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PICARD GROUPS FOR DERIVED MODULE CATEGORIES

RAPHAEL ROUQUIER AND ALEXANDER ZIMMERMANN

1. Introduction

Let k be a commutative ring and A a k-algebra. A bounded complex X of
(A, A)-bimodules is invertible if there is a bounded complex Y of (A, A)-bimodules
such that

X®%Y=A in the derived category of (A, A)-bimodules
and

Y @k X =A in the derived category of (A, A)-bimodules.

We define the group TrPic(A): its elements are isomorphism classes of
invertible complexes in the derived category of (A, A)-bimodules. The product of
the classes of X and X' is the class of X ®}{X '. The inverse of the class of X is
the class of ¥ where X®I§ Y =A.

By Rickard’s theory [12], an equivalence between the derived categories of two
k-algebras A and B which are projective as k-modules induces an isomorphism
between TrPic(A) and TrPic(B). The subgroup of TrPic(A) given by complexes
with homology concentrated in degree O is the usual Picard group Pic(A). As we
shall see later, the group Pic(A) is not an invariant of the derived category.

The paper is organized as follows.

In §2 we review and prove some results about standard derived equivalences.
Flat central base change is dealt with in §2.4. Then we show that for
commutative rings, standard derived equivalences come from Morita equivalences.

In §3, we study various general properties of TrPic. Some of these are analogs
of classical properties of Picard groups such as base change and Frohlich’s
localization sequence.

Section 4 is devoted to the study of Brauer tree algebras A with no exceptional
vertex. Let n be the number of simple modules of A. We construct a morphism
from Artin’s braid group on n + 1 strings to TrPic(A). When n = 2, we show that
this morphism is an isomorphism modulo some central subgroup: TrPic(A) is
isomorphic to a central extension of PSL,(Z). This applies in particular when A
is the group algebra of the symmetric group S3 over a field of characteristic 3.

The results in this paper were announced by the second author at the
ICRA VII conference in August 1994 [17] and at the AMS Summer Research
Institute ‘Cohomology, Representations and Actions on Finite Groups’ in July
1996 in Seattle. In [16], Yekutieli considered independently the group TrPic, in
particular the case of local and commutative algebras, and gave applications to
dualizing complexes.
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2. On Rickard’s tilting theory

2.1. Notation and terminology

Let us fix some conventions for the rest of the paper. Let k be a commutative
ring and A a k-algebra. By an A-module, we always mean a left A-module. We
denote by A° the opposite algebra of A. We denote by A-mod the category of
finitely presented A-modules which is an abelian category if A is right coherent.

Let C=(C',d;) be a complex of A-modules where we denote by d; the
differential C' — C'*'. For n an integer, we denote by C[n] the complex with
C[n]' = C"*" and differential (—1)"d.

We denote by & b(A) the full subcategory of the derived category of A-modules
consisting of objects with bounded homology. We identify the category of
A-modules with the full subcategory of @h(A) of complexes concentrated in
degree 0. Unless otherwise specified, morphisms are taken in the derived category.

A complex of A-modules is perfect if it is quasi-isomorphic to a bounded
complex of finitely generated projective A-modules. We denote by A-perf the full
subcategory of Z”(A) of perfect complexes.

Given two k-modules M and N, we write M @ N for M @; N.

For C=(C',d;) and D= (D’,§;) two bounded complexes, we denote by
C ® D the total complex associated with the double tensor complex. This has
degree n term (C®D)" =@, ;—,C' ® D’ and the differential in degree n is
Y itjend;®14(=1)'1®6;. Analogously we denote by #om(C,D) the total
complex of the double homomorphism complex. It has degree n term

H Hom(C', DY)
i+n=j
and the differential d, in degree n is
0u(f) =[] @iof—(=1)r05).
n+j=i

Note that given X in Z”(A°) and Y in Z°(A), then X ®% Y is a complex with
bounded homology when X is quasi-isomorphic to a bounded complex of flat
A°-modules or Y is quasi-isomorphic to a bounded complex of flat A-modules.

A full triangulated subcategory of a triangulated category is called épaisse if it
is closed under taking direct summands [11, § 1].

The subcategory of a triangulated category genmerated by an object is the
smallest épaisse full triangulated subcategory containing that object.

2.2. Standard derived equivalences

2.2.1. Let B be a k-algebra.
The following theorem of Rickard gives the essentials of the Morita theory for
derived categories [10, 12].

THEOREM 2.1. The assertions (1)—(iii) are equivalent.

(i) The bounded categories 2”°(A) and 9°(B) are equivalent as triangulated
categories.

(i) The categories of perfect complexes A-perf and B-perf are equivalent as
triangulated categories.
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(iii) There is a perfect complex T of A-modules such that
(a) B is isomorphic to End(T),
(b) Hom(T, T[i]) =0 for i #0,
(c) A-perf is generated by T.
If A and B are projective over k, then the assertions (1)—(iil) are equivalent to (iv).

(iv) There are a bounded complex X of (A ® B°)-modules whose restrictions to
A and to B° are perfect and a bounded complex Y of (B ® A°)-modules
whose restrictions to B and to A° are perfect such that

XQ5Y=A in2°(A®A°) and YRYX=B in 2°(Bo B°).
If A and B are right coherent, then the assertions (1)—(iii) are equivalent to (v).

(v) The bounded derived categories of finitely presented modules @b(A-mod)
and 9" (B-mod) are equivalent as triangulated categories.

When the assertions (i)—(iii) of the theorem are fulfilled, we say that A and B
are derived equivalent. A complex T satisfying the conditions in (iii) is called a
tilting complex for A. Complexes X and Y satisfying the conditions in (iv) are
called rwo-sided tilting complexes, inverse to each other. The restriction of X to A
is a tilting complex, as well as the restriction of Y to B. Similar statements hold
of course restricting X to B° and Y to A°. It is clear from the definition that the
functors ¥ ®§ — and X ®§ — are then inverse equivalences between Z”(A) and
7" (B), as well as between A-perf and B-perf. Equivalences between Z°(A) and
2°(B) of the form X ®} — for a complex X € (A ® B°) are called standard.

It is unknown whether every equivalence of derived categories is naturally
isomorphic to a standard derived equivalence [12, §3]. It is only known that
every equivalence between %”(A) and Z”(B) agrees with a standard equivalence
on isomorphism classes of objects when A and B are projective over k [12,
Corollary 3.5].

2.2.2. For algebras projective over k, two-sided tilting complexes can, up to
isomorphism, be chosen to be bounded complexes of modules that are projective
as A-modules and projective as B°-modules. This is a consequence of the
following lemma (see also [13, Lemma 9.2.6]).

LEMMA 2.2. Assume that A and B are projective over k. Let X be a bounded
complex of (A ® B°)-modules such that the restrictions of X to A and to B°
are perfect.

Then X is isomorphic to a bounded complex of (A ® B°)-modules all of whose
terms are projective as (A @ B°)-modules except possibly the non-zero term in the
smallest degree, which is projective as an A-module and projective as a B°-module.

Proof. Let us start by mentioning that the projectivity assumption of A and B
over k ensures that the restriction to A of a projective (A ® B°)-module is
projective, as is the restriction to B°.

Let S be a bounded complex of projective A-modules isomorphic to Res, X and
let n be an integer such that the terms of S vanish in degrees less than n.

Let Y be a projective resolution of X: this is a right-bounded complex of
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projective (A ® B°)-modules isomorphic to X. Let Z = 7-,_,Y: this is a bounded
complex isomorphic to X, with zero terms in degrees less than n — 1 and with
projective terms in degrees greater than n — 1. We will now show that the degree
n—1 term of Z is projective as an A-module and as a B°-module.

Since Res,Z is isomorphic to the bounded complex of projective A-modules
S, there exists a morphism in the category of complexes of A-modules
a: S — Res,Z which is an isomorphism in %°(A). Let D be the cone of c.
Then D is an acyclic bounded complex all of whose terms are projective except
possibly the non-zero term in the smallest degree. Such a complex is homotopy
equivalent to zero. Indeed the largest degree non-zero differential is surjective
with image a projective module, and hence splits. So, D is homotopy equivalent
to a smaller complex and we continue by induction. This shows that Res, Z is a
bounded complex of projective A-modules. The same argument shows that Resg. Z
is a bounded complex of projective B °-modules. O

2.2.3. Assume that A and B are projective over k. Let T be a tilting complex
for A and f: B — End(T) be an isomorphism. Then there exists a two-sided tilting
complex X for A ® B° with the following property: there is an isomorphism
between T and the restriction Res,X of X to A so that if we denote by
¢: End(T) — End(Res, X) the induced isomorphism, then ¢f is right multi-
plication by B. Such a complex X associated with 7 is unique up to unique
isomorphism in 2°(A @ B®) (see [6, 12]).

