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The maps

Goals

1 To give a new construction of explicit maps of Busuioc and S. for N ≥ 1:

ΠN : H1(X1(N),Z)+ → K2(Z[µN ])+, [c : d] 7→ {1− ζcN , 1− ζdN}.

taking (projections of) Manin symbols to Steinberg symbols.
Here, + denotes the part fixed by complex conjugation after inverting 2.

2 To verify that ΠN is Eiseinstein, i.e., factors through the quotient of ho-
mology by an Eisenstein ideal I in the weight 2 Hecke algebra.

Details

The symbols in question lie in a homology group relative to cusps C◦1 (N)
not over ∞ ∈ X0(N) and the second K-group of Z[µN ,

1
N

]. We define a
map Π◦N on these groups and restrict.

The Manin symbols are classes of geodesics [c : d] = {a
c
→ b

d
} between

cusps, where ad− bc = 1. They depend only on (nonzero) c, d modulo N .

The Steinberg symbols {1− ζcN , 1− ζdN} are of cyclotomic N -units.
Here, ζN = e2πi/N , viewing Q ⊂ C.

The Eisenstein ideal I is generated by T` − 1− `〈`〉 for primes `, where we
take 〈`〉 = 0 if ` - N . The action is via dual correspondences on X1(N).
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Background and Result

Construction (2007)

The map ΠN was independently constructed by Busuioc and S.
Its well-definedness follows via explicit presentation of relative homology and
relations of the form {x, 1− x} = 0 on Steinberg symbols.

Conjecture (S.)

1 The map ΠN is Eisenstein, i.e., ΠN ◦ (T` − 1− `〈`〉) = 0 for all primes `.

2 The resulting map $N on the quotient by I is an isomorphism.

Work of Fukaya and Kato (2011)

Proved the first (original) conjecture after tensoring with Zp for p | N .
Their method can be extended to p - N if p - ϕ(N).

Proved a result towards the second conjecture (on p-parts, same conditions)
and a stronger p-adic form.

Theorem (S.-Venkatesh)

We have ΠN ◦ (T` − 1− `〈`〉) = 0 for all primes ` - N .
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Approach of Fukaya-Kato

Method of Fukaya-Kato

Very roughly, for Y1(N) viewed as a Z[ 1
N

]-scheme, show that ΠN factors as:

H1(X1(N), C◦1 (N),Z) K2(Y1(N)) [c : d] {g c
N
, g d

N
}

K2(Z[µN ,
1
N

])+ {1− ζcN , 1− ζdN}.

zN

Π◦N
∞

Here:

{g c
N
, g d

N
} are Beilinson-Kato elements, which are Steinberg symbols of

Siegel units on Y1(N),

zN is well-defined and Hecke-equivariant by a regulator computation, taking
place first up modular and cyclotomic towers,

∞ is Eisenstein (for ` | N , only on Beilinson-Kato elements).

Remark

The map zN actually takes values in ordinary cohomology H2
ét(Y1(N),Qp(2))ord.

There is a map K2(Y1(N))⊗ZZp → H2
ét(Y1(N),Zp(2))ord with unknown kernel.
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Our approach

Our method

For the Q-scheme G2
m, there is a GL2(Z)-equivariant exact sequence

0→ H2(G2
m, 2)→ K2(Q(G2

m))
∂−→
⊕
D

Q(D)×
∂−→
⊕
x

Z→ 0

where D runs over divisors and x over closed points, and H2(G2
m, 2) is

motivic cohomology. The residue maps ∂ are tame symbols and take orders
of zeros in the two cases.

Associate to 1 ∈ Z at x = (1, 1) a 1-cocycle

Θ: GL2(Z)→ K2(Q(G2
m))/H2(G2

m, 2).

Using the exact sequence, one sees that has an explicit description, is
parabolic, integral, and Eisenstein.

Specialize via pullback by (1, ζN ) to obtain a parabolic cocycle

ΘN : Γ0(N)→ K2(Z[µN ,
1
N

])/〈{−1,−ζN}〉

that is Eisenstein for primes ` - N .

The restriction of ΘN to Γ1(N) induces ΠN .
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A modular cocycle

Modular cocycle

For primes n - N , we construct a motivic cocycle

nΘ: GL2(Z)→ K2(Q(E2))⊗Z Z′

for Z′ = Z[ 1
5!

] for the universal elliptic curve E over Y1(N).

The cocycle nΘ is parabolic, integral, Hecke-equivariant away from the level,
and has an explicit formula in terms of products of theta functions.

The cocycle nΘ specializes to a cocycle

nΘN : Γ0(N)→ H2(Y1(N),Z′(2)).

