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Idea of the main result

Goal of Talk (joint with Meng Fai Lim)

Provide an analogue of Poitou-Tate duality which

1 takes place on the level of complexes up to quasi-isomorphism, so
in a derived category

2 replaces the Pontryagin dual on coefficients with the Grothendieck
dual, i.e., of bounded complexes of finitely generated modules

3 is of Iwasawa cohomology groups up a p-adic Lie extension.

Remarks

At the level of the ground field (or even up a Zrp-extension), such
an analogue was derived by Nekovar.

The more usual case of the Pontryagin dual, but up a p-adic Lie
extension, was worked out in detail by Lim.

Fukaya and Kato proved such an analogue in the case that the
coefficients are projective modules (with quite general rings).



Topological modules

Setup

R complete, pro-p commutative local noetherian with finite residue field
Γ compact p-adic Lie group, Λ = R[[Γ]] noetherian and R-flat
G profinite group, χ : G→ Γ continuous, surjective homomorphism

Notation

Abelian categories A of Λ-modules:

ModΛ category of Λ-modules

CΛ,G category of compact Hausdorff Λ[[G]]-modules

Ch?(A) with ? ∈ {∅,+,−, b} categories of chain complexes and
full subcategories of complexes bounded below, above, and totally

Remarks

a. Objects of CΛ,G are inverse limits of finite Λ[G]-modules.

b. The topology for the maximal ideal is the unique compact Haus-
dorff topology on a finitely generated Λ-module.
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Complexes of G-cochains

For T ∈ CΛ,G, we have its complex of continuous G-cochains C(G,T ) ∈
Ch+(ModΛ)

More generally, for T ∈ Ch(CΛ,G), we define C(G,T ) ∈ Ch(ModΛ) as
the total direct sum complex of the usual bicomplex, i.e., with ith term

Ci(G,T ) =
⊕
j∈Z

Cj(G,T i−j).

Hi(G,T ) = Hi(C(G,T )) is the ith G-hypercohomology group of T .

Remarks

1 As short exact sequences in CΛ,G are split by continuous functions,
the Hi(G,−) yield a δ-functor on Ch+(CΛ,G).

2 The Hi(G,T ) depend only on T in Ch+(CΛ,G) up to quasi-
isomorphism, i.e., isomorphism on the cohomology of T .



Complexes of induced modules

Λ◦ opposite ring of Λ

Remark

We may view Λ as an object of CΛ◦,G on which G acts by left multipli-
cation through χ : G→ Γ and Λ acts by right multiplication.

Definition

For a complex M of Λ[G]-modules, M ι is the complex of Λ◦[G]-modules
equal to M over R[G] but γ ∈ Γ acts by γ−1.

Definition

For T ∈ Ch(CR,G), set FΓ(T ) = Λι ⊗̂R T .

Remark

Shapiro’s lemma provides an isomorphisms in CΛ,G:

Hi(G,FΓ(T )) ∼= lim←
UE◦G

kerχ≤U

Hi(U, T ),



Derived categories

A an abelian category
Derived category D(A): localization of homotopy category of Ch(A)
obtained by inverting quasi-isomorphisms.
Bounded derived categories: D+(A), D−(A), and Db(A).

Remark

Two complexes are isomorphic in D(A) are isomorphic if and only if
they are quasi-isomorphic in Ch(A).

We have the following standard result:

Theorem

a. If A has enough injectives, then every object in D+(A) is isomor-
phic to a bounded below complex of injectives.

b. If A has enough projectives, then every object in D−(A) is iso-
morphic to a bounded above complex of projectives.



Derived homomorphism groups

Λ, Ω, Σ, Ξ algebras over R
ModΛ−Ω category of Λ⊗R Ω◦-modules

We take the following as our definition of derived Λ-module homoms.:

Proposition

Let A ∈ Ch(ModΛ−Ω) and B ∈ Ch(ModΛ−Σ).