We denote by ,A; the (A ®A°)-module equal to A as a right A-module and
where the left action of a € A is given by multiplication by «(a): this is the
restriction of the natural structure of an (A ® A°)-module on A through the
morphism a @ 1: AQA° AR A°.

Let us consider the set of isomorphism classes of two-sided tilting complexes for
A ® B° whose restriction to B® is in a given isomorphism class. It is acted on simply
transitively by Out(A) = Aut(A)/Inn(A) as shown by the following proposition.

PROPOSITION 2.3. Let X and X' be two-sided tilting complexes for A ® B°.
The restrictions of X and X' to B° are isomorphic if and only if there exists
o € Aut(A) such that

X/ :ocAl ®AX

Proof. Assume X and X' have isomorphic restrictions to B°. Let Y be a
two-sided tilting complex in Z”(B® A°) inverse to X and let Y’ be a two-sided
tilting complex in Z°(B® A°) inverse to X'

The complexes X' ®],§ Y and X ®]§ Y = A have isomorphic restrictions to A°;
hence they have both homologies concentrated in degree 0. As a consequence,
X' ®% Y is isomorphic to its degree 0 homology M = HO(X’ % Y) and M is free of
rank 1 as an A°-module. The complexes X' ®% ¥ and X @ ¥/ are two-sided tilting
complexes for A ® A°, inverse to each other. Consequently, M ® 4 X ®]§ Y =A It
follows that X ®% ¥’ has homology concentrated in degree 0. Let N = H 0(X Q5 Y .
Then M ®, N = A. Since M is free of rank 1 as an A°-module, we deduce that N is
free of rank 1 as an A°-module. Now, N ® , M = A. The bimodule M is invertible
and free of rank 1 as an A°-module. By [3, Theorem 55.12], there exists an
automorphism o of A so that M is isomorphic to ,A; as an A ® A°-module. The
result follows. 0
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2.2.4. Let us give now three results about compositions, products and sums of
two-sided tilting complexes.
Standard equivalences can be composed [12, Proposition 4.1].

ProposiTioN 2.4. If C is a k-algebra, X a two-sided tilting complex for
A®B° and X' a two-sided tilting complex for BQ C°, then X @K X' is a
two-sided tilting complex for A ® C°.

Tensor products of standard derived equivalences give standard derived
equivalences [12, Lemma 4.3].

ProposITION 2.5. Let C and D be two k-algebras. Assume A and B are flat
over k. Let X be a two-sided tilting complex for A® B° and let X' be a two-sided
tilting complex for C @ D°. Then X®“X' is a two-sided tilting complex for
(A®C)® (B®D)°. In particular, X " C is a two-sided tilting complex for
A®C)®(B®C)".

The following result is clear.

PROPOSITION 2.6. Let {A;};c; be a finite family of k-algebras, A =]];c;A;
and let e; be the central idempotent of A such that e;A = A;.

Let T be a complex of A-modules. Then T is a tilting complex for A if and only
if ;T is a tilting complex for A;, for every i € I.

Let B be a k-algebra and X a two-sided tilting complex for A® B°. Let f; be
the central idempotent of B = End(X) given by the multiplication by e; on X and
B; =fiB. Then X;=¢;X=Xf; is a two-sided tilting complex for A; ® (B;)°,
X =: X; and B =[[c;B;.

2.3. Some invariants of a standard derived equivalence

Let X be a two-sided tilting complex for A ® B°.

2.3.1. Hochschild cohomology [12, Proposition 2.5]. Let i be an integer. Let
fi: HH'(A) = Hom ¢ 4- (A, A[i]) — Hom (X, X[i])

be given by

(0: A—Ali]) = (@4 1y: AR, X =X — Ali] @4 X = X[i]).
Similarly, we have a map g;: HH'(B) — Hom(X, X[i]) given by

(¢: B—B[i])— (1xy ®p ¢: X 3 B=X — X ®p Bli] = X[i]).
Then f; and g; are isomorphisms and we put

HH'(X) =f;'g;: HH'(B) = HH'(A).
In particular, we have an isomorphism
HH’(X): ZB = ZA.

2.3.2. Grothendieck groups [S5]. Recall that we denote the category of finitely
generated projective A-modules by A-proj. Let K 0(A) be the Grothendieck group of
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A-proj. The natural embedding A-proj — K b (A-perf) induces an isomorphism of the
Grothendieck groups [15]. So, the equivalence X ®§ —: K’ (B-perf) — K ”(A-perf)
induces an isomorphism K°(B) = K°(A).

Let us assume now that A and B are right coherent. Let G°(A) be the
Grothendieck group of A-mod. The embedding A-mod — %”(A-mod) induces an
isomorphism of the Grothendieck groups [15]. So, the equivalence

X ®F — 2”(B-mod) — 2" (A-mod)

induces an isomorphism G°(B) = G°(A).

2.4. Flat central base change

Proposition 2.5 solves trivially the problem of extending a standard derived
equivalence through an extension of A coming from an extension of k. Base
change with respect to the centers of A and B is more subtle, since the actions of
the centers of A and B on a two-sided tilting complex for A ® B° are the same
only up to homotopy.

Let Z=ZA and let R be a flat commutative Z-algebra. Let X be a two-sided
tilting complex for A ® B°. We identify ZB with Z through the isomorphism
HH’(X) (cf. §2.3.1). Let A =A®,R and B'=B®,R. Let I be the ideal of
R ® R generated by the elements x® 1 — 1 ® x for x € R. We assume that A, B,
A" and B’ are flat over k.

THEOREM 2.7. With the assumptions above, there is a pair (X', f) associated
with X unique up to unique isomorphism, where

(@) X' is a bounded complex of A'-projective and B'°-projective (A' @ B'°)-
modules such that I is contained in the kernel of the canonical map
R®R—Endy 45+ (X') and

(b) f:Resprop-X' =A@, X is an isomorphism.

Given such a pair, we have Res,,p-X' =X ®yzB' and X' is a two-sided
tilting complex for A' ® B'°.

Let C be a k-algebra, Y be a two-sided tilting complex for B® C°, and (Y', g)
be a pair associated with Y. Let U=X®%Y. We identify Z with Z(C) via
HHO(U). Assume C and C ®; R are projective over k and let

h=(f®ply)(ly @p g): Resyroc-(X' @5 Y) S X' @k B oy

SA @ XR5Y=A"®, U.
Then (X' ®% Y', h) is a pair associated with U.
LEMMA 2.8. Let M and N be two perfect complexes of A-modules. Then the
canonical morphism
Hom, (M, N) ®, R = Homy/(A' @, M, A’ @4 N)
is an isomorphism.

Proof. Let & be the full subcategory of A-perf of complexes N such that the
lemma holds for the pair (M, N), for all perfect complexes M.
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Note that & is stable under translation. Let Ny — N — N, ~» be a distinguished
triangle in A-perf. We put M' =A"®@, M, N'=A"®, N, etc. Thanks to the
flatness of R over Z, we have a commutative diagram with exact rows:

Homy (M, N,[—1]) ®; R — Homy (M, N;) ® ; R — Homy (M, N) @ R

| J l

Homy/(M', N5[—1]) — Homy (M ', N{) —— Hom,(M',N')

— Hom, (M, N,) ®; R — Hom, (M, Ni[1]) ® R

l |

—— Hom, (M, N3) ——— Hom, (M, N{[1])

The five lemma shows that, if the lemma holds for (M, N,[i]) and (M, N,[i]) for
any i, it will hold for (M, N). Hence, & is a triangulated subcategory of A-perf. If
N is a direct summand of N’ and the lemma holds for (M,N'), it holds for
(M, N). Hence, & is an épaisse full triangulated subcategory of A-perf and in
order to prove that it is equal to A-perf, it is enough to prove that it contains A.

The same arguments show that the full subcategory of A-perf of complexes M
such that the lemma holds for Homy (M, A[i]) for any integer i is an épaisse full
triangulated subcategory. So, all we have to do now is to prove the lemma for
M =A and N = A[i]. When i # 0, both terms in the lemma are zero, whereas for
i =0, the result is clear. O

Proof of the theorem. Let T be the restriction of X to A and let T; = A’ ®, T.
Consider the canonical morphism

¢,: B' =End,(T) ®; R — End4/(T)).
By Lemma 2.8, ¢, is an isomorphism. Similarly,
Homy (T4, T[i]) = Homy (T, T[i]) ® , R=0 for i#0.

