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© To give a new construction of explicit maps of Busuioc and S. for N > 1:

IIn: H1(X1(N),Z)+ — KQ(Z[MN])+7 [C : d] — {1 - Clc\fa 1- CIdV}

taking (projections of) Manin symbols to Steinberg symbols.

Here, + denotes the part fixed by complex conjugation after inverting 2.
@ To verify that Il is Eiseinstein, i.e., factors through the quotient of ho-

mology by an Eisenstein ideal I in the weight 2 Hecke algebra.

@ The symbols in question lie in a homology group relative to cusps C7 (V)
not over co € Xo(NN) and the second K-group of Z[un, ). We define a
map II}; on these groups and restrict.

@ The Manin symbols are classes of geodesics [c : d] = {¢ — 2} between
cusps, where ad — bc = 1. They depend only on (nonzero) ¢, d modulo N.

@ The Steinberg symbols {1 — (X, 1 — C% Y are of cyclotomic N-units.
Here, ¢(n = *™/N viewing Q C C.

@ The Eisenstein ideal I is generated by T; — 1 — £(¢) for primes £, where we
take (¢) =0 if £1 N. The action is via dual correspondences on X (V).

2/26



Background and Result

Construction (2007)

The map IIx was independently constructed by Busuioc and S.
Its well-definedness follows via explicit presentation of relative homology and
relations of the form {z,1 — 2} = 0 on Steinberg symbols.

v

Conjecture (S.)
Q@ The map Iy is Eisenstein, i.e., lIx o (Ty — 1 — £(£)) = O for all primes £.

@ The resulting map wn on the quotient by I is an isomorphism.

N

Work of Fukaya and Kato (2011)

o Proved the first (original) conjecture after tensoring with Z, for p | N.
Their method can be extended to p{ N if p1 p(N).

@ Proved a result towards the second conjecture (on p-parts, same conditions)
and a stronger p-adic form.

v

Theorem (S.-Venkatesh)
We have Ily o (T; — 1 — £(¢)) = 0 for all primes £ { N.




Approach of Fukaya-Kato
Method of Fukaya-Kato

Very roughly, for Y1 () viewed as a Z[+]-scheme, show that Il factors as:

H:i(X1(N),CT(N),Z) N, K (Yi(N)) [c:d] —— {g ,gd

g, Jw \ |
~ (%1

Ko (Zlun, %))* — (R

Here:
° {g%,g%} are Beilinson-Kato elements, which are Steinberg symbols of
Siegel units on Y7 (IV),

o zy is well-defined and Hecke-equivariant by a regulator computation, taking
place first up modular and cyclotomic towers,

@ oo is Eisenstein (for £ | N, only on Beilinson-Kato elements).

Remark

| A\

The map zx actually takes values in ordinary cohomology HZ, (Y1 (N), Q,(2))°.
There is a map K2(Y1(N))®zZp — HZ(Y1(N), Zy(2))°™ with unknown kernel.

v




Our approach

o For the Q-scheme G2, there is a GL2(Z)-equivariant exact sequence

0 — H*(G2,2) - K2(Q(G%) 2 D) & Pz -0
D x

where D runs over divisors and x over closed points, and HQ(GEH,2) is
motivic cohomology. The residue maps 0 are tame symbols and take orders
of zeros in the two cases.

@ Associate to 1 € Z at z = (1,1) a 1-cocycle
0: GL2(Z) — K2(Q(G2,))/H?*(G2,,2).

o Using the exact sequence, one sees that has an explicit description, is
parabolic, integral, and Eisenstein.

@ Specialize via pullback by (1,{xn) to obtain a parabolic cocycle
On: To(N) = Ka(Zlun, 5))/{{-1,—¢n})

that is Eisenstein for primes £ 1 N.
@ The restriction of ©n to I'; (IV) induces Iy .
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A modular cocycle

Modular cocycle

@ For primes n{ N, we construct a motivic cocycle

n0: GL2(Z) - K2(Q(E%)) @z Z'

for Z' = Z[ %] for the universal elliptic curve € over Y1(N).

