2-KAC-MOODY ALGEBRAS
RAPHAEL ROUQUIER

ABSTRACT. We construct a 2-category associated with a symmetrizable Kac-Moody algebra
and we study its 2-representations. This generalizes earlier work [ChRou] for sl;. We relate
categorifications relying on Ky properties as in the approach of [ChRou] and 2-representations.
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1. INTRODUCTION

Over the past ten years, we have advocated the idea that there should exist monoidal
categories (or 2-categories) with interesting “representation theory”: we propose to call “2-
representation theory” this higher version of representation theory and to call “2-algebras”
those “interesting” monoidal additive categories. The difficulty in pinning down what is a
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2-algebra (or a Hopf version) should be compared with the difficulty in defining precisely the
meaning of quantum groups (or quantum algebras). The analogy is actually expected to be
meaningful: while quantization turns certain algebras into quantum algebras, “categorifica-
tion” should turn those algebras into 2-algebras. Dequantization is specialization ¢ — 1, while
“decategorification” is the Grothendieck group construction — in the presence of gradings, it
leads to a quantum object.

Our original example was the monoidal category By, associated with Coxeter groups and
braid groups [Roul] and the motivation was to understand the Beilinson-Bernstein equivalence
between the derived category of category O of a complex semi-simple Lie algebra and the derived
category of sheaves on a flag variety (smooth on B-orbits) as an isomorphism of representations
of Byy. This was an attempt to recast Soergel’s proof of that equivalence in a more conceptual
framework. This was also meant to avoid the direct construction of a functor from the category
O to the category of modules over the cohomology of the flag variety: that construction uses
the longest element of the Weyl group and it doesn’t generalize immediately to the affine case.

The starting point of the study of 2-representation theory of Lie algebras was the construction
in 2003 of the theory of sly-categorifications with Joseph Chuang [ChRou].

A large part of geometric representation theory should, and can, be viewed as a construction
of “irreducible” 2-representations as categories of sheaves.

In this paper, we define a 2-category A, associated with a Kac-Moody algebra g. This
generalizes the case of sl that was considered and studied in a joint work with Joseph Chuang
[ChRou]. Modulo some Hecke algebra isomorphisms, the generalization is quite natural. In
type A, there is a very useful generalization of the presentation of [ChRou] (joint work with
Joseph Chuang).

In [Rou2], we define and study tensor structures on the 2-category of 2-representations of A4
on dg-categories, with aim the construction of 4-dimensional topological quantum field theories.
Our 2-categories associated with Kac-Moody algebras provide a solution to the question raised
by Crane and Frenkel [CrFr| for a search of “Hopf categories”.

A crucial feature of 2-representation theory is the construction of a machinery that produces
new categories out of some given categories (with extra structure). We believe this should be
viewed as an algebraic counterpart of the construction of moduli spaces as families of sheaves
or other objects on a variety. The following oversimplified diagram explains how our algebraic
constructions would reproduce the various counting invariants based on moduli spaces, bypass-
ing the moduli spaces and the difficulties of their construction and the construction of their
invariants

Variety X Moduli space M of objects on X

| l

Category of sheaves on X — - — — > Category of sheaves on M

While our focus here is on classical algebraic objects (related in some way to 2-dimensional
geometry), it is our belief that there should be 2-algebras associated with 3-dimensional ge-
ometry, possibly non-commutative, and that their higher representation theory would provide
the proper algebraic framework for the various couting invariants (Gromov-Witten, Donaldson-
Thomas,...).
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The category A4 categorifies (a completion of) the Z-form Uz(g) of the enveloping algebra of
g. Consequently, a 2-representation of Ar on an exact or a triangulated category V gives rise to
an action of Uz(gr) on Ky(V). This gives a hint at the very non-semi-simplicity of the theory
of 2-representations of Ar. The presence of gradings actually gives rise to a categorification of
the associated quantum group.

The Hecke algebras used in [ChRou| are replaced by Hecke algebras associated with graphs
(or with Cartan matrices). They occur naturally as endomorphisms of correspondences for
quiver varieties, as we will show in a sequel to this paper. In the type A cases, they occur when
decomposing representations of (degenerate) affine Hecke algebras according to the spectrum
of the polynomial subalgebra (and not just the center). They can be defined by generator and
relations and they also have a simple construction as a subalgebra of a wreath product algebra.

We construct more generally a flat family of “Hecke” algebras over the space of matrices over
k[u,v] which are hermitian with respect to u «<» v. They are filtered with associated graded
algebra a wreath product of a polynomial algebra by a nil Hecke algebra. They satisfy the
PBW property.

Consider a monoidal category or a 2-category defined by generators and relations. A diffi-
culty in 2-representation theory is to check the defining relations in examples. The philosophy
of [ChRou| was, instead of defining first the monoidal category, to describe directly what a 2-
representation should be, using the action on the Grothendieck group. The main result of this
paper is to provide a similar approach for Kac-Moody algebras. We show, under certain finite-
ness assumptions, that it is enough to check the relations [e;, f;] = d;;h; on K. This is needed
to show that the earlier definition of Chuang and the author of type A or A-categorifications
coincides with the more general notion defined here.

The main results of this paper have been announced at seminars in Orsay, Paris and Kyoto in
the Spring 2007. Certain specializations of the Hecke algebras associated with quivers and the
resulting monoidal categories associated with “half” Kac-Moody algebras have been introduced
independently by Khovanov and Lauda [KhoLau].

2. PRELIMINARIES

2.1. Notations and conventions. Let k£ be a commutative ring. We write ® for ®;. Given
M a graded k-module and i an integer, we denote by M (i) the graded k-module given by

M (i), = My4;. Given n € Z, we put [n] = ="+ and [n]! = [}, [i] for n € Z>,.

Given P = Y, ,piv" € Zxo[v*'] a Laurent polynomial with non-negative coefficients, we
put Pk = @, 5 kP"(—i). Given k' a k-algebra and M a k-module, we put ¥'M = k' @ M. We
also put PM = Pk® M.

Given A a k-algebra, v an automorphism of A and M a right A-module, we denote by M, the
right A-module v*M: it is equal to M as a k-module and the action of a € A on M, is given by
M, > m — m-y(a). Given M an (A, A)-bimodule, we put M* = {m € M | am = ma, Ya € A}.

An A-algebra is an algebra B endowed with a morphism of algebras B — A. Given B an
A-algebra, we say that a B-module is relatively A-projective if it is a direct summand of B&® 4 M
for some A-module M.

We say that an endofunctor F' of an additive category C is locally nilpotent if for every M € C,
there is n > 0 such that F™(M) = 0.

Categories are denoted by calligraphic letters A, B,C, etc. and 2-categories are denoted by
gothic letters @, 3, €, etc.
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We denote by Ob(A) or by A the set of objects of a category (or of a 2-category) A. Given
a an object, we will denote by a or 1, or 1, the identity of a.

Given F,G : A — B two functors, a morphism F — G is the data of a compatible collection
of arrows F'(a) — G(a) for a € A and we call these natural morphisms.

We denote by Sets (resp. Ab) the category of sets (resp. of abelian groups). We denote by
A-Mod the category of A-modules, by A-mod the category of finitely generated A-modules and
by A-free is full subcategory of free A-modules of finite rank. Here, module means left module.

We denote by €at (resp. @dd, ZLiny, b, Tri) the strict 2-category of categories (resp. of
additive categories, of k-linear categories, of abelian categories with exact functors, of trian-
gulated categories). When k is a field, we denote by gb£ the 2-category of k-linear abelian
categories all of whose objects have finite composition series and such that k£ = End (V') for any
simple object V' (1-arrows are k-linear exact functors).

Given (Q a finite interval of Z, we denote by &(2) the symmetric group on €, viewed as a
Coxeter group with generating set {s; = (i,i+ 1)} where ¢ runs over the non-maximal elements
of 2. We denote by w(f2) the longest element of &(2). Given E a family of disjoint intervals
of Q, we put S(E) = [[yer S(€') and we denote by S(Q)% (resp. #&(€2)) the set of minimal
length representatives of &(Q2)/&(E) (resp. &(F) \ 6(R2)). We put &,, = &[1,n].

2.2. 2-Categories. We set up in this section the appropriate formalism for 2-representation
theory. At first, we recall the more classical setting of representation theory as a study of
functors.

2.2.1. Categories. Let A and B be two categories. We denote by Hom(A, B) the category of
functors A — B: we think of these as representations of A in B. For example, if A has a unique
object x and B = Sets, the category Hom(A, B) is equivalent to the category of sets acted on
by the monoid End(x).

Given a € A, we have a functor Hom(a, —) : p, : A — Sets (the regular representation when
A has a unique object).

We put AY = Hom(AP, Sets°PP). The functor

A— AY, M — Hom(M,—)

is fully faithful (Yoneda’s Lemma) and we identify A with a full subcategory of A" through
this embedding.

Assume A is enriched in abelian groups. The additive closure of A is the full additive
subcategory A® of the category of functors A°PP — Ab°PP generated by objects of A. Given A’
an additive category, the restriction functor gives an equivalence from the category of additive
functors A* — A’ to the category of functors enriched in abelian groups A — A’

Assume A is an additive category. We denote by A’ the idempotent completion of A. Given
A’ an idempotent-complete additive category, restriction gives an equivalence from the category
of additive functors A* — A’ to the category of additive functors A — A’

Let M € A and let L be a right End(A/)-module. We denote by L ®gnacary M the object of
CY defined by Homgnq(aryore (L, Hom(M, —)).

Given A a ring, the category of A-modules in A is the category of additive functors A — A,
where A is the category with one object x and with End(x) = A. An object of that category is
an object M of A endowed with a morphism of rings A — End(M).
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Given an A-module M in A and L aright A-module, we put L& s M = (L®4End(M))®gna(ar)
M. For example, there is a canonical isomorphism Z" ®z M — M™.

Let B be a commutative ring endowed with a morphism B — Z(.A) and let A be a B-algebra.
We denote by A ®p A the additive category with same objects as A and Homyg,a(M,N) =
Homy (M, N) ®p A, where B acts via Z(A). Let A’ be an additive category endowed with a
morphism B — Z(A’). We denote by A ®p A’ the additive closure of the category with set
of objects Ob(.A) x Ob(A’) and Hom((M, M’),(N,N")) = Homs(M,N) @5 Hom 4 (M', N').
Given A" an additive category, we have an equivalence of categories

Homadd (./4 ®B .A,, .A”) :> Homadd (.A, Homadd (.A/, AH)).

An equivalence relation ~ on a category is a relation on arrows such that f ~ f’ implies
fg ~ f'g and gf ~ gf" (whenever this makes sense). Recall that given A a category and ~
a relation on arrows of 4, we have a quotient category A/~ with same objects as A. The
quotient functor A — A/~ induces a fully faithful functor Hom(A/~, B) — Hom(A, B) for
any category B. A functor is in the image if and only if two equivalent arrows have the same
image under the functor. The construction depends only on the equivalence relation on A
generated by ~.

Let k£ be a commutative ring and A a k-linear category. Given S a set of arrows of A,
let ~=~g be the coarsest equivalence relation on A such that f ~ 0 for every f € S and
{(f,9) | [ ~ g} is a k-submodule of Hom(a,a') & Hom(a,a’). We denote by A/S = A/~
the quotient k-linear category: a k-linear functor A — B factors through 4/S, and then the
factorization is unique up to unique isomorphism, if and only if it sends arrows in S to 0.

Given A a category, we denote by kA the k-linear category associated with A: there is a
canonical functor A — kA and given a k-linear category B and a functor F : A — B, there is
a k-linear functor G : kA — B unique up to unique isomorphism such that F' = G - can.

Let I = (Iy, I1, s,t) be a quiver: this is the data of

e a set [ (vertices) and a set [; (arrows)
e maps s,t: I} — Iy (source and target).

We denote by P = P(I) the set of paths in I, i.e., sequences (b, . .., b,) of elements of I; such
that ¢(b;) = s(b;—1) for 1 < i < n. It comes with maps s : P — Iy, (by,...,b,) — s(b,) (source)
and t : P — Iy, (b1,...,b,) — t(by) (target). We write by - - - b, for the element (by,...,b,) of
P.

We denote by C(I) the category generated by I. Its set of objects is Iy and Hom(i,j) =
(s,t)71(i, 7). Composition is concatenation of paths.

Let A be a category. The category of diagrams of type I in A is canonically isomorphic to
the category of functors C(/) — A (the isomorphism is given by restricting the functor).

A graded category is a category endowed with a self-equivalence T'. Given M an object with
isomorphism class [M], we put v[M] = [T~ (M)].
The 2-category of graded k-linear categories is equivalent to the 2-category of k-linear cate-
gories enriched in graded k-modules:
e Let C be a graded k-linear category. We define D as the category with objects those
of C and with Homp(V, W) = @, Home(V, T'W). The composition of the maps of D
coming from maps f : V — T'W and g : W — TYX of C is the map coming from
T (g)of:V—->THX.
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e Let D be a k-linear category enriched in graded k-modules. Define C as the category
with objects families {V;};cz with V; an object of D and V; = 0 for almost all . We put
Home({V;}, {Wi}) = @, ; Homp(V;, Wj);—i. We define T({V;})n = Vi1

2.2.2. Definitions. Our main reference for basic definitions and results on 2-categories is [Gra]
(cf also [Le| for the basic definitions).

Definition 2.1. A 2-category 4 is the data of
e a set Ay of objects
e categories Hom(a,d') for a,a’ € @
o functors Hom(ay,as) X Hom(as, as) — Hom(ay,as), (by,bs) +— baby for ay,as,as € 4
e functors I, € End(a) for a € 4
e natural isomorphisms (bsby)by — bz(baby) for b; € Hom(a;, a;41) and ay, ... a4 € 4.
e natural isomorphisms bl, — b for b € Hom(a,a') and a,a’ € A
e natural isomorphisms I,b = b for b € Hom(d',a) and a,a’ € A

such that the following diagrams commute

can(ba,bs,b2)-b1

((babs)by) by (ba(bsba)) by

can(b4b3,b2,b1 an(b47b3b2:bl)

(b4b3)(baby) ba((bsb2)by)

can(ba,bs,bab1 4-can(bs,b2,b1)

b (b3(babr))

can(bz,lq,b1)

(bal,)b ba(1,b1)

1
(bz)k Aﬂ(bl)

baby

Note that 2-categories are called bicategories in [Gra]. A strict 2-category is a 2-category
where the associativity and unit isomorphisms are identity maps: (bsbe)by = b3(beby) and
bl, = b, 1,b =0 (called 2-category in [Gral).

Let 4 be a 2-category. Its l-arrows (resp. 2-arrows) are the objects (resp. arrows) of the
categories Hom(a, a’)

Given b:a — d and V' : ' — a” two 1-arrows, we denote by 0'b : @ — a” their composition.
The composition of 2-arrows (viewed as arrows in a category Hom(a,a’)) is denoted by ¢ o c.
Given a” an object of @, by,by : @ — d’, ¢ : by — by and b, b, : @’ — a”, ¢ : b — b, we denote
by ¢ : biby — bhby the “juxtaposition”.

We say that a 1-arrow b : a; — as is

e an equivalence if there is a 1-arrow b’ : as — a; and isomorphisms I,, — 0'b and b0’ = I,,
e fully faithful if given any object a”, the functor Hom(a”,b) : Hom(a",a;) — Hom(a", as)
is fully faithful.
Note that these notions coincide with the usual notions for @ = €at, @ = Add, 4 = @b or
q=Tri.
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Given a 2-category @, we denote by @<, the category with objects those of @ and with arrows
the isomorphism classes of 1-arrows of 4.

The opposite 2-category @°*" of @ has same set of objects as 4 and Homgerr(a,a’) =
Homg(a, a')°PP, while the rest of the structure is inherited from that of 4.

The reverse 2-category @ of @ has same set of objects as @ and Homgerr (a, a’) = Homg(d', a).
The composition

Homgrev(ay, az) X Homgrev (ag, az) — Homgrev(ay, as)

is given by (b, bg) — biby (composition in @). The rest of the structure is inherited from that

of 4.

Definition 2.2. A 2-functor R : @ — B between 2-categories is the data of
e a map R: Ob(4) — Ob(H)
e functors R : Bom(a,a’) — Bom(R(a), R(a")) for a,a’ € A
e natural isomorphisms R(by)R(by) — R(bgby) for by, by 1-arrows of A
e invertible 2-arrows I — R(I,) fora € @

such that the following diagrams commute

can(bs,b2)-R(b1) can(bsba,b1)

(R(bs3)R(bs)) R(by) R(bsby) R(b1) R((bsba)by)
can(R(b3),R(b2),R(b1)) i i R(can(bs,b2,b1))
R(bs) (R(b2) R(0)) o R(b) Rl(bab1) ——m R(ba(beb))
R(b)-can(a) can(a’)-R(b)
R(b)Ir(a) R(b)R(1a) Lr(a R(D) R(Io)R(b)
can(R(b)) l J{can(b,la) can(R(b)) J{ lcan([a/ ,b)

R(bl, R(b R(I,b

R<b) R(can(b)) ( ) ( ) R(can(b)) ( )

When the 2-arrows are identity maps Ip(q) = R(I,), we say that the 2-functor is strict (called
strict pseudo-functor in [Gral).
Definition 2.3. A morphism of 2-functors o : R — R’ is the data of
e l-arrows o(a) : R(a) — R'(a)
e natural isomorphisms R'(b)a(ay) — o(az)R(b) for all 1-arrows b : a; — as

such that the following diagrams commute

can(R' (b2),R'(b1),0(a1)) R/(b3)-can(by)

(R (b2) R'(b1))o(an) R (b) (R (b1)o(ar)) R'(b2) (o (az2) R(br))
J/can(bQ,bl).a(al) can(R'(b2),0(az2),R(b1))~ ! l

R/ (bob1)o(ar) (R/(ba)o(a2)) R(by)
\Lcan(bgbl) can(bg)R(bl)i

o(as)R(bab1) o(az) (R(b2)R(b1)) (o(az)R(b2)) R(D1)

o(as3)-can(ba,b1) can(o(as),R(b2),R(b1))
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1

Ir@o(a) == o(a) =~ o(a)Ing)
can-o(a) l ia(a)'can
R (1,)o(a) o o(a)R(1,)

These are quasi-natural transformations with invertible 2-arrows in [Gra).

Definition 2.4. A morphism v : 0 — &, where 0,6 : R — R’ are morphisms of 2-functors, is
the data of 2-arrows vy(a) : o(a) — d(a) for a € A such that the following diagrams commute

R (b)o(ar) R (b)v(a1) R'(b)5(ay)
o(az)R(b) IR ®) & (az)R(D)

These are called modifications in [Gra].

We denote by Bom(4,8) denotes the 2-category of 2-functors @ — B. When ¥ is a strict
2-category, then Bom (4, B) is strict as well.

Given a property of functors, we say that a 2-functor F' : @ — 3 has locally that property if
the functors Hom(a,a') — Hom(F (a), F(a’")) have the property for all a,a’ objects of 4.

A 2-functor F : @ — B is a 2-equivalence if there is a 2-functor G :  — @ and equivalences
idg = GF and FG = idg. This is equivalent to the requirement that F is locally an equivalence
and every object of 3 is equivalent to an object in the image of F.

Every 2-category is 2-equivalent to a strict 2-category, but there are 2-functors between strict
2-categories that are not equivalent to strict ones.

Given a an object of 4, then End(a) is a monoidal category. Conversely, a monoidal category
gives rise to a 2-category with a single object *, and the notion of monoidal functor coincides
with that of 2-functor (i.e., there is a 1,2, 3-fully faithful strict 3-functor from the 3-category
of monoidal categories to that of 2-categories).

Let k be a commutative ring. A k-linear 2-category is a 2-category @ that is locally k-linear
and such that juxtaposition is k-linear. Given @ and ¥ two k-linear 2-categories, we denote by
Hom (A, B) the 2-category of k-linear 2-functors @ — B: this is the locally full sub-2-category
of the category of 2-functors obtained by requiring the functors in the definition of 2-functors
to be k-linear.

