X, 5,
we clearly have X, , = G,g, which is open by the continuity of the multiplication on G. Thus, (iii)
implies (1).

If G, is open for a given a € A, then as % is a base of open neighborhoods of 1 in G, there exists
N € % with N C G,. In other words, a € AN. Thus (iii) implies (ii). Conversely, suppose that (ii)
holds. Take a € A and let N € % be such that a € AV. Since N has finite index in G, the stabilizer G,
is a finite union of N-cosets, so G, is open as well. Thus (i1) implies (iii). O

REMARK B.2.4. Note that our notion of a discrete G-module A says only that the G-action on A is
continuous with respect to the discrete topology, so A can be thought of as a topological module when
endowed with said topology. It is possible that the discrete topology is not the unique topology that
makes A a topological G-module. For instance, 7Z /27 acts on R by x — —x, and this is continuous
with respect to both the discrete and the usual topology on R.
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EXAMPLES B.2.5.
a. Every trivial G-module is a discrete G-module.
b. If G is finite (with the discrete topology), then every G-module is discrete.
c. If G is profinite, then every finite G-module is necessarily discrete.

d. The action of C* on C by left multiplication gives C the structure of a C*-module that is not
discrete.

e. The action of Z* on the group of roots of unity in C by u-{ = {*, for u € 2 and ¢ a root of
unity, is discrete. Here, " is { raised to the power of any integer that is congruent to « modulo the
order of {.

DEFINITION B.2.6. We say that a topological G-module A 1s discrete if its topology is the discrete
topology.

DEFINITION B.2.7. For a topological G-module A and i € Z, the group of continuous i-cochains
of G with A-coefficients is

Cl(G,A)={f: G' = A| f continuous}.

LEMMA B.2.8. Let A be a topological G-module. The usual differential d' on C'(G,A) restricts
to amap di: Ci(G,A) — CLE(G,A). Thus, (Cys(G,A),d,) is a cochain complex.

PROOF. Set X = G'*!. Since f € C(G,A) and the multiplication maps G x G — G and G x
A — A are continuous, so are the i +2 maps X — A taking (g1,...,8i+1) to g1/(g2,...,8i+1), tO
f(g1,---,88+1,---.&) for some 1 < j <i,and to f(gi,...,8). The alternating sum defining d’, (f)
from these i + 2 maps is the composition of the diagonal map X — X2, the direct product X'*? —
A2 of the maps in question, and the alternating sum map A2 — A. Since all of these maps are
continuous, so is d', (f). m

REMARK B.2.9. In general, C'(G, -) is a left exact functor from the category of topological G-
modules with continuous G-module homomorphisms to the category of abelian groups. However, it
need not be exact.

PROPOSITION B.2.10. Let G be a topological group. If
0+A-B5C—0

is an exact sequence of discrete G-modules, then endowing A, B, and C with the discrete topology,
the sequence

0 Ciy(G,A) 5 CLiy(G,B) &5 CLiy(G,C) — 0

is exact for each i.
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PROOF. We need only show right-exactness. Choose a set-theoretic splitting of s: C — B of 7.
In that B and C are discrete, s is necessarily continuous. For any continuous f: G' — C, the map
so f: G' — B is therefore continuous, and 7'(so f) = f. U

DEFINITION B.2.11. Let G be a profinite group and A a discrete G-module. The ith profinite
cohomology group of G with coefficients in A is H'(G,A) = H'(C.(G,A)), where A is endowed with

cts

the discrete topology.

NOTATION B.2.12. If f: A — B is a G-module homomorphism between discrete G-modules A
and B, where G is profinite, then the induced maps on cohomology are denoted f*: H'(G,A) —
H(G,B).

As a corollary of Proposition B.2.10, any short exact sequence of discrete G-modules gives rise
to a long exact sequence of profinite cohomology groups.

THEOREM B.2.13. Suppose that
0-A5BLC—0

is a short exact sequence of discrete G-modules. Then there is a long exact sequence of abelian
groups
0 N 0 T 0 80 1
0—-H(G,A) —H'(GB)—H(G,C)—H (G,A)—---.

Moreover; this construction is natural in the short exact sequence in the sense of Theorem A.2.13.

REMARK B.2.14. If G is a profinite group and A is a discrete G-module, then H'(G,A) in the sense
of Definition B.2.11 need not be the same as H(G,A) in the sense of (abstract) group cohomology.
They do, however, agree in the case that G is finite, since in that case G is a discrete group, and every
cochain G' — A is continuous. Whenever G is a profinite group and A is discrete, we take H(G,A)
to be the profinite cohomology group.