Since A is in the subcategory of A-perf generated by 7, it follows that A’ is in
the subcategory of A’-perf generated by T,. Hence T is a tilting complex for A’
and ¢,: B’ = End,/(T)).

Similarly, the restriction T, of X ®5 B’ to B'® is a tilting complex for B'® and
we have a canonical isomorphism ¢,: A'° = Endg-(T5).

For i€ {1,2}, we denote by X; a two-sided tilting complex for A’ @ B'°
associated with 7; as in §2.2.3. It comes with an isomorphism 7; = Res ' X;.

We have a canonical isomorphism of B’°-modules:

g1: Hom, (A" ®4 X, X,[i]) = Hom, (Res, X, X,[i]).

In particular, Hom, (Res,/ (A’ ®4 X), X;[i]) =0 for i#0. On the other hand,
right multiplication by B on A’ ®, X and X, is compatible with the canonical
isomorphism End,/ (A’ ®4 X) = End,/(X,). So, g; is an isomorphism of
(B® B'°)-modules and R.#om, (A’ ®4X,X,) and R AHomyu (Resyr g X1, X1)
are isomorphic in @b(B®B/°). Since X; is a two-sided tilting complex for
A" ®B'°, we know that g comes from an isomorphism

fl: RCSA/®B°X1 :AI®AX

Similarly, X ®5 B" and Res, - X, are isomorphic.
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We have isomorphisms in Z°(B® B'°):

Resp g e RA#omy (X, Xy) = RHomy (Resy o3 X1, X3)
=R AHomy (A' @, X, X>)
=R AHom,(X,Res p°X5)
= R Hom,(X,X @3 B")
=R Homu(X,X) @3 B’
2ResB®Bch’.

Note that / is contained in the kernel of the canonical map
R®R’° — Endy g p-(X;)

for i € {1,2}. It follows that / is contained in the kernel of the canonical map
R ®R° — Homy/ (X, X,). Hence, the action of B'®B’® on Homy (X, X,)
factors through the canonical surjection

‘p: B/®B/o N (B/ ®B/0)/I(B/ ®B/°).
Similarly, the action of B’ ® B’'® on B’ factors through . Now, the restriction of
Y to B®B'° is surjective. Hence, R #om, (X, X,) = Homy: (X, X,) and B’ are
isomorphic in %°(B'® B’°). Since X, is a two-sided tilting complex, this
shows that X; and X, are isomorphic and that (X, f,) fulfils the requirements of

the theorem.
Now let (X', f) be as in the theorem. We have an isomorphism

STl fiResprgpe X' = Resyrgpe X3
hence we have isomorphisms in Z”(B® B'°):
R Homy:(Resyrgp- X', X ) = RAomy(Resyr 5 X1, X1) =Resggpre B,

Since I is contained in the kernel of the canonical maps R @ R° — Endy/ o 5+ (X')
and R®@ R° — Endy ¢ /- (X;), we conclude as above that X " and X, are isomorphic.
The centralizer in B’ of B is the center of B'; hence the canonical map
Endg: - (B') — Endg: o 5- (Resp o - B') is an isomorphism. It follows that the
canonical map End: g (X;) — Endy o p-(Resys op-(X;)) is an isomorphism.
Consequently, there is a unique isomorphism i: X' — X, such that f = f,i.
The last part of the theorem is clear. O

Note that we have on our way proven the following result.

PROPOSITION 2.9. Let A be a k-algebra, Z =ZA, R be a flat commutative
Z-algebra, and A' = A @, R. Let T be a tilting complex for A. Then A' @, T is a
tilting complex for A" with endomorphism ring End(T) ®, R.

2.5. Degenerate cases

We will see in this section that, for local or commutative algebras, Rickard’s
theory gives nothing more than the usual Morita theory.
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LEMMA 2.10. Let A be an indecomposable k-algebra and T a tilting complex
for A. If H'(T) is projective for every i € Z, then there are a progenerator P for
A and an integer n such that T = P[n].

Let B be a k-algebra and X a two-sided tilting complex for A ® B°. Assume
H'(X) is a projective A-module for every i € Z. Then there is an integer n such
that M = H"(X) induces a Morita equivalence between A and B and X = M[—n].

Proof. Wehave T = @, .7 H'(T)[—i]. The module M is finitely generated since T
is perfect. Since T generates K ”(A-perf ), it follows that @),  H'(T) is a progenerator
for A. If T has non-zero homology in more than one degree, the indecomposa-
bility of A gives two distinct integers i and j such that Hom(H'(T), H’(T)) # 0,
and hence such that Hom(T, T[j — i]) # 0, which is impossible.

Let us come to the second part of the lemma. The assumption implies that
Res, X is a tilting complex for A with projective homology. Hence, by the first
part of the lemma there are an integer n and an (A ® B°)-module M such that X
is isomorphic to M|[—n] and the restriction of M to A is a progenerator. Now,
the canonical map B — End,M is an isomorphism. Hence M gives a Morita
equivalence between A and B. O

The following result is due to Roggenkamp and the second author for A local
(cf. [17]).

THEOREM 2.11. Let A be an indecomposable k-algebra which is local
or commutative.

Let T be a tilting complex for A. Then there are a progenerator P for A and an
integer n such that T = P|n|.

Let B be a k-algebra and X a two-sided tilting complex for A ® B°. Then there
is an integer n such that M = H"(X) induces a Morita equivalence between A
and B and X = M[—n).

In the local case, thanks to Lemma 2.10, the proposition follows from the
following lemma. (A letter, dated 21 October 1993, from J. Rickard to the second
author contains the main ideas.)

LEMMA 2.12. Let A be a local ring. Let X be a bounded complex of projective
A-modules such that Homg ) (X[i], X) =0 for i<0. Then X is homotopy
equivalent to a projective module translated in some degree.

Proof. Let us put X = (X",d"). Replacing X by a complex which is
homotopy equivalent to X, we may and will assume that the largest n such that
X" #0 satisfies H"(X) # 0, and that if m is minimal such that X" # 0, then d" is
not a split injection.

Let ¥;: X™ — A be a surjection and ¢,: A — X" a split injection with splittings
¢; and ¢, such that d™{; is not split injective and §‘2d"7] is not surjective.
We note that the existence of y; and Y, follows from the fact that the
indecomposable projective A-modules are free of rank 1 [1, Chapitre II, §3,
Exercise 3]. Let f = Y,y be the composition

Foxm Yia Y2 g
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Let g,: X — X"[—m] be the morphism of complexes which is the identity in
degree m and O in the other degrees and g,: X"[—n] — X the morphism of
complexes which is the identity in degree n and O in the other degrees. Let g be
the composition

!
mlm—n —n "
g: X[m — n] M X" [—n] M X"[—n] S x.

Assume g is homotopy equivalent to zero. Then there are morphisms
h € Homu(X™, X"~ ') and h’ € Hom, (X" "', X") such that

f=d" 'h+n'd™
Therefore
1y = 6d" 'hey + Gh'd" .

Since §‘2d"71 is not surjective, §‘2d"71h ¢ is not invertible, and hence lies in
the radical of A. Similarly, d”'¢, is not split injective; hence {,h'd™{, is in the
radical of A. So, 1, is in the radical of A. This is impossible.

It follows that g is not homotopy equivalent to zero and consequently
Hom s 4)(X[m — n], X) # 0. This shows that m = n. O

Proof of the theorem. We assume now that A is commutative. Let m be a
maximal ideal of A. We denote by A, the localization of A at m. By Proposition
29, T, = A, ®4 T is a tilting complex for A,,. Since A,, is local, it follows that
H'(T,,) is finitely generated and projective for all integers i. Since H'(T) ®4 Ay,
is finitely generated and projective for all maximal ideals m of A, we conclude
that H'(T) is a finitely generated projective A-module [1, Chapitre I, §3,
Proposition 12] for every i and the result follows from Lemma 2.10. O

Together with Proposition 2.6, Theorem 2.11 has the following consequence.

COROLLARY 2.13. Let A be a local k-algebra or a commutative k-algebra, and
B be a k-algebra derived equivalent to A. Then A and B are Morita equivalent.