Given 4 a 2-category, we denote by k@ the k-linear closure of @: its objects are those of @
and Homg(a,a’) = kHomg(a, d’).

Let b: a — a be a l-arrow. A right adjoint (or right dual) of b is a triple (bY, ey, n) where
bY :ad' — ais a l-arrow and &, : bbY — id, and 7, : id, — b¥b are 2-arrows such that

(epb) o (b)) = idy and (bYep) o (mpb”) = idyv -

We also say that (b,ep,m5) is a left adjoint (or dual) of b¥ and that (b,b", ey, m) (or simply
(b,b")) is an adjoint quadruple (resp. an adjoint pair).

Given by : a — a' a l-arrow and (b1, b)) an adjoint pair, we have a canonical isomorphism

Hom(b, b1) = Hom(by,b”), f— f' = (b'ep,) o (b7 fbY) o (mby).
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Assume now there are dual pairs (b,b") and (b",b). We have an automorphism
(1) End(b) = End(b), f+— (fY)".

2.2.3. Generators and relations. An equivalence relation ~ on 4 is the data for every a,d’
objects, for every b,0’ : a — a’ of an equivalence relation on Hom(b, V') compatible with com-
position and juxtaposition, ¢.e., if ¢; ~ co, then given a 2-arrow ¢, we have ¢; o ¢ ~ ¢ o ¢,
COCL ~ COCy, Cc1C ~ Ccoc and cc; ~ cco, whenever this makes sense. Given a relation ~ on
2-arrows of C, the equivalence relation generated by ~ is the coarsest refinement of ~ that is
an equivalence relation.

Let 4 be a 2-category and ~ an equivalence relation. We denote by @/~ the 2-category with
same objects as @ and with Homg, (a,a’) = Homg(a, a’)/~ (so, @/~ has the same l-arrows as
@). The local quotient functors induce a strict quotient 2-functor @ — @ /~. Given a 2-category
B, the quotient strict 2-functor @ — @/~ induces a strict 2-functor Bom (4 /~, B) — Bom (4, B)
that is locally an isomorphism. A 2-functor is in the image if and only if two equivalent 2-arrows
have the same image.

Given S a set of 2-arrows of @, we denote by S the smallest set of 2-arrows of @ closed under
juxtaposition and composition and containing S and the invertible 2-arrows.

We denote by @[S™!] the 2-category with same objects as @ and with Homgg-1(a,a’) =
Homg(a,a’)[S(a,a’)~"], where S(a,a’) are the 2-arrows of S that are in Homg(a, a’) (so, A[S~]
has the same 1-arrows as @).

The canonical strict 2-functor @ — @[S™!] induces a strict 2-functor Bom (A[S~'], B) —
Hom (@, B) that is locally an isomorphism. A 2-functor is in the image if and only if the image
of any 2-arrow in S is invertible.

Assume 9 is a k-linear 2-category. Let S be a set of 2-arrows of 4. Given a, a’ objects of @,

we consider the equivalence relation ~g ) on Hom(a,a’). Let ~ be the coarsest equivalence
relation on @ that refines the relations ~g(qqy. We put @/ = @/~.

A 2-quiver I = (Iy, I1, 15, 8, t, S2,t5) is the data of

e three sets Iy (vertices), I (1-arrows) and I (2-arrows)

e maps s,t: I} — Iy (source and target)

e maps S, ty : Iy — P = P(ly, I1, s,t) such that s(s2(c)) = s(tz(c)) and t(s2(c)) = t(t2(c))

for all ¢ € I.

_Let I be a 2-quiver. Let a,a’ € Iy. We define a quiver I(a,a') = (Iy, I,,5,t). We put
Iy = (s,t)"(a,a’), the set of paths from a to a’. The set I is given by triples (b, c, V') where
b,b' € P, ¢ € Iy satisfy (V') = s(sa(c)), t(s2(c)) = s(b), s(t) = a, t(b) = a’. We put
5(b,c, V') = bsa(c)b and t(b, c,b') = bta(c)b’. We introduce a relation ~ on P(I(a,a’)) by

(bita(c1)ba, 2, b3)(by, 1, basa(ca)bs) ~ (b1, c1, bata(ca)bs)(bysa(c1)ba, 2, bs)

(whenever this makes sense).

The strict 2-category €(I) generated by I is defined as follows. Its set of objects is I,. We put
Hom(a,a’) = C(I(a,a"))/~. Composition of 1-arrows is concatenation of paths. Juxtaposition
is given by

(bl, C1, bll)(bg, Co, b/2> = (bl, C1, bllbth(CQ)bé) e} (blsg(cl)bllbg, Co, b;)

Note that the category € (1)< is C({y, I1, s,1).

Let 3 be a strict 2-category. An I-diagram D in 3 is the data of
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e an object a; of B for any i € I,
e a l-arrow b; : ayj) — ay;) for any j € I
® a 2-arrow ¢y, : bg,(k) — by, r) for any k € Ip

where given p = (p1,...,pn) € P, we put b, = by, --- b,

n*

bay (k)

ST TN

As(s2(k)) Ck At(s2(k))

~o v 7

beo (k)

The data of b;’s and ¢;’s is the same as the data, for i,i € Iy, of an I(i,)-diagram in
Hom(a;, air).

A morphism ¢ : D — D’ is the data of

e l-arrows o; : a; — a; for 1 € I
e invertible 2-arrows o; : bgas(j) = oy(jyb; for every j € I

'
s(4)
J

o N
() N“”‘ ay,
t(7)

a
k\ Aj)
a

such that for every k € I, with sy(k) = (j1,...,jn) and t3(k) = (ji,...,jn), the following
2-arrows b;z(k)as(jn) — 0y(j1) Do (k) are equal:

t(7)

b7y 55

bjn bjy b5, b3,
@ ——= @ o — 0 = @ ——> @ e — 0
Oj 9351 %in 731

asun)i ”/” latun) Utuz)l / J{Jtm) Us(jn)i / lamn) Ut(]é)l / T4(31)

@ ————> @ o ——>©0 @ ———> @ o ——>©0

b’ b’ Wb b

" b W

Ck
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A morphism v : ¢ — 7 is the data of 2-arrows ~; : 0; — 7; for ¢ € I, such that for every j € I,

we have (7;(j)bj) 0 05 = G; 0 (Dj7s(;), i-e., the following diagram of 2-arrows is commutative:

Tj
Te(5) Ts(4)
) /_\ Y
° —]> ° H’}’t(j) ) [} H’Ys(]‘) [ ] % °
Ge(5) Ts(4)
0

This gives rise to a strict 2-category Bom(1,8) of I-diagrams in B.

Restriction gives a strict 2-functor H : Hom(€ (1), B) — Bom (I, ). It is locally an isomor-
phism and it is surjective on objects, so it is a 2-equivalence.

2.2.4. 2-Representations. Let @ and B be two 2-categories. We will consider 2-representations
of @ in B, i.e., 2-functors R : @ — B. We put @-Mod(B) = Bom(d,B), a 2-category. Given
R : 4 — B a sub-2-representation is a 2-functor R’ : @ — ¥ equiped with a fully faithful
morphism R’ — R.

Let S be a collection of objects of 3. An action of @ on S is a representation of 4 in B with
image contained in S. Note that if @ has only one object and is viewed as a monoidal category
A and S = {C}, we recover the usual notion of an action of .A on C.

Let a € A. We define Hom(a, —) : @ — €at by o’ — Hom(a,a’). The functor Hom(a',a") —
Hom(Hom(a, a’), Hom(a,a")) is given by juxtaposition. The associativity and unit maps of 4
provide the required 2-arrows.

Let R : 4 — €at be a 2-functor. Given a an object of @, there is an equivalence of categories
from R(a) to the category of morphisms Hom(a,—) — R:

e Given M an object of the category R(a), we define a morphism o : Hom(a,—) — R.
The functor Hom(a,a') — R(a’) is b — R(b)(M). The required natural isomorphisms
come from the natural isomorphisms R(b)R(f) = R(bf).

e Conversely, given o : Hom(a,—) — R, we put M = o(I,).

Assume from now on that our 2-categories are k-linear.

Let b:a — o be a l-arrow. A cokernel of b is the data of an object Coker(b) and of a 1-arrow
b' : @’ — Coker(b) such that for any object a”, the functor Hom(V',a") : Hom(Coker(b),a") —
Hom(a',a”) is fully faithful with image equivalent to the full subcategory of 1-arrows b” : @’ —
a” such that "b = 0. When a cokernel of b exists, it is unique up to an equivalence unique up
to a unique isomorphism.

We say that @ admits cokernels if all 1-arrows admit cokernels. This is the case for the
2-category of k-linear categories, of abelian categories or of triangulated categories.

We define kernels as cokernels taken in 3.

Assume 3 admits kernel and cokernels.
Let b : @ — a be a fully faithful 1-arrow. We say that it is thickif b is a kernel of a — Coker(b).



2-KAC-MOODY ALGEBRAS 13

When 3 C Zing, the notion of thickness corresponds to

o Lin; or Tri: a is closed under direct summands
e @b: a is closed under extensions, subobjects and quotients

Lemma 2.5. Let C1,Co be two additive categories, F,G : C; — Cy two additive functors and
f:F — G. Let C] and C} be thick subcategories of C1 and Cy. Assume

o .G admit right adjoints FV,GY
e ' and G send an object of C| to an object of Cy and
o IV and GV send an object of C) to an object of C;.

Denote by F,G : C/C] — C3/Ch the induced functors and f : F — G induced by f. If fier and
f are isomorphisms, then f is an isomorphism.

Proof. Tt is enough to prove the lemma for the categories C; and Cy replaced by idempotent
completions and we will assume now that these categories are idempotent-complete.
Let M € C; and N € C;. We have a commutative diagram with exact rows

0 — Hom® (F (M), N) > Home, (F(M), N) —**> Homg, ¢, (F(M),N) —0
HomC2 (f,N) T Hom(f,N) T Hom(f,N) T
0 —= Hom®(G(M), N) —> Home, (G(M), N) = Homg, ¢, (G(M),N) —0

where 7Homcé denotes the subgroup of maps factoring through an object of Cj. By assumption,
Hom(f, N) is an isomorphism, so it is enough to show that

Hom® (f, N) : Hom%(G(M), N) — Hom®(F (M), N)

is an isomorphism. It is so when M € C;. Consider f¥ : G¥ — F. Since fi¢: is an isomorphism,
it follows that f|\éé is an isomorphism. In particular,

Hom (M, fV) : Hom® (M, G (N)) — Hom® (M, FV(N))

is an isomorphism when N € Cj, hence Hom®(f, N) is an isomorphism when N € C} and conse-
quently Hom(f, N) is an 1som0rphlsm when N € C}. It follows also that the map Hom®(f, N)
is surjective for all M, N, hence Hom(f, N) is surjective for all M, N. Taking N = F(M) shows
that f(M) has a left inverse ¢. Let N’ = coker ¢. This is an object of C} since f(M) is an
isomorphism. The canonical map F(M) — N’ lifts through f(M) to a map G(M) — N, hence
N’ =0 and F(M) is an isomorphism. O

Let R, R’ : @ — B be two 2-functors and o : R — R. Assume o is locally fully faithful. We

define R” = Cokero : @ — B (denoted also by R/ R’ when there is no ambiguity) by R” : a
R(a,a’)

Cokerc(a). The composition Hom(a,a') ——= Hom(R(a), R(a')) — Hom(R(a),Cokera(a'))
factors uniquely through Hom(Cokero(a),Cokero(a’)) and this defines a functor Hom(a,a’) —
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Hom(Cokero(a),Cokera(a’)). The constraints are deduced by taking quotients.
Hom(Cokero(a),Cokera(a'))

_ -

Hom(a,a') — ;-lom(R(a), R(a'))
=

Hom(R'(a), R'(a')) — Hom(R/(a), R(a'))

Hom(R(a),Cokera(a’))

Hom(R'(a),Cokera(a’))

0 /

We have a Grothendieck group functor K, : Tri<; — Ab. When ¥ is endowed with a
canonical 2-functor to the 2-category of triangulated categories, we will still denote by K
the composite functor 3, — Ab. For example, B is the category of exact categories or of
dg-categories and we consider the derived category 2-functor. Viewing additive categories as
exact categories for the split structure provides another example (this is the homotopy category
functor). This gives a “decategorification” functor d-Mod(B)<; — Hom (A<, .Ab).

Let @ and ¥ be k-linear 2-categories. Assume ¥ is locally idempotent-complete. Let A’ be
the idempotent completion of @. The canonical strict 2-functor @ — @ induces a 2-equivalence
Q'-Mod (%) = @-Mod(B).

2.3. Symmetric algebras. The theory of symmetric or Frobenius algebras is classical. We
need here a version over a non-commutative base algebra and we study transitivity properties.

2.3.1. Frobenius forms. Let B be a k-algebra and A a B-algebra. We denote by m : AQgA — A
the multiplication map.

The canonical isomorphism of (A4, B)-bimodules Hompg(A, B) = Homa (A, Homp(A, B)) re-
stricts to an isomorphism

tist: Homp 5(A, B) = Homy p(A, Homp(A, B)).

Let us describe this explicitely. Given ¢ : A — B a morphism of (B, B)-bimodules, we have
the morphism of (A4, B)-bimodules

t: A — Homp(A, B)
a— (a' — t(da)).
Conversely, given f : A — Homp(A, B) a morphism of (A, B)-bimodules, then f(1): A — B
is a morphism of (B, B)-bimodules and we have f = f(1).

Definition 2.6. Let t : A — B be a morphism of (B, B)-bimodules. We say that t is a
Frobenius form if A is a projective B-module of finite type and t : A — Hompg(A, B) is an
1somorphism.

Let t : A — B be a Frobenius form. It defines an automorphism of Z(B)-algebras, the
Nakayama automorphism:

v AB 5 AP a7 (d s t(ad)).
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We have
t(aa') = t(a'y(a)) for all a € A® and o’ € A.

This makes  into an isomorphism of (A, B ®y(py AZ)-modules
t:Agy, — Homp(A, B).
We say that t is symmetric if v = idys.
Remark 2.7. Note that if t(aa’) = t(d’a) for all a,a’ € A, then AP = A.

Given t and t' two Frobenius forms, there is a unique element z € (A%)* such that t'(a) =
t(az) for all @ € A. If in addition ¢ and ¢’ are symmetric, then z € Z(AP)*.

2.3.2. Adjunction (Res,Ind). Let B be a k-algebra and A a B-algebra.

The data of an adjunction (Resp, Indf) is the same as the data of an isomorphism A®p — =
Hompg(A, —) of functors B-Mod — A-Mod.

Assume there is such an adjunction. The functor Homp(A, —) is right exact, hence A is
projective as a B-module. The functor Hompg(A, —) commutes with direct sums, hence A is a
finitely generated projective B-module.

Assume now A is a finitely generated projective B-module. We have a canonical isomorphism

HOHIB(A, B) ®p — = HOHIB(A, —)
So, the data of an adjunction (Ress, Ind%) is the same as the data of an isomorphism f: A 5
Homp(A, B) of (A, B)-bimodules. Given f, let t = f(1) : A — B. This is the morphism of
(B, B)-bimodules corresponding to the counit ¢ : Resy Ind — idg. On the other hand, we
have f = ¢. Summarizing, we have the following Proposition.

Proposition 2.8. Let B be an algebra and A a B-algebra. We have inverse bijections between
the set of Frobenius forms and the set of adjunctions (Resp, Ind3):

t — adjunction defined by t

counit <~ adjunction

Assume we have a Frobenius form ¢ : A — B. The unit of adjunction of the pair (Resf, Ind?)
corresponds to a morphism of (A, A)-bimodules A — A ®p A. The image of 1 under this
morphism is the Casimir element T = 75 € (A ®p A)A. It satisfies

(2) (t@l)(r)=1t)(r)=1¢c A.

Conversely, given an element 7 € (A ®@p A)?4, there exists at most one ¢ € Homp p(A, B)
satisfying (2), and such a morphism is a Frobenius form.

Note that right multiplication induces an isomorphism A” = End(Ind%) and the automor-
phism (1) is the Nakayama automorphism ~;.

Remark 2.9. We developed the theory for left modules, but this is the same as the theory for
right modules. Namely, let ¢t : A — B be a Frobenius form. Since A is finitely generated and
projective as a B-module, it follows that Homp(A, B) is a finitely generated projective right
B-module, hence A is a finitely generated projective right B-module. Consider the composition

t: A M HOIIlBopp<HOHlB(A, B), B) HOIHBOpp(A, B), at— (CL/ — t(aa')).

The first map is an isomorphism since A is finitely generated and projective as a B-module. It
follows that £ is an isomorphism.

HOInBopp (tA,B)
_—



16 RAPHAEL ROUQUIER

2.3.3. Transitivity. Let C be an algebra, B a C-algebra and A a B-algebra. We assume that
A (resp. B) is a finitely generated projective B-module (resp. C-module).

Given t € Homp (A, B), t' € Home(B,C) and t” = t' ot € Home (A, C), we have a
commutative diagram

A r Home (A, C)

| e
t ~ | can

Hompg(A, B) Hompg (A, Homg (B, C))

Hom(A,#)

The units of adjunction are given by composition:

AT Aoy AT A A, 1 1h,
Lemma 2.10. Ift € Homp (A, B) and t' € Home (B, C) are Frobenius forms, then t' ot :
A — C is a Frobenius form.

Lemma 2.11. Let t' € Home (B, C) and t" € Home (A, C) be Frobenius forms. There is
a unique t € Homp(A, B) such that t" = t' ot. It is a Frobenius form and it is given by
t = Homp(A,#)~1("(1)) € Homp (A, B).

Let t” € Home (A, C) and ¢ € AY. Define t' € Home (B, C) by /(b) = t"(bC). If t" is a
Frobenius morphism and the pairing

B x B —C, (bV) — t"(bb¢)

is perfect, then ¢’ is a Frobenius form.
Assume now ¢, ¢’ and ¢ are given and let ( € A®. Then,

HO)=1eVbe B, () =t (b) < Vbe B, t'(b¢) =t (b).

Note that ¢ is determined by # up to adding an element ¢ € A® such that t/(B¢) = 0. The
next lemma shows that under certain conditions on A, the form ¢’ is always obtained from such

a (.

Lemma 2.12. Assume B is a quotient of A as a (B,C)-bimodule (this is the case if A is a
progenerator for B and C C Z(A)). Lett € Homg p(A, B) andt” € Home (A, C) be Frobenius
forms. There is a unique t' € Home o(B, C) such that t" =1t ot. It is a Frobenius form.

Proof. Since A is a progenerator for B, the morphism ¢ is determined by Homp(A,#'). The
unicity of ¢’ follows.

Assume A is a progenerator for B and C' is central in A. Since A is a progenerator for B,
there exists an integer n and a surjection of B-modules f : A" — B. Let m € f~'(1) and
consider the morphism A — A", a — am. The composition g : A — A" — B is a morphism
of B-modules with ¢g(1) = 1. Since C' is central, g is a morphism of (B, C')-bimodules.

Assume now there is a surjective morphism of (B, C)-bimodules h : A — B. Then, h(1) €
Z(C)*. let g: A— B, a+ ah(1)~!. This is a morphism of (B, C)-bimodules with g(1) = 1.

Let ¢ =t~ '(g). We have ¢(¢) = 1 and we define ¢’ by #'(b) = t"(b¢). We have t” = t' o t, the
morphism Homp(A,#') is invertible and since A is a progenerator for B, it follows that ¢ is an
isomorphism. O
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2.3.4. Bases. Let B be an algebra, A a B-algebra and assume A is free of finite rank as a
B-module. Let B be a basis of A as a left B-module: A = &, .z Bv.

Let t € Homp (A, B). Then, t is a Frobenius form if and only if there exists a dual basis
BY = {v¥},ep: i.e., BY satisfies t(v'vY) = 6, for v,0" € B.

