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1. Introduction

The Green correspondence is a fundamental construction in modular representation
theory of finite groups. It is expected (Broué’s abelian defect group conjecture for exam-
ple) to be the shadow of a more structural categorical correspondence, yet to be found.
In an inductive approach to this, a key case is when the Green correspondence induces a
stable equivalence between blocks. This work is an attempt towards a Morita theory for
stable equivalences between self-injective algebras. More precisely, given two self-injective
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algebras A and B and an equivalence between their stable categories, consider the set S
of images of simple B-modules inside the stable category of A. That set satisfies some
obvious properties of Hom-spaces and it generates the stable category of A. Keep now
only § and A. Can B be reconstructed? We show how to reconstruct the graded algebra
associated to the radical filtration of (an algebra Morita equivalent to) B. It would be
interesting to develop further an obstruction theory for the existence of an algebra B
with that given filtration, starting only with S (this might be studied in terms of local-
ization of A.-algebras). Note that a result of Linckelmann [4] shows that, if we consider
only stable equivalence of Morita type, then B is characterized by & — but this result
does not provide a reconstruction of B from S.

We also study a similar problem in the more general setting of a triangulated cat-
egory 7. Given a finite set S of objects satisfying Hom-properties analogous to those
satisfied by the set of simple modules in the derived category of a ring and assuming
that the set generates 7T, we construct a t-structure on 7. In the case 7 = D’(A) and A
is a symmetric algebra, the first author has shown [6] that there is a symmetric algebra
B with an equivalence D°(B) = D’(A) sending the set of simple B-modules to S. The
case of a self-injective algebra leads to a slightly more general situation: there is a finite
dimensional differential graded algebra B with H*(B) = 0 for i > 0 and for i < 0 with
the same property as above.

2. Notations

Let C be an additive category. Given S a set of objects of C, we denote by add S the
full subcategory of C of objects isomorphic to finite direct sums of objects of S.

Let k£ be a field and A a finite dimensional k-algebra. We say that A is split if the
endomorphism ring of every simple A-module is k. We denote by A-mod the category of
finitely generated left A-modules and by D®(A) its derived category. For A self-injective,
we denote by A-stab the stable category, the quotient of A-mod by projective modules.
Given M an A-module, we denote by QM the kernel of a projective cover of M and by
Q1M the cokernel of an injective hull of M.

3. Simple generators for triangulated categories

3.1. Category of filtered objects
Let T be a triangulated category and S a full subcategory of T.
We define a category F as follows.
e Its objects are diagrams

M:(%MQL)le—I)MOEL)No)

where M; is an object of T, M; = 0 for ¢ > 0, such that
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) My 2 My =% Ny is the beginning of a distinguished triangle
(ii) for all i > 1, the cone N;_; of f; isin add S
(iii) the canonical map Hom(Ny, S) — Hom(My, S) is surjective for all S € S
(iv) the canonical map Hom(N;, S) — Hom(M;, S) is bijective for all S € S and ¢ > 1.

(i

Note that e; : M; — N; = cone(f;+1) is well defined up to unique isomorphism
for 4 > 1 thanks to property (iv). For ¢ > 0, we define a new object M>; of F as

o My L M S N

e Given another diagram M’ we define Homgz(M, M)y as the subspace of
Hom(Ny, N{) consisting of those maps g such that there is h : My — M} with eph = geg.

We put Homz (M, M'); = Homz(M, ML,)o and Homz(M,M') = @;>0 Homz(M,
M');. -

e Consider now gg € Homz(M, M’). By (iv), there are maps hg, by, ... and ¢1,92, - . -
making the following diagrams commutative

7 fz 1 i
N;[-1] . a1 AL M; LI N;

gi[—1] hita l hi \L gi \L

Here, p; : Ni[—1] — M1 and pj : Nj[—1] — M/, are the maps making the horizontal

K3
rows in the diagram above into distinguished triangles.

Lemma 3.1. The maps g; : N; = N/ (for i > 1) depend only on go.

Proof. We proceed by induction on i. We assume g;_1 has been shown to depend only
on go. Let us consider the lack of unicity of h;. Consider hi,ﬁi : M; — M/ such that
hipi—1 = pi_19i—1[—1] = }Nlipi_l. There is p : M;—1 — M/ such that h; —h; = pfi-

By (iii) and (iv), there exists ¢ : N;_1 — N; such that ¢e;_1 = €}p. We have eipf; =
gei—1fi = 0, hence s’iﬁi = ¢elh;.

By (iv), we deduce that there is a unique map g; : N; — N/ such that g;e; = €;h; and
that map g; is the unique one such that g;e; = sgﬁz O

Let go € Homg(M, M'); and go € Homz(M’', M"),;. We define the product gjgo as

L g0 1 9i "
the composition No =— N/ == N/ ..

Lemma 3.2. Assume Hom(S,T'[n]) = 0 for all S,T € S and n < 0. Let M be an object
of F. Then, the canonical map Hom(Ny, S) — Hom(My, S) is an isomorphism.
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Proof. By induction on —i, we see that Hom(M;,S[n]) = 0forn < 0 and S € S. It
follows that Hom(M;[1],S) = 0, hence the canonical map Hom(Np, S) — Hom(Mp, S)
is injective, as well as being surjective by assumption. O

3.2. t-structures

Let k be a field and assume 7 is a k-linear triangulated category.
We assume from now on the following

Hypothesis 1.

(1) Hom(S,T) = k%s7 for S, T € S
(2) S generates T as a triangulated category
(3) Hom(S,T[n]) =0 for S, T € S and n < 0.

8.2.1.
Lemma 3.3. Given N € T, there is a sequence 0 = M, f;> ce — Mo fL> M, f;>
My =N and d : Z~o — Z non-increasing such that cone(f;)[d(7)] € S.

