GLUING *p*-PERMUTATION MODULES

RAPHAËL ROUQUIER

1. INTRODUCTION

We give a "local" construction of the stable category of *p*-permutation modules : a *p*-permutation kG-module gives rise, via the Brauer functor, to a family of *p*-permutation modules for $kN_G(Q)/Q$, where *Q* runs over the non-trivial *p*-subgroups of *G*, together with certain isomorphisms. Conversely, the data of a compatible family of $kN_G(Q)/Q$ -modules comes from a *p*-permutation kG-module, unique up to a unique isomorphism in the stable category.

This should be the first half of a paper with a second part devoted to complexes of *p*-permutation modules.

2. The Brauer functor

Let G be a finite group and k a field of characteristic p > 0.

Let Q be a p-subgroup of G. We denote by Br_Q the Brauer functor $\operatorname{Br}_Q : kG - \operatorname{mod} \to kN_G(Q) - \operatorname{mod}$.

For V be a kG-module,

$$\operatorname{Br}_Q(V) = V^Q / \left(\sum_{P < Q} \operatorname{Tr}_P^Q V^P \right).$$

We write also V(Q) for $\operatorname{Br}_Q(V)$. For basic results about *p*-permutation modules and the Brauer functor, see [Br] and [Th, §27].

Restriction induces a fully faithful functor $kN_G(Q)/Q - \text{mod} \rightarrow kN_G(Q) - \text{mod}$ and we will identify $kN_G(Q)/Q - \text{mod}$ with the full subcategory of $kN_G(Q) - \text{mod}$ of the modules with a trivial action of Q.

We denote by kG – perm the full subcategory of kG – mod of p-permutation modules. This is the smallest full additive subcategory of kG – mod closed under direct summands and containing the permutation modules.

From now on, we will always consider the restriction of the Brauer functor $\operatorname{Br}_Q : kG - \operatorname{perm} \to kN_G(Q) - \operatorname{perm}$.

Let Ω be a *G*-set. The composition $\gamma_{\Omega} = \gamma_{\Omega}^{Q} : k\Omega^{Q} \hookrightarrow (k\Omega)^{Q} \twoheadrightarrow (k\Omega)(Q)$ is an isomorphism. It induces an isomorphism of functors $\gamma : k(-)^{Q} \xrightarrow{\sim} \operatorname{Br}_{Q} k(-), i.e.$, there is a diagram of functors, commutative up to isomorphism :

$$\begin{array}{c|c} G - \text{sets} & & \xrightarrow{k(-)} & kG - \text{perm} \\ & & & \downarrow^{\text{Br}_Q} \\ & & & \downarrow^{\text{Br}_Q} \\ N_G(Q) - \text{sets} & & \xrightarrow{k(-)} & kN_G(Q) - \text{perm} \end{array}$$

The following easy result describes the effect of the Brauer construction on a permutation module. Let H and L be two subgroups of G. We put $T_G(L, H) = \{g \in G | L \leq H^g\}$.

Date: August 1998.

Lemma 2.1. We have

$$(G/H)^{L} = \bigcup_{g \in H \setminus T_{G}(L,H)/N_{G}(L)} N_{G}(L) / (N_{G}(L) \cap H^{g})$$

as $N_G(L)$ -sets.

2.1. Tensor product and duality. Let us describe the effect of the functor Br_Q on tensor products and duality.

Let V and W be two p-permutation kG-modules. The inclusion $V^Q \otimes W^Q \to (V \otimes W)^Q$ induces a map $\alpha_{V,W} : V(Q) \otimes W(Q) \to (V \otimes W)(Q)$.

Restriction $(V^*)^Q = \operatorname{Hom}_{kQ}(V,k) \to (V^Q)^* = \operatorname{Hom}_k(V^Q,k)$ induces a map $\beta_V : V^*(Q) \to V(Q)^*$.

We put $\Delta G = \{(x, x) | x \in G\} \subseteq G \times G.$

Lemma 2.2. The maps $\alpha_{V,W}$ and β_V are isomorphisms and induce isomorphisms of functors from kG – perm $\times kG$ – perm to $kN_G(Q)$ – perm

$$\alpha: \operatorname{Res}_{\Delta N_G(Q)}^{N_G(Q) \times N_G(Q)} \operatorname{Br}_{Q \times Q} \xrightarrow{\sim} \operatorname{Br}_Q \operatorname{Res}_{\Delta G}^{G \times G}$$

and from kG – perm to $kN_G(Q)$ – perm

$$\beta: \operatorname{Br}_Q(-)^* \xrightarrow{\sim} (-)^* \operatorname{Br}_Q$$
 .