EXAMPLE B.2.15. For a pro-p group G, the first cohomology group H 1(G,IET],,) consists of the
continuous homomorphisms from G to F,. It is then canonically isomorphic to the [F,-dual of
G/®(G), with ®(G) the Frattini subgroup. It follows from Lemma B.1.41 that the [F,-dimension
of H'(G,F 1) is equal to the order of the smallest (topological) generating set of G.

The following proposition shows that profinite cohomology groups are direct limits of usual co-
homology groups of finite groups under inflation maps.

PROPOSITION B.2.16. Let G be a profinite group, and let % be the set of open normal subgroups

of G. For each discrete G-module A, we have an isomorphism

H'(G,A) = lim H'(G/N,AY),
Ne¥
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where the direct limit is taken with respect to inflation maps, and these isomorphisms are natural in
A.

PROOF. It suffices to check that we have natural isomorphisms

CLy(G.A) = lim CY(G/N,A")
New
commuting with connecting homomorphisms. We verify the isomorphism, which then clearly has
the other properties. Let f: G' — A be continuous. Since G is compact and A is discrete, the image
of f is finite. For each a € im f, let M, € % be such that a € AMe, Then M = Nacim fMa € % , and
im f C AM,

We next check that f factors through (G/H )" for an open subgroup H € % . For this, note that
the continuity of f forces it to be constant on an open neighborhood of any x € G’, and inside such
a neighborhood is a neighborhood of the form xH;: (Hj(x) with H; an open normal subgroup of
G. Take H(x) = (\;—; Hj(x), which again is an open normal subgroup, so f is constant on xH (x)".
Now G' is covered by the xH (x)' for x € G'. Compactness of G' tells us that is a finite subcover
corresponding to some x,...,x, € G'. The intersection H = (\}_, H(x;) is then such that f factors
through (G/H)', since for any y € G', we have y € x;H (x;)' for some k, and therefore f is constant
on yH C x;H (x;)!. Thus f factors through (G/H)'.

We have shown that f is the inflation of a map (G/H)' — AM. If we take N = HNM, then f
factors through a map (G/N)’ — AN, proving the result. O

The notion of a compatible pair passes to profinite group cohomology if we merely suppose that
our map of profinite groups is continuous.

DEFINITION B.2.17. Let G and G’ be profinite groups, A a discrete G-module and A’ a G’-module.
We say that a pair (p,A) with p: G’ — G a continuous group homomorphism and A : A — A" a group
homomorphism is compatible if

Alp(g)a) =g'A(a)
forallacAand g’ € G'.

Consequently, we have inflation, restriction, and conjugation maps as in Definition A.8.6 and
Proposition A.8.12 so long as the subgroup is taken to be closed, which ensures that it is a profinite
group. By Proposition B.2.16 and exactness of the direct limit, it is easy to see that these maps are just
direct limits of the analogous maps for usual group cohomology under inflation, as holds for any map
on profinite cohomology induced by a compatible pair. In fact, we also have corestriction, defined
simply as the direct limit of corestriction maps at finite level. Moreover, the inflation-restriction
sequence is still exact, and this works for any closed normal subgroup. We state the higher degree
version of this result for later use.
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PROPOSITION B.2.18. Let G be a profinite group, let N be a closed normal subgroup of G, and
let A be a discrete G-module. Let i > 1, and suppose that H/ (N ,A) = 0 for all j <i— 1. Then the

sequence

0— Hi(G/N,AY) 25 1i(G,A) B Hi(N, A)

Is exact.

B.3. Galois theory of infinite extensions

Recall that an algebraic extension of fields L/K is Galois if it is normal, so that every polyno-
mial in K[x] that has a root in L splits completely, and separable, so that no irreducible polynomial
in K[x] has a double root in L. The Galois group Gal(L/K) of such an extension is the group of
automorphisms of L that fix K.

In the setting of finite Galois extensions L/K, the subfields E of L containing K are in one-
to-one correspondence with the subgroups H of Gal(L/K). In fact, the maps E — Gal(L/E) and
H s LM give inverse bijections between these sets. This is not so in the setting of infinite Galois
extensions, where there are rather more subgroups than there are subfields. To fix this issue, we place
a topology on Gal(L/K) and consider only the closed subgroups under this topology. The above-
described correspondences then work exactly as before.