For such a sequence, the maps M,_1 — N and N — cone(f1) are non-zero.

Proof. Since T is generated by S, there is a sequence 0 = M,. — -+ — Ms L My ﬁ%
My = N and d : Z~¢ — Z such that cone(f;)[d(i)] € S.

We put N; = cone(f;) = S;[—d(i)] with S; € S. Take ¢ such that d(i) > d(i—1). Let T
be the cone of f;_1f; : M; — M;_5. The octahedral axiom gives a distinguished triangle
Si[—d(i)] = T — S;_1[—d(i — 1)] ~.

Assume the morphism S;_1[—d(i — 1)] — S;[—d(i) + 1] is non-zero. Then it is an
isomorphism and d(7) = d(i — 1) + 1. It follows that 7= 0 and f;_1 f; is an isomorphism.
Consequently,

0=M, = = My L2850 ap oMy L vy L M = N

is a new sequence with successive cones being shifts of objects of S.

By induction, we can assume that the morphism S;_1[—d(i — 1)] — S;[—d(i) + 1]
is zero. Then, T~ N; @ N;_1. There is an object M/_; and distinguished triangles
M; — Mil_l — N;_1 ~ and Mil_l — M;_9 — N; ~. Put MJ/ = Mj for j 7é 1 — 1. SO,

0=M— = M,— M - M,=N
is a new sequence with the same cones as in the original sequence except the 7 and ¢ — 1

ones which have been swapped. By induction, we can reorder the cones in the sequence
so that d is non-increasing.
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Assume the map M,._; — N is zero. Let T be its cone. Then T'~ N & M,._;[1]. Note
that T is filtered by the S;[—d(4)] with —d(i) < —d(r) + 1, hence Hom(M,_1[1],T) = 0.
So we have a contradiction. The case of the map N — Nj is similar. O

Let 7= (resp. 7>°) be the full subcategory of objects N in 7T such that there is a
sequence 0 = M, — -+ — My LN M, LN My = N with cone(f;) a direct sum of
objects S[r] with S € S and r > 0 (resp. r < 0).

Proposition 3.4. (7=°,7>%) is a bounded t-structure on T.

Proof. By induction, we see there is no non-zero map from an object of 7=° to an object
of 770, Furthermore, we have T7=°[1] C 7=" and 7>° C T>°[1].

Let N € T. Pick a sequence as in Lemma 3.3. Take s such that d(s) > 0 and
d(s+ 1) <0. Let L be the cone of f1--- fs: My — N. We have a distinguished triangle

My — N — L ~
with M, € T<Cand L € T>°. O
We have a characterization of 72° and 7=9:

Proposition 3.5. Let N € T. Then, N € T=C if and only if Hom(N, S[i]) =0 for S € S
and i < 0.
Similarly, N € T=° if and only if Hom(S[i], N) = 0 for S € S and i > 0.

Proof. We have Hom(N, S[i]) = 0 for S € S and i < 0, if N € S[r] with » > 0. By
induction, it follows that if N € 7<% then Hom(N, S[i]) =0 for S € S and i < 0.
Assume now Hom(N, S[i]) = 0 for S € S and i < 0. Pick a filtration of N as in
Lemma 3.3. Then, d(1) < 0, hence d(i) < 0 for all i and N € T=°.
The other case is similar. O

Note that the heart A of the ¢-structure is artinian and noetherian. Its set of simple
objects is S.

Remark 3.6. Assume 7 can be generated by a finite set of objects. Then, there is a finite
subcategory S’ of S generating T . It follows immediately from condition (i) that S = &’.
So, S has only finitely many objects.

3.2.2. In §3.2.2, we assume T = DY(A) where A is a finite dimensional k-algebra.
By Remark 3.6, S is finite (note that 7 is generated by the simple A-modules, up to
isomorphism).

Proposition 3.7. Let S € S§. There is a bounded complex of finitely generated injective
A-modules Is(S) € TZ° such that, given T € S and i € Z, we have
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k fori=0and S=T

HOHIDb(A)(T’ Ls(S)li]) = {0 otherwise

Similarly, there is a bounded complex of finitely generated projective A-modules Ps(S) €
T=0 such that, given T € S and i € Z, we have

k fori=0and S=T

Home(A)(PS(S) i.7) = {O otherwise

Proof. The construction of a complex Is(S) of A-modules with the Hom property is
[6, §5] (note that the proof of [6, Lemma 5.4] is valid for non-symmetric algebras). It
is in 72 by Proposition 3.5. Since @5 dim Hom pu(4)(V, Is(S)[i]) = 0 for all simple
A-modules V', we deduce that Is(S) is isomorphic to a bounded complex of finitely
generated injective A-modules.

The second case follows from the first one by passing to A°PP and taking the k-duals
of elements of S. O

We denote by 7>, etc... the truncation functors and H® the H -functor associated
to the t-structure constructed in §3.2.1.

Lemma 3.8. The object 'H’(Is(S)) of A is an injective hull of S and 'H’(Ps(S)) is a
projective cover of S.

Proof. We have a distinguished triangle

tH'(Is(S)) = Is(S) = 77 Is(S) ~ .
Let N € A. We have Hom(N,7>%I5(S)) = 0 and Hom(N, Is(S)[1]) = 0, so we
deduce that Hom(N,'H’(Is(S))[1]) = 0. It follows that Ext'(N,'H’(Is(S))) = 0,
hence 'H’(I5(S)) is injective. Since Hom(T, (7>°Is(5))[~1]) = 0, we have Hom(T,
tH%(Is(S))) = Hom(T, Is(S)) = k%7 for T € S. So *tH’(Is(S)) is an injective hull

of S. The projective case is similar. O

Let us consider the finite dimensional differential graded algebra
B = End (6P Ps(S5)) = €D Homa(EP Ps(S). P Ps(S)[il).
S i S S

Denote by D?(B) the derived category of finite dimensional differential graded
B-modules.