Proof. In order to prove that $\alpha_{V,W}$ and β_V are isomorphisms, it is enough to consider permutation modules. So, let $V = k\Omega$ and $W = k\Psi$, where Ω and Ψ are *G*-sets.

We have an isomorphism $t_{\Omega,\Psi} : k\Omega \otimes k\Psi \xrightarrow{\sim} k(\Omega \times \Psi)$ given by $\omega \otimes \psi \mapsto (\omega \times \psi)$ for $\omega \in \Omega$ and $\psi \in \Psi$.

There is a commutative diagram :

$$\begin{array}{c} \cong \\ (k\Omega^Q) \otimes (k\Psi^Q) & \longrightarrow (k\Omega)^Q \otimes (k\Psi)^Q \longrightarrow (k\Omega)(Q) \otimes (k\Psi)(Q) \\ t_{\Omega^Q,\Psi^Q} \downarrow \cong & t_{\Omega,\Psi} \downarrow & \alpha_{V,W} \downarrow \\ k(\Omega \times \Psi)^Q & \longrightarrow (k(\Omega \times \Psi))^Q \longrightarrow k(\Omega \times \Psi)(Q) \\ \cong \end{array}$$

Hence, $\alpha_{V,W}$ is an isomorphism.

We have an isomorphism $d_{\Omega} : k\Omega \xrightarrow{\sim} (k\Omega)^*$ given by $\omega \mapsto \left(\sum_{\omega' \in \Omega} a_{\omega'} \omega' \mapsto a_{\omega}\right)$ for $\omega \in \Omega$. The composition

$$k\Omega^Q \hookrightarrow (k\Omega)^Q \xrightarrow{a_\Omega} ((k\Omega)^*)^Q \twoheadrightarrow (k\Omega)^*(Q)$$

is an isomorphism. Since the following diagram is commutative

we deduce that β_V is an isomorphism.

Let us now check that $\alpha_{V,W}$ and β_V induce natural transformations of functors.

Let V_1, V_2, W_1 and W_2 be *p*-permutation kG-modules and $f_i \in \text{Hom}(V_i, W_i)$. The following diagram is commutative :

Hence, $\alpha_{V,W}$ induces a morphism of functors : $\operatorname{Res}_{\Delta N_G(Q)}^{N_G(Q) \times N_G(Q)} \operatorname{Br}_{Q \times Q} \to \operatorname{Br}_Q \operatorname{Res}_{\Delta G}^{G \times G}$. The commutativity of the diagram :

shows finally that β_V induces a morphism of functors : $\operatorname{Br}_Q(-)^* \xrightarrow{\sim} (-)^* \operatorname{Br}_Q$.

Proposition 2.3. There is a commutative diagram

where the horizontal maps are isomorphisms provided by the adjoint pairs $(- \otimes W^*, - \otimes W)$ and $(- \otimes W(Q)^*, - \otimes W(Q))$.

Proof. More explicitly, the first horizontal map is the composition

$$\operatorname{Hom}(V,W) \xrightarrow{-\otimes W^*} \operatorname{Hom}(V \otimes W^*, W \otimes W^*) \xrightarrow{tr(W)_*} \operatorname{Hom}(V \otimes W^*, k)$$

where $tr(W) : W \otimes W^* \to k$ is the trace map.

Thanks to Lemma 2.2, we have a commutative diagram

We will be done if we prove that the image of $tr(W): W \otimes W^* \to k$ under the morphism

$$\operatorname{Hom}(W \otimes W^*, k) \xrightarrow{\beta \alpha^{-1} \operatorname{Br}_Q} \operatorname{Hom}(W(Q) \otimes W(Q)^*, k)$$

is tr(W(Q)). It is enough to prove this for W a permutation module.