REMARK 1. There are nevertheless non-trivial equivalences of derived
categories in commutative algebra and algebraic geometry involving non-affine
varieties or some extra structures. An example is the Koszul duality between the
exterior algebra A(V) of a vector space V and the symmetric algebra S(V™*) of
the dual vector space V™, where there is an equivalence between the derived
categories of bounded complexes of finitely generated graded modules. There are
also derived equivalences of Mukai type involving, in particular, Calabi—Yau varieties.

2.6. Stable equivalences

We call a k-algebra A a Gorenstein k-algebra if A* = Hom(A, k) is a projective
A-module. In this section, we assume that A is a finitely generated projective k-module
and a Gorenstein k-algebra. All modules will be assumed to be finitely generated.
Let B be a Gorenstein k-algebra finitely generated projective as a k-module.

The following proposition and corollary show that for such algebras, Rickard
theory can be made more precise: equivalences of the derived categories can be
lifted to equivalences of homotopy categories, which induce stable equivalences
[12, Corollary 5.5; 7].
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PROPOSITION 2.14. Let X be a two-sided tilting complex for A® B° and Y an
inverse to X.

Then there exist a bounded complex C of (A ® B°)-modules and a bounded
complex D of (B ® A°)-modules with the following properties:

(1) X and C are isomorphic;
(2) Y and D are isomorphic;
(3) there is an integer n such that
(@ C"'=0and D' =0 for i >n,
(b) C~ ' and D' are projective for i < n,
(c) C™" is projective as an A-module and projective as a B°-module,
(d) D" is projective as a B-module and projective as an A°-module;
(4) C®p D is homotopy equivalent to A as a complex of (A, A)-bimodules;
(5) D®y C is homotopy equivalent to B as a complex of (B, B)-bimodules.

Proof. By Lemma 2.2, there are a bounded complex C of (A ® B°)-modules and
an integer n such that C is isomorphic to X, C' =0 for i < —n, C' is projective for
i >—n,and C~" is projective as an A-module and projective as a B°-module.

Let D = #om,(C,A): this is a bounded complex of (B®A°)-modules
isomorphic to Y and D' =0 for i>n, D' is projective for i<n, and D" is
projective as a B-module and projective as an A°-module.

All terms of the bounded complex C ®p D are projective, except the degree 0
term, which is projective over k. Since C ®p D has homology only in degree O, it
is homotopy equivalent to a bounded complex Z with no terms in positive
degrees, whose terms in negative degrees are projective and whose degree 0 term
is k-projective. Since Z has homology only in degree 0 and this homology module
H O(Z) = A is projective over k, the restriction to k of Z is homotopy equivalent
to H 0(Z). Since A ® A° is Gorenstein, an injection of a projective module inside
a module splits if it splits when restricted to k. We deduce that Z is homotopy
equivalent to H(Z) as a complex of (A ® A°)-modules.

Similarly, D ® 4 C is homotopy equivalent to B. O

Let M be an (A ® B°)-module, projective as an A-module and as a B°-module.
Let N be a (B® A°)-module, projective as a B-module and as an A°-module. We
say that M induces a stable equivalence between A and B with inverse N if

M ®pg N @ projective module = A @ projective module as (A, A)-bimodules
and
N ® 4 M & projective module = B @ projective module  as (B, B)-bimodules.

Let Q4 4-A be the kernel of the multiplication map A ® A° — A. This module
Q404 A induces a stable equivalence of A. We denote by QX% 4cA an
indecomposable (A ® A°)-module which is an inverse of Q44 A.

For V an A-module, ¢ = =1 and n a non-negative integer, we put

5"V = (@5 040 A)" @4 V.

COROLLARY 2.15. Let X be a two-sided tilting complex for AQ B° and Y
an inverse to X. Let C and D be as in Proposition 2.14, M = Q, % 5-C " and
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N = Qgo-D". Then M and N induce inverse stable equivalences between A and
B. Furthermore, up to projective direct summands, the isomorphism classes of M
and N are independent of the choice of C and D.

Proof. The complex C ®p D is a bounded complex all of whose terms are
projective, except the degree O term which is isomorphic to

C " ®p D" @ projective module.
By Proposition 2.14(4), we have

C " ®p D" = A & projective module.
Since
(Quep-C™ ") ®p (Vpeae D") @ projective module = C~" ® g D" @ projective module,

it follows that M ®p N @ projective module = A @ projective module. Similarly,
N ® 4 M @ projective module = B @ projective module. So, M and N induce
inverse stable equivalences between A and B.

Assume C; and C, are two complexes with the properties of C in Proposition
2.14: they are quasi-isomorphic, C; ' =0 for i>m, C,'=0 for i>n, C;' is
projective for i <m and C5 ' is projective for i < n. Assume n = m. Then C; "[n]
is isomorphic to the cone of a morphism E — C, where E is a bounded complex
of finitely generated projective modules. So, C;, "[n] is isomorphic to the cone of
a morphism E — C,. Since A ® B° is Gorenstein, this morphism, a priori in the
derived category, comes from a genuine morphism of complexes f. The cone of
f is homotopy equivalent to a bounded complex with C; " & projective module in

degree —m and zero or projective terms elsewhere. It follows that
C, " @ projective module = Q2 47 C ™ @ projective module

and the unicity statement is proved. O

3. Picard groups

3.1. Definitions

DEFINITION 3.1.  We denote by TrPic(A) the group of isomorphism classes of
two-sided tilting complexes for A ® A° where the product of the classes of X and
Y is given by the class of X ®, Y.

That this is indeed a group follows from Proposition 2.4.

Note that a standard derived equivalence between two algebras A and B induces
an isomorphism between TrPic(A) and TrPic(B).

By §2.3, we have canonical morphisms

TrPic(A) — AutZA,
TrPic(A) — AutGy(A) (if A is right coherent),
TrPic(A) — AutKy(A).

The usual Picard group Pic(A) is the group of isomorphism classes of invertible
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(A, A)-bimodules. Hence, we have a canonical injection
Pic(A) — TrPic(A).

Note that Pic(A) is not a normal subgroup of TrPic(A) nor an invariant of
Z°(A). For example, two Brauer tree algebras with the same numerical invariants
are standardly derived equivalent [10] but they have non-isomorphic Picard groups
if the trees have non-isomorphic automorphism groups.

We denote by TrPic’(A) the subgroup of TrPic(A) given by those elements X
whose induced automorphism of ZA fixes the idempotents, that is, such that eX = Xe
for every idempotent e of ZA. Recall that the k-algebra A is indecomposable if
Z(A) has no non-trivial idempotent.

Thanks to Proposition 2.6, we have the following lemma.

LEMMA 3.2. Let {A;};c; be a finite family of indecomposable k-algebras,
A =]]ic;A; and let e; be the central idempotent of A such that e;A = A;. The
map X — {e;Xe;}; induces an isomorphism

TrPic’(4) = [ TrPic(A)).

We denote by Sh(A) the subgroup of TrPic(A) generated by A[1]. It is clear that
Sh(A) is central in TrPic(A). The group Sh(A) is an infinite cyclic group and the
direct product Pic(A) x Sh(A) is a subgroup of TrPic(A).

Theorem 2.11 has the following consequence.

ProposiTioNn 3.3. If A is a matrix algebra over an indecomposable
commutative k-algebra or over a local k-algebra, then TrPic(A) = Pic(A) X Sh(A).

3.2. Base change

In this section, we assume A is flat over k.
Let R be a commutative k-algebra. Then Proposition 2.5 gives a canonical morphism

TrPic(A) — TrPic(A ® R).

The next two lemmas help to reduce the study of TrPic(A) to the case of
algebras over fields.

LEMmA 3.4. Assume k is a local ring with maximal ideal m. Then the kernel
of the canonical map

TrPic(A) 2, TrPic(A ® k/m)

is contained in Out(A).

Proof. Let T be a bounded complex of finitely generated projective A-modules
such that T®k/m is homotopy equivalent to its O-homology. Then T is
homotopy equivalent to its 0-homology: this is a consequence of the following
fact. Let f be a morphism between two finitely generated projective A-modules.
By Nakayama’s lemma f is a surjection if and only if f ® 1,/ = 14/ma ®4 f is
a surjection. Similarly, f is a split injection if and only if f @ 1,y = 14 /;ma ®4 f
is a split injection.
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If X is in the kernel of the map ¢ of the lemma, then the restriction of X to A
is isomorphic to a projective A-module N and X is in Pic(A). Since N ® k/m is a
free A ® k/m-module of rank 1, it follows that N is a free A-module of rank 1.
Hence, X is actually in Out(A), by Proposition 2.3. O

For m a maximal ideal of k, we put A,, = A ® k,.

