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We study sets of objects in a triangulated category that satisfy 
properties similar to simple modules when the triangulated 
category is the derived category of a ring or the stable category 
of a finite-dimensional self-injective algebra. In the first case, 
we construct t-structures and, in the second case, we construct 
a graded algebra.
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1. Introduction

The Green correspondence is a fundamental construction in modular representation 
theory of finite groups. It is expected (Broué’s abelian defect group conjecture for exam-
ple) to be the shadow of a more structural categorical correspondence, yet to be found. 
In an inductive approach to this, a key case is when the Green correspondence induces a 
stable equivalence between blocks. This work is an attempt towards a Morita theory for 
stable equivalences between self-injective algebras. More precisely, given two self-injective 
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algebras A and B and an equivalence between their stable categories, consider the set S
of images of simple B-modules inside the stable category of A. That set satisfies some 
obvious properties of Hom-spaces and it generates the stable category of A. Keep now 
only S and A. Can B be reconstructed? We show how to reconstruct the graded algebra 
associated to the radical filtration of (an algebra Morita equivalent to) B. It would be 
interesting to develop further an obstruction theory for the existence of an algebra B
with that given filtration, starting only with S (this might be studied in terms of local-
ization of A∞-algebras). Note that a result of Linckelmann [4] shows that, if we consider 
only stable equivalence of Morita type, then B is characterized by S — but this result 
does not provide a reconstruction of B from S.

We also study a similar problem in the more general setting of a triangulated cat-
egory T . Given a finite set S of objects satisfying Hom-properties analogous to those 
satisfied by the set of simple modules in the derived category of a ring and assuming 
that the set generates T , we construct a t-structure on T . In the case T = Db(A) and A
is a symmetric algebra, the first author has shown [6] that there is a symmetric algebra 
B with an equivalence Db(B) ∼→ Db(A) sending the set of simple B-modules to S. The 
case of a self-injective algebra leads to a slightly more general situation: there is a finite 
dimensional differential graded algebra B with Hi(B) = 0 for i > 0 and for i � 0 with 
the same property as above.

2. Notations

Let C be an additive category. Given S a set of objects of C, we denote by addS the 
full subcategory of C of objects isomorphic to finite direct sums of objects of S.

Let k be a field and A a finite dimensional k-algebra. We say that A is split if the 
endomorphism ring of every simple A-module is k. We denote by A-mod the category of 
finitely generated left A-modules and by Db(A) its derived category. For A self-injective, 
we denote by A-stab the stable category, the quotient of A-mod by projective modules. 
Given M an A-module, we denote by ΩM the kernel of a projective cover of M and by 
Ω−1M the cokernel of an injective hull of M .

3. Simple generators for triangulated categories

3.1. Category of filtered objects

Let T be a triangulated category and S a full subcategory of T .
We define a category F as follows.
• Its objects are diagrams

M = (· · · → M2
f2−−→ M1

f1−−→ M0
ε0−−→ N0)

where Mi is an object of T , Mi = 0 for i � 0, such that
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(i) M1
f1−−→ M0

ε0−−→ N0 is the beginning of a distinguished triangle
(ii) for all i ≥ 1, the cone Ni−1 of fi is in addS
(iii) the canonical map Hom(N0, S) → Hom(M0, S) is surjective for all S ∈ S
(iv) the canonical map Hom(Ni, S) → Hom(Mi, S) is bijective for all S ∈ S and i ≥ 1.

Note that εi : Mi → Ni = cone(fi+1) is well defined up to unique isomorphism 
for i ≥ 1 thanks to property (iv). For i ≥ 0, we define a new object M≥i of F as 
· · · → Mi+1

fi+1−−−→ Mi
εi−−→ Ni.

• Given another diagram M ′, we define HomF (M, M ′)0 as the subspace of
Hom(N0, N ′

0) consisting of those maps g such that there is h : M0 → M ′
0 with ε′0h = gε0.

We put HomF (M, M ′)i = HomF (M, M ′
≥i)0 and HomF (M, M ′) = ⊕i≥0 HomF (M,

M ′)i.
• Consider now g0 ∈ HomF (M, M ′). By (iv), there are maps h0, h1, . . . and g1, g2, . . .

making the following diagrams commutative

Ni[−1]
ρi

gi[−1]

Mi+1
fi+1

hi+1

Mi

hi

εi
Ni

gi

N ′
i [−1]

ρ′
i

M ′
i+1

f ′
i+1

M ′
i

ε′i

N ′
i

Here, ρi : Ni[−1] → Mi+1 and ρ′i : N ′
i [−1] → M ′

i+1 are the maps making the horizontal 
rows in the diagram above into distinguished triangles.

Lemma 3.1. The maps gi : Ni → N ′
i (for i ≥ 1) depend only on g0.

Proof. We proceed by induction on i. We assume gi−1 has been shown to depend only 
on g0. Let us consider the lack of unicity of hi. Consider hi, ̃hi : Mi → M ′

i such that 
hiρi−1 = ρ′i−1gi−1[−1] = h̃iρi−1. There is p : Mi−1 → M ′

i such that h̃i − hi = pfi.
By (iii) and (iv), there exists q : Ni−1 → Ni such that qεi−1 = ε′ip. We have ε′ipfi =

qεi−1fi = 0, hence ε′ih̃i = ε′ihi.
By (iv), we deduce that there is a unique map gi : Ni → N ′

i such that giεi = ε′ihi and 
that map gi is the unique one such that giεi = ε′ih̃i. �

Let g0 ∈ HomF (M, M ′)i and g′0 ∈ HomF (M ′, M ′′)j . We define the product g′0g0 as 
the composition N0

g0−−→ N ′
i

g′
i−−→ N ′′

i+j .

Lemma 3.2. Assume Hom(S, T [n]) = 0 for all S, T ∈ S and n < 0. Let M be an object 
of F . Then, the canonical map Hom(N0, S) → Hom(M0, S) is an isomorphism.
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Proof. By induction on −i, we see that Hom(Mi, S[n]) = 0 for n < 0 and S ∈ S. It 
follows that Hom(M1[1], S) = 0, hence the canonical map Hom(N0, S) → Hom(M0, S)
is injective, as well as being surjective by assumption. �
3.2. t-structures

Let k be a field and assume T is a k-linear triangulated category.
We assume from now on the following

Hypothesis 1.