There exists a universal cocycle ΘN : Γ0(N)→ H2(Y1(N),Q(2)) that gives
rise to all nΘN .

Taking Zp-coefficients and ordinary parts, we recover the maps zN for p > 5
and show their Hecke-equivariance for T` with ` - N .

Remark

We do not use this construction in studying ΠN .
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Motivic cohomology (naive version)

Notation

Y an equidimensional quasi-projective scheme of finite type over a field F

∆j the j-simplex over F

Definition (Bloch’s cycle complex)

Bloch’s cycle complex zk(Y, · ) has terms

zk(Y, j) = {pure codim. k cycles in Y ×∆j meeting faces of ∆j properly}

with boundaries given by alternating sums of face maps.

Definition

Set Hi(Y, k) = H2k−i(z
k(Y, · )) for i ∈ Z and k ≥ 0.

Remark

For Y smooth and F perfect, these are isomorphic to the motivic cohomology
groups of Voevodsky.
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Properties of motivic cohomology

Properties

There are pullback and proper pushforward maps.

If Y =
∐t
h=1 Yh, then Hi(Y, k) =

⊕t
h=1 H

i(Yh, k).

Hi(Y, k) ∼= Hi(Y × A1, k) via pullback.

H0(Y, 0) ∼= Z if Y is connected, Hi(Y, 0) = 0 for all i 6= 0.

For Y smooth, H1(Y, 1) ∼= O×Y , and Hi(Y, 1) = 0 for all i /∈ {1, 2}.
For Y smooth, Hi(Y, k) = 0 for all i > k+dimY . If moreover Y separated,
then Hi(Y, k) = 0 for i > 2k.

For ρ : Z → Y a closed embedding of pure codimension c with open com-
plement ι : U → Y , there is an exact Gysin sequence (∂ = residue map):

· · · → Hi(Y, k)
ι∗−→ Hi(U, k)

∂−→ Hi−2c+1(Z, k−c) ρ∗−→ Hi+1(Y, k)→ · · · .

Products of cycles give rise to external products, and pulling back external
products for Y × Y by the diagonal yields cup products

Hi(Y, k)×Hi′(Y, k′)
∪−→ Hi+i′(Y, k + k′).⊕∞

i=0 H
i(SpecF, i) ∼=

⊕∞
i=0 K

M
i (F ), the Milnor K-theory ring.

Note that KM
i (F ) ∼= Ki(F ) for i ≤ 2.
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A coniveau spectral sequence

Coniveau spectral sequence

For n ≥ 0, there is a right half-plane spectral sequence

Ep,q1 =
⊕
x∈Yp

Hq−p(k(x), n− p)⇒ Hp+q(Y, n),

where Yi denotes the irreducible codimension i cycles on Y (a smooth variety).
For n = 2, its row for q = 2 is a complex K in homological degrees [2, 0]:

K2(Q(Y ))→
⊕
D∈Y1

K1(Q(D))→
⊕
x∈Y2

K0(Q(x)),

and we have
Hi(K) ∼= H4−i(Y, 2).

The case of G2
m

We have Hi(G2
m, 2) = 0 for i > 2, so there is an exact sequence

0→ H2(G2
m, 2)→ K2 → K1 → K0 → 0.

It is equipped with a pullback action of ∆ = M2(Z) ∩ GL2(Q) induced by the
right action of ∆ on G2

m, given on coordinates by (z1, z2) ( a bc d ) = (za1z
c
2, z

b
1z
d
2).
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Symbols in K

Symbols

Let z1 and z2 denote the coordinate functions on G2
m.

In K0, let e be the canonical generator of H0({1}, 0) ∼= Z.

In K1, for a, c ∈ Z with (a, c) = 1, let

〈a, c〉 = 1− zb1zd2 ∈ H1(Sa,c − {1}, 1),

where ad − bc = 1 and Sa,c = ker(G2
m

(x,y)7→ax+cy−−−−−−−−−→ Gm). Then 〈a, c〉 =
( a bc d )

∗ 〈1, 0〉.
In K2, for γ = ( a bc d ) ∈ GL2(Z), let

〈γ〉 = 〈(a, c), (b, d)〉 = (1− za1zc2) ∪ (1− zb1zd2) ∈ H2(G2
m − Sa,c ∪ Sb,d, 2).

Then 〈γ〉 = γ∗〈( 1 0
0 1 )〉.