1 If Ω is R-projective and A is bounded above, we have

RHomΛ(A,B) = HomΛ(P,B) ∈ D(ModΩ−Σ)

for a complex P ∈ Ch−(ModΛ−Ω) of Λ-projectives with P
∼−→ A.

2 If Σ is R-flat and B is bounded below, we have

RHomΛ(A,B) = HomΛ(A, I) ∈ D(ModΩ−Σ)

for a complex I ∈ Ch+(ModΛ−Σ) of Λ-injectives with B
∼−→ I.

Remarks

The two definitions agree in the cases of intersection.

Hi(RHomΛ(A,B)) is the hyper-Ext group ExtiΛ(A,B).



Derived tensor products

Proposition

Assume Ω is R-flat. The derived tensor product of A ∈ Ch−(ModΩ−Λ)
and B ∈ Ch(ModΛ−Σ) satisfies

A⊗L
Λ B = P ⊗Λ B ∈ D(ModΩ−Σ)

for P ∈ Ch−(ModΩ−Λ) of Λ◦-flat modules with P
∼−→ A.

Remark

H−i(A⊗L
Λ B) is the hyper-Tor group TorΛ

i (A,B).

Remark

If the algebras are pro-p and Ω is projective in CR, the derived com-
pleted tensor products A ⊗̂L

RB ∈ D(CΩ−Σ) for A ∈ Ch−(CΩ−Λ) and
B ∈ Ch(CΛ−Σ) can be computed similarly. One can also incorporate
G-actions.



Two useful derived isomorphisms

Lemma A

Let Ξ be R-flat and Σ be R-projective.
Let A ∈ Ch−(ModΩ−Λ), B ∈ Ch(ModΛ−Σ), and C ∈ Ch+(ModΩ−Ξ).
Then we have an isomorphism in D(ModΣ−Ξ) given by

RHomΩ(A⊗L
Λ B,C)

∼−→ RHomΛ(B,RHomΩ(A,C)).

Lemma B

Let Ω be R-flat and Ξ be R-projective.
Let A ∈ Chb(ModΩ−Σ), B ∈ Ch−(ModΞ−Λ), and C ∈ Ch+(ModΣ−Λ).
Suppose that

1 the terms of A are Σ◦-flat and

2 the terms of B are finitely presented and projective over Λ◦.

Then we have an isomorphism in D(ModΩ−Ξ) given by

A⊗L
Σ RHomΛ◦(B,C)

∼−→ RHomΛ◦(B,A⊗L
Σ C).
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Spectral sequences

Let T be a complex in CR,G.
RΓ(G,FΓ(T )) is C(G,FΓ(T )) viewed as an object of D(ModΛ).

Theorem

Let Γ0 E Γ be closed, Γ′ = Γ/Γ0, and Λ′ = R[[Γ′]]. Consider

1 G has finite cohomological dimension and

2 Γ0 contains no elements of order p.

If (1) holds and T is bounded above, (2) holds and T is bounded below,
or both (1) and (2) hold, then we have an isomorphism

Λ′ ⊗L
Λ RΓ(G,FΓ(T ))

∼−→ RΓ(G,FΓ′(T ))

in D(ModΛ′).

Remark

In other words, we have a descent spectral sequence

TorΛ
−i(Λ

′, Hj(G,FΓ(T )))⇒ Hi+j(G,FΓ′(T )).



Cones and shifts

Definition

For i ∈ Z, the ith shift of a complex A is the complex A[i] with

A[i]j = Ai+j , djA[i] = (−1)idi+jA .

Definition

The cone of a map f : A→ B of complexes is the complex

Cone(f)i = Ai+1 ⊕Bi, diCone(f)(a, b) = (diA(a), f(a)− diB(b)).

Lemma

The cone of f : A→ B fits into an exact sequence of complexes

0→ B → Cone(f)→ A[1]→ 0

giving rise to a long exact sequence

Hi(B)→ Hi(Cone(f))→ Hi+1(A)
fi+1

−−−→ Hi+1(B).