Assume t is a Frobenius form. Then, BY exists and is unique. It is a basis of A as a right
B-module. We have

~

t(vY) = (B3 v +— d,,) for v € B.
Given a € A, we have
a= Zt(avv)v = Zvvt(va).
veB veEB
Given a € AP, we have

Ye(a) = Z vVt(av).

veEB

The unit of the adjoint pair (Resp, Ind%) is given by the morphism of (A, A)-bimodules

A= A®pA 1—75=) v/
veEB
Consider now C' an algebra and a C-algebra structure on B such that B is free of finite rank

as a C-module. Let B’ be a basis of B as a C-module. Then, B” = B'B = {v'v}yepven is a
basis of A as a C-module.

Let ' : B — C be a Frobenius form. The dual basis to B” for the Frobenius form ¢ =# ot :
A— Cis B" = {v'v" }yepwen. Given a € A, we have

t(a) = Z t"(av™ ' = Z vVt (v'a).
v'eB v'eB
Given v € B, we have

v = Z CRINACS)
VeB

2.3.5. Ramification. Let A be a B-algebra endowed with a Frobenius form ¢ and assume A? =
A.
The following statements are equivalent:
(a) A is a projective (A ®@p A°PP)-module
(b) there exists a € A such that m((1®a®@1® 1)) =1
(c) there exists a € A such that m((1® 1®ae® 1)7) =1

where A ®p A is viewed as a module over ((A ® A°PP) @p (A ® A°PP)).

When A is commutative, the statements (a)-(c) above are equivalent to the following two
statements

(d) A is étale over B
(e) m(m) € A,
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3. HECKE ALGEBRAS

3.1. Classical Hecke algebras. We recall in this section the various versions of affine Hecke
algebras and the isomorphisms between them after suitable localizations. We consider only the
case of GL,,: in this case, the inclusion G, — G gives an algebraic &,-equivariant map that
makes it possible to avoid completions. In general, one needs to use the expotential map from
the Lie algebra of a torus to the torus. All constructions and results in this section extend to
arbitrary Weyl groups.

3.1.1. BGG-Demazure operators. Given 1 < i < n, we put s; = (i, + 1) € &,,. We define an
endomorphism of abelian groups 9; € Endz(Z[Xq,. .., X,]) by

P — s, (P
8i(P) = &
Xit1— X
The formula defines endomorphisms of various localizations, for example Z[X;", ..., X!].
Given w = s;, - -+ s;,., we put
O = Os, - O;. .

This is independent of the choice of the reduced decomposition.

The Z[X,, ..., X,]® -linear morphism Ouwl1,n) takes values in Z[X;,... , X% Tt is a sym-
metrizing form for the Z[X,..., X,]% -algebra Z[X,,..., X,]. We view Z[X,...,X,] as a
graded algebra with deg(X;) = 2. Then, Oy, is homogeneous of degree —n(n — 1).

Lemma 3.1. Denote by m the Casimir element for Oy ny. Then m(m) = [],o; i, (Xi — X;).
Proof. The algebra Z[X1, ..., X, ] is étale over Z[ X1, ..., X,,|®" outside m(7) = 0. So, H1gj<ign(Xi_

X;) | m(m) (cf §2.3.5). Since m(m) is homogeneous of degree n(n — 1), it follows that there
is @ € Z such that m(r) = a[],;;,(Xi — X;). On the other hand, dupn(m (7)) = n! =

Ouw[1,n] (H1<]<’L<n(X X; )) and the lemma follows. O

Let A =Z[Xy,...,X,] x &,. This algebra has a Frobenius form over Z[X;, ..., X,] given
by
Pw — Péyappn for P € Z[Xy,...,X,] and w € &,,.

By composition, we obtain a Frobenius form ¢ for A over Z[Xj,..., X, ]®" given by
t(Pw) = Oupin)(P)0wwpm for P € Z[Xy,...,X,] and w € &,,.
The corresponding Nakayama automorphism of A is the involution
Xi = Xoig1, Si— —Sn_i.
3.1.2. Degenerate affine Hecke algebras. Let H, be the degenerate affine Hecke algebra of GL,,:
H, =7[X,...,X,] ® Z&,, where Z[X;, ..., X,] and Z&,, are subalgebras and
TX; =X;T;if j —i #0,1 and T; X, 11 — X,;T; = 1.

We denote here by Ti,...,T,_1 the Coxeter generators for G,, and we write T, for the element
w of &,,.
Given P € Z[Xy, ..., X,], we have T;P — s;(P)T; = 0;(P).

We have a faithful representation on Z[Xq,. .., H, ®zs, Z where
)

Xo] =
Ti(P) = si(P) + 0,(P
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Here, Z is the trivial representation of &,,.

The algebra H,, has a Frobenius form over Z[X, ..., X,] given by

(3) PT, +— POy upn for PeZ[Xy,..., X, and w € &,,.
By composition, we obtain a Frobenius form t for H, over Z[X, ..., X,]®" given by
(4) t(PTw) = 8w[17n](P)5w.w[1,n} for P € Z[Xl, . ,Xn] and w € G,,.

The corresponding Nakayama automorphism of H,, is the involution

Xi—= Xoig1, Ti— =T

3.1.3. Finite Hecke algebras. Let R = Z[qg*']. Let H/ be the Hecke algebra of GL,: this is the
R-algebra generated by 71, ...,T,_1, with relations

T T, = T T, Ty =TT if i — j] > 1 and (T, — q)(T; + 1) = 0.

Given w = s;, - - - s;, a reduced decomposition of an element w € &,,, we put 1o, =15, --- T;, .
Let ¢ be the R-linear form on H,J: defined by ¢¢(T%y) = Ow.wj1,n)- This is a Frobenius form, with
Nakayama automorphism the involution given by T; +— T,,_;.

Remark 3.2. The algebra H/ is actually symmetric, via the classical form given by T, +— 81 .
In other terms, the Nakayama automorphism is inner: it is conjugation by Ti,[1,,). On the other
hand, the Hecke algebra is not symmetric over Z[q] and the classical form induces a degenerate
pairing, while the form ¢; above is still a Frobenius form over Z[g] (cf §3.1.5).

3.1.4. Affine Hecke algebras. Let H, be the affine Hecke algebraof GL,,: H, = R X{", ..., X ]®
HY where R[X{',..., XF'] and H/ are subalgebras and
T,X;=XT;if j—i#0,1 and T; X, 11 — X;T; = (¢ — 1) X;41.

Given P € Z[Xi™, ..., X, we have TP — s;(P)T; = (¢ — 1) X;110;(P).

We have a faithful representation on R[X{, ..., X = H, ®ys R, where

Ti(P) = gsi(P) 4 (¢ — 1) Xi10:(P).

Here R denotes the one-dimensional representation of HJ on which T} acts by ¢.

The algebra H,, has a Frobenius form over Z[X1,..., X,] given by (3) and a Frobenius form

t over Z[X1, ..., X,]®" given by (4). The corresponding Nakayama automorphism of H,, is the
involution

Xi— Xpoip1, Ty — —qT,, .

3.1.5. Nil Hecke algebras. Let OHfl be the nil Hecke algebra of GL,: this is the Z-algebra
generated by Ti,...,T,_1, with relations

TTT, = T T, Ty =TyT; it |i — j| > 1 and T2 = 0.

Let to be the linear form on °H f; defined by t(Tiw) = dw-w1,n). This is a Frobenius form, with
Nakayama automorphism given by 7; — T,,_;.

Given w = s;, - -+ 5;, a reduced decomposition of an element w € &,,, we put T, =T;, - - - T;,.
The nil Hecke algebra °H,, is a graded algebra with degT; = —2 and t; is homogeneous of
degree n(n — 1).
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Lemma 3.3. Let f : M — N be a morphism of relatively Z-projective OHi—modules. If
Topmf : TwpM — T N is an isomorphism, then [ is an isomorphism.

Proof. The annihilator of T, , on a relatively Z-projective module L is (H £)§,2L. Nakayama’s
Lemma shows that under the assumption of the lemma, the morphism f is surjective. On the
other hand, ker f is a direct summand of M, hence ker f is relatively Z-projective. Since
Typin ker f =0, it follows that ker f = 0. Il

Let A be an algebra. We denote by A1°H fL the algebra whose underlying abelian group is
AP @ OHi, where A®™ and OHZ; are subalgebras and where (a1 ® -+ ® a,)T; = Ti(ay ® -+ ®
Aim1 ® A1 @ A @ Ajgo @ -+ - @ ay).

3.1.6. Nil affine Hecke algebras. Let °H, be the nil affine Hecke algebra of GL,: °H, =
Z[Xy,..., X,]® OHfL, where Z[ X, ..., X,] and OHfL are subalgebras and

T.X; = X,Tyif j—i #0,1, TXip1 — X,Ty = 1 and T.X; — X, T, = —1.

Given P € Z[Xy,...,X,], we have T;P — s;(P)T; = PT; — T;s;(P) = 0;(P).
We have a faithful representation on Z[ X1, ..., X,] ="H, ®o s Z where

Ti(P) = O/(P).

Let b, = Tw[l,n]X?_ng_Q -+ - X,,—1. By induction on n, one sees that 9,1 (XPIXP2 0 X, ) =
1, hence b2 = b,,. We have an isomorphism of ® H,,-modules

Z[X.,..., X, = H.b,, P+ Pb,.

Since {9,(X7 - X 1)wes, is a basis of Z[X1,..., X,] over Z[X,..., X,]®", it follows
that the multiplication map gives an isomorphism of (°H f;, Z[X1,...,X,]%)-bimodules

H! @ (Z[Xy, ..., XS X Xp_iby) S OHob,.
Proposition 3.4. The action of "H,, on Z[X,,..., X,] induces an isomorphism

"H, = Endgzx,  x,jen (Z[X1,..., X0)).

.....

Since Z[X1, ..., X, is a free Z[ Xy, ..., X,,|®"-module of rank n!, the algebra °H,, is isomorphic
to a (n! x n!)-matriz algebra over Z[Xy, ..., X,|°".
The restriction to OHfL of any *H ,-module is relatively Z-projective.

Proof. Since Z[X1,...,X,] is a finitely generated projective °H,-module, the canonical map
"H, = Endgx, _x,on(Z[X1,..., Xy]) splits as a morphism of Z[X1, ..., X,,|®"-modules. The

-----

first two assertions of the proposition follow from the fact that °H,, is a free Z[X},. .., X,]"-
module of rank (n!)2.

The (OHZ, Z[X1,...,X,])% -module Z[X,...,X,] is a direct summand of °H,. So, given
M an Z[Xy,...,X,]® -module, then Z[X,..., X,] ®z(x,,....x.Jo» M is a direct summand of

-----

0H£ ®z (Z[X1,..., X, ®z(x, .. x,)5» M) as an OHz—rnodule. So, given N an °H ,-module, then

.....

N is a direct summand of °H’ ®7 N as an °H’/-module and the proposition is proven. O
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Lemma 3.3 joined with Proposition 3.4 gives a useful criterion to check that a morphism of
OH,-modules is invertible. Note also that the proposition shows that "H,, is projective as a
(°H’ 9H,,)-bimodule.

The algebra " H,, has a Frobenius form over Z[X7, ..., X,] given by (3) and a Frobenius form
t over Z[X1,...,X,]® given by (4). The corresponding Nakayama automorphism of °H,, is
the involution

Xi— Xoig1, Ti—= =T,

A special feature of the nil affine Hecke algebra, compared to the affine Hecke algebra and
the degenerate affine Hecke algebra, is that the Nakayama automorphism -« is inner, hence the
nil affine Hecke algebra is actually symmetric over Z[X7, ..., X,,]®". Indeed, when viewed as
a subalgebra of Endz(Z[X,...,X,]), then °H,, contains &,,. The injection of &,, in "H,, is
given by s; — (X; — X;41)T; + 1 (cf also §3.1.7). We have

w[l,n]aw[l,n] = y(a) for all a € "H,,.

It follows that the linear form ' given by #(a) = t(aw[l,n]) is a symmetrizing form for H,,

over Z[X1,...,X,]%".

The nil affine Hecke algebra °H,, is a graded algebra with deg X; = 2 and degT; = —2 and ¢
is homogeneous of degree 0. The nil affine Hecke algebra has also a bifiltration given by

<) (UHn) =Z[Xy,..., Xp]<i® (OH£>> .
B

Note that ¢(F<r=1nn=1)) =,

3.1.7. Isomorphisms. The polynomial representations above induce isomorphisms with the
semi-direct product of the algebra of polynomials with &,,, after a suitable localization.

Let R = Z[Xl,...,Xn7(XZ' —Xj)il,(Xi —Xj — 1)71]1‘7@'. We put s = (1,2),...7Sn_1 =
(n—1,n) € &,. We have an isomorphism of R’-algebras
Xi— Xip Xi— Xin1
. H —_—
Xi— X +1 Xi—Xipn—1
Let R, = RIXiE, L XE (X — X5) 7 (¢Xi — X;)7izj. We have an isomorphism of Ry-
algebras

R' %6, = R ®gx, (T;-1)+1=(Ti+1) 1

.....

Xi—Xip Xi — Xipa
""" qXi — Xin Xi—qXin

Let °R = Z[X1,..., X, (X; — X;)""]iz;. We have an isomorphism of ° R-algebras

(Ti—q)+1=(T; +1) -1

Let us finally note that the functor
M — M® : (°R % &,)-mod — (°R)®-mod
is an equivalence of categories.
3.2. Nil Hecke algebras associated with hermitian matrices. In this section, we intro-
duce a flat family of algebras presented by quiver and relations. To a non-symmetric Cartan

datum and a choice of orientation of the underlying quiver, we associate a member of that
family:.
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3.2.1. Definition. Let I be a set, k a commutative ring and @ = (Q; ;)i jer a matrix in kfu, v]
with @ =0 for all ¢ € I.

Let n be a positive integer and L = I"™. We define a (possibly non-unitary) k-algebra H,(Q)
by generators and relations. It is generated by elements 1,, z;, for i € {1,...,n} and 7, for
i€{l,...,n—1} and v € L and the relations are
11/11/’ - ]-1/11/ - 5u,u’

Ti,l/]-l/’ - 1Si(V/)Ti,V = 6V,V’Ti,u
Ia,u]-u’ = ]-V’xa,y = 5V,V’Ia,u

La vy = TphyLa,y

Ti,s; (V) Ty = Qui,uzqu (xi,l/ﬂ xi—i—l,u)
Tisj (W) Tjw = Thsi(w) Tiw if ‘Z — j‘ > 1

TZ’+1,S¢SZ'+1(V)Ti,si+1(V)Ti+1,V - Ti,si+1si(l/)7—i+1,si(V)Ti,l/ =

-1 : _
($i+2,u - il?i,u) (Qui,uiﬂ(%w,u, $i+1,u) - Qyi,ui+1<xi,ya l’z‘+1,u)) if v; = Vit2
0 otherwise
—1, ifa=1iand v; =v;1,
® TivTay — Tsi(a),s;()Tiw = § Lv ifa=i+1and v; = vy
0 otherwise.

forv, eI, 1<i,j<n-—1and1<a,b<n, where z; = x,.
Remark 3.5. Note that when I' is finite, then H,(I') has aunit 1 =% _, 1,.

Remark 3.6. It is actually more natural to view H,(I") as a category H,,(I') with set of objects
L and with Hom-spaces generated by

Zap € End(v) for 1 <a<n

T € Hom(v, s;(v)) for 1 <i<mn—1

with the relations above.

Given a € 1,H,(Q)1,/, we will sometimes write x;a for z;,a and az; for az;,, and proceed
similarly for 7;.

Consider the (possibly non-unitary) algebra R, = (k¥) [x])®n = (k[xy,...,2,] @ (K1))Em).
We denote by 1, the idempotent corresponding to the s-th factor of k) and we put 1, =
1, ®---®1, forvel.

There is a morphism of algebras R, — H,(Q), x;1, — z;,. It restricts to a morphism
RS — Z(H,(Q)). Note that Ry = H,(Q) and we put Hy(Q) = k.

Let J be a set of finite sequences of elements of {1,...,n — 1} such that {s;, ---s; },,..i,)es
is a set of minimal length representatives of elements of &,,. Then,

— . . .. . al .« .. an . .
S = {Tzlvsi2~~~5ir(’/) TZTv’/:Ul,Z/ xn,l/ (z1,...,’LT)EJ,(al,..A,Gn)GZgO,VGL

generates H,(Q) as a k-module.

The algebra H,(Q) is filtered with 1, and z;, in degree 0 and 7;, in degree 1. We have a
surjective algebra morphism

KO OHY — orH,L,(Q).
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The algebra is said to satisfy the PBW (Poincaré-Birkhoff-Witt) property if that morphism is
an isomorphism.

Theorem 3.7. Assume n > 2. The following assertions are equivalent

e H,(Q) satisfies PBW
o H,(Q) is a free k-module with basis S

o (ij(u,v) = Qji(v,u) foralli,jel.
Proof. The first two assertions are equivalent, thanks to the generating family S described
above.
Let v € L with v; # v;11. We have

Ql/i+1,ui (xi,si(u); x’i+1,si(l/))7—i,l/ = TiwTis;()Ti,y — Ti,VQVi,Vi+1 (-ri,w xi-ﬁ-l,l/) = Qyi,ui+1 (xi,si(y)a x’i+1,si(l/))7—i,l/‘

It follows that

(Quisr s (Tig1,5:00)s Tiys, () — Qusvirs (Tit1,8,0)s Tisi())) i = 0.
Assume S is a basis of H,,(Q). We have Qo , v, (Tit1,5,00): Tisi(v)) — Quiiir (Tiss(v)s Tit1,8,0)) = 0.
Consequently, Q;;(u,v) = Qji(v,u) for all 4,5 € I.
Assume Q;;(u,v) = Qj;(v,u) for all 4, j € I. Choose an ordering of pairs of distinct elements
of I. Given 7 < j, put Pj; = Q;; and Pj; = 1. The theorem follows now from Proposition 3.12

below. O
So, the algebras H,(Q) form a flat family of algebras over the space Elu,v]?20) | where

Po(I) is the set of 2-element subsets of I. Denote by @ +— () the automorphism given by
Qij(u,v) = Qji(v, u).

We identify this space with the space of matrices with vanishing diagonal and hermitian with
respect to the automorphism of k[u, v] swapping u and v, i.e., such that @ = Q.

Corollary 3.8. Assume Q) is hermitian. Let I' be a subset of I and Q' = (Qi;)ijer. Then,
the canonical map H,(Q') — H,(Q) is injective and induces isomorphisms 1,H,(Q")1,, —
1,H,(Q)1, forv,v € (I')".

From Proposition 3.12 below, we obtain a description of the center of H,(Q).
Proposition 3.9. Assume Q is hermitian. Then, we have Z(H,(Q)) = RS".
When |I| = 1, then H,(Q) is the nil affine Hecke algebra °H,, associated with GL,,.

Given 0 < i < n, we have an injective morphism of R, -algebras
Hi(Q) ® Hni(Q) — Hn(Q)
given by 11/ ® 11/’ = 11/U1/’7 Ly ® 11/’ = Tivuv, 11/ ® T = Titjus ete.
Remark 3.10. The algebra Khovanov and Lauda [KhoLau| associate to a symmetrizable Car-

tan matrix (a;;) corresponds to Q;;(u,v) = u~ % +v~% for i # j.

Let us describe some isomorphisms between H,(Q)’s.
Let {a;}ier in k and {8y }ijer in K. Let Qf;(u,v) = Bi;8;:Qi;(Bju + a;, Buv + a;). We have

an isomorphism

Hn(Q/) :> Hn(Q)a 11/ — 11/7 xi,u = 61/:71yi<xi,u - aui)y Ti,u — ﬁzxi,quTi,u-
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Put AT = {(4,4)]s € I} C I x I. The construction above provides an action of the quotient
of (Gp) D=2 by {55168 = 1 Vi # j} on Hy(Q).
Assume @ is hermitian. Given v € I", we define v € I"™ by v; = v, ;1. There is an involution

of H,(Q)

Hn(Q) :> Hn(Q)a 11/ = 1177 xi,y — xnfz#l,ﬂa Tiw V= —Tn—ip-
Let us finally construct a duality. There is an isomorphism
Hn(Q) — Hn(Q>0pp7 11/ = 11/; Tiv = Tivy, Tip 7 Tis;(v)-

Remark 3.11. One can also work with a matrix @ with values in k(u,v) and define H,(Q) by
adding inverses of the relevant polynomials in ;,’s.