(1) Hom(S, T ) = kδS,T for S, T ∈ S
(2) S generates T as a triangulated category
(3) Hom(S, T [n]) = 0 for S, T ∈ S and n < 0.

3.2.1.

Lemma 3.3. Given N ∈ T , there is a sequence 0 = Mr
fr−−→ · · · → M2

f2−−→ M1
f1−−→

M0 = N and d : Z>0 → Z non-increasing such that cone(fi)[d(i)] ∈ S.
For such a sequence, the maps Mr−1 → N and N → cone(f1) are non-zero.

Proof. Since T is generated by S, there is a sequence 0 = Mr → · · · → M2
f2−−→ M1

f1−−→
M0 = N and d : Z>0 → Z such that cone(fi)[d(i)] ∈ S.

We put Ni = cone(fi) = Si[−d(i)] with Si ∈ S. Take i such that d(i) > d(i −1). Let T
be the cone of fi−1fi : Mi → Mi−2. The octahedral axiom gives a distinguished triangle 
Si[−d(i)] → T → Si−1[−d(i − 1)] �.

Assume the morphism Si−1[−d(i − 1)] → Si[−d(i) + 1] is non-zero. Then it is an 
isomorphism and d(i) = d(i −1) +1. It follows that T = 0 and fi−1fi is an isomorphism. 
Consequently,

0 = Mr → · · · → Mi+1
fi−1fifi+1−−−−−−−→ Mi−2 → · · · → M2

f2−−→ M1
f1−−→ M0 = N

is a new sequence with successive cones being shifts of objects of S.
By induction, we can assume that the morphism Si−1[−d(i − 1)] → Si[−d(i) + 1]

is zero. Then, T � Ni ⊕ Ni−1. There is an object M ′
i−1 and distinguished triangles 

Mi → M ′
i−1 → Ni−1 � and M ′

i−1 → Mi−2 → Ni �. Put M ′
j = Mj for j 	= i − 1. So,

0 = M ′
r → · · · → M ′

2 → M ′
1 → M ′

0 = N

is a new sequence with the same cones as in the original sequence except the i and i − 1
ones which have been swapped. By induction, we can reorder the cones in the sequence 
so that d is non-increasing.
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Assume the map Mr−1 → N is zero. Let T be its cone. Then T � N ⊕Mr−1[1]. Note 
that T is filtered by the Si[−d(i)] with −d(i) < −d(r) + 1, hence Hom(Mr−1[1], T ) = 0. 
So we have a contradiction. The case of the map N → N1 is similar. �

Let T ≤0 (resp. T >0) be the full subcategory of objects N in T such that there is a 
sequence 0 = Mr → · · · → M2

f2−−→ M1
f1−−→ M0 = N with cone(fi) a direct sum of 

objects S[r] with S ∈ S and r ≥ 0 (resp. r < 0).

Proposition 3.4. (T ≤0, T >0) is a bounded t-structure on T .

Proof. By induction, we see there is no non-zero map from an object of T ≤0 to an object 
of T >0. Furthermore, we have T ≤0[1] ⊆ T ≤0 and T >0 ⊆ T >0[1].

Let N ∈ T . Pick a sequence as in Lemma 3.3. Take s such that d(s) > 0 and 
d(s + 1) ≤ 0. Let L be the cone of f1 · · · fs : Ms → N . We have a distinguished triangle

Ms → N → L �

with Ms ∈ T ≤0 and L ∈ T >0. �
We have a characterization of T ≥0 and T ≤0:

Proposition 3.5. Let N ∈ T . Then, N ∈ T ≤0 if and only if Hom(N, S[i]) = 0 for S ∈ S
and i < 0.

Similarly, N ∈ T ≥0 if and only if Hom(S[i], N) = 0 for S ∈ S and i > 0.

Proof. We have Hom(N, S[i]) = 0 for S ∈ S and i < 0, if N ∈ S[r] with r ≥ 0. By 
induction, it follows that if N ∈ T ≤0, then Hom(N, S[i]) = 0 for S ∈ S and i < 0.

Assume now Hom(N, S[i]) = 0 for S ∈ S and i < 0. Pick a filtration of N as in 
Lemma 3.3. Then, d(1) ≤ 0, hence d(i) ≤ 0 for all i and N ∈ T ≤0.

The other case is similar. �
Note that the heart A of the t-structure is artinian and noetherian. Its set of simple 

objects is S.

Remark 3.6. Assume T can be generated by a finite set of objects. Then, there is a finite 
subcategory S ′ of S generating T . It follows immediately from condition (i) that S = S ′. 
So, S has only finitely many objects.

3.2.2. In §3.2.2, we assume T = Db(A) where A is a finite dimensional k-algebra. 
By Remark 3.6, S is finite (note that T is generated by the simple A-modules, up to 
isomorphism).

Proposition 3.7. Let S ∈ S. There is a bounded complex of finitely generated injective 
A-modules IS(S) ∈ T ≥0 such that, given T ∈ S and i ∈ Z, we have
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HomDb(A)(T, IS(S)[i]) =
{
k for i = 0 and S = T

0 otherwise.

Similarly, there is a bounded complex of finitely generated projective A-modules PS(S) ∈
T ≤0 such that, given T ∈ S and i ∈ Z, we have

HomDb(A)(PS(S)[i], T ) =
{
k for i = 0 and S = T

0 otherwise.

Proof. The construction of a complex IS(S) of A-modules with the Hom property is 
[6, §5] (note that the proof of [6, Lemma 5.4] is valid for non-symmetric algebras). It 
is in T ≥0 by Proposition 3.5. Since 

⊕
i∈Z dim HomDb(A)(V, IS(S)[i]) = 0 for all simple 

A-modules V , we deduce that IS(S) is isomorphic to a bounded complex of finitely 
generated injective A-modules.

The second case follows from the first one by passing to Aopp and taking the k-duals 
of elements of S. �

We denote by τ>0, etc... the truncation functors and tH0 the H0-functor associated 
to the t-structure constructed in §3.2.1.

Lemma 3.8. The object tH0(IS(S)) of A is an injective hull of S and tH0(PS(S)) is a 
projective cover of S.

Proof. We have a distinguished triangle

tH
0(IS(S)) → IS(S) → τ>0IS(S) � .

