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Introduction

At CNTA IX, we discussed an explicit conjectural
correspondence of the following form, for an odd prime p.

cup products of cyclotomic
p-units in étale cohomology
of p-integers

↔
reductions of p-adic
L-values of newforms
congruent to Eisen-
stein series at p

In this talk, we will
explain the conjecture in a special yet fundamental case
discuss evidence for it arising from Selmer groups



The cup product

p odd prime, µp pth roots of unity in Q
F = Q(µp) pth cyclotomic field

GF Galois group of maximal extension of F in which only the
prime above p ramifies

Consider the following cup product in Galois cohomology:

H1(GF , µp)⊗H1(GF , µp)
∪−→ H2(GF , µ

⊗2
p )

The cup product tells us about the commutators appearing in
relations among generators in a presentation of the Galois
group of the maximal pro-p quotient of GF .
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Applications of the cup product

This cup product has quite a few other applications to the
structure of Galois groups and related modules, including:

Hilbert p-class field tower of F – when is it just one step?
p-parts of class groups of Kummer extensions of F that are
unramified outside p – describes 2nd graded piece in their
augmentation filtration
Galois group of the maximal abelian pro-p extension of the
compositum of all Zp-extensions of F – yields information
on its size
Selmer groups of residually reducible representations – will
discuss later in this talk



Objects attached to the pth cyclotomic field

∆ = Gal(F/Q)
ζ fixed primitive pth root of unity in F

Teichmüller character ω : ∆ ∼−→ µp−1(Zp) ⊂ Z×p , δ(ζ) = ζω(δ).

Fundamental Zp[∆]-modules:
p-completion EF of p-units Z[ζ, 1/p]× in F

p-completion CF of the cyclotomic p-units of F , generated
by 1− ζ as a Zp[∆]-module
p-part AF of the ideal class group of F (p-power torsion)

Kummer theory yields

EF /pEF ↪→ H1(GF , µp) and AF /pAF ∼= H2(GF , µp).

Thus, our cup product sets up a Galois-equivariant pairing

( · , · ) : CF × CF → AF ⊗ µp.
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Eigenspaces

Given a Zp[∆]-module A, we have a decomposition

A =
p−2⊕
i=0

A(i), A(i) = {a ∈ A | δa = ω(δ)ia, for all δ ∈ ∆}.

We also have (±1)-eigenspaces A± for the element of order 2,
which results in a decomposition A = A+ ⊕A−. Note that

A+ =
p−3⊕
i=0
i even

A(i) and A− =
p−2⊕
i=1
i odd

A(i).

We have idempotents εi yielding the projections A→ A(i):

εi ∈ Zp[∆], εi =
1

p− 1

∑
δ∈∆

ω(δ)−iδ.
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Eigenspaces of p-units and class groups

Facts: EF = E+
F ⊕ µp and [EF : CF ] = |A+

F |.

Vandiver’s Conjecture: A+
F = 0 (known for p < 12,000,000).

For odd i, set ηi = (1− ζ)ε1−i . Then C(1−i)
F = 〈ηi〉.

Bk kth Bernoulli number

Theorem (Herbrand-Ribet)

For k ≥ 2 even,

A
(1−k)
F 6= 0⇔ p | Bk

k
.

We say (p, k) is irregular if p | Bk and 2 ≤ k ≤ p− 3.

Reflection principle: for k even,

A
(k)
F = 0⇒ A

(1−k)
F cyclic.
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A pairing arising from the cup product

For i odd and k even, set

ei,k = (ηi, ηk−i) ∈ A
(1−k)
F ⊗ µp.

Conjecture (McCallum-S.)

The ei,k generate A(1−k)
F ⊗ µp.

Under Vandiver, A(1−k)
F ⊗ µp is a 1-dimensional Fp-vector space.

For irregular (p, k) with p < 25,000, we computed of a unique
possibility for (e1,k e3,k . . . ep−2,k) ∈ P(p−3)/2(Fp), should the
conjecture hold.

Theorem (S.)

The conjecture holds for p < 1000.
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Examples of the (e1,k e3,k . . . ep−2,k)

p = 37, k = 32
(1 26 0 36 1 35 31 34 3 6 2 36 1 0 11 36 11 26)
p = 59, k = 44
(1 45 21 30 14 35 5 0 48 57 7 52 2 11 0 54 24 45 29 38 14 58
27 32 15 0 44 27 32)
p = 67, k = 58
(1 45 38 56 0 47 62 9 29 15 65 26 45 57 0 10 22 41 2 52 38
58 5 20 0 11 29 22 66 2 24 43 65)
p = 101, k = 68
(1 56 40 96 26 63 0 61 81 71 35 92 73 64 6 88 0 0 13 95 37
28 9 66 30 20 40 0 38 75 5 61 45 100 17 17 12 66 72 53 86
31 70 15 48 29 35 89 84 84)

Question
What is the arithmetic meaning of these values?
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Congruences of newforms with Eisenstein series

Eisenstein series of weight 2, level p, character ωk−2

G2,ωk−2 = −
B2,ωk−2

2
+
∞∑
n=1

 ∑
1≤t|n

ωk−2(t)t

 qn.

(p, k) irregular ⇒ p | B2,ωk−2 .

In this case, there exists a newform f of the same weight, level,
and character and a congruence

f ≡ G2,ωk−2 mod pf ,

where f =
∑∞

n=1 anq
n, Of = Zp[a2, a3, . . .], and pf ⊂ Of is

generated by p and a` − 1− `ωk−2(`) for all primes `.
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A comparison map

The p-adic L-functions of newforms (Mazur-Tate-Teitelbaum)
interpolate the special values of classical L-functions for f and
its twists, up to certain factors.