3.2.2. Polynomial realization. Let P = (P;;); jer be a matrix in k[u,v] with P;; =0 for alli € [
and let Q; j(u,v) = B j(u,v)P;;(v,u).
Consider the (possibly non-unitary) k-algebra A, (I) = k)[z]1 &,,.

The following Proposition provides a faithful representation of H,(Q) on the space R,. It
also shows that, after localization, the algebra H,(Q) depends only on the cardinality of I
(assuming non-vanishing of @);; for i # j).

Proposition 3.12. Let O' = @, ., k[z1, ..., wu][{ (% — ;) 7 }igjimr, )10, We have an injective
morphism of k-algebras

H,(Q) — O @z jgjen An(I)
11/ = 11/7 xi,u = xill/7

{(331 —zi1) Nsil, — 1) ifvi=vig

Tiv ‘
vam ($i+17 fEi)Sil,, otherwise

)

for1 <i<mnandv € L. It defines a faithful representation of H,(Q) on R,, = @
Assume P;; # 0 for all i # j. Let

0= @ k[mlﬁ <. 7xn][{PVi7Vj (xh ‘/Ej)il}’/ﬁé’/j7 {(:L‘Z - mj)il}isdéj,l/i:l/j]lw

velL

vel k‘[l‘l, c. >$n]1u-

The morphism above induces an isomorphism O ®ywyen Hy(Q) = O @pipen An(l).

Proof. Let 7/, = (zi — $i+1>_1(311u -1,) ify= ‘Vi+1
’ Py (Tig1,73)s:1, otherwise.
Let us check that the defining relations of H,,(Q) hold with 7;, replaced by 7;,. We will not
write the idempotents 1, to make the calculations more easily readable.

We have

Ti’,sm(u)ﬂ'lﬂ,y =
(z; — $i+1)_1 ((z; — $i+2)_1(8i5z‘+1 —8) — (g1 — Tio) H(si1 — 1)) iy = v = Vi
Py,uiﬂ(%’ﬂ, $z)(fﬂz - l’z’+2)_1(3181+1 - Si) if Vi1 = vig2 # v
(i — Zig1) ™ (P (Tivas ) SiSi1 — Poyy vien (Tigo, Tiv1)Si41) if v; = Viyo # viga

Pl/i,Vi_;'_Q (‘/L"L—l-lu xi)Pl/i_»'_l,Vi_;rg (x’L-f—Q) $Z>SZSZ+1 lf V’L+2 € {VZ7 VZ—‘rl}
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Assume v; = 1,11 = V9. We have

/ / r_
Ti,siJrl si (V) Ti—&-l,si (v) Ti,u -

-1 -1 -1
= (i1 — Tite)” (s — Tita) ™ (s — Tig1)” (Sit18iSit1 — Siv15i — SiSit1 + 8i + Siv1 — 1)
o / /
- Ti+1,sisi+1(u)7—i,si+1(V)Tz'+1,1/
Assume v; = v;11 # V0. We have

/ / r
Tissivasi () Tit1,s(0) Tiw =

= (Tir1 — Tir2) " Proysyo (Tis1, )Py, v o (Ti2, i) (8i415iSi41 — SiSit1)

/ / /
i+ 1858041 (1) Tisipr (v) Tk Ly
Assume v;,1 = 149 # v;. We have

/ / r
Tissizasi () Tit1,s:(0) Ti =

—1
= (@i, Tit1) Py (Tig2, i) Py iy (Tig, ig1) (Si415iSi41 — 5i4154)
o / /
- Ti+1,si$i+1(l/)7-i,si+1(I/)Ti-i-].,V

Assume v;, ;41 and v;,5 are distinct. We have

/ r_

/
Ti,si_H s: (V) Tit1,s; (v) Tiy =

= Povipr (Tiva, Tix1) Poy vy o (Tig2, T) Py i (Tig1, Ti) Si18i8i41

/ / /
i+1,si$i+1(l/)7_i,$i+1(V)Ti'i'l,V
Assume finally v; = v;,9 # v;411. We have

/ / r
Tissivasi () Tit1,si(0) Tiw =

= (% - $i+2)7lpui+1,ui (IL’iH, l’z) (Pui,uiﬂ(lﬁwz, $i+1)5i5i+15i - Pui,uiﬂ(fﬂi, 1’¢+1))
and

/ / / _
Ti+1,sisi+1 (v) Ti,si+1 (v) Titip =

(mi - xi+2)7lpu¢,1/¢+1(xi+27 $i+1) (Puiﬂ,ui ($i+17 xi)31+15i5i+1 - Puiﬂ,ui (flfi+1, l’i+2))
hence

/ / / / / ’_
Tit1,8:8i41(0) Tiysip1 ) Titl,y — Tisigrsi(w) Tit1,s:(0) Tiw =

(Zlfi - $i+2)71 (PWH,W ($i+1, l'i)Pui,uiH(ﬂTi, $i+1) - Puiﬂ,ui(lﬂl, xi+2>P1/¢,ui+1(xi+27 1’i+1)) .
The other relations are immediate to check.

Let B be the k-subalgebra of O @ en A, (I) image of the morphism. We have O ®,) []®n
B = O ®yupyen An(I). The image of S is a basis of O ®yu)jen An(l) over k. It follows that
the canonical map H,(Q) — B is an isomorphism and that S is a basis of H,(Q) over k.

Remark 3.13. Consider the case of a matrix P with non-vanishing diagonal entries which we
assume to be symmetric polynomials, and define ) as before, so that its diagonal coefficients are
not all 0. The algebra H,(Q) can be defined as before and Proposition 3.12 extends to this set-
ting, ! where we need to add P, ,.(z;, x;41) to the image of 7;,, when v; = v;41. This shows that

Leheck
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the algebra H,,(Q) satisfies PBW when @); ; is a square of a symmetric polynomial. Suitable flat
base change should allow to conclude it holds more generall when @); ; is a symmetric polynomial,
via an extension of the theory to the case where the algebra k[xy, ..., z,] is replaced by a suit-
able algebraic extension. On the other hand, since Tij = T Quiwi (Tis Tiv1) = Quuw, (i, Tig1)Ti
when v; = v;41, the PBW property implies that Q,, ,, is a symmetric polynomial. When |/]| =1
and @ = 1, we obtain the degenerate affine Hecke algebras. 2.

3.2.3. Cartan matrices. Let C' = (a;;) be a Cartan matrix, i.e.,
® a; = 2,
® G;; € ZSO for ¢ 7£j and
® ;5 = 0 if and only if Qj; = 0.

We put m;; = —a;;. Let {t;,} be a family of indeterminates with ¢ # j € I, 0 <1 < m;;
and 0 < s < my; and such that t;;, =t ;. Let {t;;}iz; be a family of indeterminates with
tij = tji if Q5 = 0.

Let k = kc = Z[{ti,j,r,s} U {til ] Let Q“ = O, Qij = tij if Q5 = 0 and

Qij = tiyju™ + > tijr,su 0 + ;0™ for @ # j and a;; # 0.

0§7‘<mi]’,0§s<mﬁ
We put H,(C) = H,(Q). This is a k-algebra, free as a k-module.

Consider s # t € I and assume n = mg + 2. Let v = (t,s,...,s5) € [". Given 0 <i <n —1,
let ¢; = s;- - s1: we have ¢;(v) = (s,...,s,t,8,...,5), where t is in the (i + 1)-th position. The
canonical isomorphisms °H; = 1  oHi(Q)lis, 5 and °H,jy = 1 9 Huis1(Q)1s,. s
give rise to a morphism of unitary algebras

OHi o2 OHn—l—i - 1CZ(V)HTL(Q) 1ci(1/)~
We denote by e;,; the image of b; ® b,_1_; (cf §3.1.6).

The following Lemma generalizes a result of Khovanov and Lauda [KhoLau, Corollary 7.
Lemma 3.14. Let PZ = Hn(Q)eiH. Deﬁne ai,i—H = €i+1Tpn—1 """ Ti+2Ti+1€i+2 and Qir1: =
€itoT1To ** * Tir1€ir1- We have a complex of projective H,(Q)-modules

0 PO ag,1 Pl Pi—l Qi1 L Qi1
N N X

! / /
Q1.0 Q-1 Xit1,i

Pi+1*>...*>Pn71*>O

which is homotopy equivalent to 0, with splittings given by the maps a;,; = (1)t g

Proof. Note that b.b, 11 = b,4; and b, 117 ---T,.b, =Ty - - - T,.b,, hence v j11 = Tp—1 -+ TixaTit1€it2
and Qip1,i = €42T1T2 " Tig1-

We have
OG—1,i0G 41 = €iTp—1 """ TiTpn—1 """ Ti+1€i42 = €;Tp—2 " TiTp—1 " " Ti€i42 = 0.

It follows that the maps «;_;; provide a differential.

We have
Qi i4+1044145 = Tp—1 """ Ti41T1 " Ti41€i41 = T1 """ Ti—1Tp—1 " " Tip2Ti+1TiTi+16i41

2Also affine Hecke version?
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and
Qii—1Qi—14 = T1" " TiTn—1 """ TiCit1 = T1 " Ti—1Tn—1" " Ti42Ti Ti41TiCit1.
It follows that

Q10415 — O j—10G—1 5 = 8sl~~si,1sn_1msi+2 <($i+2 - fBz‘)_l (Qst($i+2, $i+1) - Qst($ia 93i+1))>-

Write Qg (u,v) = Za,b qapu0® with g, , €€ Z. We have

(Tive — x) " (Qst($i+2, Tiv1) — Qu(s, $i+1)) = Z Qabxg+1($?;21 + 17?;22% i),

a>1,b>0
hence
a—n—+i+1
= b ¢ a—c—1y _ n+i
Qi1 g1 — Q10615 = E QabTiyq E Ostoosy 1+ (1) 05y 1sin (@05 ) = (=1)" g0
a>1,b>0 e=i—1
/ /
and finally a; ;100 ,; + o, 01 = 1. 0

Assume C'is a symmetrizable Cartan matrix, i.e., there is a family (d;);es of positive integers
with lem({d;}) = 1 and such that (b;;) is symmetric, for b;; = d;a;;.

Let k*® be the quotient of k by the ideal generated by those ¢; ; , s such that d;,r 4 d;s # —2b;;.
Let H*(C) = k* @ H,(C). The algebra HS(C) is graded with deg1, = 0, deg x;,, = 2d,, and
deg T, = —b

VisVit1-®

Remark 3.15. The description of the basis S forﬁTT'L(C) (cf Theorem 3.7) shows that the rank
of the sum of the homogeneous components of 1, H*(C')1, with degree less than a given integer
is finite.

3.2.4. Quivers with automorphism. Let I be an oriented quiver with a compatible automor-
phism [Lu, §12.1.1]: this is the data of

e aset I (vertices)

e aset H (edges) and a map with finite fibers & +— [h] from H to the set of two-element
subsets of I B

e maps s : H — [ (source) and t : H — I (target) such that {s(h),t(h)} = [h] for any
heH

e automorphisms a : I — I and @ : H — H such that s(a(h)) = a(s(h)) and t(a(h)) =
a(t(h)) and such that s(h) and ¢(h) are not in the same a-orbit for h € H.

We put I = I/a. We define i-i = 2#(i) and i-j = —#{h € H|[h] € iUj} for i # j in I (note
that this uses only the graph structure, not the orientation). This defines a Cartan datum and
(2%)” is a symmetrizable Cartan matrix.

Given i,j € I, let d;; be the number of orbits of a in {h € H|s(h) € i and t(h) € j}. We
have dij + dji = —2(2 : j)/lCHl(Z : Z,] : j) for ¢ 7é ]

Define

P(u,v) = (@l/(j'j) — ul/(i'i))dij where [ =lem(i - 4,7 - j), for i # j and Py = 0.

We have oy

Qi; = (—1) (ul/(i.i) _ ,Ul/(j.j))* (@-3)/ for i # .

We put k = Z and H,(I') = H,(Q). This is a specialization of the algebra H,,(C) introduced

in §3.2.3.
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The algebra H,(I') is graded with deg1, =0, degz;, = v;-v; and deg7,, = —v; - V;41. As a
graded algebra, it is a specialization of H?(C') (here, d; = (i -1)/2).

Consider another choice of orientation s, ¢ of the graph (I, H, h — [h]), compatible with the
automorphism a. Given ¢ # j, define

B = (—1)% % if dy > d
Y )1 otherwise.

We have an isomorphism

Hn(F) ; Hn(rl)y 11/ = 1l/a xi,u — xi,l/v Ti,V = ﬂyi,ui+17—i,1/-

It follows that, up to isomorphism, the graded algebra H,(I') depends only on the Cartan
datum. Note nevertheless that the system of isomorphisms constructed above between the
algebras corresponding to different orientations is not a transitive system. Consequently, we do
not define “the” algebra associated to a Cartan datum (or a graph with automorphism) Note
finally that, up to isomorphism, H,(I") depends only on the Cartan matrix and a change of
Cartan datum corresponds to a rescaling of the grading.

Note that if " is the disjoint union of full subquivers I'y and 'y, then H,(I") = H,(I';) ®
H,(Ts).

3.2.5. Type A graphs. Let k be a field and ¢ € k*.

Assume first ¢ = 1. Given [ a subset of k, we denote by I; the quiver with set of vertices I
and with an arrow ¢ + 1 — 4, whenever 7,7 + 1 € [.

Assume now ¢ # 1. Given [ a subset of £, we denote by I, the quiver with set of vertices
I and with an arrow ¢qi — ¢, whenever ¢, qi € 1.

Note that I, has type A and we put sl;, = g;,. Let us assume I, is connected. Let us describe
the possible type for the underlying graph.
Assume ¢ = 1. Type:

o A, if |I| =n and k has characteristic 0 or p > n.
e A, if |I| = pis the characteristic of k.

e A if I is bounded in one direction but not finite.
o Ao if I is unbounded in both directions.

Assume ¢ # 1. Denote by e the multiplicative order of q. Type:
o A, if[I|=n<e.
o A, if |I|=e.
e A if I is bounded in one direction but not finite.
o A if I is unbounded in both directions.

3.2.6. Idempotents and representations. Let k be a field Let I' be a quiver. Given a € k, we
denote by kH,(I')-Mod, the category of H,(I')-modules M such that M = @, 1,M and for
every v, the elements z;, act locally nilpotently on 1,M for 1 <i <n.

Note that there is an automorphism of kH,(I') defined by 7;, +— 7;,, and z;, — z;, +a. It
induces an equivalence between the categories kH, (I')-Mod, and kH, (I")-Mod,.

Let I be a subset of k and let I' = ;.
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Let
O =@ kX, ..., X [{(Xs = X)) ™ i, A (Ko = X5+ 1) ignsr ),

veln
a non-unitary ring. Note that this is a subring of
P kX, Xall(Xs = X — @) ijarvs o,
veln
We denote by 1, the unit of the summand of O’ corresponding to v. We put a structure of

non-unitary algebra on O'H,, = O’ ®z(x1,....Xn] Hn by setting

,,,,,

(Xip1 — X)) M1y — 1g0)) i v # i
otherwise.

Let
O = @ klwr, . wal [{(vi — vj + 25 — 25) ™ Yt { i = v+ 14 25— 25) ™ i, ),

veln

a subring of

@ klzy, ... x][(z; — xj — a)’l]#j,a?go.

From Proposition 3.12 and §3.1.7, we obtain the following proposition.
Proposition 3.16. We have an isomorphism of non-unitary algebras
O'H,(T) = O'H,, z:1, — (X; — v)1,,

(Xi =X+ ) (T, - D1, ifvi=vig

7l = ¢ (X5 — Xi) T + 1)1, if vi = vig1 +1
%(E -1, +1, otherwise.

Let M be a kH,-module. Given a € k", we denote by M, the k[X,..., X,]-submodule of
M of elements with support contained in the closed point of A} given by a.
We denote by Cr the category of kH,-modules M such that

M:@Ma.

acl'™

Theorem 3.17. We have an equivalence of categories
kH,(I')-Mody = Cr, M +— M
where X; acts on 1, M by (x; +v;) and T; acts on 1, M by
o (Ti—zim + T+ 1ifvi=vin

° (Iz — Tjqp1 — 1)71(7'2‘ — 1) Zf Vi = Vip1 + 1

o (i — i1+ v —vi+ 1) (2 — w1 + v — vi) N1 — 1) + 1 otherwise.
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Let k be a field that is a Z[¢*!, (¢ — 1) "']-algebra. Let I be a subset of k% and let I' = I,,.
Let

= P rXE XX = X)) T i 10X — X5) ™ Yitgaqutn, )
veln
a non-unitary k[X{™, ..., X*!-algebra. Note that this is a subring of
P kX, XX = aX) s wene (o)
veln

We denote by 1, the unit of the summand of O’ corresponding to v. We put a structure of

-----

T1, — 1., 7T = (1 - q)X”l(Xi - Xi+1)_l(1l/ - ]'Si(’/)) if v; # vip
n s 0 otherwise.

Let
@ k| $1 REEEE ][{(ylyj_lxl - xj)_l}iséjwsﬁw’ {<qyiyj_1xi - Ij)_l}#j,qw#w]’
vel™

a subring of
P kla* ot 2w = azy) Nisack—01)-

veZ™
From Proposition 3.12 and §3.1.7, we obtain the following proposition.

Proposition 3.18. We have an isomorphism of non-unitary algebras

O'H,(T) = O'H,, 21, — v ' X1,

vi(gX; — X¢+1)_1(Tz’ -q)1, if Vi = vin
Tl = Qv (X = X)) T + (¢ = D) X))l if vi = quiga
(%(Tl -q)+1)1, otherwise.

Let M be a kH,-module. Given a € (k*)", we denote by M, the k[X;", ..., XF']-submodule
of M of elements with support contained in the closed point of A} given by a.
We denote by Cr the category of kH,-modules M such that

M:@Ma.

acl'™

Theorem 3.19. We have an equivalence of categories
kH,(T)-Mod; = Cp, M — M
where X; acts on 1, M by v;x; and T; acts on 1, M by
® (qzi — )i +q if Vi = Vip

o (¢7'w — i) N+ (1 — Q)zin) if v = qina

o (viw; —vizin)  ((quiws — vigizi)mi + (1 — Q)vipa1miv1) otherwise.
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Remark 3.20. The equivalences in Theorems 3.17 and 3.19 restrict to equivalences between
full subcategories for which k[X1,..., X,] (resp. kK[Xi', ..., X;F!]) act through a specific quo-
tient and k[xy, ..., z,] acts through the corresponding quotient. This provides a realization of
(possibly degenerate) cyclotomic Hecke algebras in terms of H,,(I'). This has been studied inde-
pendently in detail by Brundan and Kleshchev [BrKl]. The apparition of affine Hecke algebras
in relation with glp—categoriﬁcations goes back to [Gro].

4. 2-CATEGORIES

4.1. Construction.

4.1.1. Half Kac-Moody algebras. Let I be a set and C' = (a;;); jer & Cartan matrix. We consider
the ring k and the matrix @ of §3.2.3.

Define B = B(C) as the free strict monoidal k-linear category with a unit generated by
objects F, for s € I and by arrows

rs: By — Egand 7 : BBy, — EE, for s,t € 1
with relations

(1) Tst O Ttsg = Qst(Etxs, :CtEs)

(2) 7—tuE15 o Ethu OTstEu - EuTst OTsuEt o EsTtu =

2sEyEs—EyEras sifs=u

Qst(xsEt,Esxt)Es—Estt(Etws,rtEs)E
{O otherwise.
(3) Tst © stt - Esxt O Tgt = 5st
(4) Tst O Esxt - xsEt O Tst = _5515
These relations state that the maps x, and 74 give an action of the nil affine Hecke algebra
associated with C' on powers of E. More precisely, we have an isomorphism of (non-unitary)

algebras

H,(C) > @D Homg(E,, - E,,Ey - Ey)
v eln™
11, = idEun"‘Eul

2y E, - E

Vit

7—2'7V'_>El/n"'E

Vit2 TVi+l Vi

xl/iEViq T EVI
E, ,---E,

1

Let s € [ and n > 0. We have an isomorphism of algebras k(°H,,) — Endg,(E") and we
denote by E™ = b, E" € B' the image of the idempotent b, = T X7 ' X3 >+ X,,_1 of °H,,
(cf §3.1.6). We denote also by F\" the image of T X7 ' X372+ X,_1 € °H,". Note that
this idempotent corresponds to the idempotent b/, = Xf_ngl_Q w Xy 1Ty of OH,,. Thanks
to Lemma 3.4, we have the following result (as in [ChRou, Lemma 5.15]).