Residues

We have

∂〈a, c〉 = e and ∂〈γ〉 =

{
〈a, c〉 − 〈−b,−d〉, det γ = 1

〈−a,−c〉 − 〈b, d〉, det γ = −1.
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The 1-cocycle Θ

Proposition

Set K2 = K2/H
2(G2

m, 2). There exists a unique 1-cocycle

Θ: GL2(Z)→ K2, γ 7→ Θγ

such that
∂Θγ = (γ∗ − 1)〈0, 1〉.

for all γ ∈ GL2(Z).

Proof.

For γ, µ ∈ GL2(Z), we have

∂Θγµ = ((γµ)∗ − 1)〈0, 1〉
= (γ∗ − 1)〈0, 1〉+ γ∗(µ∗ − 1)〈0, 1〉
= ∂Θγ + γ∗∂Θµ.

Since ∂ : K2 → K1 is injective and K is GL2(Z)-equivariant, we have

Θγµ = Θγ + γ∗Θµ.
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Θ is parabolic

Proposition

The cocycle Θ is parabolic, i.e., Θ|P is null-cohomologous on all stabilizers of
P1(Q) under its right action of GL2(Z).

Proof.

Let
P = {( 1 0

c d ) | c ∈ Z, d = ±1}.

For γ ∈ P , we have γ∗〈0, 1〉 = 〈0, 1〉, so ∂Θγ = 0, so Θγ = 0. Thus Θ|P = 0.
Since the parabolic subgroups form a single conjugacy class, Θ is a coboundary
on all of them.
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Explicit formula

Definition

For γ = ( a bc d ) ∈ GL2(Z), a connecting sequence v = (vi)
k
i=0 for γ is vi =

(bi, di) ∈ Z2 such that v0 = (0, 1), vk = det(γ)(b, d), and

det
(
bi−1 bi
di−1 di

)
= 1

for all 1 ≤ i ≤ k.

Proposition

Let γ ∈ GL2(Z) and v = (vi)
k
i=0 be a connecting sequence for γ. Then

Θγ =

k∑
i=1

〈vi,−vi−1〉 ∈ K2.

Proof.

∂

(
k∑
i=1

〈vi,−vi−1〉

)
=

k∑
i=1

(〈vi〉 − 〈vi−1〉) = (γ∗ − 1)〈0, 1〉 = ∂Θγ .
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Hecke operators

Notation

Set Γ = GL2(Z). Fix a prime `. Let g0 = ( ` 1 ) ∈ ∆ = M2(Z) ∩GL2(Q), and
write

Γg0Γ =
∐̀
j=0

gjΓ

with gj =
(
` j

1

)
for 0 ≤ j ≤ `− 1 and g` = ( 1

` ).
For γ ∈ Γ, there exists a permutation σ of {0, . . . , `} and γj ∈ Γ with

γgj = gσ(j)γj

for 0 ≤ j ≤ `.

Definition

Let A be a Z[∆]-module. If θ : Γ→ A is a 1-cocycle, then set

T`θ(γ) =
∑̀
j=0

g∗σ(j)θ(γj).

This descends to a well-defined action on H1(Γ, A).

14 / 26



Eisenstein property

Proposition

In H1(GL2(Z),K2), the classes of T`Θ and (`+ [`]∗)Θ agree.

Proof.

Define T` on K by T` =
∑`
j=0 g

∗
j . Then T`e is the sum of the classes of the

cyclic subgroups of order ` in µ2
` , and µ2

` has class [`]∗e ∈ K0. That is,

T`e = (`+ [`]∗)e.

So there exists a unique ψ ∈ K2 with

∂ψ = (T` − `− [`]∗)〈0, 1〉.

Since γ∗g∗j = g∗σ(j)γ
∗
j , we have

∂(T`Θ)γ = (γ∗ − 1)T`〈0, 1〉,

so we have
(T` − `− [`]∗)Θγ = (γ∗ − 1)ψ,

which is to say that (T` − `− [`]∗)Θγ is null-cohomologous.
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Equivariant class

Definition

For Γ acting on the right on Y , let H∗Γ(Y, k) denote the cohomology of the
total complex of the double complex that is the Γ-bar resolution of Bloch’s cycle
complex zk(Y, 2k − ·). This provides a spectral sequence

Ei,j2 = Hi(Γ, Hj(Y, k))⇒ Hi+j
Γ (Y, k).

Remark

We set Γ = GL2(Z) and implicitly tensor everything by Z[ 1
6
] in what follows. A

Gysin sequence gives an isomorphism

H3
Γ(G2

m − {1}, 2)
∼−→ H0

Γ({1}, 0) ∼= Z.