Let N ∈ A. We have Hom(N, τ>0IS(S)) = 0 and Hom(N, IS(S)[1]) = 0, so we 
deduce that Hom(N, tH0(IS(S))[1]) = 0. It follows that Ext1A(N, tH0(IS(S))) = 0, 
hence tH0(IS(S)) is injective. Since Hom(T, (τ>0IS(S))[−1]) = 0, we have Hom(T,
tH

0(IS(S))) ∼→ Hom(T, IS(S)) = kδST for T ∈ S. So tH0(IS(S)) is an injective hull 
of S. The projective case is similar. �

Let us consider the finite dimensional differential graded algebra

B = End•
A(

⊕
S

PS(S)) =
⊕
i

HomA(
⊕
S

PS(S),
⊕
S

PS(S)[i]).

Denote by Db(B) the derived category of finite dimensional differential graded 
B-modules.

Theorem 3.9. We have Hi(B) = 0 for i > 0 and for i � 0. We have H0(B)-mod � A
and Db(B) � Db(A).
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Proof. Let N ∈ T and consider a filtration of N as in Lemma 3.3. Take S ∈ S such that 
S[i] is isomorphic to the cone of Md → Md−1. Then, Hom(PS(S)[i], N) 	= 0. It follows 
that the right orthogonal category of {PS(S)[i]}S∈S,i∈Z is zero. Since the PS(S) are per-
fect, it follows that 

⊕
S PS(S) generates the category of perfect complexes of A-modules 

as a triangulated category closed under taking direct summands [5, Lemma 2.2]. The 
functor Hom•

A(
⊕

S PS(S), −) gives an equivalence Db(A) ∼→ Db(B) [3, Theorem 4.3].
Let C =

⊕
S∈S PS(S) and N = tH

0(C). We have a distinguished triangle τ<0C →
C → N �. We have Hom(τ<0C, N [i]) = 0 for i ≤ 0. We deduce that the canonical 
morphism Hom(N, N) → Hom(C, N) is an isomorphism. We have Hom(C, (τ<0C)[i]) =
0 for i ≥ 0 since τ<0C is filtered by objects in S[d], d > 0 (cf. Proposition 3.7). It follows 
that the canonical morphism Hom(C, C) → Hom(C, N) is an isomorphism.

This shows that the canonical morphism End(C) → End(tH0(C)) is an isomorphism. 
By Lemma 3.8, tH0(C) is a progenerator for A. So H0(B)-mod � A.

Note that Hi(B) = 0 for i � 0 because 
⊕

S PS(S) is bounded. Since PS(S)
is filtered by objects in S[d] with d ≥ 0, it follows from Proposition 3.7 that 
Hom(PS(T ), PS(S)[i]) = 0 for i > 0. So, Hi(B) = 0 for i > 0. �

The following proposition is clear.

Proposition 3.10. Let B be a dg-algebra with Hi(B) = 0 for i > 0 and for i � 0. Let C
be the sub-dg-algebra of B given by Ci = Bi for i < 0, C0 = ker d0 and Ci = 0 for i > 0. 
Then the restriction D(B) → D(C) is an equivalence.

Let S be a complete set of representatives of isomorphism classes of simple H0(B)-
modules (viewed as dg-C-modules). Then S satisfies Hypothesis 1. Furthermore, A �
H0(B)-mod.

So we have a bijection between

• the sets S (up to isomorphism) satisfying Hypothesis 1
• the equivalences Db(B) ∼→ Db(A) where B is a dg-algebra with Hi(B) = 0 for 

i > 0 and for i � 0 and where B is well-defined up to quasi-isomorphism and the 
equivalence is taken modulo self-equivalences of Db(B) that fix the isomorphism 
classes of simple H0(B)-modules.

We recover a result of Al-Nofayee [1, Theorem 4]:

Proposition 3.11. Assume A is self-injective with Nakayama functor ν. The following are 
equivalent

• Hi(B) = 0 for i 	= 0
• ν(S) = S (up to isomorphism).
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Proof. Note that S is stable under ν if and only if {PS(S)}S∈S is stable under ν (up to 
isomorphism). Given S, T ∈ S and i ∈ Z, we have

HomDb(A)(PS(S), PS(T )[i])∗ � HomDb(A)(PS(T ), ν(PS(S))[−i]).

If S is stable under ν, then HomDb(A)(PS(T ), ν(PS(S))[−i]) = 0 for i > 0, hence 
H<0(B) = 0.

Assume now H<0(B) = 0. Then, viewed as an object of Db(B), ν(PS(S)) is concen-
trated in degree 0. Since it is perfect, it is isomorphic to a projective indecomposable 
module, hence to PS(S′) for some S′ ∈ S. So, S is stable under ν. �

We recover now the main result of [2]:

Corollary 3.12. Let A be a self-injective algebra and B an algebra derived equivalent to A. 
Then B is self-injective.

From Proposition 3.11, we recover [6, Theorem 5.1]:

Theorem 3.13. If A is symmetric then Hi(B) = 0 for i 	= 0, i.e., there is an equivalence 
Db(A) ∼→ Db(A) where S is the set of images of the simple objects of A.

Remark 3.14. Theorem 3.13 does not hold in general for a self-injective algebra. Take 
A = k[ε]/(ε2) � μ2, where μ2 = {±1} acts on k[ε]/(ε2) by multiplication on ε. Assume 
k does not have characteristic 2. This is a self-injective algebra which is not symmetric. 
The Nakayama functor swaps the two simple A-modules U and V .

Let PU (resp. PV ) be a projective cover of U (resp. V ). Take S = U and T = PU [1]. 
Then, the set S = {S, T} satisfies Hypothesis 1. We have IS(T ) � T and IS(S) � 0 →
PU → PV → 0, a complex with homology V in degree 0 and −1.

The dg-algebra B has homology H0(B) isomorphic to the path algebra of the quiver 
• • , H−1(B) = k and Hi(B) = 0 for i 	= 0, −1.

The derived category of the hereditary algebra H0(B) is not equivalent to Db(A).

3.3. Graded of an abelian category

Let A be an abelian k-linear artinian and noetherian category with finitely many 
simple objects up to isomorphism and S a complete set of representatives of isomorphism 
classes of simple objects. We assume A is split, i.e., endomorphism rings of simple objects 
are isomorphic to k. Let T = Db(A).

Let grA be the category with objects the objects of A and where HomgrA(M, N)
is the graded vector space associated to the filtration of HomA(M, N) given by 
HomA(M, N)i = {f | im f ⊆ radi N}.