Arithmetic setup

Notation

F global field of characteristic not p
S finite set of primes of F including any over p and any real places
GS Galois group of maximal S-ramified extension of F
Gv absolute Galois group of completion Fv at any v ∈ S
Γ = Gal(F∞/F ) with F∞/F an S-ramified p-adic Lie extension
T bounded complex in CR,GF,S

of finitely generated R-modules

Definition

The compactly supported GS-cochains of T are

Cc(GS , T ) = Cone
(
C(GS , T )

∑
Resv−−−−−→

⊕
v∈SC(Gv, T )

)
[−1],

where we use Tate cochain complexes for archimedean v.

The cone provides an exact triangle

RΓc(GS , T )→ RΓ(GS , T )→
⊕

v∈SRΓ(Gv, T )→ RΓc(GS , T )[1]

which yields the long exact sequence on cohomology.
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Finite generation of cohomology

Proposition (Descent spectral sequences)

Let Γ′ = Gal(F ′∞/F ) be a quotient of Γ by a closed subgroup. If p is
odd or all real places of F ′∞ split completely in F∞, then we have an
isomorphism of exact triangles in D(ModΛ′):

Λ′ ⊗Λ RΓc(GS ,FΓ(T ))
∼

//

��

RΓc(GS ,FΓ′(T ))

��

Λ′ ⊗Λ RΓ(GS ,FΓ(T ))
∼

//

��

RΓ(GS ,FΓ′(T ))

��⊕
v∈S Λ′ ⊗Λ RΓ(Gv,FΓ(T ))

∼
//

��

⊕
v∈S RΓ(Gv,FΓ′(T ))

��

Λ′ ⊗Λ RΓc(GS ,FΓ(T ))[1]
∼
// RΓc(GS ,FΓ′(T ))[1]

Theorem

The ith cohomology groups Hi(GS ,FΓ(T )), Hi
c(GS ,FΓ(T )), and

Hi(Gv,FΓ(T )) are all finitely generated Λ-modules.



Modified Čech complex

Let m denote the maximal ideal and d the Krull dimension of R.

Let x1, . . . , xd ∈ m be such that R/(x1, . . . , xd) has Krull dimension 0.

Definition

The modified Čech complex for R is the complex

CR =
[
R→

⊕
i

Rxi
→
⊕
i<j

Rxixj
→ · · · → Rx1...xd

]
[d]

with appropriate signs (i.e., (−1)s+1 : Rxi1
···x̂is ···xit

→ Rxi1 ···xit
).

Remark

The complex JR = HomR(CR, R
∨) is of R-injectives and is quasi-

isomorphic to a bounded complex of finitely generated R-modules.



Grothendieck duality

Example

If R = Zp and x1 = p, then

CZp = [Zp → Qp][1] and JZp = [Qp → Qp/Zp] ' Zp.

Definition

The dualizing complex ωR is the object represented by JR in the de-
rived category DR−ft(ModR) of complexes that are quasi-isomorphic
to bounded complexes of finitely generated R-modules.

Theorem (Grothendieck duality)

For T ∈ Db
R−ft(ModR), there exists a canonical quasi-isomorphism

T → RHomR(RHomR(T, ωR), ωR).

Remark

If R is Gorenstein, then ωR is quasi-isomorphic to R.
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Nekovář’s version of Poitou-Tate duality

Notation

T bounded complex in CR,GS
of finitely generated R-modules

T ∗ quasi-isomorphic subcomplex of HomR(T, JR) in Chb(CR−ft
R,GS

)

T ⊗R T ∗(1)→ JR(1) on the total tensor product yields a cup product.
The adjoint maps then provide morphisms as in the following.

Theorem (Nekovář)

There are natural, compatible isomorphisms in D(ModR) given by

RΓ(Gv, T )
∼−→ RHomR(RΓ(Gv, T

∗(1)), ωR)[−2],

RΓ(GS , T )
∼−→ RHomR(RΓc(GS , T

∗(1)), ωR)[−3],

RΓc(GS , T )
∼−→ RHomR(RΓ(GS , T

∗(1)), ωR)[−3].