Theorem 3.9. We have H'(B) = 0 for i > 0 and for i < 0. We have H°(B)-mod ~ A
and Db(B) ~ D®(A).
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Proof. Let N € T and consider a filtration of N as in Lemma 3.3. Take S € § such that
S1i] is isomorphic to the cone of My — My_1. Then, Hom(Ps(S)[i], N) # 0. It follows
that the right orthogonal category of { Ps(S)[i]} ses,icz is zero. Since the Ps(S) are per-
fect, it follows that @4 Ps(S) generates the category of perfect complexes of A-modules
as a triangulated category closed under taking direct summands [5, Lemma 2.2]. The
functor Hom% (P4 Ps(S), —) gives an equivalence D°(A) = D(B) [3, Theorem 4.3].

Let C = Pges Ps(S) and N = tHO(C). We have a distinguished triangle 7<°C' —
C — N ~. We have Hom(7<°C, N[i]) = 0 for i < 0. We deduce that the canonical
morphism Hom(N, N) — Hom(C, N) is an isomorphism. We have Hom(C, (7<°C)[i]) =
0 for i > 0 since 7<YC is filtered by objects in S[d], d > 0 (cf. Proposition 3.7). It follows
that the canonical morphism Hom(C,C) — Hom(C, N) is an isomorphism.

This shows that the canonical morphism End(C) — End(*H®(C)) is an isomorphism.
By Lemma 3.8, tHO(C) is a progenerator for A. So H°(B)-mod ~ A.

Note that HY(B) = 0 for i < 0 because @4 Ps(S) is bounded. Since Ps(S)
is filtered by objects in S[d] with d > 0, it follows from Proposition 3.7 that
Hom(Ps(T), Ps(S)[i]) = 0 for i > 0. So, H{(B) =0 for i >0. O

The following proposition is clear.

Proposition 3.10. Let B be a dg-algebra with H(B) = 0 for i > 0 and for i < 0. Let C
be the sub-dg-algebra of B given by C° = B* fori < 0, CY = kerd® and C* =0 fori > 0.
Then the restriction D(B) — D(C) is an equivalence.

Let S be a complete set of representatives of isomorphism classes of simple H°(B)-
modules (viewed as dg-C-modules). Then S satisfies Hypothesis 1. Furthermore, A ~
H°(B)-mod.

So we have a bijection between

o the sets S (up to isomorphism) satisfying Hypothesis 1

o the equivalences D*(B) = DY(A) where B is a dg-algebra with H'(B) = 0 for
1 > 0 and for ¢ < 0 and where B is well-defined up to quasi-isomorphism and the
equivalence is taken modulo self-equivalences of D’(B) that fix the isomorphism
classes of simple H°(B)-modules.

We recover a result of Al-Nofayee [1, Theorem 4]:

Proposition 3.11. Assume A is self-injective with Nakayama functor v. The following are
equivalent

e H(B)=0 fori#0
o v(S) =S (up to isomorphism).
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Proof. Note that S is stable under v if and only if {Ps(S)}ses is stable under v (up to
isomorphism). Given S,T € S and i € Z, we have

Hom pi () (Ps(5), Ps(T)[i])" ~ Hompy () (Ps(T), v(Ps(S))[—il)-

If S is stable under v, then Hompu4)(Ps(T),v(Ps(S))[—i]) = 0 for i > 0, hence
H<°(B) = 0.

Assume now H<°(B) = 0. Then, viewed as an object of D’(B), v(Ps(S)) is concen-
trated in degree 0. Since it is perfect, it is isomorphic to a projective indecomposable
module, hence to Ps(S’) for some S’ € S. So, S is stable under v. O

We recover now the main result of [2]:

Corollary 3.12. Let A be a self-injective algebra and B an algebra derived equivalent to A.
Then B is self-injective.

From Proposition 3.11, we recover [6, Theorem 5.1]:

Theorem 3.13. If A is symmetric then H'(B) = 0 for i # 0, i.e., there is an equivalence
DP(A) 5 DY(A) where S is the set of images of the simple objects of A.

Remark 3.14. Theorem 3.13 does not hold in general for a self-injective algebra. Take
A = k[e]/(?) x pa, where g = {£1} acts on k[e]/(¢2) by multiplication on e. Assume
k does not have characteristic 2. This is a self-injective algebra which is not symmetric.
The Nakayama functor swaps the two simple A-modules U and V.

Let Py (resp. Py) be a projective cover of U (resp. V). Take S = U and T = Py/[1].
Then, the set S = {S, T} satisfies Hypothesis 1. We have Is(T) ~ T and Is(S) ~ 0 —
Py — Py — 0, a complex with homology V' in degree 0 and —1.

The dg-algebra B has homology H°(B) isomorphic to the path algebra of the quiver

o e, H YB)=Fkand H(B) =0 for i # 0, —1.
The derived category of the hereditary algebra H®(B) is not equivalent to D?(A).

3.8. Graded of an abelian category

Let A be an abelian k-linear artinian and noetherian category with finitely many
simple objects up to isomorphism and § a complete set of representatives of isomorphism
classes of simple objects. We assume A is split, i.e., endomorphism rings of simple objects
are isomorphic to k. Let 7 = D?(A).

Let grA be the category with objects the objects of A and where Homg, 4 (M, N)
is the graded vector space associated to the filtration of Hom4(M,N) given by
Hom4 (M, N)* = {f|im f C rad’ N}.