PROPOSITION B.3.1. Let L/K be a Galois extension of fields. Let & denote the set of finite Galois
extensions of K contained in L, ordered by inclusion. This is a directed set. Let p be the map

p: Gal(L/K) — Jim Gal(E/K)
Ee&

defined by the universal property of the inverse limit, with the maps Gal(E'/K) — Gal(E/K) for
E.E' € & with E C E' and the maps Gal(L/K) — Gal(E /K) for E € & being restriction maps. Then

p is an isomorphism.

PROOF. Let 6 € Gal(L/K). If 6|g = 1 for all E € &, then since
L=JE,
Ec&

we have that ¢ = 1. On the other hand, if elements or € Gal(E/K) for each E € & are compatible
under restriction, then define o € Gal(L/K) by o(&) = og(a) if o € E. Then, if o € E’ for some
E' € & as well, then

op (&) = Opnp (@) = op(Q),

noting that ENE’ € &. Therefore, o is well-defined, and so p is bijective. U

Proposition B.3.1 gives us an obvious topology to place on the Galois group of a Galois extension.
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DEFINITION B.3.2. Let L/K be a Galois extension of fields. The Krull topology on Gal(L/K) is
the unique topology under which the set of Gal(L/E) for E /K finite Galois with E C L forms a basis
of open neighborhoods of 1.

REMARK B.3.3. The Krull topology agrees with the inverse limit topology induced by the iso-
morphism of Proposition B.3.1, since

1 — Gal(L/E) — Gal(L/K) — Gal(E/K) — 1
is exact. Therefore, if L/K is Galois, then Gal(L/K) is a topological group under the Krull topology.

LEMMA B.3.4. Let L/K be a Galois extension of fields. The open subgroups in Gal(L/K) are
exactly those subgroups of the form Gal(L/E) with E an intermediate field in L/K of finite degree
over K.

PROOF. First, let E be an intermediate field in L/K of finite degree. Let E’ be the Galois closure
of E in L, which is of finite degree over K. Then Gal(L/E’) is an open normal subgroup under the
Krull topology, contained in Gal(L/E). Since Gal(L/E) is then a union of left Gal(L/E")-cosets,
which are open, we have that Gal(L/E) is open.

Conversely, let H be an open subgroup in Gal(L/K). Then H contains Gal(L/E) for some finite
Galois extension E/K in L. Any o € LA where L is the fixed field of H in L, is contained in
MOAL/E) \where M is the Galois closure of E(a). Since the restriction map Gal(L/E) — Gal(M /E)
is surjective, we then have o € MC¥M/E) But M /K is finite, so MG4(M/E) — E by the fundamental
theorem of Galois theory. Thus L7 C E.

Let H be the image of H under the restriction map 7: Gal(L/K) — Gal(E/K). As Gal(L/E) <
H, we have that 7~ !(H) = H. We remark that A = Gal(E /L), since A = Gal(E/E™) by the
fundamental theorem of Galois theory for finite extensions and L = Ef = Ef_ But ! (H) is then
Gal(L/L™) as well. O

From this, we may derive the following.

LEMMA B.3.5. Let L/K be a Galois extension of fields. The closed subgroups of Gal(L/K) are
exactly those of the form Gal(L/E) for some intermediate field E in the extension L/K.

PROOF. Under the Krull topology on Gal(L/K ), the open subgroups are those of the form Gal(L/E)
with E /K finite. By Lemma B.1.26, we have therefore that the closed subgroups are those that are
intersections of Gal(L/E) over a set S of finite degree over K intermediate fields E. Any such in-
tersection necessarily fixes the compositum E’ = [[gcsE, while if an element of Gal(L/K) fixes E’,
then it fixes every E € S, so lies in the intersection. That is, any closed subgroup has the form

Gal(L/E') = (1) Gal(L/E).
EcS
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THEOREM B.3.6 (Fundamental theorem of Galois theory). Let L/K be a Galois extension. Then

there are inverse one-to-one, inclusion reversing correspondences

14
{intermediate extensions in L/K} —— {closed subgroups of Gal(L/K)}
0

given by Ww(E) = Gal(L/E) for any intermediate extension E in L/K and 0(H) = L¥ for any closed
subgroup H of Gal(L/K). These correspondences restrict to bijections between the normal extensions
of K in L and the closed normal subgroups of Gal(L/K), as well as to bijections between the finite
degree (normal) extensions of K in L and the open (normal) subgroups of Gal(L/K). Moreover, if E is
normal over K (resp., H < Gal(L/K) is closed), then restriction induces a topological isomorphism

Gal(L/K)/Gal(L/E) = Gal(E/K)
(resp., Gal(L/K)/H = Gal(L" /K)).