@ The cocycle ,,© is parabolic, integral, Hecke-equivariant away from the level,
and has an explicit formula in terms of products of theta functions.

@ The cocycle ,,© specializes to a cocycle
nOn: To(N) = H*(Yi(N),Z (2)).

o There exists a universal cocycle O : To(N) — H?(Y1(N),Q(2)) that gives
rise to all ,On.

@ Taking Zy-coefficients and ordinary parts, we recover the maps zn forp > 5
and show their Hecke-equivariance for T; with £{ N.

We do not use this construction in studying Ilx.




Motivic cohomology (naive version)

@ Y an equidimensional quasi-projective scheme of finite type over a field F'

o AJ the j-simplex over F

| A

Definition (Bloch’s cycle complex)

Bloch's cycle complex z*(Y, -) has terms
2" (Y, j) = {pure codim. k cycles in Y x A’ meeting faces of A’ properly}

with boundaries given by alternating sums of face maps.

Definition

Set H (Y, k) = Hap—i(2"(Y, -)) fori € Z and k > 0.

For Y smooth and F' perfect, these are isomorphic to the motivic cohomology
groups of Voevodsky.




Properties of motivic cohomology

There are pullback and proper pushforward maps.

If Y =[1,_, Ya then H (Y, k) = @, _, H (Yn, k).

HY(Y,k) = H'(Y x A', k) via pullback.

H°(Y,0) 2 Z if Y is connected, H*(Y,0) = 0 for all i # 0.

o For Y smooth, H (Y, 1) = O3, and H*(Y,1) =0 for all i ¢ {1,2}.

e For Y smooth, H'(Y,k) = 0foralli > k+dimY. If moreover Y separated,
then H'(Y, k) = 0 for i > 2k.

@ For p: Z — Y a closed embedding of pure codimension ¢ with open com-
plement ¢: U — Y, there is an exact Gysin sequence (0 = residue map):

o HYY ) S HY (U K) S B2 (2, k—c) 225 HYY(Y k) —

@ Products of cycles give rise to external products, and pulling back external
products for Y x Y by the diagonal yields cup products

k) x H (Y, k) 2 H* (Y, k + K).

H'(Y.
o P, H'(SpecF,i) = P2, K (F), the Milnor K-theory ring.
Note that K} (F) = K;(F) for i<2.




A coniveau spectral sequence
Coniveau spectral sequence

For n > 0, there is a right half-plane spectral sequence

EP = @D H"(k(z),n —p) = H'*(Y,n),

TEY)p

where Y; denotes the irreducible codimension ¢ cycles on Y (a smooth variety).
For n = 2, its row for ¢ = 2 is a complex K in homological degrees [2,0]:

K2(Q(Y) = @ Ki(Q(D)) - D Ko(Q(x)),

DeYy €Yo

and we have _
H;(K) = H*'(Y,2).

The case of G2,

We have H*(G2,,2) = 0 for i > 2, so there is an exact sequence
0— H*(G2,,2) = Kz = Ky = Ko — 0.

It is equipped with a pullback action of A = M>(Z) N GL2(Q) induced by the
right action of A on G2,, given on coordinates by (21, 22) (¢ }) = (225, 2729).
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Symbols in K

Symbols

Let 21 and z2 denote the coordinate functions on G2,
o In Ko, let e be the canonical generator of H°({1},0) = Z.
e In Ky, for a,c € Z with (a,c) =1, let

(a,¢) =1 — 2825 € H'(Sa.c — {1},1),

where ad — be = 1 and Sa.c = ker(G2, W’—”%
(¢5)"(1,0).
o In Ka, for y = (2Y) € GL2(Z), let

Gm). Then (a,c) =

<7>:<(a7c)7(b7d)>:(1_Z122)U(1_Z1Z2)€H (G _SacUde, )

Then () =v"((5 1))

We have

0
1

~—

(=1

<CL, C> - <_ba _d>7 det’y =1
(—a,—c) — (b,d), dety=—1.