Let $W = k\Omega$, Ω a G-set. The claim follows from the commutativity of the diagram

2.2. Compatibilities. Let us define a category \mathcal{T}_G . Its objects are the non-trivial *p*-subgroups of *G*. Let *P* and *Q* be two non-trivial *p*-subgroups of *G*. Then, the set of maps between *P* and *Q* in \mathcal{T}_G is $\{Pg_Q | g \in T_G(P, Q)\}$. The composition of maps is the product in *G* : $(Qh_R) \cdot (Pg_Q) = P(hg)_R$. We put $\overline{\phi} = g$ for $\phi = Pg_Q$ and $\phi(P) = {}^gP$.

We call a map $\phi = {}_P g_Q$ in $\operatorname{Hom}_{\mathcal{T}_G}(P, Q)$ normal if ${}^g P$ is normal in Q. Every normal map can be expressed uniquely as the composition of an isomorphism with a normal inclusion $\phi = \phi_{\triangleleft} \phi_{\sim}$ where $\phi_{\sim} = {}_P g_{gP}$ and $\phi_{\triangleleft} = {}_{gP} 1_Q$.

An important property of the normal maps is that they generate the category \mathcal{T}_G , *i.e.*, every map in \mathcal{T}_G is a composition of normal maps.

For $g \in G$ and H a subgroup of G, we denote by

$$g_*: kH - \text{mod} \xrightarrow{\sim} k^g H - \text{mod}$$

the isomorphism of categories induced by the group isomorphism $H \xrightarrow{\sim} {}^{g}H, x \mapsto {}^{g}x$. We also denote by

$$g_*: H - \operatorname{sets} \xrightarrow{\sim} {}^g H - \operatorname{sets}$$

the isomorphism of categories induced by this group isomorphism. We have the obvious compatiblity with the previous isomorphism of categories.

Let V be a p-permutation kH-module and $\phi \in \operatorname{Hom}_{\mathcal{T}_G}(P,Q)$ invertible. Then, the isomorphism of $N_{g_H}(Q)$ -modules $\bar{\phi}_*(V^P) \xrightarrow{\sim} (\bar{\phi}_*V)^Q$, $v \mapsto v$, induces an isomorphism

$$\langle \phi \rangle_V^0 : \bar{\phi}_*(V(P)) \xrightarrow{\sim} (\bar{\phi}_*V)(Q).$$

If H = G, then we have an isomorphism of kG-modules

$$\iota_{\bar{\phi},V}: V \mapsto \bar{\phi}_* V, \ v \mapsto \bar{\phi} v$$

and an isomorphism of $kN_G(Q)$ -modules

$$\langle \phi \rangle_V = \operatorname{Br}_Q(\iota_{\bar{\phi},V}^{-1}) \cdot \langle \phi \rangle_V^0 : \bar{\phi}_*(V(P)) \xrightarrow{\sim} V(Q).$$

Let now $P \leq Q$ and $\phi = {}_P1_Q$. The canonical map $V^Q \hookrightarrow V^P \twoheadrightarrow V(P)$ factors through the inclusion $V(P)^Q \hookrightarrow V(P)$ to give a map $V^Q \to V(P)^Q$. Composing with the canonical map $V(P)^Q \twoheadrightarrow V(P)(Q)$, we get a map $V^Q \to V(P)(Q)$ which factors through the canonical map $V^Q \twoheadrightarrow V(Q)$. The induced map $V(Q) \to V(P)(Q)$ is an isomorphism and we denote the inverse isomorphism by $\langle \phi \rangle_V$

$$\langle \phi \rangle_V : V(P)(Q) \xrightarrow{\sim} V(Q)$$

Let us summarize the construction by the following commutative diagram :

For $\phi \in \operatorname{Hom}_{\mathcal{T}_G}(P,Q)$ a normal map with $P \leq H$, $Q \leq \overline{\phi}H$ and V a *p*-permutation kH-module, we put

$$\langle \phi \rangle_V^0 = \langle \phi_{\lhd} \rangle_{\bar{\phi}_* V} \cdot \operatorname{Br}_Q(\langle \phi_{\sim} \rangle_V^0) : \left(\bar{\phi}_*(V(P)) \right)(Q) \xrightarrow{\sim} (\bar{\phi}_* V)(Q)$$