PROOF. We will derive this from the fundamental theorem of Galois theory for finite Galois
extensions. Let E be an intermediate extension in L/K. Then E C LGal(L/E) by definition. Let
x € LOAL/E)  The Galois closure M of E(x) in L is of finite degree over E. But every element of
Gal(M/E) extends to an element of Gal(L/E), which fixes x. So x € MGM/E) which equals E by
fundamental theorem of Galois theory for finite Galois extensions. Since x was arbitrary, we have
E = LCA(/E) 1p other words, 6(y(E)) = E.

Let H be a closed subgroup of Gal(L/K). In Lemma B.3.5, we saw that H = Gal(L/E) for
some intermediate £ in L/K. Since E = LCAL/E) — [H from what we have shown, we have that
H = Gal(L/L"). Therefore, w(6(H)) = H. It follows that we have the desired inclusion-reserving
one-to-one correspondences. The other claims are then easily checked and are left to the reader. [

DEFINITION B.3.7. A separable closure of a field L is any field that contains all roots of all
separable polynomials in L.

NOTATION B.3.8. We typically denote a separable closure of L by L5P.

REMARK B.3.9. If one fixes an algebraically closed field €2 containing L, then there is a unique
separable closure of L in €, being the subfield generated by the roots of all separable polynomials in
L[x].

DEFINITION B.3.10. The absolute Galois group of a field K is the Galois group

Gk = Gal(K**? /K),
where K*°P is a separable closure of K.

REMARK B.3.11. The absolute Galois group, despite the word “the”, is not unique, but rather
depends on the choice of separable closure. An isomorphism of separable closures gives rise to a
canonical isomorphism of absolute Galois groups, however.
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EXAMPLE B.3.12. Let g be a power of a prime number. Then there is a unique topological
isomorphism Gy, 57 sending the Frobenius automorphism @, : x — x? to 1. To see this, note that
Gal(F,/IF,) — Z/nZ given by sending ¢, to 1 is an isomorphism, and these give rise to compatible
isomorphisms in the inverse limit

Gr, = lim Gal(F /F,) = lim Z/nZ = Z.
n n

EXAMPLE B.3.13. Let Q(u,~) denote the field given by adjoining all p-power roots of unity to
Q. Then

Gal(Q(up-)/Q) = lim Gal(Q(up)/Q) = @(Z/pnz)x ~ 7%
n n
the middle isomorphisms arising from the p"th cyclotomic characters.

TERMINOLOGY B.3.14. The isomorphism Gal(Q(u,~)/Q) — Z,; of Example B.3.13 called the
p-adic cyclotomic character.

Since the compositum of two abelian extensions of a field inside a fixed algebraic closure is
abelian, the following makes sense.

NOTATION B.3.15. Let K be a field. The maximal abelian extension of K inside an algebraic
closure of K is denoted K.

REMARK B.3.16. The abelianization G‘}(b of the absolute Galois group Gk of a field K canonically
isomorphic to Gal(K?® /K) via the map induced by restriction on G.

B.4. Galois cohomology

DEFINITION B.4.1. Let L/K be a Galois extension of fields, and let A be a discrete Gal(L/K)-
module with respect to the Krull topology on Gal(L/K). For i > 0, the ith Galois cohomology group
of L/K with coefficients in A is the profinite cohomology group H'(Gal(L/K),A).

EXAMPLE B.4.2. Let L/K be a Galois extension with Galois group G. Then the additive and
multiplicative groups of L are discrete G-modules. That is, L is the union of the finite Galois subex-
tensions E of K in L, and E = [C3(L/E) by the fundamental theorem of infinite Galois theory.

Hilbert’s Theorem 90 admits the following generalization to Galois cohomology.
THEOREM B.4.3. Let L/K be a Galois extension of fields. Then H' (Gal(L/K),L*) = 0.