Let H be a set of maximal ideals of k such that, given a maximal ideal m of k
outside H, the restriction to A,, of a two-sided tilting complex for A,, ® A;, has
finitely generated and projective homology.

LEMMA 3.5. Assume A is indecomposable. Then the kernel of the canonical map

TrPic(A)/Sh(4) — [] TrPic(A,.)/Sh(A).
meH
is contained in Pic(A).

Proof. Let X be a two-sided tilting complex such that X ® k,, = A;[n,,] as an
(A ® Apy)-module for every m € H, where n,, is an integer. Then H'(X) ® ky, is
a finitely generated projective A,,-module for m € H. It is also finitely generated
projective for m¢ H by assumption. So, X has finitely generated projective
homology. Now, Lemma 2.10 says that X is in Pic(A) X Sh(A). O

Let Z = ZA be the centre of A, let R be a flat commutative Z-algebra and assume
A and A ®z R are flat over k. Then Theorem 2.7 gives a canonical morphism

TrPic(A) — TrPic(A ®, R).

3.3. A localization sequence

Assume k is a Dedekind domain with field of fractions K. Recall that an
algebra B over a field K is separable if B®g L is semisimple for any field
extension L of K. The k-algebra A is a hereditary order if it is a finitely generated
projective k-module, if every left ideal of A is a projective A-module, and if
A ® K is separable.

When k is a discrete valuation ring, the following result follows from the
classification of tilting complexes by S. Konig and the second author [8].

LEMMA 3.6. Let A be a hereditary order. Then the restriction to A of a two-
sided tilting complex for A ®A° has projective homology. If A is in addition
indecomposable, then TrPic(A) = Pic(A) x Sh(A).

Proof. Let X be a two-sided tilting complex for A @ A°. As A is hereditary,
every indecomposable direct summand of the restriction 7 of X to A has non-zero
homology in at most one degree, and this homology group is a projective
A-module or a torsion module. Since End,(7T) = A is torsion free, it follows that
there is no indecomposable direct summand of 7" whose non-zero homology group
is a torsion module. Hence, H'(T) is projective for every i and the second part of
the lemma follows from Lemma 2.10. O

Assume A is an indecomposable k-algebra, finitely generated and projective as a
k-module. We assume also that A ® K is separable. Let H be the set of maximal
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ideals m of k for which A, is not a maximal order. It is known that H is finite
[2, §29A].
Let TrPicent(A) be the kernel of the canonical morphism TrPic(A) — AutZA.
The following theorem generalizes Frohlich’s localization sequence for Picard
groups [3, Theorem 55.25].

THEOREM 3.7. There is an exact sequence

1 — TrPicent(ZA) L TrPicent(A) £, H TrPicent(A,,)/Sh(A,).

meH
Here, g is the product of the canonical maps
TrPicent(A) — TrPicent(A,,) — TrPicent(A,,)/Sh(A,,)

and f: TrPicent(ZA) — TrPicent(A) is given by X — Resgg‘o@ZAOX ®z4 A, where A
is viewed as a ZA ® (A ® A®)-module by the action (z® (a; ® a,))-a =za,aa,
fora;,a€A, a, €A° and z € ZA.

Proof. Frohlich’s theorem [3, Theorem 55.25] says that the restriction of f to
a map Picent(ZA) — Picent(A) is well defined in the sense that X ®,4 A is an
invertible (A, A)-bimodule when X is an invertible (ZA, ZA)-bimodule. Frohlich’s
theorem states moreover that the sequence

I — Picent(2A) L Picent(4) -5 I Picent(a,,)
meH
is exact.
Recall from Proposition 3.3 that

TrPicent(ZA) = Picent(ZA) X Sh(ZA).

It follows that f is well defined and injective and that gf = 0.

When m ¢ H, the order A,, is maximal, and hence hereditary [2, §26B]. It
follows from Lemmas 3.6 and 3.5 that kerg is contained in Picent(A) x Sh(A),
and hence that kerg = im f. O

REMARK 2. (1) In general, g will not be surjective: for example, if A is
indecomposable and commutative but there is a maximal ideal m of k such that
k., ® A is not indecomposable, then g is not surjective. Examples for such rings
are group rings ZG for an abelian group G over the integers Z.

(2) We do not know any example of an element in
TrPicent(ZG) — Picent(ZG) x Sh(ZG)
for a finite group G.

3.4. Stable Picard groups

We assume here that A is a finitely generated Gorenstein k-algebra, projective
as a k-module.

We say that an A-module M is projective-free if it has no projective direct
summand. Given a finitely generated A-module M, there is a projective-free
A-module N, unique up to isomorphism, such that M = N @ projective module.
We call N the projective-free part of M.
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DEFINITION 3.8. We denote by StPic(A) the group of isomorphism classes of
projective-free (A ® A°)-modules inducing a self-stable equivalence of A. The
product of the classes of M and N is the class of the projective-free part of M ® 4 N.

A stable equivalence induced by a bimodule between two algebras A and B
gives rise to an isomorphism between StPic(A) and StPic(B).

We have a natural inclusion Pic(A) — StPic(A). Corollary 2.15 gives a canonical
map TrPic(A) — StPic(A) and the following diagram is commutative:

Pic(A) TrPic(A)

~N 7

StPic(A)

The bimodule Q44 4-A defines a central element of StPic(A): this is the image
of A[—1] € TrPic(A).

Let Outg(A) be the subgroup of Out(A) of those automorphisms fixing the
isomorphism classes of non-projective indecomposable modules. The group
Out((A) is invariant under stable equivalence [9].

4. Brauer tree algebras

4.1. Definition

Let I' be a finite connected tree with a cyclic ordering of the edges adjacent to
a given vertex and with a particular vertex v, the exceptional vertex, and a
positive integer m, the multiplicity of the exceptional vertex. Let k be a field.

To this data (T, v, m) one associates a finite-dimensional symmetric k-algebra,
called a Brauer tree algebra, characterized up to Morita equivalence by the
following properties.

The isomorphism classes of simple modules are parametrized by the edges of
I'. Denote by P; a projective cover of a simple module S; corresponding to an
edge j. Then rad(P;)/soc(P;) is the direct sum of two uniserial modules U, and
U, where a and b are the vertices of j. For ¢ € {a, b}, let j =j,, ji,..-, j, be the
cyclic ordering of the r + 1 edges around c. Then the composition factors of U,,
starting from the top, are

SjirSizree 2850 8jgr oo S,

where the number of composition factors is m(r + 1) — 1 if ¢ is the exceptional
vertex, and r otherwise. Note that when m =1, the choice of an exceptional
vertex is irrelevant.

Associated to a Brauer tree algebra are two numerical invariants: the number of
edges of the tree I' and the multiplicity of the exceptional vertex.

By [12, Theorem 4.2], two Brauer tree algebras with the same numerical
invariants are derived equivalent. So, a Brauer tree algebra associated with
(T, v, m) is derived equivalent to a Brauer tree algebra associated with a line with
the same number of edges as I' and with an exceptional vertex at an end having
multiplicity m. Hence, the study of TrPic for a Brauer tree algebra reduces to this
last case.
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4.2. Some elements of TrPic

We now restrict ourselves to the case of Brauer tree algebras where the
multiplicity m is 1.

Let A be a basic Brauer tree algebra associated to a line with n edges numbered
1,...,n such that i is adjacent to i+ 1, and with no exceptional vertex, so that
the multiplicity m is 1. We assume n > 1.

The Loewy series of the projective indecomposable modules are as follows:

Sl Sn Si
P1:S2, Pn:Sn_1 and Pi:Si—l Si+1 fOI‘l.?él,l’l.
Sl S}’L Si

The dimensions of the vector spaces of homomorphisms between projective
modules is given by

0 if |i—j|>1,
dim; Hom,(P;, P;)) = ¢ 1 if |i—j| =1,

2 ifi=j.

By [14, Lemma 2] a projective cover of the (A ® A°)-module A is given by

P ror 7, A,
lsisn
where P/ is the A°-module Hom,(P;, k).
Let

f

Xl:(0HPl®Pl*—>A—>O)?

where A is in degree 0. The isomorphism class of this complex does not depend
on the choice of f.

THEOREM 4.1. The complex X; is a two-sided tilting complex, and hence
defines an element t; of TrPic(A).