If V is a p-permutation kG-module, we put

$$\langle \phi \rangle_V = \langle \phi_{\lhd} \rangle_V \cdot \operatorname{Br}_Q(\langle \phi_{\sim} \rangle_V) : \left(\bar{\phi}_*(V(P)) \right)(Q) \xrightarrow{\sim} V(Q).$$

This gives an isomorphism of functors from kH – perm to $kN_{\bar{\phi}_H}(\phi(P), Q)$ – perm

$$\langle \phi \rangle^0 : \operatorname{Br}_Q \bar{\phi}_* \operatorname{Br}_P \xrightarrow{\sim} \operatorname{Res}_{N_{\bar{\phi}_H}(\phi(P),Q)}^{N_{\bar{\phi}_H}(Q)} \operatorname{Br}_Q \bar{\phi}_*$$

and an isomorphism of functors from kG – perm to $kN_G(\phi(P), Q)$ – perm

$$\langle \phi \rangle : \operatorname{Br}_Q \bar{\phi}_* \operatorname{Br}_P \xrightarrow{\sim} \operatorname{Res}_{N_G(\phi(P),Q)}^{N_G(Q)} \operatorname{Br}_Q.$$

When $V = k\Omega$, Ω a G-set, we have a commutative diagram

where

$$\langle \phi \rangle_{\Omega} : (\bar{\phi}_* \Omega^P)^Q \xrightarrow{\sim} \Omega^Q, \quad \omega \mapsto \bar{\phi}^{-1} \omega.$$

RAPHAËL ROUQUIER

Note that this justifies the claim that $\langle \phi \rangle_V$ is an isomorphism for V a permutation module and consequently for V an arbitrary *p*-permutation module.

We will now check a transitivity property of the isomorphisms constructed above.

Lemma 2.4. Let $\phi \in \operatorname{Hom}_{\mathcal{T}_G}(P,Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{T}_G}(Q,R)$ such that ϕ , ψ and $\psi\phi$ are normal maps and let V be a p-permutation kG-module. Then, the following diagram is commutative

$$\begin{split} \bar{\psi}_* \left((\bar{\phi}_*(V(P)))(Q) \right)(R) & \xrightarrow{\operatorname{Br}_R \bar{\psi}_* \langle \phi \rangle_V} (\bar{\psi}_*(V(Q)))(R) & \xrightarrow{\langle \psi \rangle_{\bar{\phi}_*(V(P))} \downarrow} (\bar{\psi} \bar{\phi})_*(V(P)))(R) & \xrightarrow{\langle \psi \phi \rangle_V} V(R) \end{split}$$

Proof. Indeed, it is enough to check commutativity for $V = k\Omega$ a permutation module. It follows from the commutativity of the following diagram

$$\bar{\psi}_* \left((\bar{\phi}_*(\Omega^P))^Q \right)^R \xrightarrow{\omega \mapsto \bar{\psi}\bar{\phi}^{-1}\bar{\psi}^{-1}\omega} \left(\bar{\psi}_*(\Omega^Q) \right)^R \xrightarrow{\omega \mapsto \omega} \left((\bar{\psi}\bar{\phi})_*(\Omega^P) \right)^R \xrightarrow{\omega \mapsto \bar{\psi}\bar{\phi}^{-1}\omega} \Omega^R$$

The difference between $\langle \phi \rangle$ and $\langle \phi \rangle^0$ is is given by the following lemma :

Lemma 2.5. Let $\psi \in \text{Hom}_{\mathcal{T}_G}(Q, R)$ be a normal map with $\overline{\psi} = 1$, $g \in G$ and V a *p*-permutation kG-module. Then, the following diagram is commutative

$$(V(Q))(R) \xrightarrow{\langle \psi \rangle_V} V(R)$$

$$\operatorname{Br}_R \operatorname{Br}_Q(\iota_{g,V}^{-1}) \uparrow \qquad \qquad \uparrow \operatorname{Br}_R(\iota_{g,V}^{-1})$$

$$((g_*V)(Q))(R) \xrightarrow{\langle \psi \rangle_{g_*V}} (g_*V)(R)$$

In particular, if $\phi \in \operatorname{Hom}_{\mathcal{T}_G}(P,Q)$ is any normal map, then $\langle \phi \rangle_V = \operatorname{Br}_Q(\iota_{\overline{\phi},V}^{-1}) \cdot \langle \phi \rangle_V^0$.