Oa,c) =e and 9I(y)= {




The 1-cocycle ©

Proposition

Set Ky = Ko /H?(G?2,,2). There exists a unique 1-cocycle
O: GLQ(Z)%RQ, 'y»—>67

such that
90, = (v" = 1)(0,1).

for all v € GL2(Z).

Proof.
For v, u € GL2(Z), we have

90+, = ((yp)" — 1)(0,1)
= (v = 1)(0,1) + ~*(z* — 1)(0,1)
=00, +~700,,.

| \

Since 0: Ko — K is injective and K is GLa(Z)-equivariant, we have

Oy =0, +776,.
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© is parabolic

The cocycle © is parabolic, i.e., ©|p is null-cohomologous on all stabilizers of
P'(Q) under its right action of GL2(Z).

Proof.
Let

| A

P={(19|ceZ, d=+1}.

For v € P, we have v*(0,1) = (0, 1), so 90, =0, so ©, = 0. Thus ©|p = 0.
Since the parabolic subgroups form a single conjugacy class, © is a coboundary
on all of them. O

4




Explicit formula
For v = (2%) € GL2(Z), a connecting sequence v = (v;)¥_y for v is v; =
s

= a
(b, di) € Z* such that vo = (0,1), vx = det(y)(b,d), and

det (gt 5 ) =1

forall1 <i<k.

Let v € GLy(Z) and v = (v;)F_ be a connecting sequence for y. Then

k
@’Y = Z<’UZ‘, —’Ui71> € Rz.
=1

v

9 <Z<w, >> = 3 () ~ (i) = (7" = 1)(0, 1) = 00

o=1l

=il

13 /26



Hecke operators

Set I' = GL2(Z). Fix a prime £. Let go = (¢,) € A = M»(Z) N GL2(Q), and
write

¢
Lgol’ = H g;T
i=0

with g; = (“4) for0<j<¢—1and g, =(',).
For v € T, there exists a permutation o of {0,...,¢} and v; € T with

Y95 = 9o(5)7Vi
for0 < j </

Definition

Let A be a Z[A]-module. If 8: ' — A is a 1-cocycle, then set

L
T0(y) =Y ga(i0(1)-
j=0

This descends to a well-defined action on H'(T, A).




Eisenstein property

Proposition

In H*(GL2(Z),K2), the classes of T,© and (¢ + [(]*)© agree.

Proof.

Define Ty on K by Ty, = Zﬁ:o g;. Then Tye is the sum of the classes of the
cyclic subgroups of order £ in 3, and 7 has class [{]*e € Ko. That is,

Tre = (£ + [€]")e.
So there exists a unique ¢ € Ky with
o = (T, — £ — [4)(0,1).
Since v*g; = g(;)7; » We have
ANTe®)y = (v — 1)Ti(0,1),

so we have
(Te = £ = [(])0y = (v = )9,
which is to say that (7 — £ — [{]*)©, is null-cohomologous. O

\
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Equivariant class

Definition

For T acting on the right on Y, let H{ (Y, k) denote the cohomology of the
total complex of the double complex that is the I"-bar resolution of Bloch's cycle
complex z’“(Y, 2k — -). This provides a spectral sequence

By = H'(T, H' (Y, k)) = H{M (Y, k).

Remark

| \

We set I' = GL2(Z) and implicitly tensor everything by Z[%] in what follows. A
Gysin sequence gives an isomorphism

HE(G2, — {1},2) = HP({1},0) = Z.