)

Lemma 4.1. The action map is an isomorphism “H b, ® pen EM = E?. In particular, we
have B} ~nl- ES("). Similarly, we have isomorphisms b, - °H,, ®psn Fs(n) = F™. In particular,

we have F!' ~n!- F.

The following Proposition is a consequence of Lemma 3.14 (apply Homz_ (C)(P., —)). It gives
a categorical version of the Serre relations.
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Proposition 4.2. Consider s # t € I and let m = my. Let i1 = Tipg1 - TitoTiq1 and
Ay = (=)t g - Tig. We have a complex

s Es(m_H—Q)EtEéi_l) b; Eﬁm_i+1)EtEs(i) aii; ES(,m—i)EtEéi-i-l) [

< <

Qi i—1 Qit1,i

which s homotopy equivalent to 0, with splittings given by the maps cot1,. In particular,
P el VEED ~ P EMTVEED.
i even i odd
Remark 4.3. The first part of Proposition 4.2 generalizes [KhoLau|. We will give a different

proof of the existence of an isomorphism (second part of the Proposition) in a sequel in the
case of integrable 2-representations.

Assume now C' is symmetrizable and consider (d;), (b;;) and k*® as in §3.2.3. We put Bj =
B @y k°.

The category Bj can be enriched in graded abelian groups by setting degx, = 2ds; and
deg 7y = —bg. We denote by B® the corresponding graded category. It follows from Theorem
3.7 and Remark 3.15 that Hom-spaces in B® are free k®*-modules of finite rank.

We put B = bnEQ(@dS). Note that Pn("("z_l)ds) is self-dual as a graded PS»-module
and we have

E} ~ P ds/2 [n]S!Egn)
where [n],! = [n]!(v%).
The maps a;; and «f; of Proposition 4.2 are graded and the proposition remains true in 5°.
Consider finally I' a quiver with a compatible automorphism and consider the specialization

k* — Z of §3.2.4. We put B(T") = B*(C) Qs Z.

4.1.2. Symmetrizable Kac-Moody algebras. Let (I,-) be a finite set and a symmetric bilinear
pairing on ZI giving a Cartan datum, i.e., satisfying

° Z € 2Z>0
° Q%EZSOfOI'Z#j
We put a;; = 2% and m(i, j) = —a;;. The matrix (a;;) is a symmetrizable Cartan matrix.

Let (X,Y,(—, =), {a;}ier, {a) }icr) be a root datum of type (I,-) [Lu, §2.2.1], i.e.
e X and Y are finitely generated free abelian groups and (—, —) : Y x X — Z is a perfect
pairing
e ] - X, i—a;and I =Y, i ) are embeddings and (o, o) = a;;.
Associated with this data, there is a Kac-Moody algebra g, a quantum group U,(g), as well
as completed versions [Lu|. Let us recall those we will need.
Consider the Q(v)-algebra ‘U, (g) generated by elements e; for i € I with relations
(5) > (F1reVee” =0
a+b=1—a;;
for any i # j € I, where ega) = Z—% We denote by U (g) the Z[v*!]-subalgebra generated by the

Ei(a) for i € I and @ > 0. We define an algebra U, (g) isomorphic to U, (g) with E; replaced
by F;.
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Let 'U,(g) be the category enriched in Q(v)-vector spaces with set of objects X and mor-
phisms generated by e; : A — A+ «; and f; : A = A\ — o, subject to the following relations:

e the relation (5) and its version with e, replaced by f,
[ J [ei,fj] :O lf?,#j
o [e;, filly = (o, ) 1.
Let U,(g) be the subcategory enriched in Z[v*!]-modules of 'U,(g) with same objects as
'U,(g) and with morphisms generated by el(-r) and fi(r) for i € [ and r > 0.
We put Uy(g) = U,(g) Qzptr) Z[vF] /(v — 1), ete.
Note that B, ,cx Homu,(g)(A, 1) is the non-unitary ring 4U of [Lu, §23.2]. The category
of functors (compatible with the Z[v*'|-structure) U,(g) — Z[v*']-Mod is equivalent to the
category of unital 4U-modules via V +— @, V(A).

4.1.3. 2-Kac Moody algebras. Let By be the strict monoidal k-linear category obtained from B
by adding Fj right dual to E, for every s € I. Define

es=¢p,  EsFy—1and ns =ng, : 1 — F,E.

The dual pairs (Es, F,) provides dual pairs (E”, F) and the action of °H,, on E” induces an
action of (OH »)°PP on F?. We denote by x5 the endomorphism of Fy induced by x5 € End(Ej)
and denote also by 7y : FyF; — F;F, the morphism induced by 7 € Hom(EEy, EyE;).

We define a morphism of monoids

h:Ob(By) — X, Es— as, Fy— —as.

Consider the strict 2-category @; with set of objects X and Hom(\, ') = h~1 (N — )), a full
subcategory of B;. We write Ej \ for E,1,, ;. for 5,15, etc.

Let 4 = 4(g) be the k-linear strict 2-category deduced from @; by inverting the following
2-arrows:

e when (ay,\) >0,

S

<Oé;/7>\>—1
ps,)\zass+ Z €SO($2FS) : ESFS]_)\ HFSES]-)\@].iaS,)\>
=0

e when (o), \) <0,

S

717(&!,)\
Ps\ = Oss + E
=0

e 0y : FE,F,1, — F,E,1, for all s #t and all

where we define

)
(Fua')on, : E,F1, @1, o FLE1,

Ost = (FtE55t> o (ETtst) © (ntESE) : ESE - EES

Remark 4.4. The inversion of maps in the definition of @ accounts for the Lie algebra relations
les, fs] = hs and [es, fi] = 0 for s # t. The elements h¢ for ( € Y appear only through their
action as multiplication by ((, A) on the A-weight space.
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We proceed now as in §4.1.1 to define graded versions. Let @) = 4 @y k*. The category aj
can be enriched in graded abelian groups by setting

deges ) = ds(1 — (), \)) and degns\ = ds(1 + (o), \)).

We denote by @° the corresponding graded 2-category.
Note that oy is a graded map (for all s,¢ € I), while p; » carries shifts:

(a;/)\)—l
par BFIN S FEL® D 1a(da(2i+1— (o), A)) when (o, A) >0,
=0
_1_<a;/’)‘>
par i B F LS @ 1a(—de(2i + 14 (), N)) = F.E1 when (o, A) <0.
=0

We have a dual pair in @°

(Esh, 1,F, (ds(l +{a!, /\>)>).

Finally, given a quiver I' with a compatible automorphism and associated Cartan matrix C'
we put @2 (T') = A° Qe Z (cf §3.2.4). We put also Az = A Ry Z.

Let us summarize: we have constructed several 2-categories with set of objects X and with
Hom(\, ') = h~1(X—)). Given a root datum, we have a k-linear 2-category A and a specializa-
tion A® that is k®-linear and graded. Given in addition a quiver with compatible automorphism
affording the Cartan matrix, we have a further specialization A}, that is graded and Z-linear.

Remark 4.5. The action of °H,, on E" is given by
Xy EM g B and Ty v BV B!
while the action of °H,"® on F™ is given by
X Fle FPand Ty v FU g 0t
4.1.4. Other versions. We define here categories related to the ones defined in the previous

section by removing adding generators or imposing extra symmetry conditions and relations.

We define B! as the strict monoidal k-linear category obtained from B by adding F left and
right adjoint to F; for every s € I. Define

el =ep Fy,-Ey,— 1, and . =np, : 1 — E, - F,.

S

Define also gi and @' as @, and @ were defined from B;. Now, we define @ as the k-linear
strict 2-category obtained from @, by adding the relations

(1) when (aY, \) > 0, the composition

(—1)lad N+ x ey A Ry)

(1d70a70)
_—

-1
F.E1, FEL, @17 2 popgy E.F1, &1,

is equal to g 3

3We should replace xs by —z in nil Hecke of graphs to get rid of the sign here
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(2) when (oY, A) <0, the composition
v 1
EF 1, @1, N 28 ppa, 21,

is equal to (0,...,0, (—1)1*eHA),

Remark 4.6. The last two relations show that €. can be expressed in terms of the maps x,,
Tsss Ns and €. As a consequence, the adjunction (Fj, E) is determined by the adjunction
(Es, Fy) and the maps x5 and 7 5.

We define specializations of @ in the same way as those defined for @. Note that
degng/\ =d,(1—(a),)\)) and deggl&,\ =dy(1+ (a/,\)

and we have a dual pair in @’

(1AFS(—dS(1 +(aY, )\))),EslA).

We define @ to be the largest monoidal additive category quotient* of @ that is strictly
sovereign and such that

e relation (2) holds when (o), \) = —1
e when (a),\) > 0, the composition

(_1)(a§/7k)+1(X(a§/7A)Fs)

-1 -
FE1, S0 ppa, @10 2 pp, B, F1y, 551,

is equal to &
e when (o), \) < 0, the composition

—1

(—1)(ed A (Fx—(ad N FE1, P b Fi, @ 13- (¥ N
sis 5 st's by

1, % BB, 40...0)

ESFS]-)\
is equal to 7’

Remark 4.7. One can also also consider the category @' as well as the largest additive monoidal
category quotient of @ that is strictly sovereign.

There are canonical strict 2-functors

a-a -a.
4.1.5. Completion. Consider A% = 2lim; A/(A1\A)rer, where X runs over ideals in the poset
X.
The various quotients are integrable representations of A. So, on them, we know the O, are

invertible and “the relations [E;, Fj| = 0 are automatic for i # j”.

4.2. Properties.

4Needs to be changed to 2-category!
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4.2.1. Symmetries. The map o, can be defined using the Hecke action on F? instead of E?:
Lemma 4.8. Given s,t € I, we have oy = (E,F, -, B,F,F,E, 27, p F Fp, =55,
F.E).

Proof. The lemma follows from the commutativity of the following diagram

o EstisEs ceo

ESE ESEFSES EstFtEs FtEs <—\
ne FtEEST
F,E,E,F, '~ F,E,E,F,F,E, "™ F,E,E,F,F,E, "% LB, F,E,
Fitis Fy
F,E,E,F, /

o

g

We define the Chevalley involution, a strict equivalence of 2-categories I : @°P? = @ satisfying
I? = 1d by

I(1y)=1_,, I(Es) =Fs, I(c)) =n., I(1q) = 7 and I(xg) = x.
Note that I(oy) = 0y (Lemma 4.8) and I(psy) = ps». °

We define the Chevalley duality, a strict equivalence of 2-categories D : @ = @ satisfying
D? =1d by

r

r r r
1)\ — 1)\7 Es — F57 Ts = Ts, Tst Tst>85 = 557 775 = 775-

Note that D fixes oy (Lemma 4.8) and p; . °.

There is also a strict equivalence of monoidal categories

~

o5 2/
Brev — B) Es — Esu Ts = Ts, Tt V7> —Tis-

4.2.2. Relations in sly. We provide isomorphisms between sums of objects of type ETF! and
sum of objects of type FI'E.

In this section, we work in the category A associated with g = sly: [ = {s} with s-s = 2,
X=Y=7Z,a/=1and a; = 2.

We put £ = E; and F' = F,. We put ¢ = ¢}, and n = n.. Let i € Z>,. We define
by induction ¢, : E™F™ — 1 and 7, : 1 — F™E™ in B;. We put ¢ = 19 = id and
Em = Em_10 (E™ teF™ 1) and 0, = (F™ 'nE™ 1) o np,y.

Given a, b € Z>(, we denote by P(a, b) the set of partitions with at most a non-zero parts, all
of which are at most b. Given = (3 > - pte > 0) € P(a,b), we denote by m,,(X1,...,X,) =
S X7 XE7 the corresponding monomial symmetric function (here, o runs over &,
modulo the stabilizer of ).

SWhat about 7'?
6What about 7'?
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Let m,n,i € Z>o with ¢ < m and i <n and let A € X. Let r = m —n + A. Assume r < 0.
We put
Limn,i )= @B (Tu@mu(Xn-in, X)) X0t X075 X1 Tu)Z C "Hy @0y "Ho,
weG%ii
w/e"l*’LGn
HEP(i,—r—1)

where the right action (resp. the left action) of °H; on °H,, (resp. on °H,) is via X, —
Xyym—i and T, — Ty (vesp. X, — X,y and T, — T,1,_;). The sum is direct since
T g X1 XicaTwp,g # 0 (cf §3.1.6).

Note that @,cpi i mu(Xi,..., Xi)Z is the subspace of Z[Xj, ... , X;]% of symmetric
polynomials whose degree in any of the variables is at most —r —i. It has dimension (7) Note
that L(m,n,0,\) = Z and L(m,n,i,\) =0if i > 0 and r = 0.

Let L(m, 0., A) = L(m, n,i, \) (", @ (Hy)™), 2 (CH (O H3)™), (CHy, @(OH;,)™))-
subbimodule of "H,, ®oy. °H,.

When needed, we will also consider the modules L([a, b], [, ¥],4,\) and L([a,b], [, V], 4, \)
where 1 <a <b<mand 1 <da <V <n, which are defined similarly.

Lemma 4.9. The multiplication map induces an isomorphism
L(m,n,i, ) © (CHy, @ (CH o)) = Lim, n,i, A)
The ("H’, @ ("H?)P»), (°H,,_; @ ("H,,_;)°"?))-subbimodule L(m,n,i,\)(°H i @ ("H,_;)°*P)
of "H,, @, "H,, is projective.
Proof. The first statements is clear. The (("H! ® (CH’)**?), (°H,,_; ® (°H,_;)°*?))-bimodule
Lim,n, i, \)("H,,_; ® (°H,,_;)°P) is isomorphic to |P(i, —r — i)| copies of
CHIZIXy, . X @ Z[X, ., XS X X2 X, Ol

On the other hand, °H , is projective as a (OH§, 0H ;)-bimodule (cf §3.1.6) and the last statement
of the lemma follows. U

Let L'(m,n,i,\) = Homg(L(n,m,1,—\),Z) and
L'(m,n,i,\) = HomOHﬂl_iQ?(OHﬁ_i)opp(E(n’ m, i, —N), OHi_i ® OH{L_i).

The canonical isomorphism

L(n,m,i,—)\) ®z (OHf;_i ® OHfl_i) = L(n,m,i,—\)
induces an isomorphism

Homg(L(n, m, i, —\),°H?,_, @ H ) = L'(m,n,i,\)
and composing with the canonical isomorphism

L'(m,n,i,\) ©z CH!_, @ H!_) = Homg(L(n,m,i,—\),°H.,_, @ H’_),

we obtain an isomorphism of right (H’ . @ (°H?_,)°PP)-modules

L'(m,n,i,\) ®g (OHim—i ® OHfL—Z') = E,(m7 n, 0, A).

Given m,n € Z>(, we define by induction a map oy, ,, : E™F" — F"E™. The maps 0, and
00, are identities. We put 0,1 = (cE™ ) o (Eoy_11) and 04 = (F" 0p1) © (Oium_1F).
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Lemma 4.10. The map o, is a morphism of (H, @ (HI)°PP)-modules. We have

FE™e

FE™F =% FE™)

nEm™F (Ty+Tm) F
_

om = (BmF 25 ppmiip -

and

E(TyTn)E eF"E
_

o1 = (BEF" 220 ppilp EFip SE prp),

Gien a,b € Z>o, we have a commutative diagram

Fo'a+1,b

l;a}pbggﬁie-]?l§a+1lwb j7b+11§a+1

Ta,b
Ty--Ty)Eot!

leza4444>‘Fw+lZ;a+l
Fbne

Proof. We have a commutative diagram

Ene EF(Ty+Tm_1)F

EmF EFE™F EFE"F > pFppm-1 Sl FE?FE™ !
n'l lFT.
FE™E FE?FE™ !
FTol lFEa
FE?ne FEce o(T - Ty—1)F oc
FE" ' —— FE?FE™F —— FE™HE FE™HE FE™

\d//

id

and the second statement follows by induction. The third statement follows from the second
one by applying the Chevalley duality (cf §4.2.1).

Let i € [1,m — 1]. Since Ty 1Ty -+ T,, = T4 - - - T,,,T;, we have a commutative diagram

F(TyTp)F

EmF —"> FEH FE™IF —> FEm

FT;
F(Ty 1Ty Tp)F

T,F FEmHp s ppm

- F(Ty+Tm)F
E"F —— FE™HE

It follows that o,,; commutes with the action of °H fn and by induction we deduce that oy, ,

commutes with °H’ . The commutation with (°H7)°P follows by applying the Chevalley dual-
ity.
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We have a commutative diagram

ne Fogt1,1

E°F FEcH-lF F2Ea+1

ne Fnol oaT
l F2Te F2E(T-Ta)F
FE“'F  FPERF — 2R p > 2R R

Ta,l Te
Fne E(Ty T, F

F2Ea+1F L) F2Ea+1F

FE° 7 F2 Ea+1
n.

hence, we obtain a commutative diagram

ne Foat1,10 0 i1,b-1

Ean FEa+1 Fb F2Ea+1Fb71 Fb+1Ea+1

arb—1 — o 172 rna+1 b—1 b+1 ra+1
FE‘F e FPETF R FFE
The last part of the Lemma follows now by induction on b. O

Given P € Z[X4,...,X,], we denote by deg,(P) the maximum of the degrees in any of the
variables of P. Given p a partition and [ a non-negative integer, we denote by p U {l} the
partition obtained by adding [ to u.

Lemma 4.11. Leta,b € Zo, P € Z[X,, ..., X,]% and Q € Z[ X411, . .., Xayp)Flattettl. Then,

deg* aw[l,CLer]w[l,a]w[aJrl,b}(Pcz) < max<deg* (P) + b? deg*(@) + a)'
Let p € P(a,d) for some d € Zsy and let | > d+ a. We have

Osysa (X mu(Xay o, X)) = muop-ay (X, o Xap1) + R,

where R is a symmetric polynomial with deg, R <[ — a.

Proof. Let us first show by induction on n > 1 that given a4, ..., a, € Z>(, we have
(6) deg, (Bup (X5 -+ X2)) < max({a;}) —n + 1.
This clear for n = 1. Applying a permutation of [1,n] if necessary, we can assume that

a, = min({a;}). Then,

aw[lm](Xfl e in) = (Xl e Xn)anasynsnflaw[l,n—l] (Xill_an e X'Zz_llian)
= (Xl e 'Xn)anaSr--an(R)

where R is a polynomial in X7, ..., X, _; whose degree in X,,_; is at most max({a;}) —a, —n+2
by induction. It follows that the degree in X, of Js,...s, ,(R) is at most max({a;}) —a, —n+1
and (6) follows from the fact that Oy, (X{" -+ Xa») is a symmetric polynomial.

We have 8w[17a+b}w[1,a}w[a+17b](PQ) = w[La_,_b}(PXikl . 'Xa—lQngr% e Xa+b—1) and the first
part of the lemma follows from (6).
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We prove the lemma by induction on a. We write k& C p if there is ¢ such that pu; = k and
we denote by p \ k the partition obtained by removing k to u. We have

Ouyesa (Xhyymu (X1, X)) = ) 0 (X5 Ogs, (X ymynn(Xa, ., X))

kCu

By induction, we have
Deprosa (XL i n(Xa, oo, Xo)) = X0 i (Xs, o, Xary) + R,
where the degree in X5 of R is strictly less than [ —a + 1. It follows that
Oy (X ymu (X, X)) =) XX myn (X, - Xaet)+R = X{my(Xa, .., Xop1)+ R,

kCp

where the degree in X; of R’ is strictly less than [ — a. The lemma follows. Il
The following Lemma is clear.