Proof. Again, it is enough to deal with $V = k\Omega$ a permutation module. Then, the lemma reduces to the commutativity of

For the second part of the lemma, we take $\psi = \phi_{\triangleleft}$ and $g = \overline{\phi}$ in the commutative diagram. \Box

3. A CATEGORY OF SHEAVES ON *p*-SUBGROUPS COMPLEXES

3.1. **Definition.** Let \mathcal{F} be a subcategory of \mathcal{T}_G . We define a category $\mathcal{S}_{\mathcal{F}}$ of "sheaves" on \mathcal{F} .

Its objects are families $\{V_Q, [\phi]\}_{Q,\phi}$ where Q runs over the objects of \mathcal{F} and ϕ over the normal maps of \mathcal{F} . Here, V_Q is a *p*-permutation $kN_G(Q)/Q$ -module and for $\phi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ normal, $[\phi]$ is an isomorphism of $kN_G(\phi(P), Q)$ -modules

$$[\phi]: (\bar{\phi}_* V_P)(Q) \xrightarrow{\sim} \operatorname{Res}_{N_G(\phi(P),Q)}^{N_G(Q)} V_Q.$$

We require the following two conditions to be satisfied : For $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, Q)$, we have

$$[\phi] = \iota_{\bar{\phi}, V_Q}^{-1}.\tag{1}$$

Let $\phi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q,R)$ such that ϕ, ψ and $\psi\phi$ are normal maps. Then, the following diagram should be commutative

$$\begin{array}{cccc}
\bar{\psi}_{*}\left((\bar{\phi}_{*}V_{P})(Q)\right)(R) & \xrightarrow{\operatorname{Br}_{R}\psi_{*}[\phi]} & & (\bar{\psi}_{*}V_{Q})(R) \\ & & & \downarrow^{[\psi]} \\ & & & \downarrow^{[\psi]} \\ & & ((\bar{\psi}\bar{\phi})_{*}V_{P})(R) & \xrightarrow{& [\psi\phi]} & & V_{R} \end{array} \tag{2}$$

For $\mathcal{V} = \{V_Q, [\phi]\}$ and $\mathcal{V}' = \{V'_Q, [\phi]'\}$ two objects of $\mathcal{S}_{\mathcal{F}}$, $\operatorname{Hom}_{\mathcal{S}_{\mathcal{F}}}(\mathcal{V}, \mathcal{V}')$ is the set of families $\Lambda = \{\lambda_Q\}_Q$, where Q runs over the objects of \mathcal{F} . Here, $\lambda_Q \in \operatorname{Hom}_{kN_G(Q)}(V_Q, V'_Q)$. Furthermore, Λ should have the following property : for every normal map $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$, the following diagram is commutative

$$\begin{array}{c|c} (\bar{\phi}_* V_P)(Q) & \xrightarrow{\operatorname{Br}_Q \bar{\phi}_* \lambda_P} & (\bar{\phi}_* V'_P)(Q) \\ & & & \downarrow^{[\phi]'} \\ V_Q & \xrightarrow{\lambda_Q} & V'_Q \end{array}$$

$$(3)$$

Thanks to the results of $\S2.2$, we have a functor

Br :
$$kG - \text{perm} \to \mathcal{S}, \quad V \mapsto \{V(Q), \langle \phi \rangle_V\}$$

where $\mathcal{S} = \mathcal{S}_{\mathcal{T}_G}$.

We can now state our main result :

Theorem 3.1. The functor Br induces an equivalence of categories

 $kG - \operatorname{perm} / kG - \operatorname{proj} \xrightarrow{\sim} \mathcal{S}.$

3.2. Some properties of $S_{\mathcal{F}}$. Let us give a special case of the commutative diagram (2).

Lemma 3.2. Let $\phi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q,R)$ be two normal maps with $\bar{\psi} \in N_G(\phi(P))$. Then, the following diagram is commutative

$$\bar{\psi}_* \left((\bar{\phi}_* V_P)(Q) \right)(R) \xrightarrow{\operatorname{Br}_R \psi_*[\phi]} (\bar{\psi}_* V_Q)(R) \xrightarrow{\langle \psi \rangle_{\bar{\phi}_* V_P}} V_R \xrightarrow{[\psi_{\triangleleft} \phi]} V_R$$