Proof. To prove that X; is a two-sided tilting complex, we follow the method
of [14, Theorem 6]. We have

X; @4 X{ =
1@, f"+ Qal—f"
<O—>PI®PI*MPI®P1*®AP1®PI*@AMPI®P:—>0>
The map
fesl: PP P @ P@P— PP
J

is surjective. Now, the projective A-modules @;.;P; @ P/ ®,P; ® P/ and
P; ® P{ @4 P; ® P; have no common non-zero direct summand. By [14, Lemma
1], this implies that the restriction of f®41 to P;® P ®,4 P; ® P remains
surjective. Since P; ® P;* is projective, the map

f®Al_f*P1®Pl*®APl®Pl*®A_)Pl®Pl*
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is a split surjection. By duality, the map
1®Af*+f P1®Pl*—>Pl®Pl*®APl®P1*@A

is a split injection. Hence, X; ®4 X;" is homotopy equivalent to a module V
which satisfies

P,®PI*EBPt®Pl*@VzPl®P,*®AP,®Pl*@A

As P;®4 P/ =Hom,(P;, P;) has dimension 2, we obtain V=A and finally
X; ®4 X/ is homotopy equivalent to A. O

The action of the functor
Fi = Xi ®A —
on simple modules is easily described. One has
Fi(S;)=Q(S;)[1] and F;(S;)=S; forj#i,

where Q(S;) is the kernel of a surjective map P; — S;.

Let us now describe the action of F; on projective modules.

Given i and j with |i —j| = 1, we denote by P; — P; a non-zero map from P;
to P;; such a map is unique up to a scalar. From now on, complexes with zero

terms in positive degrees will be written as C"—...—C° where C° is in
degree 0.

LEMMmA 4.2. We have
P; ifli—jl>1,
Fi(P))=<{ Pi—0 ifi=],

Proof. When |i —j| > 1, we have
Pi*®APj2H0mA(PZ~,Pj) =0

hence F;(P;) = P;.

The morphism
f@s1: PP P @, P —P;
J#
is not surjective. Since P; is projective indecomposable, the morphism
fRa1LP;@P @4 P — P

is surjective by [14, Lemma 1] and therefore X; ® 4 P; has homology concentrated
in degree —1. As P ®,4 P; is two-dimensional, we obtain F;(P;) = P;[1].
The last case is clear.

4.3. Determination of the automorphism group
Now, we need to understand the automorphisms of A.
LEMMA 4.3. Let B be a Brauer tree algebra with n edges and multiplicity

m = 1. Then Outy(B) = k™/ u,(k), where w, (k) is the group of nth roots of unity
of k.
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Proof. As explained in § 4.1, the algebra B is derived equivalent to a basic Brauer
tree algebra whose tree is a star. By § 3.4, we are reduced to proving the lemma for
such a B. Let B be a basic star Brauer tree algebra with n edges and multiplicity 1.

Let us define an algebra A; for [ = 0 with generators ¢;, with i € Z/nZ, and ¢,
with relations

=, eizzei, ejej =0 if i #}, IZZei and te; =e;,t.
i

It is well known that B = A, (cf. [4]).

The algebra A, is serial; hence indecomposable modules are determined (up to
isomorphism) by their Loewy series. So Outy(A;) is the subgroup of Out(A;)
given by the automorphisms fixing the isomorphism classes of simple modules.

For x € k*, let a;(x) be the automorphism of A; given by «;(x)(e;) = e; and
a;(x)(¢t) = xt. Then o;(x) gives an element of Outy(A;). Assume x € p,(k) and let
y=>;x'e; €A, Then yty ' =xt and ye;y ' =e¢; for all i; hence a;(x) is an
inner automorphism.

We will prove by induction on [ that for 1=<1[=<n, the morphism
k* — Outy(A;), x — a(x) is surjective and has kernel p, (k).

Note that 7 is a generator of the Jacobson radical J(A;) of A; and that the map
sending the generators 7, ¢; of A; onto the generators ¢, e; of A;_; induces an
isomorphism A; /J(A))' = A,_;.

An automorphism ¢ of A inducing the trivial automorphism on Ay =A,/J(A;)
has to fix the elements e;. Indeed, we have ¢(e;) = e;+1 ) ; ¢;;e; where ¢;; €k
for such an automorphism. Since ¢(e;)¢(e;) = 0 for i #j, we get ¢;; = 0 if i #.
As 1 =¢(1) =5, ¢(e;), we also get ¢;; = 0. This implies that ¢(e;) = e;.

Let y=> ;a;e;+ > ;bie;t be an arbitrary invertible element of A; (here,
a; €k™ and b; € k). Then an elementary calculation shows that

1 b;
-1 i

e — e — e:ft.
g Z a; ' Z ai_ra; "

1

Hence, yry ™' = (¥, ¢;e;)t, where ¢; = a;/a; . Note that []; ¢; = 1. It follows

that o (x) is not inner, for x" # 1.

Assume the result holds for A;_; with /= 2. Let ¢ be an automorphism of A,
in Outy(A;). Then ¢ induces an automorphism of A;_; in Outy(A;_;). By the
induction hypothesis, we may assume that this induced automorphism is trivial,
multiplying if necessary by some «;(x) and by an inner automorphism. Then
ole) =e;+1' > eije; for some ¢; ;€k. As ¢(e;)p(e;) =0 for i #j, we get
@;;=0if i#j. Since 1 =¢(1) =3, ¢(e;), we also get ¢;; = 0. This implies
that ¢(e;) = e;. We now have o(1) =t+1'>; ¢;e; for some ¢; € k. So,

1 1
p(t)ele)) =eiit+eit'e; and (e )e(t)=eiit+1 ¢ €1
As l<l<mn, we have e;,|_;#e;; hence ¢, =0 for 1=<i=<n. Therefore,

¢(t) =t and ¢ is trivial. Hence, the result is true for A;.
It follows that Outy(A,) = (0, (x))rcrx = k™/ un (k). O

Up to isomorphism, Q% 4-(A) has a unique non-zero and non-projective direct
summand. We denote it by M. It induces a self-stable equivalence of Morita type.
Since it is indecomposable, the module M ® 4 V is indecomposable for any simple
A-module V [9, Theorem 2.1]. We have then M ®@, V;,=Q"V,=V, | _;. So,
M ® 4, — sends simple modules to simple modules. It now follows from [9, Theorem
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2.1] that M induces a self-Morita equivalence. In other words, M is an invertible
bimodule and we denote by w the element (of order 2) of Out(A) it induces. Note
that the image of w in StPic(A) is central; hence w is central in Out(A).

The image of w in AutGy(A) corresponds to the non-trivial automorphism of
the tree of A.

We denote by T' the subgroup of TrPic(A) generated by fy,..., ¢, and by G the
subgroup of TrPic(A) generated by #4,...,t,, w and [1].

ProrosITION 4.4. We have
Out(A) = (w) x Outy(A).

The group Outy(A) centralizes T' and wt;w = t,, | _;. Furthermore, T' N Out(A) = 1
and G N Outy(A) = 1.

Proof. Since indecomposable A-modules are determined by their radical series,
an automorphism of A which fixes the isomorphism classes of simple modules
will fix the isomorphism classes of all modules. Hence, Outy(A) is the kernel of
the canonical map Out(A) — AutG(y(A). This map actually factors through the
group of automorphisms of the tree of A. The group of automorphisms of
the tree has order 2 and is generated by the image of w. It follows that
Out(A) = (w) x Out(y(A). Note that we have followed [9, Theorem 4.7].

Let us consider the complex

1Aw®A( S5 Pi®Pi*i>A> 94 (uA1)

I<i=n
- ( P (A®P)® (1A, @4 P) iA)
I1<isn

This complex defines again a projective cover of A, and hence is isomorphic, as
a complex, to the complex

As (A, &, P;=P,, _;, the complex

* g
1A, @4 X; @4 (0A1) =(Pry1-i ®Py 1 — A)

is isomorphic to X, |_;; hence, wt;w =1, _;.
Similarly, one proves that Outy(A) centralizes each of the elements #; of T'.
Let us prove that Out(A) N T' = 1. Since the canonical map Out(A) — StPic(A) is
injective, we can check this property in StPic(A). But, the image of ¢; in StPic(A) is
trivial, and hence the property holds. Finally, the image of G in StPic(A) intersects
trivially the image of Outy(A), and so we conclude that G N Outy(A) = 1. O

REMARK 3. By Propositions 2.3 and 4.4, when doing calculations inside G, it
is enough to look at the action on projective indecomposable modules: for
0,0 €G, we have o = ¢’ if and only if o(P)=0'(P) for any indecomposable
projective module P. Our main tool will then be Lemma 4.2.