Given M in A, let M; = rad" M, f; : M; — M;_; the inclusion, Ny = M/M; and
g0 : M — M/M; the projection. This defines an object of F.
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We obtain a functor grAd — F.
Proposition 3.15. The canonical functor grA — F is an equivalence.

Proof. The image of Hom4 (N, N') in Hom 4(N, N/) is isomorphic to the quotient of
Hom 4 (N, N’) by Hom 4 (N, rad N') and it follows that the functor is fully faithful.

Let us show that it is essentially surjective. Let M € F. Let r > 0 such that M, ., = 0.
Then, M, = N, has homology concentrated in degree 0 and is semi-simple. By induction
on —i, it follows from the distinguished triangle M; 1 — M, — N; ~» that M, has
homology concentrated in degree 0.

Note that we have an exact sequence 0 — HOMZ'H — HOM,; — HON,; — 0. Since the
canonical map Hom(H°N;, S) — Hom(H"M;, S) is bijective for any simple S, it follows
that HON; is the largest semi-simple quotient of HOM;. So, M; = rad® My and M comes
from an object of A. O

4. Simple generators for stable categories
4.1. From equivalences

Let k be a field and A a split self-injective k-algebra with no projective simple mod-
ule.

Let B be another split self-injective k-algebra with no projective simple module, and
let F : B-stab = A-stab be an equivalence of triangulated categories. Let S’ be a
complete set of representatives of isomorphism classes of simple B-modules. For L € S,
let L' be an indecomposable A-module isomorphic to F(L) in A-stab. Let S = {L'}cs/.
Then,

(i) Homa-gstan(S,T) = k%7 for S,T € S
(ii) Every object M of A-stab has a filtration 0 = M, - M,_; — -+ = M; - My =M
such that the cone of M; — M;_1 is isomorphic to an object of S.

Note that (ii) is equivalent to
(ii') Given M in A-mod, there is a projective module P such that M @ P has a filtration
0=N, CN._1 C---C Ny CNy= M & P with the property that Ni/Ni—l is
isomorphic (in A-mod) to an object of S.
Linckelmann has shown the following [4, Theorem 2.1 (iii)]:
Proposition 4.1. Assume that F' is induced by an exact functor B-mod — A-mod. If S

consists of simple modules, then there is a direct summand of F that is an equivalence
B-mod & A-mod.
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We deduce:

Corollary 4.2. Let By, By be split self-injective algebras with no projective simple modules
and G; : B;-mod — A-mod ezact functors inducing stable equivalences. Assume S; = Sa
(up to isomorphism). Then, By and By are Morita equivalent.

So, if we assume in addition that F' comes from an exact functor G between module
categories, then B is determined by S, up to Morita equivalence.

The functor G is isomorphic to X ® p — where X is an (A4, B)-bimodule. We can (and
will) choose G so that X has no non-zero projective direct summand. Then, G(L) is
indecomposable for L simple [4, Theorem 2.1 (ii)], so § = {G(L)}Les’, up to isomor-
phism.

Proposition 4.3. An A-module M is in the image of G if and only if there is a filtration
0=M,.C M,y C---CM CMy= M such that M;/M;_1 is isomorphic to an object
of S.

Proof. Take L a B-module. Then the image by G of a filtration of L whose successive
quotients are simple provides a filtration as required.

Conversely, we proceed by induction on r. We have an exact sequence 0 — G(N) —
M — G(L) — 0 and a corresponding element ¢ € Ext)(G(L),G(N)). We have an
isomorphism Extg (L, N) = Ext! (G(L), G(N)) and we take ¢’ to be the inverse image
of ¢ under this isomorphism. This gives an exact sequence 0 -+ N — M’ — L — 0, and
hence an exact sequence 0 — G(N) — G(M') — G(L) — 0 with class ¢. It follows that
M ~ G(M') and we are done. 0O

4.2. Filtrable objects

4.2.1. Given two A-modules M and N, we write M ~ N to denote the existence
of an isomorphism between M and N in A-stab. Given f,¢g € Homa (M, N), we write
f ~ygif f—gisa projective map.

Lemma 4.4. Let f,f' : M — N be two surjective maps with f ~ g. Then there is
o € Auta(M) with f' = fo and o ~idpy.

Simialarly, let f,f" : N — M be two injective maps with f ~ g. Then there is o €
Aut (M) with f' =of and o ~idyy.

Proof. Let L = ker f and L' = ker f’. Let L = Lo @ P and L' = Lj @ P’ with P, P’
projective and Ly, Ly without non-zero projective direct summands. We have an isomor-
phism &y € Hom a-stan (Lo, L) in A-stab giving rise to an isomorphism of distinguished
triangles in A-stab
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Lo M N Q_lLO
e
L M N Q-

Let ag € Homy (Lo, L) lifting cg. This is an isomorphism. There is now a commutative
diagram of A-modules, where the exact rows come from the elements of Ext) (N, L)
and Ext} (N, L) defined above:

0 Lo My N 0
ol
Y
0 L M} N 0

We have M ~ My @ P ~ M} @ P’, hence P ~ P’. Let o : L = L’ extending ag. Then
there is o : M 5 M making the following diagram commute

0 L M N 0
o
0 L M N 0

and we are done.
The second part of the lemma has a similar proof — it can also be deduced from the
first part by duality. O

4.2.2.

Hypothesis 2. Let S be a finite set of indecomposable finitely generated A-modules such
that Hom a-g¢ap (S, T) = k%57 for S,T € S.

An S-filtration for an A-module M is a filtration 0 = M, C M, C--- C My=M
such that M, = M;/M; 41 is in add(S) for 0 < i <r —1.
We say that M is filtrable if it admits an S-filtration.