Proof. Let $\psi' = \psi \phi$ and $\phi' = {}_{P}(\bar{\phi}^{-1}\bar{\psi}^{-1}\bar{\phi})_{P}$. We have $\psi_{\triangleleft}\phi = \psi'\phi'$. By (1), we have $[\phi'] = \iota_{\bar{\phi}', V_{P}}^{-1}$. We have also $\bar{\psi}_{*}\bar{\phi}_{*}\iota_{\bar{\phi}', V_{P}}^{-1} = \iota_{\bar{\psi}, \bar{\phi}_{*}V_{P}}$. The commutativity of the diagram (2) applied to ψ' and ϕ' gives the commutative diagram

RAPHAËL ROUQUIER

and we obtain the commutativity of the diagram of the lemma since $\langle \psi \rangle_{\bar{\phi}_* V_P} = \text{Br}_R(\iota_{\bar{\psi},\bar{\phi}_* V_P}^{-1})$. $\langle \psi \rangle_{\bar{\phi}_* V_P}^0$ by Lemma 2.5.

The diagram (3) need be checked only on a generating set :

Lemma 3.3. Let E be a set of normal maps in \mathcal{F} such that every normal map of \mathcal{F} is a product of elements of E and of inverses of invertible elements of E.

Then, the commutativity of the diagram (3) for $\phi \in E$ implies the commutativity for every normal map ϕ of \mathcal{F}

Proof. Let $\phi \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q,R)$ such that ψ and $\psi\phi$ are normal maps. Then, ϕ is a normal map and the following diagram is commutative

The lemma follows.

We now define a restriction functor from G to $N_G(P)/P$.

Let P be an object in \mathcal{F} . We assume ${}_{P}1_Q \in \operatorname{Hom}_{\mathcal{F}}(P,Q)$ for every Q in \mathcal{F} with $P \triangleleft Q$. Let $\mathcal{F}(P)$ be the subcategory of $\mathcal{T}_{N_G(P)/P}$ whose objects are the Q/P where Q is in \mathcal{F} and $P \triangleleft Q, P \neq Q$ and where $\operatorname{Hom}_{\mathcal{F}(P)}(Q/P, R/P)$ is given by the image in $T_{N_G(P)/P}(Q/P, R/P)$ of $\operatorname{Hom}_{\mathcal{F}}(Q, R)$.

Let $\mathcal{V} = \{V_Q, [\phi]\}$ be an object of $\mathcal{S}_{\mathcal{F}}$. Let $V'_{Q/P} = V_Q$. For $\phi' \in \operatorname{Hom}_{\mathcal{F}(P)}(Q/P, R/P)$, we put $[\phi'] = [\phi]$ where $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ has image ϕ' in $\operatorname{Hom}_{\mathcal{F}(P)}(Q/P, R/P)$. It follows from (1) (and from the diagram (2)) that this is independent of the choice of ϕ .

The restriction functor is

$$\operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}} : \mathcal{S}_{\mathcal{F}} \to \mathcal{S}_{\mathcal{F}(P)}, \quad \{V_Q, [\phi]\} \mapsto \{V'_{Q/P}, [\phi']\}.$$

We denote by $E_P: \mathcal{T}_F \to kN_G(P)/P$ – perm the functor sending \mathcal{V} on V_P .

The commutative diagram in Lemma 3.2 says that objects can be "glued locally" :

Lemma 3.4. For \mathcal{V} in $\mathcal{S}_{\mathcal{F}}$, we have an isomorphism $\{[P_1Q]\}_Q : \operatorname{Br} E_P(\mathcal{V}) \xrightarrow{\sim} \operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}} \mathcal{V}$. This induces an isomorphism of functors $\operatorname{Br} E_P \xrightarrow{\sim} \operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}}$. So, we have a diagram, commutative up to isomorphism :

Proof. Let $\mathcal{V} = \{V_Q, [\phi]\}$ in $\mathcal{S}_{\mathcal{F}}$ and $\mathcal{V}' = \operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}} \mathcal{V}$. We have $\operatorname{Br}(V_P) = \{W_{Q/P}, \langle \psi \rangle_{V_P}\}$ with $W_{Q/P} = V_P(Q)$.