Let E € H3(GZ, —{1},2) map to the identity class under this isomorphism. The
image of E under the composition

HY (G2, — {1},2) — HA(Q(G2,),2) — H'(T, H*(Q(G2,),2))

gives the class of ©.
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Fixed parts under trace operators

For m > 1, the trace map [m].: K — K is in degree i the sum of maps

[ml.: Ki(Q@)) = P Ki(Q)).

yeYs_;
my=x

for z € Ya_; given by the norms for the field extensions Q(y)/Q(z). Set

KEO) = {c € K; | [m]«(c) = ¢ for all m > 1}.

| 5\

Example

Consider 1 — z € Q(Gy,)*, where z is the coordinate function on G,,. For any
m > 1, we have

m

). (1 - 2) = [J(1 = Ghe/™) =1 - 2.

1=0

A\




Fixed parts and specialization

The symbols e, (a,c), and (v) lie in K, and

H*(G2,2)® = (-2 U—2) 2 Z.

We therefore have ©: GLy(Z) — K" /({—21, —22}).

| \

Specialization on motivic cohomology

Let s: SpecQ(un) — G2, with value (1,¢n) € G2,(Q(un)), corresponding to
Q[zli 722 ] — Q(pun), z1+—1, 22— (N.

Let
s*: H*(G,,2) = K2(Q(un))-
Then
—1} N odd

N even.

(-1 U—2) = {1, ~Cx }—{{ "




Specialization of values of ©

The pullback by s doesn’t make sense on Ka! There is no Q(G2,) — Q(un).

. o 2 ..
However, it does make sense on h—n>l(1,<N)eUH (U, 2) inside Ka.

Congruence subgroup

Let To = [o(N) = {(24) € GL2(Z) | N | ¢}

Specialization of ©,

For v €T, we have O, € H*(G2, — So,1 U Sp.a)/{{—21,—22}). If v € T, then
N td, so we may set

On,y =5"0y € Ka(Q(un))/({-1,—Cn}).

Notation and conventions
@ For N 1d, we let 04 € Gal(Q(un)/Q) be such that oq(¢n) = Cx-
o We have I'y — Gal(Q(un)/Q) given by (¢ %) — 4.
@ We let I'g act on K2(Q(un)) through this map.

|
A\

\
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The main theorem

The map

On: Lo(N) = K2(Q(un))/({=1,(n}), 7+ Onpy

is a parabolic 1-cocycle such that the following hold:

© There exists a connecting sequence (b;,d;)"_, for v with N { d; for all i,
and

k
3 —di_
eN,'v:Z{l_ zcxlfal_CN e
i=0

@ (T; — ¢ — 0¢)On is null-cohomologous for all primes £ { 2N, and if 21 N,
then 2(T> — 2 — 02)On is null-cohomologous.

Q O takes values in K> (Zun, +])/{({—1, —Cn}).

All but the last property follow from the analogous property of ©. The last is
seen from the explicit formula.

4




Maps on homology

Notation

The restriction of O to Ty = {(2 %) € T'o | d = 1 mod N} is a homomorphism.
Being parabolic, its further restriction to I'y (N) = I'y N SL2(Z) induces

H1(X1(N), Z)+ = Ka(Z[pn])/({=1,¢n ),

where the subscript + is the maximal quotient on which complex conjugation
acts trivially. If we invert 2, we obtain a homomorphism

My: Hi(X1(N),Z)* = K2(Z[un])T.

By the explicit formula, it is the restriction of II};, so the map Iy defined earlier.

Remarks
@ Iy is (Z/NZ)*-equivariant in the sense that for the diamond operator (d),
we have Iy o (d) = g4 0 Ilyn.
@ The theorem tells us that Iy o (Ty — £ — (¢)) = 0 for £1 N. This appears

to differ from our original condition for being Eisenstein, but it is equivalent
as we are now using usual rather than dual correspondences (and £ { NV).