Lemma 4.5. Let M be a non-projective filtrable A-module. Then there is S € S such that
Hom g-stab (M, S) # 0 (resp. such that Hom g-sta (S, M) # 0).

Proof. Assume Hom g4-gap (M, S) = 0 for all S € S. Since M is filtrable, it follows that
End g-stab (M) = 0, and hence M is projective, which is not true. The second case is
similar. O
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Lemma 4.6. Let M be a filtrable module and S € S. Given f : M — S non-projective,
there is g : M — S surjective with filtrable kernel such that f ~ g. Similarly, given
f S — M non-projective, there is g : S — M injective with filtrable cokernel such that

f~g.

Proof. We proceed by induction on the number of terms in a filtration of M. The result
is clear if M € S.

Let 0 — N 25 M 25 T — 0 be an exact sequence with T' € § and N filtrable.

Assume first fa : N — S is projective. Then there is p : M — S projective and
g:T — S with f—p = gpB. Since g is not projective, it is an isomorphism. Consequently,
f — p is surjective and its kernel is isomorphic to NV by Lemma 4.4, so we are done.

Assume now fa : N — S is not projective. By induction, there is ¢ : N — S projective
such that fa + ¢ is surjective with filtrable kernel N’. Since a : N — M is injective,
there is a projective map p : M — S with ¢ = pa. Now, we have an exact sequence
0 — N/N' 25 M/a(N') — T — 0 and a non-projective surjection f+p : M/a(N') — S.
Since (f +p)a : N/N' 5 S is an isomorphism, it follows that the kernel of the map
M/a(N') — S is isomorphic to T. Since N’ is filtrable, it follows that ker(f + p) is
filtrable and we are done. The second assertion follows by duality. O

From Lemmas 4.4 and 4.6, we deduce:

Lemma 4.7. Let S € § and let M be a filtrable module.
If f: M — S be a surjective and non-projective map, then ker f is filtrable.
Stmilarly, if g : S — M is injective and non-projective, then coker g is filtrable.

From Lemmas 4.5 and 4.6, we deduce:

Lemma 4.8. Let M be filtrable non-projective. Then there is a submodule S of M, with
S €S8, such that M/S is filtrable and the inclusion S — M is not projective. Similarly,
there is a filtrable submodule N of M such that M/N € S and M — M/N s not
projective.

Proposition 4.9. Let M be an A-module with a decomposition M ~ M{ @ M} in the stable
category. If M is filtrable then there is a decomposition M = My & My such that M; is
filtrable and M; ~ M].

Proof. We can assume M is not projective, for otherwise the proposition is trivial. We
prove the proposition by induction on the dimension of M.

Let M = T1®T5® P with P projective, T; without non-zero projective direct summand
and T; ~ M. Denote by 7 : M — T the projection.

By Lemma 4.5, there is S € § such that Hom g-gap (M, S) # 0. Hence, Hom g-stan (15,
S) # 0 fori =1 ori= 2 Assume for instance i = 1. Pick a non-projective map
a:Ty — 5. So, ar : M — S is not projective. By Lemma 4.6, there is a surjective map
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B : M — S with 8 ~ ar and N = ker f filtrable. Then N ~ L @ T, where L is the
kernel of a +p :Th @ Ps — S and p: Pg — S is a projective cover of S. By induction,
we have N = N; & Ny with N; filtrable and Ny ~ L, Ny ~ T5. Now, the map S — L[1]
gives a map S — N;[1] (in A-stab). Let M; be the extension of S by N corresponding
to that map. Then M ~ M; @ Na, the modules M7 and N, are filtrable, M; ~ M7, and
No~ M. O

Let M be a filtrable module. We say that M has no projective remainder if there is
no direct sum decomposition M = N @ P with P # 0 projective and N filtrable.

Lemma 4.10. Let M be a filtrable module with no projective remainder and let S € S.
For f: M — S surjective, ker f is filtrable if and only if f is non-projective.
For f: S — M injective, coker f is filtrable if and only if f is non-projective.

Proof. Assume f is projective. Then there is a decomposition M = N@ P and f = (0,9)
with P projective. Now, ker f = N & kerg. If ker f is filtrable, then it follows from
Lemma 4.9 that M has a non-zero projective submodule whose quotient is filtrable.

The converse is given by Lemma 4.7. The second part of the Lemma has a similar
proof. O

Lemma 4.11. Let M = My & M, with M and My filtrable and such that My has no
projective remainder. Then My is filtrable.

Proof. We proceed by induction on dim My — the result is clear for My = 0. Assume
My # 0. Let f: My — S be a surjection with S € § and ker f filtrable. By Lemma 4.10,
f is not projective. Then f' : M 225 M, Iy Sisa non-projective surjection. By
Lemma 4.7, ker f’ is filtrable. We have ker f' = ker f @ M; and we are done. 0O

4.2.3.  We now turn to filtrations by objects in add(S).

Lemma 4.12. Let M be a filtrable module and N a filtrable submodule of M such that
M/N € addS. Then, N is minimal with these properties if and only if N has no pro-
jective remainder and the canonical map Homp-stab(M/N,S) — Homa-stab(M,S) is
surjective for every S € S.

Proof. Let N be a minimal filtrable submodule of M such that M/N € add S. Denote
by i : N — M the injection and p : M — M/N the quotient map.