Lemma 4.12. Let C be a k-linear category, X,Y two objects of C, L and L' two right End(X)-

modules and f: L — Hom(X,Y) and f': L’ — Hom(X,Y') two morphisms of right End(X)-

modules. Let ¢ : L Qguax) X — Y and ¢ L @End(x) X — Y be the associated morphisms.
Consider finite filtrations on L and on L' such that f(L<") = f'(L'<%) for alli. Assume there

~

are isomorphisms L=/ L<' = L'SU/L'<? for all i such that the following diagram commutes
L=t / L<t

T

~ Hom(X,Y)/L<'End(X)

/

L/Si/L/<z‘
Then, ¢ is an isomorphism if and only if ¢’ is an isomorphism.

Lemma 4.13. Assume m—n+X < 0. We have an isomorphism ), acto (id Q((F g, E™ "o
Um—i,n—i)) ;
min(m,n) . .
B LimniA) @z B F (i — 2m — X)) 5 FPE™1,.
i=0
It induces an isomorphism of (*H’. @ (°HY)°PP)-modules:
min(m,n) - . '
@ L(m,n,i,A) @ogys ot o B™TF" 060 — 2m — X)) = FE™.
Assume m —n+ X > 0. We have an isomorphism y_,(id @(0y—ipn—; 0 (E™ g, F""))) o act*:
min(m,n)

E"F'1, S @ L(m,n,i\) @z F* E" 7 1,(i(2n — X — 1)),
=0
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It induces an isomorphism of (Oan ® (OHﬁ)Opp)—modules:

min(m,n)
E"F'1, = @@ Lmni, N) opr gops o FPET T 1(i(20 = X = ).

i i
=0

Proof. Note first that the statements for (m,n,\) where m —n + X\ < 0 are transformed into
the statements for (n,m,—A\) by the Chevalley involution. It is immediate to check that the
maps are graded and it is enough to prove the Lemma in the non-graded setting.

Assume m —n+ X < 0. Note that the first statement is equivalent to the second one (Lemma
4.9), whose map makes sense thanks to Lemma 4.10. We will drop the idempotents 1, to

simplify notations. Note that the result holds for m =n =1 as ps ) is invertible by definition.

Since L(m, n,i, ) ®oys  gopt yorn (" Hm—i® Hy—) is projective as a OH! @(OH e 0f, @
0H"P)-bimodule (Lemma 4.9), it is enough to show that the second map is an isomorphism
after multiplication by Toy1 ) ® Typpn (Lemma 3.3).

We prove the Lemma by induction on n + m. Note that the Lemma holds trivially when
n =0 or m =0 as well as when (m,n) = (1,1). So, we can assume m +n > 3.

e Let us first consider the case m —n + A = 0. Applying the Chevalley duality if necessary,
we can assume that n > 1. By induction, we have isomorphisms

(7) E™F"® Lim,n—1,1,\ —2) ®s Emipnl 5 prelpmp

L BOH] )P

S FPE™ @ I/(T)’L7 1,1, )\) Qo s ) Fr-lipm-1
Applying I o D to the diagram of Lemma 4.10, we obtain a commutative diagram
ne Fffm,l
Emle S FEmF S F2Em
Om—1,1 i
TE™
m—1 o 172 1m

FE e F°E

It follows that the composition of maps in (7) has one of its components equal to

(8) acto (T, 1E™) o (F" 'nE™ o (F" 0 _1,1)
Lim,n— 1,1, —2) s sty g1 _, pngm

We have (Typm @ Tort )L(m,n — 1,1,X = 2) = (Typm ® Twpin)Z and it follows that the

w(l,n]

map in (8) vanishes after multiplication by (Typm ® Tt ;) We deduce that the component

w(l,n]
Omm @ EMF™ — F"E™ of the composition of maps in (7) is an isomorphism.

e We consider now the case n =1 and m + A < 0. By induction, we have an isomorphism
E"'FE® L(2,m],1,1,A+2)®@ E™ ' 5 FE™.
So, we have an isomorphism

(9) E"F @ L(1,1,1,\) ® E™ ' @ L([2,m],1,1,A +2) ® E™ ' 5 FE™
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Taking the image under the Chevalley duality of the commutative diagram of Lemma 4.10, we
obtain a commutative diagram

It follows that the isomorphism (9) induces an isomorphism (o, 1, act o (id @(nE™ 1)), (act o
(id@(nE™)))E)

E"F & ( P xiT---Ta- 1z) ® E" '@ L([2,m],1,1,A+2)® E"" 5 FE™.

0<i<—A

( P xin-- T i"He 1> e P TuX)Hu
0<i<—A wEGg m] 1]
l<— mm)\

This is a "H il—submodule of °H,,. We have

T, [lm]M T [1,m] (Zasm 1 s1<XZ)OHm 1+ Z Xl Hm 1>

i<—A i<—m—A\

= Tw[l,m] Z (X:n)OHmfl

i<—A—m

= Tw[l,m]E(mu 17 17 )‘)OHmfl

_ Note that M is generated by dimgz L(m,1,1, ) elements as a right YH,,_1-module. Since
L(m,1,1,\)°H,,_1 is a free right °H,,_;-module of rank dimgz L(m, 1,1, ), it follows that M
is a free right " H,,_;-module of that rank. We have an isomorphism

(10) (0m1,acto (id®@(nE™ 1)) : E"F & M ®oy, , E™ ' = FE™.
The morphism
(11) (Om1,acto (Id@(E™ 1)) : E™F & L(m, 1,1, ) @ s B Emt S FE™

becomes an isomorphism after multiplication by T1 ), since it coincides with the multiplica-
tion by Ty[1,m) of the isomorphism (10). It follows from Lemmas 4.9 and 3.3 that the morphism
(11) is an isomorphism and the lemma is proven when n = 1.

e We consider finally the case n > 1 and m —n + A < 0. We have an isomorphism
FE L(m,n—1,i,)) @ E"'F""' 5 F"E™,

The case n =1 of the lemma gives isomorphisms

~

(L(m . i, 1’ ]_7 N — 2(n — = 1)) ® Em—i—l) Fn—i—l ® Evm—iFn—i -, FEm_iFn_i_l.
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Combining the previous two isomorphisms, we obtain a isomorphism

n

B (L(m, [2,n],i, )& L(m, [2,n],i—1, )@ L(m—i+1,1,1,A=2(n—i))) @ E" ' F"~ 5 F"E™,
i=0
In that isomorphism, the map L(m, [2,n],i, \)QE™ F"~ — F"E™ is acto <id @ ((F i Em "o
am,im,i)). It follows from Lemma 4.10 that the map
L(m,[2,n],i —1,A)®@L(m—i+1,1,1,A—2(n—1i))® E™"F"" — ["E™
is
act o (id ®(act ) ((Tn_i .. .T1>Em—i+1)>) o <id®id®((Fn—imEm—i) o Um—i,n—i))-
Let ¢ > 0 and
M; = L(m, [2,n)],i, A)@( b 7. T1X{z> L(m, [2,n],i—1,\)- ( P - -TmiZ> ,
I<—r+n—i 1<j<m—1i

a subgroup of "H,, ®og, "H,. We have shown that there is an isomorphism

~

act o <ld®((Fn_lanm_z) o Om—i,n—i)) : @ M; ® Em_iFn_i — FE™,
=0

Let
N; = B T DX (X X)X X T Z
weln-itlg, |
HEP(i—1,—r—1)
I<—r+n—i
and
N= P mXnisr, X)X XaaTwZ.
w’e[z’"*i]G[zyn]
HEP(i,—r—1—1)
We have
Mi=| P T.Z| N &N).
wesm ™t
We have
Tum-ittalN Ty = Y mu(Xipr, o Xo) Tupn Z
HEP (i,—r—1—1)
and

Tw[n_i_}_l’n]NiTw[l,n] =
- Z aSnfl"‘Sn—H—l (aSn—i"'Sl (X{)mu(Xn—i-&-?? ce 7X"))Tw[1v"}z

HEP(i—1,—r—i)
I<—r+n—i
- E ( E Pk,l(Xlu e 7Xn—i)Rk,u(Xn—i+l7 N 7Xn))Tw[17n]Z

pEP(i—1,—r—i) k<l—n-+i
I<—r+n—i
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where Py is a symmetric polynomial and Ry, = 05, y.s, ;00 (XF_mu(Xp_igo, ..., X,)) sat-

isfies deg, Ry, < max(k —i+1,—r —i—1) by Lemma 4.11.
Let us fix k& and [. By induction, the composite morphism

Em—iFn—i Om—in—i Fn—iEm—i Pl ™ Fn—iEm—i
is equal to
D (mp(Xnjins o X)) X700+ Xnsi ) E™ )0 (id @((F" 1 E™ )00 jin—5))0 f
>i

W €P(j~i—r—j+i)

for some f; , : EMTUF"T — EmIF™I 0 We have

Tw[n—j+1,n]w[n—i+1,n]mu’ (Xn—j+17 s 7X )sz ;+11 Xn—i—le,p,(Xn—i—i-h o 7Xn)Tw[1,n] =
= aw[nfjJrl,n]w[n7i+1,n}w[n7j+1,n7i](m;/(anj+l> s aani)Rk,u<Xn7i+17 . >Xn))Tw[1,n] =
= Sk,u,u’<X’n—j+17 s 7Xn)Tw[1,n}7

where Sy, v is a symmetric polynomial and deg, S, ,» < —r — j by Lemma 4.11. Note that
if j=iand k# —r — 1, then deg, Sp v < —1r—7i—1.

Assumel=—r+4+n—i—landk=[01—n+i=—r —1. We have
Rk,u = asn_1~~sn,i+1 (Xn 7n@JrlnfLu(A)(n—i-i—% s 7Xn)) = m,uU{frfi} (Xn—i—i-la s >Xn)+T(Xn—i+1a s 7Xn)a
where T is a symmetric polynomial with deg, ' < —r — i — 1 (Lemma 4.11).

We have shown that the images of L(m,n,i,)) and of M; in Hom(E™F"— F(™ E(m)
coincide modulo maps that factor through

BTy T ) L(m, i, N) @ B F — PO B,
j>i

Using Lemma 4.12, we deduce by descending induction on i that the lemma holds, using that

dimgz M; = dimg L(m, n,i, A) as in the case n = 1 considered earlier. O

Remark 4.14. Let B, the k-linear category B x B°PP. Denote by F; the object E, of B°PP
and define i : Ob(B;) — X, (M, N) — h(M) + h(N). Consider the 2-category @; with set
of objects X and Hom(A, X') = h~1(N = \). The isomorphisms of Lemma 4.13, together with
og for s # t, are the first steps to provide a direct construction of a tensor structure on the
homotopy category of @, (after adding maps (M @ E,, F, @ N) — (M, N)).

4.2.3. Decomposition of [Eﬁm), Ft(n)].

Lemma 4.15. Let s € I and m,n € Zsy. Let 7 =m —n + (o), \). We have the following
isomorphisms in @' and in @**:

(4

EMFM ~ H FO=DEm= ifp >

iEZZO

ve @ [T meomr e @ [T meme i <o

i€1+2Z>

FPE™ o {Z —lw r] Er IR ~ (D [Z -l T] B0 =) £ 5

)
i€142Z>
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FME™ ~ h’] Em=) (=i i <

iGZZO
Lett € I —{s} and m,n € Zsy. We have the following isomorphisms in A" and in A

s

Proof. The first isomorphism follows from the isomorphism of (°H,,@° H")-modules in Lemma
4.13. Assume r < 0. Given | € Z, we have (cf e.g. [Lu, 1.3.1(e) p.9])

21 F_ ; _r} ' L_—Tz‘] =0

)

It follows that

@ 1] [7]erarecr= @ [71] [7] meres
/) 7 ? J

i€1+2ZZO i€2Z~0
>0 >0
—T| p(m—i) grn—i)
@@{JE Fn=i),
1>1
hence
L—=1 =7 L(oi) p(m—i) L= 1 =7 L(noi) p(m—i) =T | (m—i) p(n—i)

P { Z. }F Em ~ (P Z. FO=0pm=i) ¢ f S| ECOF

i€142Z 0 €270 i>1

using the first isomorphism of the lemma for (m — ¢,n —i). The second isomorphism of the
lemma follows by applying again the first isomorphism.

The third and fourth isomorphism follow from the second and first by applying the Chevalley
involution.

~

The isomorphisms o induce an isomorphism E7'F})* — F'ET" compatible with the action
of °H,, ® °H, (the proof in Lemma 4.10 works when s # ¢). It follows that E{™F™ ~
FmEMm. O
4.2.4. Decategorification. Proposition 4.2 shows that we have a morphism of algebras

Ui(s) = Bey, e = [E]]

and a morphism of Z[v*!]-algebras

Uy (g) — B2, el [E]].
The defining relations for @ show that we have a functor compatible with the Z[v*!]-structure:
Ui(g) = A2y, A A, el = [BD], f s [FD)]

and a functor compatible with the Z[v*!]-structure:

Uv(g) _ g;ih \ — )\7 egr) — [E('f’)]7 fs(r) — [FS(T)]
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5. 2-REPRESENTATIONS

We assume in this section that the set I is always taken to be finite. All results are stated
over k and are related to representations of g. They generalize immediately to the graded case
over k* and relate then to representations of U,(g).

5.1. Integrable representations.

5.1.1. Definition. Let 3 be a k-linear 2-category.

Given R : @ — ¥ a 2-functor, we have a collection of { R(\)} of objects of 3. We say that R
gives a 2-representation of @ on {R(A)}. If this makes sense, we put V = @, R(A) and say
that we have a 2-representation of @ on V.

The data of a strict 2-functor R : @ — ¥ is the same as the data of

a family (V))aex of objects of %
o l-arrows Fy : Vy — Viia, and Fi 1 V) — Vy_q, for s € 1
x5 € End(Es ) and 7e4 ) € Hom(E yva, Bty Eryta,Esy) for s,t €1
e an adjunction (Fs ), Fsrta.)
such that
e relations (1)-(4) in §4.1.1 hold
e the maps p;» and oy for s # ¢ are isomorphisms
e the map né)\ : 1y — Es a0, sy defined by

ni,A = p;i © (07 .50, (_1)(% 7)\>)
for (@), \) > 0 gives an adjunction (F;, Es rta,))
e the map e’ , : Fy ia,, Esx — 1, defined by

O(v —
gls)\ = (07 50, (_1) ° )\) © ps,}\

for (o), \) < —1 gives an adjunction (Fia., Esn)-

From now on, we assume ¥ is a locally full 2-subcategory of Ziny.

Definition 5.1. A 2-representation @ — B is integrable if E, and Fy are locally nilpotent
for all s, i.e., for any XA and any object M of the category V,, there is an integer n such that
Es,A—I—nas o Es,)\—i-aSEs,)\(M) =0 and Fs)\—ncxs o Fs,)\—as Fs,)\(M) = 0.

Our main object of study is the 2-category of integrable 2-representations of @ in k-linear,
abelian, triangulated and dg-categories.

Lemma 5.2. Assume g is finite-dimensional. Let V be an integrable 2-representation of A(g)
in Ting. Let X € X and M € V). Then, there exists a full sub-2-representation W of V
containing M and such that there are finitely many p € X with W, # 0.

Proof. We define VW as the full subcategory of V with objects of the form XM with X €
Hom 4 (A, p) for some p. It follows from ??7?7 that... O

Let V be an integrable 2-representation of @(g) in #iny. There is an induced action of K°(@)
on K°(V).

Lemma 5.3. Let s e 1.

"Check ref integrable and finitely generated implies finite-dimensional
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o Let C € K°(V). If Hom(E‘M,C) =0 in K°(V) for all M € V such that F,M = 0, then
C=0.

o Let X be a l-arrow of KY(@'). If XE{(M) =0 for all M € Kb(V) such that F,M = 0,
then X(N) =0 for all N € K°(V).

o Let f a2-arrow of K(@'). If f(E'M) is an isomorphism for all M € K°(V) such that
F,M =0, then f(N) is an isomorphism for all N € K°(V).

Proof. Let i be a maximal integer such that F!C' # 0. We have
End(F!C) ~ Hom(E'F!C,C) = 0,

hence a contradiction and consequently C' = 0.
Let XV be a right dual of X. Let M, N € K°(V) such that F;M = 0 and let i > 0. We have

Hom(E! (M), XYX(N)) ~ Hom(XE':(M),X(N)) =0
and we deduce from the first statement of the Lemma that C'(V) = 0.

The last assertion follows from the second one by taking for X the cone of f. O

The discussion above extends to the case of 2-representations of @* in a graded k*-linear
2-category. When V has trivial grading (i.e., the self-equivalence is the identity), an action of
@* is an action of 4j.

5.1.2. Simple 2-representations. We assume that the root datum is Y-regular, i.e., the image
of the embedding I — Y is linearly independent in Y (cf [Lu, §2.2.2]). Let X* = {\ €
X|{a)f,\) € Zso for all i € I'}. The set X is endowed with a poset structure defined by A > pu
if A — n e 691'6[ ZZOO'/Z\'/'

Let A € —X*. Consider the 2-functor Hom(\, —) : 4 — ZLiny and let R : 4 — ZLiny be
the 2-subfunctor generated by the Fj ) for s € I, i.e., R(u) is the k-linear full subcategory of
Bom (A, 1) with objects in A~ (u— A+ a,) F,. We denote by £()\) the quotient 2-functor, viewed
as a k-linear category endowed with a decomposition £L(\) = @,y £(N), and endowed with

an action of d.

Denote by 1, the identity functor of £(\). It follows from Lemma 4.13 that FsEéo‘sY IR TN

is isomorphic to a direct summand of E{* "M*'F.1,. In particular, F,E M1, = 0. The

isomorphism

pneX

End(E{*V711,) ~ Hom(E N1, F,EQ N+

shows that
Eéa;/’_)\>+1i)\ —0.

Since FyF41,, is a direct summand of F;F1, plus a multiple of 1,,, it follows that every object
of L£(\) is isomorphic to a sum of objects of the form FE, --- E,, 1, for some sy,...,s, € I. In
particular, every object of £(\), is isomorphic to a multiple of 1. Since End(1,) is a quotient
of End(1y), it is commutative and £()), is equivalent to the category of free End(1,)-mod-
modules of finite rank.

Note that C ® Ky(L()\)) is isomorphic to the simple integrable representation of g with
highest weight A\ [Kac, Corollary 10.4], or it is 0. We will show in a sequel to this paper that
it is indeed non zero and determine End(1y).
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5.1.3. Lowest weights. Let A be an End(1,)-algebra. Let V = L(\) ®gnai,) 4, given by V, =
L(N)y ®Bnaciy) A, where the map End(1,) — Z(£(A),) is given by right multiplication. The
action of @ on L£(\) extends to an action on V. Similarly, if A is a End(1,)-linear category, we
have an action of @ on L(A) ®gpa(i,) A

Let V be a 2-representation of @ in Liny. Given A € X, we denote by VI¥ the full subcategory
of V) of objects M such that F,M =0 for all s € I.

Lemma 5.4. If V\V #0, then, A € —XT.

Proof. Assume there is s € I such that (aY,\) > 0 and let M € V. Then, M is a direct
summand of E,F,M = 0. O

Assume A € —X*t. The canonical morphism of 2-representations Hom(\,—) — V factors
through a morphism Ry : £(\) — V. Note that Ry/(1,) = M. So, we have a morphism of
algebras End(1,) — End(M) and this shows that the morphism above extends to a morphism
of 2-representations Ry : £(A) ®gnaci,) End(M) — V. We have also a canonical morphism of
2-representations Ry : £(A) ®pua(i,) V3 — V that extends Ryy.