Given M in A, let Mi = radi M , fi : Mi → Mi−1 the inclusion, N0 = M/M1 and 
ε0 : M → M/M1 the projection. This defines an object of F .
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We obtain a functor grA → F .

Proposition 3.15. The canonical functor grA → F is an equivalence.

Proof. The image of HomA(N, N ′) in HomA(N, N ′
0) is isomorphic to the quotient of 

HomA(N, N ′) by HomA(N, radN ′) and it follows that the functor is fully faithful.
Let us show that it is essentially surjective. Let M ∈ F . Let r ≥ 0 such that Mr+1 = 0. 

Then, Mr
∼→ Nr has homology concentrated in degree 0 and is semi-simple. By induction 

on −i, it follows from the distinguished triangle Mi+1 → Mi → Ni � that Mi has 
homology concentrated in degree 0.

Note that we have an exact sequence 0 → H0Mi+1 → H0Mi → H0Ni → 0. Since the 
canonical map Hom(H0Ni, S) → Hom(H0Mi, S) is bijective for any simple S, it follows 
that H0Ni is the largest semi-simple quotient of H0Mi. So, Mi

∼→ radi M0 and M comes 
from an object of A. �
4. Simple generators for stable categories

4.1. From equivalences

Let k be a field and A a split self-injective k-algebra with no projective simple mod-
ule.

Let B be another split self-injective k-algebra with no projective simple module, and 
let F : B-stab ∼→ A-stab be an equivalence of triangulated categories. Let S ′ be a 
complete set of representatives of isomorphism classes of simple B-modules. For L ∈ S ′, 
let L′ be an indecomposable A-module isomorphic to F (L) in A-stab. Let S = {L′}L∈S′ . 
Then,

(i) HomA-stab(S, T ) = kδS,T for S, T ∈ S
(ii) Every object M of A-stab has a filtration 0 = Mr → Mr−1 → · · · → M1 → M0 = M

such that the cone of Mi → Mi−1 is isomorphic to an object of S.

Note that (ii) is equivalent to

(ii′) Given M in A-mod, there is a projective module P such that M ⊕P has a filtration 
0 = Nr ⊂ Nr−1 ⊂ · · · ⊂ N1 ⊂ N0 = M ⊕ P with the property that Ni/Ni−1 is 
isomorphic (in A-mod) to an object of S.

Linckelmann has shown the following [4, Theorem 2.1 (iii)]:

Proposition 4.1. Assume that F is induced by an exact functor B-mod → A-mod. If S
consists of simple modules, then there is a direct summand of F that is an equivalence 
B-mod ∼→ A-mod.
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We deduce:

Corollary 4.2. Let B1, B2 be split self-injective algebras with no projective simple modules 
and Gi : Bi-mod → A-mod exact functors inducing stable equivalences. Assume S1 = S2

(up to isomorphism). Then, B1 and B2 are Morita equivalent.

So, if we assume in addition that F comes from an exact functor G between module 
categories, then B is determined by S, up to Morita equivalence.

The functor G is isomorphic to X⊗B − where X is an (A, B)-bimodule. We can (and 
will) choose G so that X has no non-zero projective direct summand. Then, G(L) is 
indecomposable for L simple [4, Theorem 2.1 (ii)], so S = {G(L)}L∈S′ , up to isomor-
phism.

Proposition 4.3. An A-module M is in the image of G if and only if there is a filtration 
0 = Mr ⊂ Mr−1 ⊂ · · · ⊂ M1 ⊂ M0 = M such that Mi/Mi−1 is isomorphic to an object 
of S.

Proof. Take L a B-module. Then the image by G of a filtration of L whose successive 
quotients are simple provides a filtration as required.

Conversely, we proceed by induction on r. We have an exact sequence 0 → G(N) →
M → G(L) → 0 and a corresponding element ζ ∈ Ext1A(G(L), G(N)). We have an 
isomorphism Ext1B(L, N) ∼→ Ext1A(G(L), G(N)) and we take ζ ′ to be the inverse image 
of ζ under this isomorphism. This gives an exact sequence 0 → N → M ′ → L → 0, and 
hence an exact sequence 0 → G(N) → G(M ′) → G(L) → 0 with class ζ. It follows that 
M � G(M ′) and we are done. �
4.2. Filtrable objects

4.2.1. Given two A-modules M and N , we write M ∼ N to denote the existence 
of an isomorphism between M and N in A-stab. Given f, g ∈ HomA(M, N), we write 
f ∼ g if f − g is a projective map.

Lemma 4.4. Let f, f ′ : M → N be two surjective maps with f ∼ g. Then there is 
σ ∈ AutA(M) with f ′ = fσ and σ ∼ idM .

Similarly, let f, f ′ : N → M be two injective maps with f ∼ g. Then there is σ ∈
AutA(M) with f ′ = σf and σ ∼ idM .

Proof. Let L = ker f and L′ = ker f ′. Let L = L0 ⊕ P and L′ = L′
0 ⊕ P ′ with P , P ′

projective and L0, L′
0 without non-zero projective direct summands. We have an isomor-

phism ᾱ0 ∈ HomA-stab(L0, L′
0) in A-stab giving rise to an isomorphism of distinguished 

triangles in A-stab
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L0

ᾱ0 ∼

M N Ω−1L0

Ω−1(ᾱ0) ∼

L′
0 M N Ω−1L′

0

Let α0 ∈ HomA(L0, L′
0) lifting ᾱ0. This is an isomorphism. There is now a commutative 

diagram of A-modules, where the exact rows come from the elements of Ext1A(N, L0)
and Ext1A(N, L′

0) defined above:

0 L0

α0 ∼

M0

σ0 ∼

N 0

0 L′
0 M ′

0 N 0

We have M � M0 ⊕ P � M ′
0 ⊕ P ′, hence P � P ′. Let α : L ∼→ L′ extending α0. Then 

there is σ : M ∼→ M making the following diagram commute

0 L

α ∼

M

σ ∼

N 0

0 L M N 0

and we are done.
The second part of the lemma has a similar proof — it can also be deduced from the 

first part by duality. �
4.2.2.

Hypothesis 2. Let S be a finite set of indecomposable finitely generated A-modules such 
that HomA-stab(S, T ) = kδS,T for S, T ∈ S.