Let S € S. Fix fi,...,fr + M/N — S such that ) . f; : M/N — S" is surjec-
tive and ker ), f; has no direct summand isomorphic to S. Let T' be the subspace of
Hom g-gtap (M, S) generated by fip,..., frp. Assume this is a proper subspace, so there
is f': M — S whose image in Hom g-gtar, (M, S) is not in 7. Then f’i : N — S is not pro-
jective, hence there is a projective map ¢ : N — S such that f’i + ¢ is surjective and has
filtrable kernel N’ (Lemma 4.6). There is ¢’ : M — S projective such that ¢ = ¢'i. Now,
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M/N' ~ M/N @S and this contradicts the minimality of N. It follows that the canonical
map Hom g-stab, (M/N, S) — Hom g-gtan (M, S) is surjective. Assume N = N'@ P with N’
filtrable with no projective remainder and P projective. By Lemma 4.11, P is filtrable.
We have M/N' ~ M/N & P. Since M/N is a maximal quotient of M in add(S) and P
is filtrable, it follows that P = 0.

Conversely, take f : N — S surjective with filtrable kernel such that the extension of
M/N by S splits. Then f lifts to M — S and it is not projective by Lemma 4.10. This
contradicts the surjectivity of Hom g-g¢an (M /N, S) — Hom g-gtap (M, S). Consequently,
N is minimal. O

Lemma 4.13. Let M be a filtrable A-module with no projective remainder.
Let f: M — L be a surjection with L € addS. Then ker f is filtrable if and only if
the canonical map Hom g-gtap (L, S) = Hom g-gtan, (M, S) is injective for all S € S.

Proof. Note that the canonical map Hom g-gtan (L, S) — Hom g-gtan (M, S) is injective if
and only if, given p : L — S surjective with S € S, pf is not projective.

Assume ker f is filtrable. Let p : L — S be a surjective map with S € S. Then kerpf
is filtrable, hence pf is not projective (Lemma 4.10).

Let us now prove the converse by induction on the dimension of M. Assume that given
p: L — S surjective with S € S, then pf is not projective. Pick p : L — S surjective
and let L' = kerp. Let M’ = kerpf. Then f induces a surjection f’ : M’ — L’ and we
have L’ € add S (since p is split). Let p’ : L' — T be a surjective map with 7' € S. Fix a
left inverse o : L — L’ to the inclusion L' — L.

0 0 T
o

! / f/ /

0 —— ker f M L 0
N

0 —— ker f M ; L 0
P
S=——==1F5
0 0

If S # T, then Homg-ga,(S,T) = 0, and hence p’'of doesn’t factor through S in
the stable category. On the other hand, if S = T then pf and p’cf define linearly
independent elements of Hom g-gap (M, S). Consequently, p'of doesn’t factor through
S in the stable category. It follows that p’f’ is not projective. By Lemma 4.7, M’ is
filtrable. By induction, it follows that ker f’ is filtrable and we are done. O
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Proposition 4.14. Let M be a filtrable A-module with no projective remainder.
Let N be a minimal filtrable submodule of M such that M/N € addS. Then there is
an isomorphism

M/N 5 @ S © Homa-stan(M, S)
Ses

that induces the canonical map M — @ gcs S @ Homa-stan (M, S) in the stable category.
Given 7 € Aut(N) such that 7 ~ idy, there is o € Aut(M) with o ~ idy and
oN=T.
Let N’ be a minimal filtrable submodule of M such that M/N' € add S. Then there is
o € Aut(M) such that N' = o(N) and o ~ idyy.

Proof. The first part of the proposition follows from Lemmas 4.12 and 4.13.

Let 7 € Aut(NV) such that 7 = idy +p with p : N — N projective. Then there is a
projective map ¢ : M — N with p = gi. Let 0 = idy +¢. Then o) = 7. Now, we have
a commutative diagram

0 N M M/N ——=0
T ~ (e 1d\L
\
0 N M M/N ——=0

and hence ¢ is an automorphism of M.

Let N’ be a minimal filtrable submodule of M such that M/N’ € add S. Then we have
shown that M/N = M/N’ and that via such an isomorphism, the maps M — M/N
and M — M/N’ are stably equal. Now, Lemma 4.4 shows there is ¢ € Aut(M) with
N' =¢(N) and o ~idy. O

Let M be filtrable. An S-radical filtration of M is a filtration 0 = M, C M,_1 C --- C
My = M such that M; is a minimal filtrable submodule of M;_; with M;_1/M; € add S.

Proposition 4.15. Let M be a filtrable A-module with no projective remainder. Let 0 =
M, CM,_1C---CMy=Mand0=M/, C M/, |, C--- C Mj=M be two S-radical
filtrations of M. Then, r = v’ and there is an automorphism of M that swaps the two
filtrations and that is stably the identity.

Proof. We prove this lemma by induction on the dimension of M. By Proposition 4.14,
there is 0 € Aut(M) such that o(M]) = M; and o ~ idy. Now, by induction, we have
r = 1’ and there is 7 € Aut(M;) such that 7o(M]) = M; for i > 0 and 7 ~ idys, . By
Proposition 4.14, there is 7 € Aut(M) such that Tl’Ml =7 and 7 ~ idy;. Now, 7’0 sends
M/ onto M;. O
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Remark 4.16. A filtrable projective module can have two S-radical filtrations with non-
isomorphic layers.

Consider A = k24, the group algebra of the alternating group of degree 4 and assume
k has characteristic 2 and contains a cubic root of 1. Let B be the principal block of
k5. Then, the restriction functor is a stable equivalence between B and A. Let S be
the set of images of the simple B-modules. Denote by k the trivial A-module and by k4,
k_ the non-trivial simple A-modules. Then & = {k, Sy, S_} where S. is a non-trivial
extension of k. by k_.. Let P and P’ be the two projective indecomposable B-modules
that don’t have k as a quotient. Then Resgy, P ~ Resy, P’. This projective module
has two S-radical filtrations with non-isomorphic layers: one coming from the radical
filtration of P and one coming from the radical filtration of P’.