Let E ∈ H3
Γ(G2

m−{1}, 2) map to the identity class under this isomorphism. The
image of E under the composition

H3
Γ(G2

m − {1}, 2)→ H3
Γ(Q(G2

m), 2)→ H1(Γ, H2(Q(G2
m), 2))

gives the class of Θ.
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Fixed parts under trace operators

Definition

For m ≥ 1, the trace map [m]∗ : K→ K is in degree i the sum of maps

[m]∗ : Ki(Q(x))→
⊕

y∈Y2−i
my=x

Ki(Q(y)).

for x ∈ Y2−i given by the norms for the field extensions Q(y)/Q(x). Set

K
(0)
i = {c ∈ Ki | [m]∗(c) = c for all m ≥ 1}.

Example

Consider 1− z ∈ Q(Gm)×, where z is the coordinate function on Gm. For any
m ≥ 1, we have

[m]∗(1− z) =

m∏
i=0

(1− ζimz1/m) = 1− z.
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Fixed parts and specialization

Lemma

The symbols e, 〈a, c〉, and 〈γ〉 lie in K(0), and

H2(G2
m, 2)(0) = 〈−z1 ∪ −z2〉 ∼= Z.

We therefore have Θ: GL2(Z)→ K
(0)
2 /〈{−z1,−z2}〉.

Specialization on motivic cohomology

Let s : SpecQ(µN )→ G2
m with value (1, ζN ) ∈ G2

m(Q(µN )), corresponding to

Q[z±1
1 , z±1

2 ]→ Q(µN ), z1 7→ 1, z2 7→ ζN .

Let
s∗ : H2(G2

m, 2)→ K2(Q(µN )).

Then

s∗(−z1 ∪ −z2) = {−1,−ζN} =

{
{−1,−1} N odd

0 N even.
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Specialization of values of Θ

Remark

The pullback by s doesn’t make sense on K2! There is no Q(G2
m)→ Q(µN ).

However, it does make sense on lim−→(1,ζN )∈U
H2(U, 2) inside K2.

Congruence subgroup

Let Γ0 = Γ̃0(N) = {( a bc d ) ∈ GL2(Z) | N | c}.

Specialization of Θγ

For γ ∈ Γ, we have Θγ ∈ H2(G2
m − S0,1 ∪ Sb,d)/〈{−z1,−z2}〉. If γ ∈ Γ0, then

N - d, so we may set

ΘN,γ = s∗Θγ ∈ K2(Q(µN ))/〈{−1,−ζN}〉.

Notation and conventions

For N - d, we let σd ∈ Gal(Q(µN )/Q) be such that σd(ζN ) = ζdN .

We have Γ0 → Gal(Q(µN )/Q) given by ( a bc d ) 7→ σd.

We let Γ0 act on K2(Q(µN )) through this map.
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The main theorem

Theorem

The map

ΘN : Γ̃0(N)→ K2(Q(µN ))/〈{−1, ζN}〉, γ 7→ ΘN,γ

is a parabolic 1-cocycle such that the following hold:

1 There exists a connecting sequence (bi, di)
k
i=0 for γ with N - di for all i,

and

ΘN,γ =
k∑
i=0

{1− ζdiN , 1− ζ
−di−1

N },

2 (T` − ` − σ`)ΘN is null-cohomologous for all primes ` - 2N , and if 2 - N ,
then 2(T2 − 2− σ2)ΘN is null-cohomologous.

3 ΘN takes values in K2(Z[µN ,
1
N

])/〈{−1,−ζN}〉.

Remark

All but the last property follow from the analogous property of Θ. The last is
seen from the explicit formula.
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Maps on homology

Notation

The restriction of ΘN to Γ1 = {( a bc d ) ∈ Γ0 | d ≡ 1 mod N} is a homomorphism.
Being parabolic, its further restriction to Γ1(N) = Γ1 ∩ SL2(Z) induces

H1(X1(N),Z)+ → K2(Z[µN ])/〈{−1, ζN}〉,

where the subscript + is the maximal quotient on which complex conjugation
acts trivially. If we invert 2, we obtain a homomorphism

ΠN : H1(X1(N),Z)+ → K2(Z[µN ])+.

By the explicit formula, it is the restriction of Π◦N , so the map ΠN defined earlier.

Remarks

1 ΠN is (Z/NZ)×-equivariant in the sense that for the diamond operator 〈d〉,
we have ΠN ◦ 〈d〉 = σd ◦ΠN .