Proposition 5.5. The morphism of 2-representations
D> Bt P LA Bpnaay W=V
Ae—X+ Ae—X+
is fully faithful.
Proof. Let A € =X and M € V¥. Let Ly(A) = L(N) Qpnaciy) End(M). Let X be an object

of Hom(\, ). There is an object Y of Hom(u, \) left dual to X. We have a commutative
diagram of canonical maps

EndﬁM(/\)(Xi)\) AN HomLM(,\)(YXi,\, i)\)

l l

Endy(X M) Homy, (Y X M, M)

~

Since Y X1, is isomorphic to a multiple of 1,, the right vertical map is an isomorphism, hence
the left vertical map is an isomorphism as well. It follows that R, is fully faithful, hence R)
is fully faithful as well.

Consider now p € —X T with  # \. Let M € V¥ and N € V,ﬂw. Let s1,...,8m,t1,...,tp €1
such that ag, +---+a,, + A= +---+ o, +p. If m =0, then we have

Hom(M, Etl cee EtnN) ~ Hom(Fth, Etz s EtnN) =0.

Assume m > 0. Since Fy, Fy, --- E; N is isomorphic to a direct sum of objects of the form
Ey By By, - E,N for t; = 51, it follows by induction on m that

Hom(E,, - -+ E, M,E,, -+ E, N) =0.

So, there are no non-zero maps between an object in the image of Ry and an object in the
image of It,,. U

An immediate consequence of Proposition 5.5 is a decomposition result for additive 2-
representations generated by lowest weight objects.
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Corollary 5.6. Assume V is idempotent complete and every object of V is a direct summand
of a multiple of X M for some object X of A" and M €V with F;M =0 for all i.
Then, there is an equivalence of 2-representations

Z Ry @ (E(A) ®End(1y) Viw)i Sy,

Ae—X+ Ae—X+

5.1.4. Jordan-Hélder series. We denote by @™ (3) the 1, 2-full subcategory of 2-representations
V in 3 which are integrable and such that {\ € —X |V, # 0} is bounded below (i.e., a sequence
A1 > Ao > -+ of elements of — X with V), # 0 for all i must be stationary).

Theorem 5.7. Let V be an idempotent complete 2-representation in @int(lmk). There is a
filtration by thick 2-subrepresentations

0=V{0}CcV{l}---C---CV{n}=V,

there are End(1y)-linear categories My, for A € =X and isomorphisms of 2-representations

V{i}/v{l -1} = @ (L(X) @pnaciy) MA,l)i-

xe—-X+

Proof. We proceed by induction on the maximal length of a sequence \; < --- < A, of elements
of =X such that V,, # 0. Let L be the set of minimal elements A € —X ™ such that V\ # 0.
Proposition 5.5 gives a fully faithful morphism of 2-representations

P L) Spnay VN =V
AEL

that is an equivalence on A-weight spaces for A € L. By induction, its cokernel satisfies the
conclusion of the Theorem and we are done. U

This theorem extends to abelian and (dg) triangulated settings, cf [Rou3].

5.1.5. Bilinear forms. Assume V is a 2-representation of A’ in Triy, where k is a field endowed
with a k-algebra structure.

The action of A’ on V induces an action of U;(g) on Ky(V). The same holds for 2-
representations in abelian or exact categories.

Assume V is Ext-finite, i.e., dimy, @, , Homy (M, Ni]) < oo for all M, N € V.
We have a pairing on Ky(V):

Ko(V) x Ko(V) — Z, ([M],[N]) = 2:(—1)idim}c Hom(M, NTi]).
We have
(es(v),v') = (v, fs(v")) and (fs(v),v") = (v, es(")).

Note in particular that if L is a field such that the pairing is perfect on L ® Ky(V), then
L ® Ky(V) is a semi-simple representation of L ®z U;(g).

5.2. Simple 2-representations of sl,.
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5.2.1. Symmetrizing forms. We put P, = k[X7,..., X;]. Fix a positive integer n. Let i be an
integer with 0 < ¢ < n. We denote by H,, the subalgebra of °H, generated by T1,...,T;_;

and PY™ 0 This is the same as the subalgebra generated by °H; and PS». We have a
decomposition as abelian groups
Hi, = °HY @7 PS+17,
and a decomposition as algebras
(12) Hi,="H; @z Z[ X1, ..., X, S0,
Lemma 5.8. The algebra H;,, has a symmetrizing form over Po»
ti s Hip — PO(2i(i —n))
P-Ty - w[1,4] = 0wt n)-wlit1,m) (P)Ow,w1)
forw € &; and P € polithm.

Proof. The decomposition (12) shows that H;, has a symmetrizing form over polilx Slidn]

given by PT,w[l,i] + Oy(1,i(P)dw,wq for w € &; and P € poittnl,
The algebra P, has a symmetrizing form over PS» given by Ow(1,n) and a symmetrizing

form over Pn6 [LixElitLn] given by Oy(1,Ouji+1,n)- It follows from Lemma 2.12 that the algebra

poLAXSITLN Lag g symmetrizing form over P given by Oyt n)-wi1,i-wli+1,,). The lemma follows

from Lemma 2.10. U
Let e;(---) (resp. h;(---)) denote the elementary (resp. complete) symmetric functions and
put e; = h; =0 for ¢ < 0.

[i+1,n] PTLG[i+2,n] ‘

Lemma 5.9. The morphism Os,_,...s,,, is a symmetrizing form for the Py -algebra
The set {X], 1} o<j<n—i—1 18 a basis, with dual basis {(—=1)7ep_;—1-j(Xito, ..., Xn)}.
Proof. The first statement follows as in the proof of Lemma 5.8 from Lemma 2.12. We have
8Sm (hj<X1, . 7Xm)) = —hjfl(Xl, e 7Xm+1) and 8Sm (ej(Xerl, e 7Xn)) = €j,1<Xm, e 7Xn)

Let k,j € [07 n—z’—l]. We have ek(Xi+27 e ,Xn» = ek(Xi+1> e 7Xn)_Xi+16k—1(Xi+27 e 7Xn);
hence

Os 1osiin (X ex(Xigay o, X)) =(= )" 0o (X, Xo)ew (X, -y X)) —
— g ysins (X 1 (Koo, ., X0)
By induction, we obtain
asnfl"'si-&-l(X’.ij—f—lek<X7;+27 s Xn)) :(_1)n+i+1(hj—n+i+lek — hjnqigolr_1+ -+
+ (=1)*hjntir14r€o),

where we wrote e; and h; for the functions in the variables X;;1,...,X,. It follows from the
fundamental relation between elementary and complete symmetric functions that

Os 1osiin (XL ex(Xiga, .., X)) =0if j+k#n—i—1

while

857171"'81'4-1 (Xz'j-i—len—i—l—j (Xi+27 S 7Xn)) = <_1)j'
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5.2.2. Induction and restriction. We have the usual canonical adjoint pair (Indgzt:’", Resgfnl’").

The symmetric forms on the algebras H; ,, and H;;4 ,, described in Lemma 5.8 provide an adjoint
pair (Resgif:’”, Indgjfnl’") and we will now describe the units and counits of that pair, in terms
of morphisms of bimodules.

The following proposition gives a Mackey decomposition for nil affine Hecke algebras.

Proposition 5.10. Assumei < n/2. We have an isomorphism of graded (H; ,,, H; ,,)-bimodules

n—2i—1
pi . Hi,n ®Hi71,n Hz,n(2) @ @ HZJL(_Q]) :) i+1,n
=0
n—2i—1 '
(a®d,ag,...,a, 9;1)— al;a + Z a; X7, .
=0

Assume i > n/2. We have an isomorphism of graded (H; ,, H; ,)-bimodules

2i—n—1
pi: Hip ®@p,_,, Hin(2) S Hig1, @ @ H; (25 +2)
=0
a®ad — (aTyd jad ,aXd ... aX? " a).

Proof. By [ChRou, Proposition 5.32], we know that the maps above are isomorphisms after
applying —®pen k, where £ is any field. So, the maps are isomorphisms after applying —® pen Z.
The proposition follows now from Nakayama’s Lemma.

Let B; be a basis for H; ,, over P and {b" }4¢p, be the dual basis. The symmetrizing forms on
H;, and H;;;, induce a canonical morphism of (H,,, H; ,)-bimodules, which is the Frobenius
form of H,4;, as an H, ,-algebra:

gitHiv1n — Hin(—2(n —2i — 1))
and a canonical morphism of (H;1 ., Hit1,)-bimodules
ni: Hiy1n — Hiz10 ®m,, Hit10(2(n — 20 —1)).
They give rise to the counit and unit of the adjoint pair (Resgzjf’",lndg’:“’"). Note that

tiog; = tit1.

Lemma 5.11. Let P € Py and w € &,,1. We have

agn_l...siﬂ (P)Tws1-~-si Zf’LU € GiSi 081

0 otherwise.

€i(PTw81 s Si> = {

We have
€i(P) = Os,_ysiy (P(X1 = Xip1) -+ (Xi — Xiga))
and 57,(P7-'z) = -0 (P(Xl — X,L'Jrl) s (Xi,1 — X’i+1)) .

Sn—1"""8i+1

When i < n/2, we have
ei(T) = ei(X]) =0 for j <n—2i—1 and g;( X271 = (=)™

7
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When i > n/2, we have
2i—n—1
€z(T@) _ (_1>n+1Xi2i7n (mod @ PrLG[l,i}XG[iJrl,n]Xg)'
j=0
Proof. Let us consider the first equality. Let f : H;;1, — H;, be the linear map sending
PT,s1 -+ s; to the second term of the equality. Note that f(Pa) = Pf(a) for all P € polrtnl
and a € Hiiqp.
Let j <i,let P e PO2n and let w € Giv1. If wgS;s; - - 51, then
f(J}PTwsl s Si) = O = ij(PTwsl ce Si).
Assume now w € G;s;---s;. Then,
f(EPTwSI T Si) = 857171"'51'-%1 (Sj(P))T’ijsl'“Si + aSnfl"'SH—lSj(P)Twsl"'si
= Tjasnfl---sz'ﬂ(P)Tw81---S¢
= ij(PTwsl cee Si)-

It follows that f is left H; ,-linear. Since ¢; o f = t,41, we obtain the first equality from Lemma
2.11.

We have

~

Xi1) - (Xi— Xiy))Ty- Ty mod F<&29
hence 5@(P) = 6’3%1...3“1 (P(Xl — Xi+1> e (Xz — Xi—l—l))'
We have
Tisi 51 =—Tisi1---81 = —(Xl - Xi+1) T (Xifl - XiJrl)Ti ---T7 mod F(2)
hence El(PT—D = —85”_1_..Si+1 (P(Xl — XiJrl) tee (XZ‘,1 — XZ'+1)).
The vanishing statements follow immediately from degree considerations.
Let P = Xl-n+_12i_1(X1 — XiJrl)(XQ — Xi+l) cee (Xl — Xi+1>- We have

P= Z(—l)jXﬁ:lmilJrjei,j(Xl, c. 7Xz)
j=0

We have 0s, .5, (X[, 1) =0 for r <n —i— 1. It follows that
El(XPTY) = Ospisi (P) = (= 1) 0y (XTHT) = (1)
by Lemma 5.9.
Assume ¢ > n/2. We have

£i(Ti) = =05 _yomosiy (X1 — Xig1) -+ (Xim1 — X))

i—1

= —1) Sn—1""Si41 i. 1)€i—1—j A1, -y A1)

Y. (=1 n(Xeia (X, Xia)

j=n—i—1
By induction, we see that ey (X1,..., X; 1) € (=1)FXF + 3., PSi X7 Tt follows that
2i—n—1
51(Tz) _ (_1)n+1Xi2i—n (mod @ Pﬂ@[l,i]x@[i—i—l,n]Xij)‘
=0
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Lemma 5.12. We have
’rh(l):E...Tlsl...siﬂ'_’_..._f_TlSl...SZ.ﬂ'ﬂ...TQ+81...Siﬂ'ﬂ...T1’

where ™ = Z?:_é_l(—1)j€n,i,1,j(Xi+2, c. ,Xn) &® X7:7+1

Let P € PS. We have
m((1®P@1@ 1)ni(1) = (=1)" 0y, (P(Xip1 — Xiv2) -+ (Xi1 — Xa))
and
m((1@ TP @ 1@ 1)ni(1)) = (=1)" 05,5, (P(Xisa — Xigs) -+ (Xin — X))
When i > n/2 — 1, we have
m((1® X, ®1@1)n(1) =m((1® T4 ® 1@ (1)) =0 for j < 2i—n+1
and m((1@ X7"" @ 1@ ni(1)) = (=)™
When i <n/2 — 1, we have
n—2i-3

m((1 0 Ten @ 10 (1) = (<1"X7 2 (mod () Rt sty ),
j=0

Proof. Let B be a basis for Z[X;,1, ..., X,,]%+2" over Z[ X1, ..., X,]%+5 and BY the dual
basis for the symmetrizing form 9,,_,..s,,,. Let 7 =) _za" ® a be the Casimir element. Let
R={1,T;,...,T;--- T}, a basis of °H,,; over °H;. Its dual basis for the Frobenius form

T T’wsl---si ifwe 61'81' RN |
v 0 otherwise

is given by {1V =T, --- Ty, ..., (T;--- T3)" = T, (T;- - - T1)" = 1}. It follows from Lemmas 5.11
and 2.11 that
TwSl"'Si N TTUSl'-'Si if we '6i5i"'31
0 otherwise.

extends to a Frobenius form for the ("H; ® Z[X, 1, ... , X, |Slt2n]) algebra H;., for which the
basis dual to R is {hVsy---si}ner. Then, {ah}eepner is a basis of H;y1, as an H; ,-module.
Furthermore, the dual basis for the Frobenius form ¢; is {h"s; - - - s;a" }aeB ner (cf Lemma 5.11).
We have

(1) =Ty -Tysy---s;m+ -+ T8y 5@l Ty+ 81+ sl Ty
and the first statement of the lemma follows from Lemma 5.9. We deduce that
Tw[1,z‘+2mi(1) = Tw[l,z‘+2}81 cesmly e Ty = (—1)iTw[1,z'+2]7TTi RN A
Let b € Hﬁ’fn Define

FO) =m(1@b@1@)p(1) = Y h's;---sia’bah € Hipa,,.
a€B,heR

We have
Tw[l,i-l—?}f(b) - (_1)1Tw[1,i+2] Z a,vba,T; ce Tl-

a€B
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Since deg(m) = 2(n — i — 1), it follows that
Tuiva f(b) =0 for b € F=@ntls),

We have

Q(X1,..,Xn)OlH27] %6, 44

(Q(Xh o 7Xn>6[i+3,n} 9 6i+2) = Q(X,,. .. 7Xn)6[1,i+1}><6[i+3,n}

and
Hitin _ p6&[l,i+1]x6S[i+3,n]
Hi—l—?,n - Pn .

We deduce that given b € H, @ Lo, then f(b) € P,. Note that left multiplication by Ti1i49) is
injective on P,.

We have m(m) = (Xjy2 — Xip1) -+ (X — Xiy1) by Lemma 3.1. Let P € PS. We have
T it21 f(P) = (=1)"Tp1,i42)0s; s (P(Xio — Xi1) - - - (X, — Xiy1)), hence

f(P) = (_1)n+1881~~5¢(P(Xi+1 - Xi+2) e (Xi—I—l - Xn))

We take now B = {X7,, }o<j<n_i_1, cf Lemma 5.9. We have

n—i—2

Tt f (s P) = (—1) Tup,i42 Z (1Y en—i—a—j(Xits, ..., Xn )PXZHT -Th
=0

hence
J(TiaP) = (=1)"0s, s, (P(Xig1 — Xigs) -+ - (Xig1 — X))

Assume ¢ > n/2 — 1. The vanishing statements are immediate consequences of the previous
two equalities of the Lemma.

We have
FOE™) = ()" 0y, (XETH (X1 = Xig2) -+ (X1 — X))
= (—1)" 0y, (X} ) = (=),
Assume i < n/2 — 1. We have
f(Ti) = ( ) spos (Xin = Xigs) -+ (Xia — X31))

190 (K )iy (Krs - X,

1

<.
Il

I
.M‘

By induction, we see that ey(X;is,...,X,) € (=1)"XF, + ZKk [(Xiio, ... ,)(,l]g[l”rl"])(ij+2
Consequently,

n—2i—3
f(Tisa) = (= 1)ann+222 (mod @ PS[I’HI]XG[HQ’"]XZ'JH)-

J=0

g

As a consequence of Lemmas 5.11 and 5.12, we obtain a description of the units and counits
n; and g; through the isomorphisms of Proposition 5.10.
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Proposition 5.13. If i < n/2 then we have a commutative diagram

Hin ®mp, ., Hin(2) ® Hipn © Hin(=2) &+ @ H;pn(—2(n — 2i — 1)) = Hiiyn

(0,0,...,0,(—1)"F isi
H;n(—2(n—2i—1))
If i > n/2 then the image of €; o p; in
2i—n—1 ‘
Hompy, , #,,,(Hin ®n,_,, Hin(2), H;n(2(20 —n+1)))/ @ (a®a — aX/d) - Z(Hin)a@iny)
j=0
is equal to the image of the map a ® a' +— (—1)"1a X "d'.

If i <n/2—1 then the image of piy1 0 1; in

n—2i—3
Homp, iy (Hit1n, Hivan(2(n — 20 = 2)))/ @ X7 2 Z(Hivr0)a(n—2i—2—j)
j=0
is equal to (—1)"X[',2?
Ifi > n/2 —1 then we have a commutative diagram
Hit1n x Hit1n ®m,,, Hiy10(2(n — 20 — 1))

(0707”‘707(_1)77,4» Nlpi+l

Hi+27n(2(n — 21— 2)) D Hi+1’n(2(n — 2 — 1)) D Hi+17n(2<n — 0 + 1)) DD Hi+1,n

5.2.3. sly-action. Let V(—n)y = Hpgn /2 nfree for A € {—n,—n +2,...,n — 2,n}. We de-
fine £ = @, Ind, Mivtn and F = @, Re SH’“". We have a canonical adjunction (F, F').
Multiplication by X1+1 induces an endomorphism of IndH”l’” and taking the sum over all i,

we obtain an endomorphism x of E. Similarly, 7T}, mduces an endomorphism of Ind, Hitam
and we obtain an endomorphism 7 of E?. Propositions 5.10 and 5.13 show that this endows
V(—n) = @, V(—n), with an action of @.
Let R : V(—n)®gnai_,) PSn — V(— ) be the morphism of 2-representations associated with
M = PS € V(—n)_,

Proposition 5.14. The canonical map End(1_,) — PS is an isomorphism and R induces an
isomorphism of 2-representations of 4

V(—n) = V(—n).
In particular, the action of @ on V(—n) extends uniquely to an action of a.

Proof. The canonical map 1_, — FM®EM™1_  is an isomorphism by Lemma 4.13. It follows
that the canonical map is an isomorphism End(1_,) — End(E™1_,). We have a commutative
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diagram of canonical morphisms of End(1_,,)-algebras
End(1_,)
End(E™1_,) — End(E™ M) <— PSn

~

and it follows that all maps in the diagram are isomorphisms. The proposition follows. O

5.3. Construction of representations. In this section, we show that, for integrable repre-
sentations, certain axioms are consequences of others.

5.3.1. Biadjointness.

Theorem 5.15. The canonical strict 2-functor @ — @' induces an equivalence from the 2-
category of integrable 2-representations of @ to the 2-category of integrable 2-representations of

q.

Proof. Tt is enough to consider the case g = sl,. Assume A > 0. Let éldvA r o FEIdy, — Idy,
be the map whose image under

A—1
Hom(oy, Idy, ) : Hom(FE Idy,, Idy, ) = Hom(EF Idy, ,Idy, )/ (@ ZW) -eo (:ciF))
=0
coincides with (—1)* e o (22 F).

Assume A > —1. Let #a,, r : Idy,,, — EFIdy, , be the unique morphism such that
Pr+2 © nldv/\ F = (07 07 o 707 (_1)>\+1)‘

Assume A < —2. Let fa,, r : Idy,,, — EFIdy, , be the map whose image under

—3-2
Hom(Idy, ,,, pr+2) : Hom(Idy, ,, EF Idy, ,,) = Hom(Idy, ,, FEIdy,,,)/ ( P (Fa')on- Z(VHQ))
i=0
coincides with (—=1)*(Faz=*"2) on.
Assume \ < 0. Let €ldy, F FEI1dy, — Idy, be the unique morphism such that

Elay, 0 pr = (0,0,...,0, (=1)*).

