Reciprocity maps and *p***-adic** *L***-functions**

Romyar Sharifi

McMaster University

Let p be an odd prime.

The goal of this talk is to state a conjecture that relates two sets of objects:

cup products of cyclotomic		p-adic	<i>L</i> -valu	es	"mod	p"	of
<i>p</i> -units in Galois cohomology	\leftrightarrow	cusp	forms	CO	ngruer	nt	to
unramified outside p		Eisenstein series					

This fits into an Iwasawa and Hida-theoretic conjectural relationship:

A "reciprocity map" applied to a norm compatible sequence of 1 minus p-power roots of 1

A two-variable *p*-adic *L*-function taken modulo the square of the Eisenstein ideal.

Let
$$F = \mathbf{Q}(\mu_p)$$
, $\Delta = \operatorname{Gal}(F/\mathbf{Q})$, $\mu_p = \langle \zeta \rangle$,
 $\omega \colon \Delta \to \mu_{p-1}(\mathbf{Z}_p) \subset \mathbf{Z}_p^{\times}$, $\delta(\zeta) = \zeta^{\omega(\delta)}$ Teichmüller character.

 $A \mathbf{Z}_p[\Delta]$ -module \Rightarrow eigenspace decompositions

$$A = \bigoplus_{i=0}^{p-2} A^{(i)}, \quad A^{(i)} = \{a \in A \mid \delta a = \omega(\delta)^i a, \text{ for all } \delta \in \Delta\}$$

and

$$A^{+} = \bigoplus_{\substack{i=0\\i \text{ even}}}^{p-3} A^{(i)} \text{ and } A^{-} = \bigoplus_{\substack{i=1\\i \text{ odd}}}^{p-2} A^{(i)}.$$

Define

$$\epsilon_i \in \mathbf{Z}_p[\Delta], \quad \epsilon_i = \frac{1}{p-1} \sum_{\delta \in \Delta} \omega(\delta)^{-i} \delta.$$

Then $\epsilon_i \colon A \to A^{(i)}$.

$$C_F$$
 p-completion of the cyclotomic p-units of F :
 $C_F = (1 - \zeta)^{\mathbf{Z}_p[\Delta]}$. Set $\eta_i = (1 - \zeta)^{\epsilon_{1-i}}$.
 $C_F^- = \mu_p$ and $C_F^{(1-i)} = \langle \eta_i \rangle$ for odd i .

 $A_F p$ -part of the ideal class group of F. Herbrand-Ribet: $k \ge 2$ even,

$$A_F^{(1-k)} \neq 0 \Leftrightarrow p \mid \frac{B_k}{k}$$

We say (p,k) is irregular if $p \mid B_k$ and $2 \le k \le p-3$. Reflection principle:

$$A_F^{(k)} \neq 0 \Rightarrow A_F^{(1-k)} \neq 0, \quad A_F^{(k)} = 0 \Rightarrow A_F^{(1-k)}$$
 cyclic.
Vandiver's Conjecture: $A_F^+ = 0. \ p < 12,000,000$ [BCEMS].

 \mathfrak{G}_F Galois group of max. unramified outside p extension of F. $C_F/pC_F \to H^1(\mathfrak{G}_F,\mu_p)$ and $A_F/pA_F \cong H^2(\mathfrak{G}_F,\mu_p)$. Cup product

$$H^1(\mathfrak{G}_F,\mu_p)\otimes H^1(\mathfrak{G}_F,\mu_p)\xrightarrow{\cup} H^2(\mathfrak{G}_F,\mu_p^{\otimes 2})$$

sets up a Galois-equivariant pairing

$$(\cdot, \cdot)$$
: $C_F \times C_F \to A_F \otimes \mu_p$.

For i odd and k even, we have

$$e_{i,k} = (\eta_i, \eta_{k-i}) \in A_F^{(1-k)} \otimes \mu_p.$$

McCallum-S.: Computation of the $e_{i,k}$ up to a single scalar in $\mathbf{Z}/p\mathbf{Z}$ for each irregular (p,k) with p < 25,000. Issue: Scalars could be zero!

Conjecture (McCallum-S.). The $e_{i,k}$ generate $A_F^{(1-k)} \otimes \mu_p$.

Theorem (S.). The conjecture holds for p < 1000.