PROOF. Let & denote the set of finite Galois extensions of K in L. Then
H'(Gal(L/K),L*) = lim H'(Gal(E/K),E*),
Ec&
which reduces us to the case that L/K is finite Galois. Let G = Gal(L/K), and let f: G — L* be a
1-cocycle. We may view the elements ¢ € G as abelian characters L* — L*. As distinct characters
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of L*, these characters form a linearly independent set. The sum Y ;. f(0)0 is therefore a nonzero
map L* — L. Let € L™ be such that z =Y 5c5 f(0)o () # 0. For any 7 € G, we have

(@)= ), v (f(0) T lo(a)= ) v (f(r0))o(a)

ocG ocG
=Y T (f(9) f(0))o(a) =7 (f(1)) ) flo)o(a) ="' (f(7))z
ocG ocG
Thus,
=1
so f is the 1-coboundary of z~!. O

This has the usual statement of Hilbert’s Theorem 90 as a corollary.

COROLLARY B.4.4. Let L/K be a finite cyclic extension of fields, and let Ny jx: L™ — K* be the

norm map. Then
ker Ny /g = {OC eL” o= %forsomeﬁ ELX},

where o is a generator of Gal(L/K).

PROOF. Since ¢ generates G = Gal(L/K), the element 6 — 1 € Z[G] generates I, and so the
statement at hand is ker Ny jx = IgL™, which is to say H~'(G,L*) = 0. Since G is cyclic, we have
HY(G,L*) = H'(G,L*). Thus, the result follows from Theorem B.4.3. O

For the additive group, we have the following much stronger generalization of the additive version
of Hilbert’s Theorem 90.

THEOREM B.4.5. Let L/K be a Galois extension of fields. Then H'(Gal(L/K),L) = 0 for all
i>1

PROOF. As in the proof of Theorem B.4.3, this reduces quickly to the case that L/K is finite,
which we therefore suppose. As a K[G]-module, L is free on a single generator by the normal basis
theorem, and therefore it is isomorphic to

Z|G] ®7 K = Ind®(K) = CoInd’(K).
So, the result follows from the acyclicity of coinduced modules. U

NOTATION B.4.6. For a field K, we let K*P denote a fixed separable closure and Gk denote its
absolute Galois group.

DEFINITION B.4.7. The Brauer group Br(K) of a field K is H?(Gg, (K*P)*).

We have the following inflation-restriction theorem for Brauer groups.
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PROPOSITION B.4.8. For any Galois extension L/K, there is an exact sequence

0 — H*(Gal(L/K),L*) 25 Br(K) 2 Br(L)

of abelian groups.
PROOF. Let K% be a separable closure of K containing L. Note that ((K*P)*)02 = L* by the
fundamental theorem of Galois theory, and we have H!(Gy, (K*P)*) = 0 by Theorem B.4.3. The

sequence is then just the inflation-restriction sequence of Proposition B.2.18 for i = 2, G = Gk,
N =Gp,and A = (K5P)*. O

EXAMPLE B.4.9. Consider the finite field I, for a prime power g. For n > 1, we know that
[ /IF, is cyclic of degree n, so we have an isomorphism
H*(Gal(Fgn /F,),Fyy.) = H%(Gal(Fn [Fy), F) = By /Ng,, 5, Fon-
Now, the norm of any primitive (¢" — 1)th root of unity & is
n—1 1
Nr /7, (§) = ng =g T,
i=

which is a primitive (g — 1)th root of unity. In other words, the norm map is surjective, so

Br(F,) = lim H*(Gal(Fy1 /Fy),Fy5.) = 0.

B.5. Kummer theory

NOTATION B.5.1. For a field K of characteristic not dividing n > 1, we use U, to denote the group
of nth roots of unity in K*°P.

NOTATION B.5.2. For an abelian group A and n > 1, let A[n] denote the elements of exponent
dividing n in A.

EXAMPLE B.5.3. We have K**P[n] = u, for any n > 1 not divisible by char(K).

PROPOSITION B.5.4. Let K be a field of characteristic not dividing n > 1, and let U, be the group
of roots of unity in a separable closure K°P of K. Let Gk = Gal(K*P /K) be the absolute Galois
group. Then there are canonical isomorphisms

~

K* /K" = H'(Gk,1n) and H*(Gg, Ma) = Brg|n].
PROOF. Since K*P is separably closed, we have an exact sequence
(B.5.1) 1 — u, — (K*P)~ LN (K*P)* — 1

of discrete Gx-modules. By Hilbert’s Theorem 90, the long exact sequence attached to (B.5.1) breaks
into exact sequences

n

K* 5 K% - HY(Gg,i,) =0 and 0 — H*(Gk, u,) — Br(K) = Br(K).
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TERMINOLOGY B.5.5. The sequence in (B.5.1) is often called a Kummer sequence.