Remark

The theorem yields the hypercohomology spectral sequence

ExtiR(Hj(GS , T
∗(1)), ωR)⇒ H3−i−j

c (GS , T ).
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Duality for complexes of induced modules

Would like a Nekovář-type duality up the Iwasawa tower between co-
homology groups with coefficients in FΓ(T ) and FΓ(T ∗)ι(1).

Problem

The R-algebra Λ can be noncommutative, and we do not know if it has
a dualizing complex of bimodules analogous to ωR.

Idea (Nekovář)

Λ⊗R ωR plays the role of ωR for cohomology of induced modules.

Proposition

We have a natural isomorphism

FΓ(T )
∼−→ RHomΛ◦(FΓ(T ∗)ι,Λ⊗R ωR)

in Db(ModΛ[GS ]). In fact, this can be seen in the bounded derived
category of the ind-category of the full subcategory of finitely generated
modules in CΛ,GS

.
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Main result

Theorem (Lim-S.)

We have a natural isomorphism of exact triangles in D(ModΛ):

RΓc(GS ,FΓ(T ))
∼

//

��

RHomΛ◦ (RΓ(GS ,FΓ(T ∗)ι(1)),Λ⊗R ωR)[−3]

��

RΓ(GS ,FΓ(T ))
∼

//

��

RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)),Λ⊗R ωR)[−3]

��⊕
v∈S RΓ(Gv ,FΓ(T ))

∼
//

��

⊕
v∈S RHomΛ◦ (RΓ(Gv ,FΓ(T ∗)ι(1)),Λ⊗R ωR)[−2]

��

RΓc(GS ,FΓ(T ))[1]
∼

// RHomΛ◦ (RΓ(GS ,FΓ(T ∗)ι(1)),Λ⊗R ωR)[−2]

Remark

Any 2 of the first 3 isomorphisms implies the third; the second and
the third for nonarchimedean summands are easiest. At real places,
the third involves additional technicalities (in particular, q-projective
resolutions) to deal with the cohomologically unbounded complexes.
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Consequences

Our results plus Poitou-Tate duality (in the sense of Lim’s work) yield:

Corollary

Have convergent spectral sequences of finitely generated Λ/Λ◦-modules:

ExtiΛ◦(H
j(HS , T ⊗R CR)∨,Λ⊗R JR)⇒ Hi+j(GS ,FΓ(T ))

ExtiΛ(Hj(GS ,FΓ(T )),Λ⊗R JR)⇒ Hi+j(HS , T ⊗R CR)∨

with HS the Galois group of the maximal S-ramified extension of F∞.

Remark

If R is Gorenstein and T is R-flat, the first spectral sequence becomes

ExtiΛ◦(H
j(HS , T ⊗R R∨)∨,Λ)⇒ Hi+j(GS ,FΓ(T )),

which generalizes the spectral sequence of Jannsen for R = Zp that is
useful in computing Iwasawa adjoints.
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An application

Setup

h Hida’s ordinary cuspidal Zp-Hecke algebra of level Np∞, p ≥ 5, p - N
S space of ordinary “Λ-adic” cusp forms acted on by h
Λ = h[[Γ]] for Γ = Gal(Q∞/Q) with Q∞/Q unramified outside S =
{v | Np∞} and containing Q(µNp∞)
H inverse limit of H1

ét(X1(Npr)/Q,Zp(1))ord

Remarks (Ohta, Fukaya-Kato)

H ∼= S ⊕ h as h-modules via adjoint Hecke action.

H × H → S(1) twisted Poincaré duality pairing that is perfect,
h-bilinear, and GS-equivariant for σ ∈ GS acting on S by 〈χ(σ)〉
with χ the cyclotomic character to Z×p,N = lim

←
(Z/NprZ)×.

h is Cohen-Macaulay with dualizing module S.