4.4. Braid relations

Denote by B, | the Artin braid group on n + 1 strings, generated by o4,..., 0,
with the relations Uigj = Gjai if |l _]‘ > 1 and 0;0;,10;,=0;,10;0;4]1. We put
wo=01(0201)...(0,_1...01)(0,...0¢).
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THEOREM 4.5. There is a surjective group morphism
B, 1 =T, o—1.

The image of wy is w[n].

Proof. The first braid relation #;t; =1t;t; if |i—j|>1 is immediate, since
P/ ®4 P; =Hom,(P;, P;) =0 for |i—j|>1.

By Remark 3, we have only to check that F;F; F;(P)=F; F;F; (P) for
every projective indecomposable module P.

Since F;, preserves cones, the complex F;, ;(P; — P;_,) is isomorphic to the
cone of a non-zero morphism (P;, | — P;) — P;_;. Therefore this complex is
isomorphic to a three-term complex P; , | — P; — P;_. Note that the notation follows
the convention above and that such a complex is well defined up to isomorphism.

The complex F;(P;,; — P;) is isomorphic to the cone of a non-zero morphism
(P;— P;, 1) — (P; — 0) and hence is isomorphic to P;, ; — 0.

Similarly, F;, {(P; — P; 1) = (P; — 0).

Now we have done the necessary computations to determine F; ; F;(P;) for all
Jj. Two more are necessary to determine F; F; . F;(P;) for all j.

The complex F;(P;,; — P;— P;_) is isomorphic to the cone of a non-zero
morphism (P;,; — 0) — (P; — P,_;), and hence to P; . — P; — P,_;.

We have F;(Pjy — Piyp) =P;—Piy | — Piysy.

Summarizing, we have:

Py Py Py
P, P, P,
P P, P
Py F Pi—= Py | ¢ Piyy— P — P
P, sl P—=0 Ll e, =P =0
Py Pi— Py P —0
Piis Piis Pii1— Py
Piis Piis Piis
P, P, P,
Py
P,
Pi_,
7 Piyy— P — Py
L Piyy— 0 —0
Pi — 0 — 0
Pi — Piy— Py
Piis
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and

P, P, Py
P2 P2 P2
Pi_, Pi_, Pi_,
P;_ P;_ P, — P
G o ! F; l o
P; — | Pipi— B — Piy1— 0
P P,— 0 Pi— P 1— 0
P> P 1— Pipo Pi— Piy1— Piys
Piis Piis Piis
P, P, P,
Py
Py
P,
F Pipyv— P — Py
l—+1> P.1—0 — 0

P, -0 —0
Pi — Piy— P

Hence we have indeed F; F; | F;(P;) = F; | F;F;;(P;) for all j.
By induction on i, we have

P, P—P_,—...—P,— P —0
P, P, — 0
P3 P2 — 0
P; iti—1 1 Pifl — 0
P, P = Py
Piis P>
P}’l Pn
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and, in particular,

Pl Pn—>Pn71—>...—>P2—>P1 —0
P P 0
2| F,F,_,...F L
Py | —— P, —0
Pn Pn—l —0

Now, by induction on i, we have
FiFi_y..Fi(P,—>P._—...—>Py—P)=(P,—P_—...— P )i
for i < r. In particular,
F,_...F\(P,—>P,_|—...—Py,—P)=P.][r—1].
We deduce that
Fy(FyFy) ... (Fy .. .F1)(Pi) =P, 1[n]. O

In the next section, we will prove that for n =2, the morphism B; — I is
bijective and in §4.6 that TrPic(A) is generated by I' and Pic(A) x Sh(A).
4.5. Faithfulness of the braid group action

We assume now that A is a Brauer tree algebra associated to a line with two
edges and no exceptional vertex. An example of such an algebra is the group
algebra of the symmetric group ©; over a field of characteristic 3.

Put ¢ =t w. A tilting complex corresponding to ¢ acts as

Pl ¢) Pl —?Pz
-, ]
P2 Pl _)O
As is shown in Theorem 4.5, we have w = t7,;[—2]. Note that ¢ =t,trtw = [2].

THEOREM 4.6. The map

1 -1 0 1
S-( )r—mi) and T—< >|—>w
1 0 -1 0

induces an isomorphism x: PSL,(Z) = G/Sh(A). Hence the subgroup G of
TrPic(A) is isomorphic to a central extension of PSL,(Z).

Since PSL,(Z) is generated by S and 7 with the relations $° = T2 =1, we
have indeed a morphism PSL,(Z) — G/Sh(A). This morphism is surjective, since
G is generated by ¢, w and [1].

Note that the morphism B3/Z(B3) — PSL,(Z) given by

0,— 8T and o0,—TS
is an isomorphism. As a consequence, we have the following corollary.

COROLLARY 4.7. The morphism Bz — TrPic(A) given by o, — t; is injective.

Let C be a bounded complex of projective modules. Then we have a
decomposition C = C, & C, in the category of complexes, where C, is homotopy
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equivalent to 0 and C, has no non-zero direct summand which is homotopy
equivalent to 0. We call C, the reduced part of C. This is well defined up to
isomorphism in the category of complexes.

For X a complex of k-modules, we denote by dim X the dimension of X, viewed
as a k-module by forgetting the differential and the grading.

Let C € TrPic(A) and C; be the reduced part of C ®, P;. For {i,j} = {1,2},
we denote by Cone(C; — C;) the reduced part of the cone of a non-zero
morphism from C; to C;. Since Hom,(C;, C;) = Hom, (P;, P;) is one-dimensional,
the morphism is well defined up to a scalar in the homotopy category; hence
Cone(C; — C;) is well defined up to isomorphism in the category of complexes.

We deduce Theorem 4.6 from the following more precise result.

ProprosITION 4.8. Let C € G equal x(f Z) up to shift.

Then forgetting the differential and the grading, we find that C; is isomorphic
to Plal @Pic‘ and C, is isomorphic to Plb‘ @Pgd‘.

Assume ab and cd are not both zero. Let C;, = Cone(C; — C,) and
C2] = COHe(C2 — C])

If ab=0 and cd <0, then

dim C12 = |d1m Cl — dim C2| and dim C21 = dim Cl + dim Cz.
If ab=0 and cd = 0, then
dimC;, =dimC; +dimC, and dimC, = |dimC; —dimC,|.

REMARK 4. Note that, for example when ab<0, ¢d=<0, |b|=<]a| and
|d| <|c|, the statement of the proposition is that every morphism C; — C, which
is not homotopy equivalent to zero is surjective. It is an obvious fact that any
morphism in the homotopy category can be represented by a monomorphism or
an epimorphism in the category of complexes by adding a large enough complex
which is homotopy equivalent to 0. The statement in the proposition is concerned
with monomorphisms or epimorphisms between reduced complexes.

Proof. Note first that an element x = (“ %) of PSL,(Z) is determined by |a
|b|, |c]|, |d| and by the signs of ab and cd. Note that if both ab and cd are
non-zero, then these signs are equal.

The proposition is clear when ab = c¢d = 0, since then C is isomorphic, up to
shift, to A or to M.

So, we assume (ab, cd) # (0, 0). We will prove the proposition by induction on
la|+|b|+|c|+|d].

Conjugating if necessary x by 7, we may assume that ab <0 and cd < 0. Let
us assume that |b| < |a| and |d| =< |c|. The other case can be dealt with by using

the same proof as below, conjugating all matrices by ((1) (l))

We have
—b a+b
X = S
(—d c+d>
When bla+b|=d|c+d| =0, we have two cases: if x= (' ) then C=X,,
up to a shift; if x = (} Bl) then C = X; ®4 M, up to a shift.

>
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In the first case, we have
Ci=P,— P, Cp=Pll],
Cy=P,—0, Cyy =P, — P, — Py,

and we have finished.
In the second case, we have

C, =P — Py, Cp=D"nll],
C22P1—>0, C212P1—>P1—>P2.

and we also have the required result.

Assume now that b|a+b| and d|c+d| are not both zero. Denote by C' a
two-sided tilting complex such that the class of C in TrPic(A) is the product of
the class of C' by ¢. Let C; be the reduced part of C' ®, P, and let Cj; be the
reduced part of C' ®4 P,. The image of C' in G/Sh(A) is equal to X(:Z ‘Clig)

Note that our assumptions on the sign of ab and cd, on the absolute value of a
compared to that of b and on the absolute value of ¢ compared to that of d imply

that |a + b| + |c + d| <|a| + |c|. Hence by induction we have

dim Cone(C| — C;) = dim C{ + dim C}
and
dim Cone(C5 — C}) = |dim C{ — dim C3]|.