DEFINITION B.5.6. Let K be a field of characteristic not dividing n > 1, let a € K*, and choose
an nth root o € (K*P)* of a. The Kummer cocycle },: Gx — U, attached to a (or more precisely, o)
is the 1-cocycle defined on o € Gk by

REMARKS B.5.7. We maintain the notation of Definition B.5.6.

a. If u, C K, then ¥, is independent of the choice of o and is in fact a group homomorphism,
since Gk acts trivially on u,. In this case, we refer to , as the Kummer character attached to a.

b. The class of x, in H!(Gx, i, is independent of the choice of «, as the difference between two

such choices is the 1-coboundary of an nth root of unity.

LEMMA B.5.8. Let K be a field of characteristic not dividing n > 1. Then the isomorphism
K> /K*" = H'(Gg, n) of Proposition B.5.4 takes the image of a € K* to X,.
PROOF. The connecting homomorphism yielding the map is the snake lemma map in the diagram

1 L (Ksep)x .t (Ksep)x SN |

e e |

0 — Z'(Gg, ttn) — Z'(Gg, (K*P)*) —— Z! (G, (K*P)*) —— 0,

so given on a € K> by picking a € (K*P)* with o* = a, taking d°(«) € Z' (Gg,K*) and noting that
it takes values in u,,. Since d°(o) = x, by definition, we are done. O

TERMINOLOGY B.5.9. The isomorphism K* /K*" = H!(Gx, u,) of Lemma B.5.8 is called the
Kummer isomorphism.

PROPOSITION B.5.10. Let L/K be a Galois extension of fields of characteristic not dividing n > 1,
and suppose that W, is contained in L. Then the Kummer isomorphism restricts to an isomorphism

~

(K*NL*") /K" = HY (Gal(L/K), ).

PROOF. This is a simple consequence of the inflation-restriction sequence combined with the
Kummer isomorphisms for K and L. These yield a left exact sequence

0 — H'(Gal(L/K), up) — K*/K*" — L* /L*"

that provides the isomorphism. U
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PROPOSITION B.5.11. Let K be a field of characteristic not dividing n > 1, and suppose that K
contains the nth roots of unity. Let L/K be a cyclic extension of degree n. Then L = K(/a) for some
acK”.

PROOF. Let { be a primitive nth root of unity in K. Note that Ny /x({) = " = 1, so Hilbert’s
Theorem 90 tells us that there exists a € L and a generator ¢ of Gal(L/K) with % = {. Note that

Nyx(a) =[Jo'a=]]¢a= grn=02gn — (_1yp-lgr,
i=1 i=1

so setting a = —N, /K(—Oc), we have o = a. Since « has n distinct conjugates in L, we have that
L=K(a). O

NOTATION B.5.12. Let A be a subset of a field K, and let n > 1 be such that K contains the nth
roots of unity in K. Then the field K (\'VZ) is the field given by adjoining an nth root of each element
of Ato K.

THEOREM B.5.13 (Kummer duality). Let K be a field of characteristic not dividing n > 1, and
suppose that K contains the nth roots of unity. Let L be an abelian extension of K of exponent dividing
n, and set A= L*"*NK*. Then L = K(3/A), and there is a perfect bimultiplicative pairing

(,): Gal(L/K)xA/K*" — uy,
given by (0,a) = x,(0) for o € Gal(L/K) and a € A.

PROOF. Since U, C K, Proposition B.5.10 tells us that the map taking a € A to its Kummer
cocycle y, yields
A/K*" =~ Hom(Gal(L/K), ly).
This isomorphism gives rise to the bimultiplicative pairing ( , ), and it implies that any a € A/K*"
of order d dividing n pairs with some element of Gal(L/K) to a dth root of unity. It remains to show
that the pairing also induces an isomorphism

Hom(A/K™", u,) = Gal(L/K).

Clearly, K(+v/A) is contained in L. On the other hand, L/K is a compositum of cyclic extensions
of exponent dividing n, we have by Proposition B.5.11 that L = K (\'71: ) for some subset I" of K*,
which then can be taken to be A. So, let ¢ € Gal(L/K) be of order d dividing n. Since L = K(+/A),
we have that there exists a € A such that o(a)/a for o € L with o” = a is a primitive dth root of
unity times . Hence, the pairing is perfect. U

REMARK B.5.14. One may replace A in Theorem B.5.13 by any I' C A with A = 'K*". Then
A/K*" should be replaced by the isomorphic I'/(I'N K*").