An S-filtration for an A-module M is a filtration 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆ M0 = M

such that M̄i = Mi/Mi+1 is in add(S) for 0 ≤ i ≤ r − 1.
We say that M is filtrable if it admits an S-filtration.

Lemma 4.5. Let M be a non-projective filtrable A-module. Then there is S ∈ S such that 
HomA-stab(M, S) 	= 0 (resp. such that HomA-stab(S, M) 	= 0).

Proof. Assume HomA-stab(M, S) = 0 for all S ∈ S. Since M is filtrable, it follows that 
EndA-stab(M) = 0, and hence M is projective, which is not true. The second case is 
similar. �



298 J. Rickard, R. Rouquier / Journal of Algebra 475 (2017) 287–307
Lemma 4.6. Let M be a filtrable module and S ∈ S. Given f : M → S non-projective, 
there is g : M → S surjective with filtrable kernel such that f ∼ g. Similarly, given 
f : S → M non-projective, there is g : S → M injective with filtrable cokernel such that 
f ∼ g.

Proof. We proceed by induction on the number of terms in a filtration of M . The result 
is clear if M ∈ S.

Let 0 → N α−→ M
β−→ T → 0 be an exact sequence with T ∈ S and N filtrable.

Assume first fα : N → S is projective. Then there is p : M → S projective and 
g : T → S with f −p = gβ. Since g is not projective, it is an isomorphism. Consequently, 
f − p is surjective and its kernel is isomorphic to N by Lemma 4.4, so we are done.

Assume now fα : N → S is not projective. By induction, there is q : N → S projective 
such that fα + q is surjective with filtrable kernel N ′. Since α : N → M is injective, 
there is a projective map p : M → S with q = pα. Now, we have an exact sequence 
0 → N/N ′ ᾱ−→ M/α(N ′) → T → 0 and a non-projective surjection f+p : M/α(N ′) → S. 
Since (f + p)ᾱ : N/N ′ ∼→ S is an isomorphism, it follows that the kernel of the map 
M/α(N ′) → S is isomorphic to T . Since N ′ is filtrable, it follows that ker(f + p) is 
filtrable and we are done. The second assertion follows by duality. �

From Lemmas 4.4 and 4.6, we deduce:

Lemma 4.7. Let S ∈ S and let M be a filtrable module.
If f : M → S be a surjective and non-projective map, then ker f is filtrable.
Similarly, if g : S → M is injective and non-projective, then coker g is filtrable.

From Lemmas 4.5 and 4.6, we deduce:

Lemma 4.8. Let M be filtrable non-projective. Then there is a submodule S of M , with 
S ∈ S, such that M/S is filtrable and the inclusion S → M is not projective. Similarly, 
there is a filtrable submodule N of M such that M/N ∈ S and M → M/N is not 
projective.

Proposition 4.9. Let M be an A-module with a decomposition M ∼ M ′
1⊕M ′

2 in the stable 
category. If M is filtrable then there is a decomposition M = M1 ⊕M2 such that Mi is 
filtrable and Mi ∼ M ′

i .

Proof. We can assume M is not projective, for otherwise the proposition is trivial. We 
prove the proposition by induction on the dimension of M .

Let M = T1⊕T2⊕P with P projective, Ti without non-zero projective direct summand 
and Ti ∼ M ′

i . Denote by π : M → T1 the projection.
By Lemma 4.5, there is S ∈ S such that HomA-stab(M, S) 	= 0. Hence, HomA-stab(Ti,

S) 	= 0 for i = 1 or i = 2. Assume for instance i = 1. Pick a non-projective map 
α : T1 → S. So, απ : M → S is not projective. By Lemma 4.6, there is a surjective map 
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β : M → S with β ∼ απ and N = kerβ filtrable. Then N ∼ L ⊕ T2, where L is the 
kernel of α + p : T1 ⊕ PS → S and p : PS → S is a projective cover of S. By induction, 
we have N = N1 ⊕N2 with Ni filtrable and N1 ∼ L, N2 ∼ T2. Now, the map S → L[1]
gives a map S → N1[1] (in A-stab). Let M1 be the extension of S by N1 corresponding 
to that map. Then M � M1 ⊕N2, the modules M1 and N2 are filtrable, M1 ∼ M ′

1, and 
N2 ∼ M ′

2. �
Let M be a filtrable module. We say that M has no projective remainder if there is 

no direct sum decomposition M = N ⊕ P with P 	= 0 projective and N filtrable.

Lemma 4.10. Let M be a filtrable module with no projective remainder and let S ∈ S.
For f : M → S surjective, ker f is filtrable if and only if f is non-projective.
For f : S → M injective, coker f is filtrable if and only if f is non-projective.

Proof. Assume f is projective. Then there is a decomposition M = N⊕P and f = (0, g)
with P projective. Now, ker f = N ⊕ ker g. If ker f is filtrable, then it follows from 
Lemma 4.9 that M has a non-zero projective submodule whose quotient is filtrable.

The converse is given by Lemma 4.7. The second part of the Lemma has a similar 
proof. �
Lemma 4.11. Let M = M0 ⊕ M1 with M and M0 filtrable and such that M0 has no 
projective remainder. Then M1 is filtrable.

Proof. We proceed by induction on dimM0 — the result is clear for M0 = 0. Assume 
M0 	= 0. Let f : M0 → S be a surjection with S ∈ S and ker f filtrable. By Lemma 4.10, 
f is not projective. Then f ′ : M can−−−→ M0

f−→ S is a non-projective surjection. By 
Lemma 4.7, ker f ′ is filtrable. We have ker f ′ = ker f ⊕M1 and we are done. �

4.2.3. We now turn to filtrations by objects in add(S).

Lemma 4.12. Let M be a filtrable module and N a filtrable submodule of M such that 
M/N ∈ addS. Then, N is minimal with these properties if and only if N has no pro-
jective remainder and the canonical map HomA-stab(M/N, S) → HomA-stab(M, S) is 
surjective for every S ∈ S.

Proof. Let N be a minimal filtrable submodule of M such that M/N ∈ addS. Denote 
by i : N → M the injection and p : M → M/N the quotient map.