Examples of the $(e_1 \ e_3 \ \dots \ e_{p-2})$ up to scalar: p = 37, k = 32 (1 26 0 36 1 35 31 34 3 6 2 36 1 0 11 36 11 26)

p = 59, k = 44(1 45 21 30 14 35 5 0 48 57 7 52 2 11 0 54 24 45 29 38 14 58 27 32 15 0 44 27 32)

p = 67, k = 58(1 45 38 56 0 47 62 9 29 15 65 26 45 57 0 10 22 41 2 52 38 58 5 20 0 11 29 22 66 2 24 43 65)

p = 101, k = 68
(1 56 40 96 26 63 0 61 81 71 35 92 73 64 6 88 0 0 13 95 37
28 9 66 30 20 40 0 38 75 5 61 45 100 17 17 12 66 72 53 86
31 70 15 48 29 35 89 84 84)

 $X_1(p)$ compact modular curve of level p, $C_1(p) = \{\text{cusps}\}$. $\mathfrak{h} \subset \text{End}_{\mathbb{Z}_p} H_1(X_1(p); \mathbb{Z}_p)$ weight 2 cuspidal Hecke algebra: generators U_p , T_l $(l \neq p)$, $\langle a \rangle$ $(a \in (\mathbb{Z}/p\mathbb{Z})^{\times})$.

 $\mathbb{T} \subset \operatorname{End}_{\mathbb{Z}_p} H_1(X_1(p), C_1(p); \mathbb{Z}_p) \text{ modular Hecke algebra.}$ $H_1(X_1(p); \mathbb{Z}_p) \hookrightarrow H_1(X_1(p), C_1(p); \mathbb{Z}_p)$

Manin-Drinfeld splitting:

 $s \colon H_1(X_1(p), C_1(p); \mathbf{Q}_p) \twoheadrightarrow H_1(X_1(p); \mathbf{Q}_p),$ compatible with $\mathbb{T} \twoheadrightarrow \mathfrak{h}.$

 $\{a, \infty\}$ class in $H_1(X_1(p), C_1(p); \mathbb{Z}_p)$ of vertical path from $a \in \mathbb{Q}$ to ∞ in upper half plane. Define $\xi(a)$ for $a \in \mathbb{Q}$ by $\xi(a) = s(\{a, \infty\})$. Consider ω as a Dirichlet character $(\mathbf{Z}/p\mathbf{Z})^{\times} \hookrightarrow \mathbf{Z}_p^{\times}$.

Eisenstein ideal $\mathcal{I}_k \subset \mathfrak{h}$ with character ω^{k-2} : generators $U_p - 1$, $T_l - 1 - l\langle l \rangle$ $(l \neq p)$, $\langle a \rangle - \omega(a)^{k-2}$ $(a \in (\mathbb{Z}/p\mathbb{Z})^{\times})$. Set $\mathfrak{m}_k = p\mathfrak{h} + \mathcal{I}_k$, $\mathfrak{h}_k = \mathfrak{h}\mathfrak{m}_k$.

Let

 $\mathcal{Y}_k = H_1(X_1(p); \mathbf{Z}_p)_{\mathfrak{m}_k}$ and $\mathcal{Z}_k = s(H_1(X_1(p), C_1(p); \mathbf{Z}_p))_{\mathfrak{m}_k}$ We have $\mathcal{Y}_k \subset \mathcal{Z}_k$.

complex conjugation: $\mathcal{Z}_k = \mathcal{Z}_k^+ \oplus \mathcal{Z}_k^-$ as \mathfrak{h}_k -modules. $\mathcal{Z}_k^- = \mathcal{Y}_k^-$ and $\mathcal{Z}_k^+ / \mathcal{Y}_k^+ \cong \mathfrak{h}_k / \mathcal{I}_k$. Choice of $\iota: \overline{\mathbf{Q}} \hookrightarrow \mathbf{C}$ yields $\rho: G_{\mathbf{Q}} \to \operatorname{Aut}_{\mathfrak{h}_k} \mathcal{Y}_k$. The following results from work of Ribet, Mazur-Wiles, Wiles, Kurihara, Harder-Pink, <u>Ohta</u>, ...

Theorem. There exists a homomorphism, canonical up to choice of ι ,

$$\phi_k \colon A_F^{(1-k)} \otimes \mu_p \to \mathcal{Y}_k^+ / \mathfrak{m}_k \mathcal{Y}_k^+.$$

that is an isomorphism if (p, p + 1 - k) is regular.