In D(ModΛ), it follows that we have an isomorphism

RΓ(GS ,FΓ(H))
∼−→ RHomΛ◦(RΓc(GS ,FΓ(H))ι,Λ⊗h S)〈χ〉[−3]

where 〈χ〉 indicates the action of γ ∈ Γ is twisted by 〈χ(γ)〉.
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Reduction to torsion-free coefficient rings

R a complete commutative local noetherian ring with quotient R
Ω = R[[Γ]] and mR the maximal ideal of R
d = dimk mR/m

2
R − dimk m/m

2

Proposition

We have the following commutative diagram in D(ModΣ):

RΓ(GS ,FΓ(T )) //

o
��

RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)),Λ⊗R ωR)[−3]

o
��

RΓ(GS ,Ω
ι ⊗R T ) // RHomΩ◦ (RΓc(GS ,Ω⊗R T ∗[−d](1)),Ω⊗R ωR)[−3].

Remarks

1 RHomR(T, ωR) ∼= RHomR(T, ωR)[−d]

2 Ωι ⊗R T ∼= Λι ⊗R T = FΓ(T )

Remark

R is a quotient of a polynomial ring in dimk m/m
2 variables over the

Witt vectors of k = R/m, so we may assume R is regular and Zp-flat.
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Idea of proof for torsion-free coefficient rings

To show:

RΓ(GS ,FΓ(T ))
∼−→ RHomΛ◦(RΓc(GS ,FΓ(T ∗)ι(1)),Λ⊗R ωR)[−3].

Know:

RΓ(GS , T )
∼−→ RHomR(RΓc(GS , T

∗(1)), ωR)[−3].

Idea

Induction working modulo powers of the augmentation ideal I of Λ.

Note that Λ = lim
←

Λ/In.

Moreover, Λ/I ∼= R, and In/In+1 is a finitely generated R-module with
an R-flat resolution

[In+1 → In]
∼−→ In/In+1.

Finally, note that In/In+1 (unlike Λ) has a trivial GS-action.
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Inductive step

For 0 ≤ m < n, set FIm/In(T ) = [In → Im]⊗Λ FΓ(T ).

We have a commutative diagram of exact triangles:

RΓ(GS ,FIn/In+1 (T )) //

��

RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)), In/In+1 ⊗L
R ωR)[−3]

��

RΓ(GS ,FΛ/In+1 (T )) //

��

RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)),Λ/In+1 ⊗L
R ωR)[−3]

��

RΓ(GS ,FΛ/In (T )) //

��

RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)),Λ/In ⊗L
R ωR)[−3]

��

RΓ(GS ,FIn/In+1 (T ))[1] // RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)), In/In+1 ⊗L
R ωR)[−2]

When n = 1, the third horizontal map becomes Nekovář’s theorem
after applying the descent spectral sequence.

By induction, the second horizontal map is an isomorphism if we can
show that the first is (by the five lemma).



End of the proof

Using the flatness of [In+1 → In] and the triviality of the GS-action
on In/In+1, we obtain a natural commutative diagram in D(ModR):

In/In+1 ⊗L
R RΓ(GS , T )

∼
//

o
��

In/In+1 ⊗L
R RHomR(RΓc(GS , T

∗(1)), ωR)[−3]

oLemma B
��

RΓ(GS , I
n/In+1 ⊗̂L

R T ) //

o

��

RHomR(RΓc(GS , T
∗(1)), In/In+1 ⊗L

R ωR)[−3]

oDescent
��

RHomR(RΓc(GS ,FΓ(T ∗)ι(1))⊗L
Λ R, In/In+1 ⊗L

R ωR)[−3]

oLemma A
��

RΓ(GS ,FIn/In+1 (T )) // RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)), In/In+1 ⊗L
R ωR)[−3].

The upper isomorphism follows from Nekovář’s theorem.

To finish the proof, one then needs only to pass to the inverse limit
over n of the isomorphisms

RΓ(GS ,FΛ/In (T ))
∼
// RHomΛ◦ (RΓc(GS ,FΓ(T ∗)ι(1)),Λ/In ⊗L

R ωR)[−3].

For this, we resolve the compactly supported cochains by a complex of
finitely generated projective Λ◦-modules, which allows us to pass the
inverse limit through the homomorphism complex to the second term.
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