REMARK B.5.15. The pairing of Proposition B.5.13 is perfect with respect to the Krull topology
on Gal(L/K) and the discrete topology on A.
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TERMINOLOGY B.5.16. We say that Gal(L/K) and A/K*" in Proposition B.5.13 are Kummer
dual to each other.

COROLLARY B.5.17. Let K be a field of characteristic not dividing n > 1, and suppose that K
contains the nth roots of unity. The Galois group of the maximal abelian extension of K of exponent
n is Kummer dual to K* | K*".

REMARK B.5.18. Suppose that K contains u,, where n is not divisible by the residue characteris-
tic of K. Let L/K be abelian of exponent n and G = Gal(L/K). Write L = K (3/A) for some A < K*.
Then L; = K(V/A) is the maximal subextension of exponent dividing d, and G; = Gal(L;/K) =
G/G. Moreover, we have a commutative diagram of pairings

Gx A/ (ANK™) —

Gax A/(ANK) 2% i)

where the left vertical map is the direct product of the restriction (or the quotient map) with the map
induced by the identity and the map p, — py is the n/d-power map. That is, we have

4/ " n/d
.y — G%> _ (o%)> R

where o denotes both an element of G and its image in G, and a denotes the image of an element of

A. In particular, the composition
G — Hom(A, u,) — Hom(A, 1)

in which the first map is given by ( , ) and the second by the (n/d)-power map agrees with the map
G — Hom(A, uy) given by (, )a.

REMARK B.5.19. By Kummer duality, if K has characteristic 0 and contains all roots of unity,
then

Gi = lim G /(G)" 2 Jjm Hom(K*, t,) = lim Home, (K, 1:) = Homess (K, lim 1, ),
n n n n

where K* denotes the profinite completion of K*.

EXAMPLE B.5.20. Let K be a field of characteristic not p containing the group pi,~ of all p-power
roots of unity, and let a € K* with a ¢ K*P. Then the field L = K(*\/a) given by adjoining all p-
power roots of a to K is the union of the fields L, = K(A/a), each of which has degree p" over K by
Theorem B.5.13 since a has order p” in K* /K*P". Let A = (a). Then

Gal(L/K) = lim Gal(L,/K) = lim Hom(A, p,n) = Wm e = 7,
n n
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since a homomorphism from A is determined by where it sends a.

DEFINITION B.5.21. Let K be a field of characteristic p. The Tate module Z,(1) is the topological
Gg-module that is Z, as a topological group together with the action of the Gk given by
c-a=Yx(0)a

fora € Z,, where x: Ggx — Z; is the p-adic cyclotomic character.

REMARK B.5.22. Let K be a field of characteristic not p, set G = Gal(K(u,~)/K). The group
Tp = lim pi
n

is a Galois module also referred to as the Tate module, the action of G given by multiplication by the
p-adic cyclotomic character y: G — Z; (which factors through G) in the sense that

S ((En) = (EFO),

for all (&,), € Tp,. The group 7}, is noncanonically topologically isomorphic to the Tate module
Zp(1), with the isomorphism given by choice of a compatible sequence (), of primitive p”th roots
of unity, which is taken to 1.

EXAMPLE B.5.23. Let K be a field of characteristic not p and a € K* —K*P. Set L = K(u,~)
and M = L("\/a). By Example B.5.20, we know that Gal(M /L) = Z,, as topological groups. But note
that M /K is Galois. In fact, take o € Gal(L/K) and lift it to an embedding & of M into a separable
closure of M. Then

6(1)\"/5)[)" =4a,
so 6(A/a) = & #/a for some p"th root of unity &, which is in M by definition. To determine the
Galois group, take T € Gal(M/L), and let { be the p"th root of unity such that 7(X/a) = { A/a. For
n > 1, we then have
516~ (Ka) = 6(1(6 (£~ )Wa) = 6(c~ (&) EWa) = o({)Wa= (¥ Ia,
where Y is the p-adic cyclotomic character. In other words, we have
Gal(M/L) = Gal(M /L) x Gal(L/K) = Z, X Z,,

where through the conjugation action of Gal(L/K) on Gal(M /L), the latter module is isomorphic to
the Tate module Z,(1).
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