Let S ∈ S. Fix f1, . . . , fr : M/N → S such that 
∑

i fi : M/N → Sr is surjec-
tive and ker

∑
i fi has no direct summand isomorphic to S. Let T be the subspace of 

HomA-stab(M, S) generated by f1p, . . . , frp. Assume this is a proper subspace, so there 
is f ′ : M → S whose image in HomA-stab(M, S) is not in T . Then f ′i : N → S is not pro-
jective, hence there is a projective map q : N → S such that f ′i + q is surjective and has 
filtrable kernel N ′ (Lemma 4.6). There is q′ : M → S projective such that q = q′i. Now, 
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M/N ′ � M/N⊕S and this contradicts the minimality of N . It follows that the canonical 
map HomA-stab(M/N, S) → HomA-stab(M, S) is surjective. Assume N = N ′⊕P with N ′

filtrable with no projective remainder and P projective. By Lemma 4.11, P is filtrable. 
We have M/N ′ � M/N ⊕ P . Since M/N is a maximal quotient of M in add(S) and P
is filtrable, it follows that P = 0.

Conversely, take f : N → S surjective with filtrable kernel such that the extension of 
M/N by S splits. Then f lifts to M → S and it is not projective by Lemma 4.10. This 
contradicts the surjectivity of HomA-stab(M/N, S) → HomA-stab(M, S). Consequently, 
N is minimal. �
Lemma 4.13. Let M be a filtrable A-module with no projective remainder.

Let f : M → L be a surjection with L ∈ addS. Then ker f is filtrable if and only if 
the canonical map HomA-stab(L, S) → HomA-stab(M, S) is injective for all S ∈ S.

Proof. Note that the canonical map HomA-stab(L, S) → HomA-stab(M, S) is injective if 
and only if, given p : L → S surjective with S ∈ S, pf is not projective.

Assume ker f is filtrable. Let p : L → S be a surjective map with S ∈ S. Then ker pf
is filtrable, hence pf is not projective (Lemma 4.10).

Let us now prove the converse by induction on the dimension of M . Assume that given 
p : L → S surjective with S ∈ S, then pf is not projective. Pick p : L → S surjective 
and let L′ = ker p. Let M ′ = ker pf . Then f induces a surjection f ′ : M ′ → L′ and we 
have L′ ∈ addS (since p is split). Let p′ : L′ → T be a surjective map with T ∈ S. Fix a 
left inverse σ : L → L′ to the inclusion L′ → L.

0 0 T

0 ker f ′ M ′ f ′

L′

p′

0

0 ker f M
f

L

p

σ

0

S S

0 0

If S 	= T , then HomA-stab(S, T ) = 0, and hence p′σf doesn’t factor through S in 
the stable category. On the other hand, if S = T then pf and p′σf define linearly 
independent elements of HomA-stab(M, S). Consequently, p′σf doesn’t factor through 
S in the stable category. It follows that p′f ′ is not projective. By Lemma 4.7, M ′ is 
filtrable. By induction, it follows that ker f ′ is filtrable and we are done. �
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Proposition 4.14. Let M be a filtrable A-module with no projective remainder.
Let N be a minimal filtrable submodule of M such that M/N ∈ addS. Then there is 

an isomorphism

M/N
∼→

⊕
S∈S

S ⊗ HomA-stab(M,S)

that induces the canonical map M →
⊕

S∈S S⊗HomA-stab(M, S) in the stable category.
Given τ ∈ Aut(N) such that τ ∼ idN , there is σ ∈ Aut(M) with σ ∼ idM and 

σ|N = τ .
Let N ′ be a minimal filtrable submodule of M such that M/N ′ ∈ addS. Then there is 

σ ∈ Aut(M) such that N ′ = σ(N) and σ ∼ idM .

Proof. The first part of the proposition follows from Lemmas 4.12 and 4.13.
Let τ ∈ Aut(N) such that τ = idN +p with p : N → N projective. Then there is a 

projective map q : M → N with p = qi. Let σ = idM +q. Then σ|N = τ . Now, we have 
a commutative diagram

0 N

τ ∼

M

σ

M/N

id

0

0 N M M/N 0

and hence σ is an automorphism of M .
Let N ′ be a minimal filtrable submodule of M such that M/N ′ ∈ addS. Then we have 

shown that M/N
∼→ M/N ′ and that via such an isomorphism, the maps M → M/N

and M → M/N ′ are stably equal. Now, Lemma 4.4 shows there is σ ∈ Aut(M) with 
N ′ = σ(N) and σ ∼ idM . �

Let M be filtrable. An S-radical filtration of M is a filtration 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆
M0 = M such that Mi is a minimal filtrable submodule of Mi−1 with Mi−1/Mi ∈ addS.

Proposition 4.15. Let M be a filtrable A-module with no projective remainder. Let 0 =
Mr ⊆ Mr−1 ⊆ · · · ⊆ M0 = M and 0 = M ′

r′ ⊆ M ′
r′−1 ⊆ · · · ⊆ M ′

0 = M be two S-radical 
filtrations of M . Then, r = r′ and there is an automorphism of M that swaps the two 
filtrations and that is stably the identity.

Proof. We prove this lemma by induction on the dimension of M . By Proposition 4.14, 
there is σ ∈ Aut(M) such that σ(M ′

1) = M1 and σ ∼ idM . Now, by induction, we have 
r = r′ and there is τ ∈ Aut(M1) such that τσ(M ′

i) = Mi for i > 0 and τ ∼ idM1 . By 
Proposition 4.14, there is τ ′ ∈ Aut(M) such that τ ′|M1

= τ and τ ′ ∼ idM . Now, τ ′σ sends 
M ′

i onto Mi. �
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Remark 4.16. A filtrable projective module can have two S-radical filtrations with non-
isomorphic layers.

Consider A = kA4, the group algebra of the alternating group of degree 4 and assume 
k has characteristic 2 and contains a cubic root of 1. Let B be the principal block of 
kA5. Then, the restriction functor is a stable equivalence between B and A. Let S be 
the set of images of the simple B-modules. Denote by k the trivial A-module and by k+, 
k− the non-trivial simple A-modules. Then S = {k, S+, S−} where Sε is a non-trivial 
extension of kε by k−ε. Let P and P ′ be the two projective indecomposable B-modules 
that don’t have k as a quotient. Then ResA4 P � ResA4 P

′. This projective module 
has two S-radical filtrations with non-isomorphic layers: one coming from the radical 
filtration of P and one coming from the radical filtration of P ′.