While S-radical filtrations are not unique in general for filtrable modules with a pro-
jective remainder, there are some cases where uniqueness still holds:

Proposition 4.17. Assume A is a symmetric algebra. Let 0 - S — M — T — 0 and
00— 8 - M—T — 0 be two exact sequences with S,S',T,T' € S. Assume that the
sequences don’t both split. Then there is an automorphism of M swapping the two exact
sequences.

Proof. If M is non-projective, then this is a consequence of Proposition 4.14.
Assume M is projective. Since A is symmetric, we have a non-projective map T ~
Q1S — S. It follows that S = T'. Similarly, 77 = S’. We have exact sequences

0 — Hom(S’, S) — Hom(S’, M) — Hom(S’, S) — Ext'(S’,S) — 0
0 — Hom(S’,S") — Hom(S’, M) — Hom(S’, ") — Ext*(S’,5") — 0.

We have Q15" ~ S, and hence dim Ext' (S, S") = 1. Consequently, dim Hom(S’, M) is
an odd integer. It follows that Extl(S’, S) # 0, hence Hom g-gta, (57, 5) # 0,50 8" = S
and we are done by Lemma 4.4. O

Lemma 4.18. Let 0 = M, C M,_1 C --- C My = M be a filtration of M with M;_1/M,; €
add S.

(i) If M has no projective remainder, then M; has no projective remainder, for all i.
(ii) If the filtration is an S-radical filtration, then M; has no projective remainder for
i>1.

Proof. Consider an exact sequence 0 - N @ P - M — L — 0 of filtrable modules
with P projective and N filtrable. Then there is an extension M’ of L by N such that
M = M'® P and M’ is filtrable. The first part of the lemma follows.

Assume now the filtration is an S-radical filtration. Assume for some i > 1, we have
M; = N @ P with N filtrable with no projective remainder and P projective and filtrable
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(Lemma 4.11). Then, M = M’ @ P with P filtrable by (i). There is an exact sequence
0L — P — S — 0with S € § and L filtrable. Now, the canonical surjection
M'® P — M/M; & S has filtrable kernel and this contradicts the minimality of M;. O

Proposition 4.19. Let My and My be two filtrable A-modules with no projective remainder.
If M1 ~ MQ, then M1 ~ MQ.

Proof. We prove the proposition by induction on min(dim My, dim Ms). Fix an isomor-
phism ¢ from M> to M; in the stable category. Let X = @g. g5 ® Hom g-gtan (M, S)
and g; € Hom g-gtap (M1, X) be the canonical map. Let go = ¢g16. By Propositions 4.14
and 4.15, there are exact sequences

0N =M L5 X 50 and 0= Ny — My, 225 X 50

with the image of f; in the stable category equal to g;. So, there is an isomorphism from
N3 to N7 in the stable category compatible with ¢. By Lemma 4.18, N7 and N5 have no
projective remainder. By induction, we deduce that there is an isomorphism Ny = N;
lifting the stable isomorphism. So, M; and Ms are extensions of isomorphic modules,
with the same class in Ext!, hence are isomorphic. O

4.8. Generators and reconstruction

4.8.1. We assume from now on that

Hypothesis 3. S satisfies Hypothesis 2 and given M € A-mod, there is a projective
A-module P such that M @ P is filtrable.

Proposition 4.20. Let S € S. Let Ps — S be a projective cover of S and P minimal
projective such that QS @ P is filtrable. Let 0 = M, C M,_1 C--- C My, C My =QS&P
be an S-radical filtration.

Then0=M, C M, 1 C---C M, C MyC Ps® P is an S-radical filtration.

If A is symmetric, then M,_1 ~ S.

Proof. Let f; : Ps — S be a surjective map and f = (f1,0): Ps®P — S.Let T € S and
g : Ps® P — T such that we have an exact sequence 0 — L — Ps® P ERT N SeT —0
with L filtrable.

We have a commutative diagram

f+
0— L —>PsadP s SaT —=0

[ e

0——=L——>QS®P T 0
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The surjection QS @ P — T is projective and has filtrable kernel. From Lemma 4.10, we
get a contradiction to the minimality of P. It follows that 5@ P is a minimal submodule
of Ps @ P such that the quotient is in add S.

We have Homg-gtan(T,2S) ~ Homp-sab(S,T)*, since A is symmetric. Now,
Hom g-gtap (M;—1,2S @& P) # 0 by Lemma 4.10. The second part of the proposition
follows. O

Let M and N be two A-modules with filtrations 0 = M, C M,_1 C --- C My =M
0=Ng C Ny_1C---C Ny =N. Let Homf;(M, N) be the subspace of Hom 4 (M, N)
of filtered maps (i.e., those g such that g(M;) C N;). We put M; = M;/M; ;. We
denote by ¢; the composition of canonical maps ¢; : Homﬁ (M, N) — Hom (M;, N;) —
HomA—stab(Mi7 Nz)

We view N’ = Nj; as a filtered module with the induced filtration 0 = N._, C

i1 =Ng-1C---C N =N,11 CTNy=N".
Lemma 4.21. Let M be a filtrable A-module with an S-radical filtration and N be a filtrable
A-module with an S-filtration. Let f € HomQ(M, N) with ¢o(f) = 0. Then ¢;(f) =0
for all i.

Proof. The map fy : My — Ny induced by f is projective. So there is a projective module
P and a commutative diagram

Let p be the composition p : M — My — P — N. Then f —p ~ f, f —p and f have the
same restriction to Mj, and (f — p)o = 0. Consequently it is enough to prove the lemma
in the case where fo = 0.

From now on, we assume fy = 0. Assume the map f; : M; — N is not projective.
So there is S € S and a (split) surjection g : Ny — S such that gf; : M; — S is not
projective. Let s : S — M, be a right inverse to ¢, and let L be the kernel of gf;.