Let $\lambda_{Q/P} = [P_1Q] : W_{Q/P} \xrightarrow{\sim} V'_{Q/P}$ and $\Lambda = \{\lambda_{Q/P}\}$. Let $\phi = P_1Q$ in \mathcal{F} and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ be two normal maps with $\bar{\psi} \in N_G(P)$. We have a commutative diagram (Lemma 3.2)

$$\begin{array}{c} (\bar{\psi}_* V_P(Q))(R) \xrightarrow{\operatorname{Br}_R \bar{\psi}_*[\phi]} & (\bar{\psi}_* V_Q)(R) \\ \downarrow \\ \langle \psi \rangle_{V_P} \downarrow & \downarrow \\ V_P(R) \xrightarrow{[\psi \lhd \phi]} & V_R \end{array}$$

This shows that Λ defines a map $\operatorname{Br}(V_P) \to \mathcal{V}'$. This induces an isomorphism between $\operatorname{Br} \cdot E_P$ and $\operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}}$.

3.3. **Proof of Theorem 3.1.** Let us first note that Br(V) = 0 if V is projective, hence Br induces indeed a functor $\overline{Br} : kG - perm/kG - proj \rightarrow S$.

Lemma 3.5. The functor Br is fully faithful.

Proof. We have to prove that Br induces an isomorphism

 $\overline{\operatorname{Hom}}(V,W) \xrightarrow{\sim} \operatorname{Hom}(\operatorname{Br} V, \operatorname{Br} W)$

for V and W any p-permutation kG-modules.

Thanks to Proposition 2.3, we have a commutative diagram :

$$\overline{\operatorname{Hom}}(V, W) \xrightarrow{\simeq} \overline{\operatorname{Hom}}(V \otimes W^*, k)$$

$$\downarrow^{\operatorname{Br}} \qquad \qquad \downarrow^{\operatorname{Br}}$$

$$\operatorname{Hom}(\operatorname{Br} V, \operatorname{Br} W) \xrightarrow{\simeq} \operatorname{Hom}(\operatorname{Br}(V \otimes W^*), \operatorname{Br} k)$$

So, it is enough to consider the case W = k.

Since the modules k(G/Q), Q a p-subgroup of G, generate kG – perm as an additive category closed under taking direct summands, we may assume V = k(G/Q). We may take $Q \neq 1$ since otherwise V is projective.

Now, $\operatorname{Hom}(kG/Q, k) \simeq \overline{\operatorname{Hom}}(kG/Q, k)$ is a one-dimensional vector space, generated by the unique map f between the G-sets G/Q and G/G.

The map $\operatorname{Br}_Q(f) : V(Q) = k(G/Q)^Q \to k$ is induced by the unique map between the sets $N_G(Q)/Q$ and $N_G(Q)/N_G(Q)$. In particular, it is non-zero, hence $\operatorname{Br}(f) \neq 0$.

Let $\Lambda \in \text{Hom}(\text{Br } kG/Q, \text{Br } k)$. Since Hom(V(Q), k) is one-dimensional, we have $\lambda_Q = \alpha \operatorname{Br}_Q(f)$ for some $\alpha \in k$. So, $\Lambda - \alpha \operatorname{Br}(f)$ vanishes on V(Q).

We assume now $\lambda_Q = 0$. We will prove that $\lambda_P = 0$ for all P. This is clear if P is not conjugate to a subgroup of Q, since then V(P) = 0. We will now prove the result for $P \leq Q$ by induction on [Q : P].

Let P < Q and $g \in T_G(P,Q)$. Let R be a p-subgroup of G such that $P \lhd R \leq Q^g$, $P \neq R$. Then, $(N_G(P)/N_G(P) \cap Q^g)^R \neq \emptyset$. Now, λ_P and λ_R have the same restriction to $(N_G(P)/N_G(P) \cap Q^g)^R$. Consequently, λ_P is zero on $(N_G(P)/N_G(P) \cap Q^g)^R$, by induction. By Lemma 2.1, we deduce that $\lambda_P = 0$.

The first part of following lemma is essentially due to Bouc [Bou1, Bou2] (cf also [Li, Lemma 5.4]).