Let Hf be the Of -lattice in Cp spanned by all Lp(f, ωj , 1).

Hf = H+
f ⊕H

−
f , where H±f is spanned by the Lp(f, ωj , 1) with

j even/odd, resp.

We derive the following using the work of Ohta (following
Ribet, Mazur-Wiles, Wiles, Kurihara, and Harder-Pink).

Proposition

There exists an (almost canonical) homomorphism

φf : A(1−k)
F ⊗ µp → H+

f /pfH
+
f ,

that is surjective if (p, p+ 1− k) is regular.
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The conjecture

For i odd, let gi,f be the image of Lp(f, ωi−1, 1) in H+
f /pfH

+
f .

Conjecture (S.)

For each irregular pair (p, k) and f as above, there exists a
canonical cf ∈ (Z/pZ)× such that

φf (ei,k) = cfgi,f

for all odd i.

Theorem (S.)

If (p, p+ 1− k) is regular, then φf (e1,k) = cfg1,f for some
cf ∈ (Z/pZ)×.

Corollary
The conjecture is true for p < 1000.
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The Galois modules

We may consider Hf as a lattice in the Galois representation
attached to f , so it has a GQ-action unramified outside p,∞.

Let
Wf = Hf ⊗Of

Hom(Of ,Qp/Zp).

As GQp-modules, we have

0→W−f →Wf →Wf/W
−
f → 0.

Let Tf = Wf [pf ] be the submodule of Wf killed by all elements
of pf . Then

Tf ∼= Hf/pfHf ,

and it fits into an exact sequence of GQ-modules

0→ T+
f → Tf → Tf/T

+
f → 0

that is locally split at p .
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Selmer groups

Let us now fix an odd integer i.
We consider the twist of Wf by ωi−1:

Wi,f = Wf ⊗Zp Zp[∆](i−1).

Its Selmer group may be defined as

Sel(Q,Wi,f ) = ker(H1(GQ,Wi,f )→ H1(Ip,Wi,f/W
−
i,f )),

where GQ is the Galois group of the maximal extension of Q
unramified outside {p,∞} and Ip is an inertia group at p.

We take
Ti,f = Wi,f [pf ] ∼= Hf/pfHf ⊗ µ⊗(i−1)

p ,

and define Sel(Q, Ti,f ) in the same way.
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Selmer groups of the residual representations

Simplifying assumptions: i 6≡ ±(1− k) mod p− 1,

A
(k)
F = A

(k−i)
F = 0.

Then
0→ µ⊗(i+1−k)

p → Ti,f → µ⊗ip → 0.

One can derive the following using the relationship between cup
product values and class groups of Kummer extensions of F :

Theorem (S.)

Under our assumptions,

Sel(Q, Ti,f ) ∼=

{
Z/pZ ei,k = 0
0 ei,k 6= 0.
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The main conjecture for modular forms

Let Q∞ denote the cyclotomic Zp-extension of Q.
Then Sel(Q∞,Wi,f ) is defined in the same manner as for Q.

The main conjecture of Iwasawa theory for f (Mazur,
Greenberg) tells us that the structure of Sel(Q∞,Wi,f ) is
largely governed by Lp(f, ωi−1, s).

More precisely, the p-adic L-function Lp(f, ωi−1, s) determines a
power series Fi,f ∈ Of [[T ]] with

Fi,f ((1 + p)s − 1) = Lp(f, ωi−1, s)

for all s ∈ Zp. The main conjecture asserts that Fi,f generates
the “characteristic ideal” of Sel(Q∞,Wi,f )∨ over Of [[T ]].

Remark
We have chosen the lattice Hf such that we expect the Selmer
group to be finitely generated over Zp.
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Relationship with our conjecture

We have the following corollary of our result on Sel(Q, Ti,f ):

Corollary

Sel(Q∞,Wi,f ) = 0⇔ ei,k 6= 0.

Recall that gi,f is the image of Lp(f, ωi−1, 1) in H+
f /pfH

+
f .

The main conjecture then implies:

Conjecture

Sel(Q∞,Wi,f ) = 0⇒ gi,f 6= 0.

Putting these together, we conclude:

Theorem
Assuming the main conjecture for f and with our earlier
assumptions, we have that

ei,k 6= 0⇒ gi,f 6= 0.



Relationship with our conjecture

We have the following corollary of our result on Sel(Q, Ti,f ):

Corollary

Sel(Q∞,Wi,f ) = 0⇔ ei,k 6= 0.

Recall that gi,f is the image of Lp(f, ωi−1, 1) in H+
f /pfH

+
f .

The main conjecture then implies:

Conjecture

Sel(Q∞,Wi,f ) = 0⇒ gi,f 6= 0.

Putting these together, we conclude:

Theorem
Assuming the main conjecture for f and with our earlier
assumptions, we have that

ei,k 6= 0⇒ gi,f 6= 0.



Relationship with our conjecture

We have the following corollary of our result on Sel(Q, Ti,f ):

Corollary

Sel(Q∞,Wi,f ) = 0⇔ ei,k 6= 0.

Recall that gi,f is the image of Lp(f, ωi−1, 1) in H+
f /pfH

+
f .

The main conjecture then implies:

Conjecture

Sel(Q∞,Wi,f ) = 0⇒ gi,f 6= 0.

Putting these together, we conclude:

Theorem
Assuming the main conjecture for f and with our earlier
assumptions, we have that

ei,k 6= 0⇒ gi,f 6= 0.