We have an exact sequence 0 — L — M /M, M My @ S — 0. So the inverse
image of L in M is a filtrable submodule of M with quotient isomorphic to My @ S.
This contradicts the fact that M; is a minimal filtrable submodule of M such that
M/M; € add S. So f; is projective; i.e., ¢1(f) = 0.

We now prove by induction that ¢;(f) = 0 for all i. Assume ¢4(f) = 0. Then, we
apply the result above to the filtered modules My and Ny to get ¢q+1(f) =0. O
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4.83.2.  We define a category G as follows.

e Its objects are A-modules together with a fixed S-radical filtration.

e We define Homg (M, N); as the image of HomQ(M, N;) in Hom g-geap (Mo, N;). We
put Homg(M, N) = ®; Homg(M, N);.

o Let f € Homg(M, N); and g € Homg(L, M);. Let f: M — N be a filtered map
lifting f. It induces a map cbj(f) € HornA.stab(J\Zj7 Niﬂ') independent of the choice of f
(Lemma 4.21). We define the product fg to be ¢;(f) o ¢o(g).

Given S € S, let Ps — S be a projective cover of S and Qg projective minimal such
that QS @ Qg is filtrable. Fix a radical filtration of Ps & Qg with first term Q5 & Qs.

Let M = ®ges(Ps®Qs). This comes with an S-radical filtration. We have constructed
a Z>o-graded k-algebra Endg(M).

The following Lemma is clear.

Lemma 4.22. Let S be a complete set of representatives of isomorphism classes of simple
A-modules. Then we have an equivalence gr(A-mod) = G. If A is basic, then Endg(M)
1s isomorphic to the graded algebra associated with the radical filtration of A.

We have now obtained our partial reconstruction result:

Theorem 4.23. Let B be a selfinjective algebra with no simple projective module. Let
M be an (A, B)-bimodule inducing a stable equivalence and having no projective direct
summand. Let S = {M ®p L} where L runs over a complete set of representatives of
isomorphism classes of simple B-modules.

Then, there is an equivalence gr(B-mod) = G. If B is basic, there is an isomorphism
between the graded algebra associated with the radical filtration of B and Endg(M).

4.3.3. The category G can be constructed directly as in §3.1, using only the stable
category with its triangulated structure.

Proposition 4.24. Let M be a module with an S-filtration 0 = M, C M,_, C --- C
My = M. This is an S-radical filtration if and only if

o Hom g-gtap (M;/M;i+1,S) = Homa-stan, (M, S) is an isomorphism for all S € S and
>0,

o Hom y-gtap(Mo/M7,S) = Hom g-gtan (M, S) is surjective for all S € S, and

e M; has no projective remainder for i > 0.

Assume the filtration is an S-radical filtration. Then M has no projective remainder if
and only if Hom g -star, (Mo /M7,.S) — Hom g-stan (Mo, S) is an isomorphism.

Proof. Let M be a module with an S-radical filtration 0 = M, € M,_; C --- C
My = M. The canonical map Hom g-gtan(M;/M;11,S) — Homa-gtan(M;, S) is sur-
jective for all S € S, by Lemma 4.12. Note that M; has no projective remainder for
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i > 0, by Lemma 4.18. It follows that the canonical map Hom g-gtap, (M;/M;11,5) —
Hom g-gtab (M, S) is an isomorphism for all S € § (Lemma 4.13).

Let us now prove the other implication. Since M; has no projective remainder for
i > 0, it follows from Lemma 4.12 that 0 = M, C M,_; C --- C M; is an S-radical
filtration of Mj.

Assume the filtration is an S-radical filtration. If M has no projective remainder, then
Hom p-gtap (Mo /M7, S) — Hom g-gtan (M, S) is injective by Lemma 4.13.

Assume now that Homa-gtap (M/M1,S) — Hom a-gtan (M, S) is bijective. Assume
M = M' @ P with M’ filtrable and P projective. We have Hom a-gpap(M/M;,S) =
Hom g-gap (M, S) = Hom g-gan (M, S). There is a surjective map g : M" — M/M; with
filtrable kernel such that the composition M <225 M’ 25 M /M is equal to the canon-
ical map M — M /M; in the stable category, by Proposition 4.14. By Lemma 4.4, we
have M; ~ kerg @ P. Since M; has no projective remainder by the first part of the
proposition, we get P = 0, hence M has no projective remainder. 0O

Let 7 = A-stab. Note that S is determined by its image in 7 and it satisfies Hypoth-
esis 3 if and only if Hom(S,T) = k%7 for all S,T € S and every object of 7 is an
iterated extension of objects of S.

We have a functor G — F: it sends a module M with an S-radical filtration 0 =
M, CM,,C---CMy=Mto--+—>0—>M_1— =M — M— M/M; (cf.
Proposition 4.24).

Proposition 4.25. The canonical functor G = F is an equivalence.

Proof. The functor is clearly fully faithful.

Start with 0 = N, 225 N,_; — .- — Ny L% Ny 2% M,. Adding a projective
direct summand to the N;’s, we can lift the maps f; to maps that are injective in
the module category and such that the successive quotients have no projective direct
summands. So we have a filtration 0 = M. C M/_; C --- C M{ C M| such that
M; /M, is stably isomorphic to a direct sum of objects of S. Since it has no projective
summand, it is actually isomorphic to a sum of objects of S; i.e., we have an S-filtration.
Consider ¢ maximal such that M/ has a projective remainder. Then 0 = M. C M, _; C
-+ C M/ is an S-radical filtration by Proposition 4.24 (first part). The second part of
Proposition 4.24 shows now that M/ has no projective remainder, a contradiction. So
the filtration is an S-filtration. O
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