This is obtained by looking at the map

$$G_{\mathbf{Q}} \to \operatorname{Hom}_{\mathfrak{h}_{k}}(\mathcal{Y}_{k}^{-}, \mathcal{Y}_{k}^{+})$$

induced by ρ .

Remark. Vandiver's conjecture $\Rightarrow A_F^{(1-k)} \otimes \mu_p \cong \mathbb{Z}/p\mathbb{Z}$.

Define $\xi_k \colon \mathbf{Q} \to \mathcal{Z}_k$ as ξ followed by projection to \mathcal{Z}_k . $\kappa \colon \mathbf{Z}_p^{\times} \to 1 + p\mathbf{Z}_p$ canonical projection.

For $s \in \mathbf{Z}_p$ and character $\chi \colon (\mathbf{Z}/p\mathbf{Z})^{\times} \to \mathbf{Z}_p^{\times}$, define

$$L_p(\xi_k, \chi) = \sum_{j=1}^{p-1} \chi(j) \xi_k\left(\frac{j}{p}\right) \in \mathcal{Z}_k.$$

In fact, $L_p(\xi_k, \chi) \in \mathcal{Y}_k$.

For *i* odd, $g_{i,k}$ = image of $L_p(\xi_k, \omega^{i-1})$ in $\mathcal{Y}_k^+/\mathfrak{m}_k \mathcal{Y}_k^+$.

Conjecture. For each (p,k) irregular, there exists $c_k \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ such that

$$\phi_k(e_{i,k}) = c_k g_{i,k}$$

for all odd *i*.

Eisenstein series of weight 2, level p, character ω^{k-2} :

$$G_{2,\omega^{k-2}} = -\frac{B_{2,\omega^{k-2}}}{2} + 2\sum_{n=1}^{\infty} \left(\sum_{1 \le t \mid n} \omega^{k-2}(t)t\right) q^n.$$

Note: $L_p(\xi_k, \chi)$ determines the analogous *p*-adic *L*-values of weight 2, level *p* cusp forms congruent to $G_{2,\omega^{k-2}}$ modulo *p*.

Theorem. Suppose (p, p + 1 - k) is regular. Then $e_{1,k} \neq 0 \Leftrightarrow g_{1,k} \neq 0 \Leftrightarrow U_p - 1$ generates \mathcal{I}_k .

Remark. Last two conditions are equivalent as (MTT, Kitagawa):

$$L_p(\xi_k, 1) = U_p^{-1}(1 - U_p^{-1})\xi_k(0).$$

Let $G = \operatorname{Gal}(F(\sqrt[p]{C_F})/F)$.

Consider the exact sequence

$$0 \to G \to \mathbf{Z}/p\mathbf{Z}[G]/I_G^2 \to \mathbf{Z}/p\mathbf{Z} \to 0,$$

where I_G is the augmentation ideal in $(\mathbf{Z}/p\mathbf{Z})[G]$. The coboundary of this twisted by μ_p yields:

$$H^1(\mathfrak{G}_F,\mu_p)\to H^2(\mathfrak{G}_F,\mu_p)\otimes G.$$

I.e., we have a map

$$\Psi_F \colon C_F \to A_F \otimes G.$$

This interpolates the cup products: if $\chi_i \colon G \to \mu_p$ is the Kummer character attached to η_i , then

$$(1 \otimes \chi_i)(\Psi_F(\eta_{k-i})) = (\eta_i, \eta_{k-i})_F.$$

On the other hand, we may view $L_p(\chi_k, \chi)$ as being interpolated by

$$\mathcal{L} = \sum_{j=1}^{p-1} \xi_k\left(\frac{j}{p}\right) \otimes [j] \in \mathcal{Z}_k \otimes \mathbf{Z}_p[(\mathbf{Z}/p\mathbf{Z})^{\times}].$$

Conjecture extends to compare the "minus parts" of $\Psi_F(1-\zeta)$ and $\mathcal{L} \mod \mathcal{I}$.

More generally, one can go up the cyclotomic tower (Iwasawa theory) and the modular tower (Hida theory) to compare a reciprocity map on norm compatible sequences of p-units to the two-variable p-adic L-function of Mazur-Kitagawa.