Square of an elliptic curve

Let E be an elliptic curve over Y over a characteristic 0 field F'.
Again we have a A-equivariant complex K in homological degrees [2, 0],

BQE)S @ oo P z

De(E2?); z€(E2)o

with H;(K) = H*"*(E?,2). None of these groups vanish.

Trace-fixed parts

Fixn>1, and let N,, = {m > 1| (m,n) = 1}. Let Z' be a localization of Z.
For a Z[N,]-module M, let

MO ={z e M®,Z |[m].x =z for all m € N, }.

Trace-fixed parts of the cohomology of E?

For Z' = Z[¢], we have HY(E?,2)® = 0 unless i = 4, in which case it iso-
morphic to Z'. This arises from a slight extension of work of Deninger-Murre to
allow integral coefficients, and involves the Fourier-Mukai transform on EZ.




Construction of motivic cocycles

The sequence 0 — Kgo) — Kg()) — Kéo) — Z' — 0 is exact outside of Kéo).

Construction of an abstract cocycle

Let Z € ker(KéO) — Z') be GLo(Z)-fixed. If it is the image of some n € K§°>,
then we can define

©%: GLy(Z) = K,  ~— 07

for v € GL2(Z) by

895 = (v = 1.

Cocycles for the universal elliptic curve

| \

For £ the universal elliptic curve over Y = Y7 (V) over Q with N > 4,
en = n(n®(0) — nT,(0) + E[n]?) € K

is GL2(Z)-fixed and the residue of an element (0,1), € Kgo) formed out of
theta-functions on £ and their divisors. Hence, we obtain a cocycle ,,0.

v




The cocycle ,©

Remarks

The cocycle
@ is parabolic,

o satisfies an explicit formula for sums of symbols formed out of exterior
products of theta-functions,

@ is equivariant in the sense that the class of 7;(,©) for £ t N equals the
class of T;(n®) for T; determined by a correspondence on Y. (Here, we
also need to invert 5 for £ = 5, so take Z' = Z[z5] from now on.)

There is no universal cocycle independent of n, much as with theta-functions.
However, setting
Ve = €(€° — (T, + [4"),

the classes [V;(,©)] and [V, (¢©O)] are equal.




Specialized cocycles

Specialization

On T'o(N), we can pull back ,© by s = (0,) with .: ¥ — & the canonical
N-torsion section to obtain a Hecke-equivariant parabolic cocycle

2On: To(N) = H*(Y,Z (2)).

| A

Universal cocycle

Much as with Siegel units, there exists O : To(N) — H2(Y, Z'[%](2)) sat-
isfying [V5.(©n)] = [»On]. For v € Ti(N) and an N-connecting sequence
(bi,di)fzo, we have

k
Ony = ; Ug—a;,_, modV,
Ny ;9% 90
where g is the usual Siegel unit on Y for N tu, and V is the common kernel
of all (analogously-defined) operators V;/ on H?(Y,Z/(2)).

| \

Remarks

e On T (N), these cocycles actually take values in the cohomology of X1 (V).

@ The group V vanishes in any standard realization.
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The map O induces a zeta map

an: Hi(X1(N),Z)+ — H* (Y, Z'[§](2))

satisfying zy o Ty = Ty o zn for £4 N.

Comparison with known constructions

o The composition of zx (defined over Z[z5]) with the map to K5 (Y)®Z[ 5]
agrees with maps of Goncharov and Brunault (modulo the image of V).

o The composition of zy with the map to HZ (Y, Q,(2))°™ agrees with a map
of Fukaya-Kato for p | NV up to an Atkin-Lehner involution. They show their
map to be equivariant for all Hecke-operators (using dual operators on the

right) via a regulator computation. (For p f N, it agrees with a map of
Lecouturier and J. Wang.)

v

p-adic integrality

We can actually construct a zeta map zn to HZ (Y, Z,(2))°™ after removing
the (Z/pZ)* -eigenspace for the square of w: (Z/pZ)* — Zj;.
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