The theorem will follow from the fact that the maps éldvA r are the units of an adjoint pair
(Idy, F, E1dy,). Note that the same will hold for the maps Mdy, F-
It is enough to show that

(13) (EF) o (Fnr) and (E€r) o (npE) are invertible.

Note that this holds for V = V(A) by Proposition 5.13.
Let M € V, such that FM = 0. Proposition 5.5 provides a fully faithful morphism of
2-representations
R V()) @iy End(M) — V
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with R(1,) ~ M, hence (13) holds on E*M, for all i. Applying this to K°(V) shows that (13)
holds (Lemma 5.3). O

5.3.2. sly-categorifications. Let k be a field.

Definition 5.16. Let V € gbi. An sly-categorification on V is the data of

e an adjoint pair (E, F) of exact functors ¥V — V
o X € End(E) and T € End(E?)

such that

the action of [E] and [F] on Ky(V) give a locally finite representation of sly

classes of simple objects are weight vectors

F is isomorphic to a left adjoint of £

X has a single eigenvalue

the action on E™ of X; = E" ' XE"! for 1 < i < n and of T; = E""'TE"! for
1 <i < n—1induce an action of an affine Hecke algebra with q # 1, a degenerate
affine Hecke algebra or a nil affine Hecke algebra of GL,.

Note that the three types of actions (affine Hecke with ¢ # 1, degenerate affine Hecke and
nil affine Hecke) are equivalent by Theorems 3.17 and 3.19. Only 7" needs to be changed, as
follows:

affine nil degenerate nil

T——— (¢EX — XE)T +¢q T—— (EX - XE+1)T +1

Note also that, in the nil case, if a is the eigenvalue of X, then by replacing X by X — a one
reaches the case where 0 is the eigenvalue of X. As a consequence, given an sly-categorification,
one can construct a new categorification by modifying X and T as above so that the action
of X and T induce an action of the nil affine Hecke algebra °H,, on End(E™) and X is locally
nilpotent.

In [ChRou], the case of nil affine Hecke algebras wasn’t considered. The equivalence of the
definitions explained above shows that the results of [ChRou| generalize to this setting. It can
also be seen directly that all constructions, results and proofs in [ChRou] involving degenerate
affine Hecke algebras carry over to nil affine Hecke algebras. A key point is the commutation
relation between T; and a polynomial: that relation is the same for the degenerate affine Hecke
algebra and the nil affine Hecke algebra. The definition of ¢/ [ChRou, §3.1.4] needs to be
modified: we define ¢, = T, Note that T’E)[l,n} = 0 for n > 2. Given M a projective

k(°H)-module, we have ¢, M = {m € M | Tym =0 for all w € &, — {1}}.

Remark 5.17. We haven’t included the parameters a and ¢ in the definition, as they are not
needed here.

Theorem 5.18. Let k be a field and V € gb£ Assume given an sly-categorification on V. Let
r=X and
(¢EX — XE)"Y(T —q) affine case
T=S(EX —XE+1)"(T —1) degenerate affine case
T nil affine case.
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This defines a 2-representation of A(sly) on V.

Conversely, a integrable action of A(sly) on V gives rise to an sly-categorification on V.

This provides an equivalence between the 2-category of sly-categorifications and the 2-category
of integrable 2-representations of A(sly) in gbi.

Proof. By [ChRou, Theorem 5.27], the maps ps ) are invertible. So, the result follows from
Theorem 5.15. O

In the isotypic case, we have a stronger result:

Theorem 5.19. Let k be a field and V € gbi. Assume given an sly-categorification on V' such
that C ® Ko(V) is a multiple of an irreducible representation of slo(C). Then, the construction

of Theorem 5.18 gives rise to an action of @[,(5[2) on V.

Proof. Theorems 5.18 and 5.15 provide an action of @. Let A € X minimum such that Vy # 0.
Note that the Theorem holds for V() by Proposition 5.13.

Let N € Vy,o; for some i > 0. Let N’ be the cokernel of ¢;(N) : E°F'N — N. We have
F'N’ = 0, hence [N'] = 0 in Ky(V) since the only non-zero elements of C ® K,(V) killed by
[F] are in the A-weight space. So, N’ = 0 and we deduce that N is a quotient of E*(F"(N)).

Let M € V), such that FM = 0. Proposition 5.5 provides a fully faithful morphism of
2-representations

R V() @puaqry) End(M) —
with R(1,) ~ M. Since the Theorem holds for V()), it follows that the relations defining @’

hold when applied to E*M, for every i. It follows that they hold for every quotient of E‘M.
We deduce that the relations hold on V. OJ

5.3.3. Involution ¢. Let V be an integrable 2-representation of @ in Liny.

Let (V')x = V_y, let E! = F; and F! = E,. Let 2 € End(E!) corresponding to z; €
End(E,) = End(F;) and let 7, € Hom(E'E!, E{E") corresponding to —7y € Hom(E,E;, B E,) =
Hom(F,Fy, F}Fy).

The adjunction (Fj, Fy) gives an adjoint pair (E, FY).

Proposition 5.20. The construction above defines a 2-representation of @ on V.

Proof. The relations (1)-(4) in §4.1.1 are clear. Let us show that the maps p,, on V' are
isomorphisms. As in the proof of Theorem 5.15, it is enough to do so for ¥V = V(—n) for some
n > 0.

Given a field k, consider the canonical 2-representation of @ on W = P, (H in Qpsn k) -mod.

The category W"* is endowed with a structure of sly-categorification. It follows from Theorem
5.18 that the maps p, \ are isomorphisms for W".

We conclude now as in the proof of Proposition 5.10 that the maps p; » are isomorphisms for
V(—n)".

We are left with proving the invertibility of oy for s £ ¢t. This is a consequence of Theorem
5.21 below. O

5.3.4. Relation [Es, Fy]) = 0 for s # t. Let {V} ex be a family of k-linear categories endowed
with the data of

e functors E : V) — Vaia, and Fs : V\ — V), for s € [
e z, € End(E,) and 7y € Hom(EE;, E E) for s,t € I
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e an adjunction (Fj, Fy)

such that
e relations (1)-(4) in §4.1.1 hold
e the maps p; ) are isomorphisms

Theorem 5.21. The data above defines a 2-representation of @ on V = @@, Vs.

Theorem 5.15 provides maps €' and 1’ and we only have to show the invertibility of the maps
os for any s # ¢t € I. Note that the construction of §5.3.3 provide a category V* satisfying the
same properties as the category V.

Let s # t € I. We write Qs(u,v) = Za,b Gapu®0® with ¢, € k. Let X € X and r > 0.
Consider the morphism
W H, .1 — End(E,E'1,)

his (BB ™ REEE D7 pp prtt B pp pre = ppp pr 2 B,
Lemma 5.22. Let a < —(a)/,\) —r — 1. We have

Twi1,1)9m o(—1)fed Ntmetl i = —(a)Y X)) —r — 1
X Tt ria)) = R Y
¢( r+1twll, +1]> {0 otherwise.

Proof. We have
(TstE;) @) (ESTttE:_l) e} (TtsE:) =

= ((Ems) o (uE) o (Bra)) + Y. Gortanr1 s(XV BB (EXPE,) (B EX?).

B8>0
mgs>a1+az>0

Let

fo=(BEN = B,B,E " Fp2E,pr-t DX EeDe,

FEEE 2% BB Bt ™% BB
and
ne FX) e cle
g = EE] — F,E\EE] ——— F,E\EE; — E F;.
We have X'\ Ty p1) = Twp,n X/ T - - T, hence

1/}<X7?+1Tw[1u7"+1]> = Tw[lvT]f“TT*1 T T1 + Z qa1+a2+1,ﬂTw[1,T]ga+a1asl---87»71 (Xfa)(XﬁE:)

B8>0
a1toaz>1

We have a commutative diagram (Lemma 4.10 and Chevalley duality)

Nk

(14) E, F,E?

Et"]l iFtT
lEt

EFyE; — > FE} —> E,

e Assume first (o, A} + 2r — mys < 0. The diagram (14) shows that the composition

BEE" pEE Rt BT p e gt 2 g Er
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vanishes. Since X§T =T X{ + Z?;[)l XLXe71 it follows that

1 Ft(XaEtOT).
_—>

r—1 719 2 r— 2 r—1 e r—1
EEE "™ FEEE FEXEE 2% EE.E!

equals

—_

(o (FXYon) X BB,
!

Il
o

hence
fa = Z Tw[l,r}qa,ﬁXgS (gl o (FtXl) o 77)681MST71 (Xfflfl+a)

0<l<a—1
0<a<mis
0<B<mst

If o (FiX")Y on # 0, then I > —(ay,\) — 2r +mys — 1. If O, (X717HF) =£ 0, then
a—1—1+a >r—1. If both of those terms are non zero, then a > —(a/, \) =7+ (mys — ) — 1,
hence a = — (o), \) —r—1, « = mys and a— 1 — 1 = r — 1 —my. In particular, we have r > my,.
So, we have

Tw[17r}qmt570<_1)<a1\§/7>\>+mt8+1 if a = —<a{2/7 )\> J— 7’ J— 1 and /,a > mts
fa f— .
0 otherwise.

If gotayOsyos, o (X22) # 0, then a + a3 > —(a/, A\) — 2r + mys — 1 and ay > r — 1, hence
a > — (o), Ny =r—=2+4(mys—a1—az) > — (o, \)—r—1. We obtain a = — (&, \) —r+(mys—a)—1,
as =1 —1 and a; + as = mys — 1. In particular, r < my,. So, we have

Z qa1+a2+1,ﬁTw[1,r}ga+a1631'“&—1 (XSQ)(XQE{) =

820
a1taz>1

_ {Tw[l’ﬂqmts,o(_1)<atv’)‘>+m“+1 if a = —(a)/,\) —r—1and r < my,

0 otherwise.
So, we have shown that

Tw[l,r]qmtﬁo(—l)<atv’>‘>+m“+1 ifa= —<Oz;/, )\> —r—1
0 otherwise.

¢(Xg+1Tw[1,r+l]> {

e Assume now (o', \) + 2r — mys > 0. We can assume that (), \) + r < 0, for otherwise
the lemma is empty. So, we have r > my,.
If Ogy.s5,_, (X2) # 0, then ag > r — 1, hence my, > r, which is impossible. So,

Z Gor+az+1,8 w111 a+ay Osy s, (XTOQ)(X[}EZ) = 0.

B>0
ar1taz>1

Let 4 = A+ roy + a5. The diagram (14) shows that there are elements z; € Z(V,) with
2oy = (—1)(@/ 0+ such that

(o )

° (] L. ;

(Bl ™ FEAN, =25 FEN, <5 Bl) = Y 24X
1=0
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So,

fa - Z Tw[17r}qa7ﬁXgS (6l e} (FtXl) o n)aSI..lsril(X;l—l—l—f—a)_l_

0<i<a-—1
0<a<myis
0<B<ms¢
(o)
8 a+tita
+ Z Tw[l»r]qavﬁXEs Ziasl“'sr—l(XT )
0<a<<mys =0
0<B<mst
We have

a—14+my < —(a),\) —r—2+my, <r—2

hence 0s,...,,_, (X217 =0 for all a, 1 > 0 and o < my,.

We have a + (o), ) + mys < v — 1. If Oy, (XOTF) £ 0, then a = —(a/,\) — 7 — 1,
i = (o), p) and o = mys.
We have shown that

Tw[lvr}qmts,o(—1)<°‘tv’>‘>+m“+1 ifa=—(a/,\) —r—1and r > my
fa = .
0 otherwise.

The lemma follows. U
Proof of Theorem 5.21. Let N € V), such that F; N = 0. Define

L= @ rX,Zadl'= P X, T.2Z
w€6::+1 we"Sr4q
i<—{ay A)—r i<—(ay ,A)—r

We have an isomorphism L ~ L(r 4+ 1,1,1, A) (cf §4.2.2).
We have an isomorphism (Lemma 4.13)

acto (id®@nEy) : L ®z EfN = F,E]"'N.
Similarly, applying Lemma 4.13 to V*, we obtain an isomorphism
(id @e'E}) o act* : [,E/T'N & L™ @z E['N.
We have a commutative diagram

Ost®

L B Er O r+1 r+1 r+1 r+1
@b taCtO(id ®Es77’)ESFtEt ne FtEtESFtEt Fyiso FtESEtFtEt FiEsce FtESEt
id ®ne Tact
Fitese FiEsEine FiEsce

Lo KEEE —= L ® FtEsE[H

e

id

L® F,E,E,FE — L FEE!
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and a commutative diagram

L
Ois®

FEE!
f}l?sn [ ]
act™ i

L/* ® F’tEsE:+1 L/* ® FE Er—i—l

FtESnlo
F,E;Eicle

L' @ REEF,E"

F,EERE"™ —= FEEFRE™ —— EFE™

g'e

i (id @ Ese'®)oact*

L*® E,F,EI" — L ® E,E}

Fitste

We have a commutative diagram

acto(id ® Esne) (id @ Escle)oact*
*>

L® EE! E,F,E! FEE 22 g g Er L™ @ E,Er
U'l Tslo
L® REEE ———— L@ REE"™ —> REE" —> [" @ FEE"™ — 1" ® E.E]

We will show that the top horizontal composition in the diagram above is an isomorphism
when applied to N:

f:L® E,EfN = L @ E,E/N.
It is enough to show that the map 7 obtained by left multiplication by T\, ;41 is invertible, as
in the proof of Lemma 4.13. Lemma 5.22 shows that the map

<“>

EsEt(r) w) Tw[l T+1](L ®FE ET) — L1, r—i—l](L "QF ET) E; E(T)
is 0 for a + a’ < —(a, A\) —r — 1 and it is an isomorphism for a + a’ = —(a/, \) —r — 1. So, v

is invertible. It follows that f is an isomorphism. Consequently, the composition oy, o o is an
isomorphism when applied to £y N. We conclude as in the proof of Theorem 5.15 that it is an
isomorphism on all objects of V.

We apply now the result above to V*: it shows that oy, has a left inverse. So, oy, is invertible,
hence o is invertible as well. O

5.3.5. Control from K.

Theorem 5.23. Consider a root datum with associated Kac-Moody algebra g and associated
ring k.
Let k be a field that is a k-algebra and V € gbﬁ.
Assume given
e an adjoint pair (Es, Fy) of exact functors V — V for every s € Ty
e x, € End(E,) and 1 € Hom(EE;, ELEy) for every s,t € T'y.
We assume that
e F, is isomorphic to a left adjoint of Ej
o for every s € I, then {[FEs], [Fs|} induce a locally finite action of sly on V = Ky(V)
e relations (1)-(4) in §4.1.1 hold
e given S a simple objects of V, then [S] is a weight vector
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Given A € X, let V\ = {M € V|[M] € V)}. Then, V = @, V» and the data above defines an

integrable action of g on V.
Proof. This is a consequence of Theorems 5.18 and 5.21. U

5.3.6. Type A. Let k be a field. Let ¢ € £* and let I be a subset of k. Assume 0 & I if ¢ # 1
and consider the corresponding Lie algebra sl;, as in §3.2.5.
Let V be a k-linear category. Consider
e an adjoint pair (£, F') of endofunctors of V
e X € End(FE) and T € End(E?).

Assume there is a decomposition £ = @,_; E;, where X — i is locally nilpotent on E;.

i€l
When ¢ = 1, we put x; = X — i (acting on E;) and

(B X —XEj+1)"Y(T—1) ifi=j

Tij = (EiX—XEj)T+1 ifj=i+1
%(T —-1)+1 otherwise

(restricted to E;E}).
When ¢ # 1, we put z; = ' X (acting on E;) and

i(quX—XEj)_l(T—q) if 4 =
T =i EX - XE)T +i (¢ — )XE; ifj=q

B X—XE; :

4B X_XE; (T—q)+1 otherwise

(restricted to E;E;).
Let A € X. Let V) be the full subcategory of objects M of V' such that for every ¢ € I, the
following map is invertible:
o when (0¥, \) >0, oy + S04V e 0 (2L F,) : E,Fy(M) — F,E,(M) @ M©¥»
o when (0¥, \) <0, 0 + S5 N (Fari) oy« ByFy(M) & M~ — FE (M)
Assume that
e F; and F; are locally nilpotent
e V=@B,cx W
Theorem 5.24. The data above defines an action of Az(sl;,) @ k on V.

Proof. The x;’s and 7;;’s satisfy the relations (1)-(4) in §4.1.1 thanks to Propositions 3.16 and
3.18. The invertibility of o for s # t follows from Theorem 5.21. ]

5.3.7. sl-categorifications. Let k be a field. Let ¢ € k* and let I be a subset of k. Assume
0 ¢ Iif ¢ # 1 and consider the corresponding Lie algebra sl;, as in §3.2.5.

Let V € @b,

Definition 5.25 (Chuang-Rouquier). An sl -categorification on V is the data of

e an adjoint pair (E, F) of exact functors V — V

e X € End(E) and T € End(E?).
Given i € k, let E; (resp. F;) be the generalized i-eigenspace of X acting on E (resp. F'). We
assume that

[ ] E: @iEIEi
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the action of the [E;] and [F;] on Ko(V) gives an integrable highest weight representation
Ofﬁ[]q
classes of simple objects are weight vectors
F is isomorphic to a left adjoint of B
the action on E" of X; = E" ' XE"! for1 < i < n and of T, = E" " 'TE"! for
1 <i<n—1induce an action of

— an affine Hecke algebra if ¢ # 1

— a degenerate affine Hecke if ¢ = 1.

Consider an sl -categorification on V.

Theorem 5.26. Assume given an sl -categorification on V. The construction above gives rise
to an action of Ay, on V.

Conversely, an integrable action of @5[,(1 onV gives rise to an sy, -categorification on V.

Proof. The theorem follows now from Theorem 5.23. O

5.4. Examples. We give examples of actions of @, via Theorem 5.26. These examples have
all been studied in [ChRou, §7] in the context of sly-categorifications.

5.4.1. Symmetric groups. Let p be a prime number, & = F, and I = k, viewed as a type
A,y quiver (here, ¢ = 1). Let V = @, ., kS,-mod. Let E = @ ., Inng“, let X be
its endomorphism corresponding to right multiplication by (1,7 + 1) +--- 4+ (n,n + 1) on the
(k&,11, kS,)-bimodule kS,,,1 and let T" corresponding to right multiplication by (n+1,n+2))
on the (kS, 42, kS,,)-bimodule k&,, 5. This defines an action of gs[AP,l on V (cf [ChRou, §7.1]).

5.4.2. Cyclotomic Hecke algebras. Consider ¢ # 1 and k a field and vq,...,vq4 € k™. Let
I = {q", }mez.1<r<i, a disjoint union of quivers of type A « (¢ not a root of unity) or of type
A._1 (q a primitive e-th root of 1).

Let H,(v, q) be the quotient of kH,,(q) by the two-sided ideal generated by (X;—wvy) -+ (Xgq—
vg) and let V = @, o Hy(v, ¢)-mod. Let E = @, Indg:al’ss’q), let X be its endomorphism
corresponding to right multiplication by X, on the (H,41(v, q), H,(v, ¢))-bimodule H,, 1 (v, q)
and let T' corresponding to right multiplication by 7,,.1 on the (H,12(v,q), H,(v, q))-bimodule
Hpi2(v, q). This defines an action of g, on V (cf [ChRou, §7.1]).

New proof of Ariki’s Theorem if we compare with geometric realization.

5.4.3. General linear groups over finite fields. Let q be a prime power, k a field of characteristic
¢ > 0 that does not divide g(¢ — 1). Let A, be the sum of the unipotent blocks of k GL,(q)
and V = @, ., Ap,-mod. Let

As in the proof of [ChRou, Lemma 7.16], one checks that the E;’s and their adjoints induce
an action of sl;, on Koy(V). So, we have constructed an action of QE[I‘Z on V.

5.4.4. Rational representations.
5.4.5. Soergel bimodules.

5.4.6. Rational Cherednik algebras.
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