We have C, = Cone(Ci{— C3) and C,=C{[l]. Consider the canonical map
Hom(C{[1], C{[1]) — Hom(C|, C,). Then, the morphism C; — C, which is the
image of the identity morphism on C{[1] under this canonical map is not homotopy
equivalent to zero. So, dim Cone(C; — C,) = dim C} = dim C, — dim C».

We need to prove now that dim Cone(C, — C;) = dim C; + dim C,.

Let z€Z(A) such that multiplication by z induces a non-zero but non-
invertible endomorphism of P;; such an element is obtained as follows. Since
Endy o 4-(A) = Z(A) and the head and the socle of A as an (A ® A®)-module are
isomorphic to S; ® S| B S, ® S5, we take for z an (A ® A°)-endomorphism of A
with image isomorphic to S; ® S7.

Let z' be the image of z by the automorphism of Z(A) induced by C’. Then
under the isomorphism End(P;) = End(Cj) induced by C’, the image of the
endomorphism given by multiplication by z is the endomorphism given by
multiplication by z'.

Multiplication by z’ on a projective module has image in the socle of this
module. Hence, the morphism f: C{[1] — C{[1] given by multiplication by z’
extends to a morphism g: C{[1] — Cone(C; — C3). Now, the identity map
Ci[1] — C{[1] extends to a map h: Cone(Ci— C3)— Ci[1] and we have
f =nhg. As f is not zero, g is not zero either. The reduced part of the cone of
g has dimension dim C| + dim Cone(C{ — C3). Now, a non-zero morphism
C,—C; is equal to g up to a scalar. Hence, its cone has dimension
dim C, 4 dim C;. So, the second part of the proposition holds for x.

Finally, we know by induction that C| is isomorphic to P|’' & P}¢! and Cj is
isomorphic to Pl‘”b‘ ® PZ‘Hd‘, when the differential and the grading are omitted.
As dimC; = dim C{ +dim C; and C, = Cone(C{ — C3), we deduce that C; is
isomorphic to Pla| &) Picl when the differential and the grading are omitted. Since
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C, = C{[1], when omitting the differential and the grading, C, becomes isomorphic
to Pllb| @ Pid‘. So, the first part of the proposition holds for x. O

4.6. Transitivity of the braid group action

In this section we prove that, for A a Brauer tree algebra with two edges and no
exceptional vertex, the group TrPic(A) is generated, by 7, ¢, and Pic(A) x Sh(A),
and we deduce the structure of TrPic(A).

Let us start with some general properties of the image of simple modules by a
derived equivalence.

Let A be a finite-dimensional algebra over a field k.

For X a bounded complex with non-zero homology, we denote by 1b(X) the smallest
integer i with H'(X) # 0. Similarly, we denote by rb(X) the largest integer i with
H'(X) # 0. We define the amplitude of X as A(X) = {Ib(X), Ib(X) + 1,...,1b(X)}.
Finally, the length €(X) of X is the cardinality of its amplitude.

LEMMA 4.9. Let U— V — W ~~ be a distinguished triangle in 2°(A).
Then A(V) c A(U) U A(W).
IfIb(U) #1b(W) + 1 and tb(U) # tb(W) + 1, then we have

A(V) = A(U) UA(W).

Proof. This follows immediately from the long exact sequence

..—H'(U)—H(V)—H W) —H"(U)—.... O

Let C be a two-sided tilting complex in Z°(A ®A®). Replacing C by an
isomorphic complex, we may and will assume that C' =0 for i € A(C). To avoid
trivialities, we assume furthermore that A(C) has more than one element, or in
other words that C is not a shifted module.

Denote by F: 2”(A) — %"(A) the functor C ®4 —.

The following lemma is clear.

LEmMMA 4.10. If M is an A-module, then A(F(M)) c A(C).

LEmMMA 4.11. We have A(C)=yA(F(V)) where V runs over the
simple A-modules.

Proof. Since, as an A-module, C = F(A), and as A has a composition series of
simple modules, Lemma 4.9 gives the inclusion A(C) c|Jy A(F(V)). The reverse
inclusion follows from Lemma 4.10. O

The next lemma is crucial; when €(C) = 2, this had been pointed out to us by
J. Rickard.

LEmMMA 4.12. If V is simple, then A(F(V)) # A(C).
Proof. Let V be a simple module with A(F(V))=A(C). Let T be the

restriction of C* to A. Then the complex of k-modules Hom,(T,V)=C®,V
has amplitude A(C) = A(T"). Let m =1b(T) and n = rb(T). There is a non-zero
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morphism 7 — V[—n], and hence a non-zero morphism f: P[—n] — T, which is
injective, where P is a projective cover of V. There is also a non-zero morphism
T — V[—m]. This means that 7" has a direct summand isomorphic to P whose
intersection with H"(T') is non-zero. So, there is a non-zero morphism g: T — P[—m]
which is surjective. Now, the morphism f[n —m] o g: T — T'[n — m] is non-zero:

0 Tm Tm+l

|

P

|

"1 T" 0

But, T being a tilting complex, that is not possible unless m = n, which has been
excluded, so we get a contradiction. O

From now on, A is a Brauer tree algebra with two edges and no exceptional
vertex.

The algebra A has two simple modules §; and S, and we may assume the
indexing is chosen so that

Ib(F($,)) > b(F(S2)) and rb(F(S)) > b(F(S5) (1)

since by Lemmas 4.11 and 4.12, there is no inclusion between the sets A(F(S;)) and
A(F(S,)). Note that, we then have 1b(C) = 1b(F(S,)) and rb(C) = rb(F(S;)).

Denote by X =P, — P, a complex with P, in degree 0 and where the
differential P, — P, is non-zero. We have H(X) =S, and H '(X)=S,, and
hence we have a distinguished triangle

S]] —X — S, ~
and, applying F, a distinguished triangle
F(S)[1] — F(X) — F(S3) ~.

By Lemma 4.9, this implies that A(F(X)) c {Ib(F(S,)),...,tb(F(S{)) — 1}, using
(1). In particular, €(F(X)) < €(C).
Let L be the kernel of a surjective map P, — S,. We have an exact sequence

0—S,—L—S, —0,
and hence a distinguished triangle
F(S3) — F(L) — F(S1) ~.
By Lemma 4.9, we obtain A(F(L)) = A(C). The distinguished triangle
F(L) — F(Py) — F(S,) ~
shows that 1b(F(P,)) = 1b(C). The distinguished triangle
F($)) — F(P,) — F(L)~

shows that rb(F(P;)) = rb(C).
If tb(F(P,)) <1b(C), then A(F(X) ® F(P,)) is strictly contained in A(C). We
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use the notation of §4.2 for the complex X,. Let C'=C®, X;[1]. Then
C'®, P, =F(X)and C' ®, P, = F(P,). Consequently, A(C") is strictly contained
in A(C).

If tb(F(P,)) = rb(C), then

A(FX)[-1]® F(Py)) cA(C) and  €(F(X)) + £(F(Py)) < €(F(Pp)) + €(F(Py)).
Let C' = C®4 X,[—1]. Then
C'®,P, =F(P)) and C'®,P,=F(X)[-1].
So, A(C") 2 A(C) and
0C @4 P) +L4(C' @4 Py) <(C®y P))+L(CRyPy).

It follows by induction first on €(C), then on €(C ®, P;) + €(C ®,4 P,), that,
modulo the subgroup generated by ¢, and f,, every element of TrPic(A) is in
Pic(A) x Sh(A).

Denote by B; the extension of B; = (01,0,) generated by z, o, and o,
with the relations z* = (¢,0,)* and zo,z 'o7 ' =20,z '05' = 1. We have an
injective morphism B; — TrPic(A) given by o, — 7; and z— [1].

We have completed our description of TrPic.

THEOREM 4.13. Let A be a Brauer tree algebra over a field k, with two edges
and without exceptional vertex. Then

TrPic(A) = By x (K*/{=1}).

REMARK 5. The results of §4 have a counterpart for Green orders as defined
by Roggenkamp. Details and proofs are given in [18].

Let @ be a complete discrete valuation ring with residue field k¥ and A a Brauer
tree algebra over k with n edges and no exceptional vertex. For Green orders A
over (/, such that A ®, k = A, one can construct a morphism B, ; — TrPic(A)
lifting the morphism B, , ; — TrPic(A) constructed in § 4.4. Moreover, one proves
that when n =2, there is an isomorphism Bj; = TrPic(A). The canonical map
TrPic(A) — TrPic(A) will not be surjective in general.
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