While S-radical filtrations are not unique in general for filtrable modules with a pro-
jective remainder, there are some cases where uniqueness still holds:

Proposition 4.17. Assume A is a symmetric algebra. Let 0 → S → M → T → 0 and 
0 → S′ → M → T ′ → 0 be two exact sequences with S, S′, T, T ′ ∈ S. Assume that the 
sequences don’t both split. Then there is an automorphism of M swapping the two exact 
sequences.

Proof. If M is non-projective, then this is a consequence of Proposition 4.14.
Assume M is projective. Since A is symmetric, we have a non-projective map T �

Ω−1S → S. It follows that S = T . Similarly, T ′ = S′. We have exact sequences

0 → Hom(S′, S) → Hom(S′,M) → Hom(S′, S) → Ext1(S′, S) → 0

0 → Hom(S′, S′) → Hom(S′,M) → Hom(S′, S′) → Ext1(S′, S′) → 0.

We have Ω−1S′ � S′, and hence dim Ext1(S′, S′) = 1. Consequently, dim Hom(S′, M) is 
an odd integer. It follows that Ext1(S′, S) 	= 0, hence HomA-stab(S′, S) 	= 0, so S′ = S

and we are done by Lemma 4.4. �
Lemma 4.18. Let 0 = Mr ⊂ Mr−1 ⊂ · · · ⊂ M0 = M be a filtration of M with Mi−1/Mi ∈
addS.

(i) If M has no projective remainder, then Mi has no projective remainder, for all i.
(ii) If the filtration is an S-radical filtration, then Mi has no projective remainder for 

i ≥ 1.

Proof. Consider an exact sequence 0 → N ⊕ P → M → L → 0 of filtrable modules 
with P projective and N filtrable. Then there is an extension M ′ of L by N such that 
M = M ′ ⊕ P and M ′ is filtrable. The first part of the lemma follows.

Assume now the filtration is an S-radical filtration. Assume for some i ≥ 1, we have 
Mi = N⊕P with N filtrable with no projective remainder and P projective and filtrable 
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(Lemma 4.11). Then, M = M ′ ⊕ P with P filtrable by (i). There is an exact sequence 
0 → L → P → S → 0 with S ∈ S and L filtrable. Now, the canonical surjection 
M ′⊕P → M/M1 ⊕S has filtrable kernel and this contradicts the minimality of M1. �
Proposition 4.19. Let M1 and M2 be two filtrable A-modules with no projective remainder. 
If M1 ∼ M2, then M1 � M2.

Proof. We prove the proposition by induction on min(dimM1, dimM2). Fix an isomor-
phism φ from M2 to M1 in the stable category. Let X =

⊕
S∈S S ⊗ HomA-stab(M1, S)

and g1 ∈ HomA-stab(M1, X) be the canonical map. Let g2 = g1φ. By Propositions 4.14
and 4.15, there are exact sequences

0 → N1 → M1
f1−−→ X → 0 and 0 → N2 → M2

f2−−→ X → 0

with the image of fi in the stable category equal to gi. So, there is an isomorphism from 
N2 to N1 in the stable category compatible with φ. By Lemma 4.18, N1 and N2 have no 
projective remainder. By induction, we deduce that there is an isomorphism N2

∼→ N1
lifting the stable isomorphism. So, M1 and M2 are extensions of isomorphic modules, 
with the same class in Ext1, hence are isomorphic. �
4.3. Generators and reconstruction

4.3.1. We assume from now on that

Hypothesis 3. S satisfies Hypothesis 2 and given M ∈ A-mod, there is a projective 
A-module P such that M ⊕ P is filtrable.

Proposition 4.20. Let S ∈ S. Let PS → S be a projective cover of S and P minimal 
projective such that ΩS⊕P is filtrable. Let 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆ M1 ⊆ M0 = ΩS⊕P

be an S-radical filtration.
Then 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆ M1 ⊆ M0 ⊆ PS ⊕ P is an S-radical filtration.
If A is symmetric, then Mr−1 � S.

Proof. Let f1 : PS → S be a surjective map and f = (f1, 0) : PS⊕P → S. Let T ∈ S and 
g : PS ⊕P → T such that we have an exact sequence 0 → L → PS ⊕P

f+g−−−→ S⊕T → 0
with L filtrable.

We have a commutative diagram

0 L PS ⊕ P
f+g

S ⊕ T

(0,id)

0

0 L ΩS ⊕ P T 0
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The surjection ΩS⊕P → T is projective and has filtrable kernel. From Lemma 4.10, we 
get a contradiction to the minimality of P . It follows that ΩS⊕P is a minimal submodule 
of PS ⊕ P such that the quotient is in addS.

We have HomA-stab(T, ΩS) � HomA-stab(S, T )∗, since A is symmetric. Now, 
HomA-stab(Mr−1, ΩS ⊕ P ) 	= 0 by Lemma 4.10. The second part of the proposition 
follows. �

Let M and N be two A-modules with filtrations 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆ M0 = M

0 = Ns ⊆ Ns−1 ⊆ · · · ⊆ N0 = N . Let Homf
A(M, N) be the subspace of HomA(M, N)

of filtered maps (i.e., those g such that g(Mi) ⊆ Ni). We put M̄i = Mi/Mi+1. We 
denote by φi the composition of canonical maps φi : Homf

A(M, N) → HomA(M̄i, N̄i) →
HomA-stab(M̄i, N̄i).

We view N ′ = Ni as a filtered module with the induced filtration 0 = N ′
s−i ⊆

N ′
s−i−1 = Ns−1 ⊆ · · · ⊆ N ′

1 = Ni+1 ⊆ N ′
0 = N ′.

Lemma 4.21. Let M be a filtrable A-module with an S-radical filtration and N be a filtrable 
A-module with an S-filtration. Let f ∈ Homf

A(M, N) with φ0(f) = 0. Then φi(f) = 0
for all i.

Proof. The map f̄0 : M̄0 → N̄0 induced by f is projective. So there is a projective module 
P and a commutative diagram

M N

P

M̄0
f̄0

N̄0

Let p be the composition p : M → M̄0 → P → N . Then f − p ∼ f , f − p and f have the 
same restriction to M1, and (f − p)0 = 0. Consequently it is enough to prove the lemma 
in the case where f̄0 = 0.

From now on, we assume f̄0 = 0. Assume the map f̄1 : M̄1 → N̄1 is not projective. 
So there is S ∈ S and a (split) surjection g : N̄1 → S such that gf̄1 : M̄1 → S is not 
projective. Let s : S → M̄1 be a right inverse to g, and let L be the kernel of gf̄1.