2 The theorem tells us that ΠN ◦ (T` − `− 〈`〉) = 0 for ` - N . This appears
to differ from our original condition for being Eisenstein, but it is equivalent
as we are now using usual rather than dual correspondences (and ` - N).
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Square of an elliptic curve

Set-up

Let E be an elliptic curve over Y over a characteristic 0 field F .
Again we have a ∆-equivariant complex K in homological degrees [2, 0],

K2(Q(E2))
∂−→

⊕
D∈(E2)1

Q(D)×
∂−→

⊕
x∈(E2)2

Z,

with Hi(K) = H4−i(E2, 2). None of these groups vanish.

Trace-fixed parts

Fix n > 1, and let Nn = {m ≥ 1 | (m,n) = 1}. Let Z′ be a localization of Z.
For a Z[Nn]-module M , let

M (0) = {x ∈M ⊗Z Z′ | [m]∗x = x for all m ∈ Nn}.

Trace-fixed parts of the cohomology of E2

For Z′ = Z[ 1
6
], we have Hi(E2, 2)(0) = 0 unless i = 4, in which case it iso-

morphic to Z′. This arises from a slight extension of work of Deninger-Murre to
allow integral coefficients, and involves the Fourier-Mukai transform on E2.

22 / 26



Construction of motivic cocycles

Remark

The sequence 0→ K
(0)
2 → K

(0)
1 → K

(0)
0 → Z′ → 0 is exact outside of K

(0)
0 .

Construction of an abstract cocycle

Let Z ∈ ker(K
(0)
0 → Z′) be GL2(Z)-fixed. If it is the image of some η ∈ K

(0)
1 ,

then we can define

ΘZ : GL2(Z)→ K
(0)
2 , γ 7→ ΘZ

γ

for γ ∈ GL2(Z) by
∂ΘZ

γ = (γ∗ − 1)η.

Cocycles for the universal elliptic curve

For E the universal elliptic curve over Y = Y1(N) over Q with N ≥ 4,

en = n(n3(0)− nTn(0) + E [n]2) ∈ K
(0)
0

is GL2(Z)-fixed and the residue of an element 〈0, 1〉n ∈ K
(0)
1 formed out of

theta-functions on E and their divisors. Hence, we obtain a cocycle nΘ.
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The cocycle nΘ

Remarks

The cocycle

is parabolic,

satisfies an explicit formula for sums of symbols formed out of exterior
products of theta-functions,

is equivariant in the sense that the class of T`(nΘ) for ` - N equals the
class of T ′`(nΘ) for T ′` determined by a correspondence on Y . (Here, we
also need to invert 5 for ` = 5, so take Z′ = Z[ 1

30
] from now on.)

There is no universal cocycle independent of n, much as with theta-functions.
However, setting

V` = `(`3 − `T` + [`]∗),

the classes [V`(nΘ)] and [Vn(`Θ)] are equal.
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Specialized cocycles

Specialization

On Γ̃0(N), we can pull back nΘ by s = (0, ι) with ι : Y → E the canonical
N -torsion section to obtain a Hecke-equivariant parabolic cocycle

nΘN : Γ̃0(N)→ H2(Y,Z′(2)).

Universal cocycle

Much as with Siegel units, there exists ΘN : Γ̃0(N) → H2(Y,Z′[ 1
N

](2)) sat-

isfying [Vn(ΘN )] = [nΘN ]. For γ ∈ Γ̃1(N) and an N -connecting sequence
(bi, di)

k
i=0, we have

ΘN,γ ≡
k∑
i=1

g di
N

∪ g−di−1
N

mod V,

where g u
N

is the usual Siegel unit on Y for N - u, and V is the common kernel

of all (analogously-defined) operators V ′` on H2(Y,Z′(2)).

Remarks

On Γ̃1(N), these cocycles actually take values in the cohomology of X1(N).

The group V vanishes in any standard realization.
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Zeta maps

The motivic zeta map

The map ΘN induces a zeta map

zN : H1(X1(N),Z)+ → H2(Y,Z′[ 1
N

](2))

satisfying zN ◦ T` = T` ◦ zN for ` - N .

Comparison with known constructions

The composition of zN (defined over Z[ 1
6N

]) with the map to K2(Y )⊗Z[ 1
6N

]
agrees with maps of Goncharov and Brunault (modulo the image of V).

The composition of zN with the map to H2
ét(Y,Qp(2))ord agrees with a map

of Fukaya-Kato for p | N up to an Atkin-Lehner involution. They show their
map to be equivariant for all Hecke-operators (using dual operators on the
right) via a regulator computation. (For p - N , it agrees with a map of
Lecouturier and J. Wang.)

p-adic integrality

We can actually construct a zeta map zN to H2
ét(Y,Zp(2))ord after removing

the (Z/pZ)×-eigenspace for the square of ω : (Z/pZ)× ↪→ Z×p .
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