We have an exact sequence 0 → L → M/M2
(can,gf)−−−−−−→ M̄0 ⊕ S → 0. So the inverse 

image of L in M1 is a filtrable submodule of M with quotient isomorphic to M̄0 ⊕ S. 
This contradicts the fact that M1 is a minimal filtrable submodule of M such that 
M/M1 ∈ addS. So f̄1 is projective; i.e., φ1(f) = 0.

We now prove by induction that φi(f) = 0 for all i. Assume φd(f) = 0. Then, we 
apply the result above to the filtered modules Md and Nd to get φd+1(f) = 0. �
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4.3.2. We define a category G as follows.
• Its objects are A-modules together with a fixed S-radical filtration.
• We define HomG(M, N)i as the image of Homf

A(M, Ni) in HomA-stab(M̄0, N̄i). We 
put HomG(M, N) = ⊕i HomG(M, N)i.

• Let f ∈ HomG(M, N)i and g ∈ HomG(L, M)j . Let f̃ : M → Ni be a filtered map 
lifting f . It induces a map φj(f̃) ∈ HomA-stab(M̄j , N̄i+j) independent of the choice of f̃
(Lemma 4.21). We define the product fg to be φj(f̃) ◦ φ0(g).

Given S ∈ S, let PS → S be a projective cover of S and QS projective minimal such 
that ΩS ⊕QS is filtrable. Fix a radical filtration of PS ⊕QS with first term ΩS ⊕QS .

Let M = ⊕S∈S(PS⊕QS). This comes with an S-radical filtration. We have constructed 
a Z≥0-graded k-algebra EndG(M).

The following Lemma is clear.

Lemma 4.22. Let S be a complete set of representatives of isomorphism classes of simple 
A-modules. Then we have an equivalence gr(A-mod) ∼→ G. If A is basic, then EndG(M)
is isomorphic to the graded algebra associated with the radical filtration of A.

We have now obtained our partial reconstruction result:

Theorem 4.23. Let B be a selfinjective algebra with no simple projective module. Let 
M be an (A, B)-bimodule inducing a stable equivalence and having no projective direct 
summand. Let S = {M ⊗B L} where L runs over a complete set of representatives of 
isomorphism classes of simple B-modules.

Then, there is an equivalence gr(B-mod) ∼→ G. If B is basic, there is an isomorphism 
between the graded algebra associated with the radical filtration of B and EndG(M).

4.3.3. The category G can be constructed directly as in §3.1, using only the stable 
category with its triangulated structure.

Proposition 4.24. Let M be a module with an S-filtration 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆
M0 = M . This is an S-radical filtration if and only if

• HomA-stab(Mi/Mi+1, S) → HomA-stab(Mi, S) is an isomorphism for all S ∈ S and 
i > 0,

• HomA-stab(M0/M1, S) → HomA-stab(M0, S) is surjective for all S ∈ S, and
• Mi has no projective remainder for i > 0.

Assume the filtration is an S-radical filtration. Then M has no projective remainder if 
and only if HomA-stab(M0/M1, S) → HomA-stab(M0, S) is an isomorphism.

Proof. Let M be a module with an S-radical filtration 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆
M0 = M . The canonical map HomA-stab(Mi/Mi+1, S) → HomA-stab(Mi, S) is sur-
jective for all S ∈ S, by Lemma 4.12. Note that Mi has no projective remainder for 
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i > 0, by Lemma 4.18. It follows that the canonical map HomA-stab(Mi/Mi+1, S) →
HomA-stab(Mi, S) is an isomorphism for all S ∈ S (Lemma 4.13).

Let us now prove the other implication. Since Mi has no projective remainder for 
i > 0, it follows from Lemma 4.12 that 0 = Mr ⊆ Mr−1 ⊆ · · · ⊆ M1 is an S-radical 
filtration of M1.

Assume the filtration is an S-radical filtration. If M has no projective remainder, then 
HomA-stab(M0/M1, S) → HomA-stab(M0, S) is injective by Lemma 4.13.

Assume now that HomA-stab(M/M1, S) → HomA-stab(M, S) is bijective. Assume 
M = M ′ ⊕ P with M ′ filtrable and P projective. We have HomA-stab(M/M1, S) ∼→
HomA-stab(M, S) ∼→ HomA-stab(M ′, S). There is a surjective map g : M ′ → M/M1 with 
filtrable kernel such that the composition M can−−−→ M ′ g−→ M/M1 is equal to the canon-
ical map M → M/M1 in the stable category, by Proposition 4.14. By Lemma 4.4, we 
have M1 � ker g ⊕ P . Since M1 has no projective remainder by the first part of the 
proposition, we get P = 0, hence M has no projective remainder. �

Let T = A-stab. Note that S is determined by its image in T and it satisfies Hypoth-
esis 3 if and only if HomT (S, T ) = kδST for all S, T ∈ S and every object of T is an 
iterated extension of objects of S.

We have a functor G → F : it sends a module M with an S-radical filtration 0 =
Mr ⊆ Mr−1 ⊆ · · · ⊆ M0 = M to · · · → 0 → Mr−1 → · · · → M1 → M → M/M1 (cf.
Proposition 4.24).

Proposition 4.25. The canonical functor G ∼→ F is an equivalence.

Proof. The functor is clearly fully faithful.
Start with 0 = Nr

fr−−→ Nr−1 → · · · → N1
f1−−→ N0

ε0−−→ M0. Adding a projective 
direct summand to the Ni’s, we can lift the maps fi to maps that are injective in 
the module category and such that the successive quotients have no projective direct 
summands. So we have a filtration 0 = M ′

r ⊆ M ′
r−1 ⊆ · · · ⊆ M ′

1 ⊆ M ′
0 such that 

M ′
i/M

′
i+1 is stably isomorphic to a direct sum of objects of S. Since it has no projective 

summand, it is actually isomorphic to a sum of objects of S; i.e., we have an S-filtration. 
Consider i maximal such that M ′

i has a projective remainder. Then 0 = M ′
r ⊆ M ′

r−1 ⊆
· · · ⊆ M ′

i is an S-radical filtration by Proposition 4.24 (first part). The second part of 
Proposition 4.24 shows now that M ′

i has no projective remainder, a contradiction. So 
the filtration is an S-filtration. �
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