- **Lemma 3.6.** (i) Let $f: V \to W$ be a morphism between two p-permutation kG-modules such that $Br_Q(f)$ is injective for all $Q \neq 1$. Then, there is a morphism $\sigma: W \to V$ such that σf is a stable automorphism of V. In particular, if V has no projective direct summand, then f is a split injection.
- (ii) Let Λ : V → W be a morphism between two objects of S. Assume for all Q, there is a projective direct summand L_Q of the kN_G(Q)/Q-module V_Q such that the restriction of λ_Q to L_Q is injective and V_Q/L_Q has no projective direct summand. Then, for all Q, λ_Q is a split injection.
- *Proof.* Let us prove part (i) of the lemma. We can assume V has no projective direct summand. Assume G is a p-group.

Let us first consider a morphism $f : V = k(G/Q) \to W = k(G/R)$ such that $\operatorname{Br}_Q(f)$ is injective, where Q and R are non-trivial p-subgroups of G. The module V(Q) is a projective indecomposable $kN_G(Q)/Q$ -module. Since $W(Q) \neq 0$, Q is contained in R, up to conjugacy. Without changing W, we can assume $Q \leq R$.

Assume $Q \neq R$. Then, for any $g \in T_G(Q, R)$, there is S such that $P \triangleleft S \leq Q^g$, $P \neq S$. So, $kN_G(Q)/(N_G(Q) \cap R^g)$ is not a projective $kN_G(Q)/Q$ -module. By Lemma 2.1, V(Q) is not isomorphic to a submodule of W(Q) and we have reached a contradiction.

If Q = R, then f becomes invertible in the quotient $\operatorname{End}_{kN_G(Q)/Q}(V(Q))$ of the local ring $\operatorname{End}_{kG}(V)$, hence f is invertible.

Let now $f: V \to W$ be a morphism between two *p*-permutation modules such that $\operatorname{Br}_Q(f)$ is injective for Q non trivial. In order to prove that f is injective, we may assume V is indecomposable, *i.e.*, V = k(G/Q) for some subgroup Q of G. We can assume $Q \neq 1$, otherwise V is projective. Since V(Q) is indecomposable, there is an indecomposable direct summand W' of W such that if f' is the composition $V \xrightarrow{f} W \twoheadrightarrow W'$, then $\operatorname{Br}_Q(f')$ is injective. Now, the considerations above show that f' is an isomorphism and we are done.

Take now G an arbitrary finite group. Let $U = \ker f$ and let S be a Sylow p-subgroup of G. We know that the inclusion $\operatorname{Res}_S^G U \to \operatorname{Res}_S^G V$ is projective. So, the inclusion $U \to V$ is projective, hence U = 0 since we assume V has no projective direct summand. Finally, the short exact sequence $0 \to V \to W \to W/V \to 0$ splits, since it splits by restriction to S.

Let us come to part (ii) of the lemma.

We prove the result by inverse induction on the order of Q. When Q is a Sylow *p*-subgroup of G, then $V_Q = L_Q$, so λ_Q is a split injection.

Assume now Q is not a Sylow *p*-subgroup of G. Consider the restriction $f : M_Q \to W_Q$ of λ_Q , where $V_Q = L_Q \oplus M_Q$. By induction, $\operatorname{Br}_{R/Q}(f)$ is injective, for all *p*-subgroups R with $Q \triangleleft R, Q \neq R$. By part (i) of the Lemma applied to $N_G(Q)/Q$, we deduce that f is a split injection. \Box

Lemma 3.7. Let \mathcal{G} and \mathcal{H} be two full subcategories of \mathcal{T}_G closed under inverse inclusion with $\mathcal{G} \subseteq \mathcal{H}$. Let $\mathcal{V}, \mathcal{V}' \in \mathcal{S}_{\mathcal{H}}$. Then, the restriction map

$$\operatorname{Hom}_{\mathcal{S}_{\mathcal{H}}}(\mathcal{V},\mathcal{V}') \to \operatorname{Hom}_{\mathcal{S}_{\mathcal{G}}}(\operatorname{Res}_{\mathcal{G}}^{\mathcal{H}}\mathcal{V},\operatorname{Res}_{\mathcal{G}}^{\mathcal{H}}\mathcal{V}')$$

is surjective.

Proof. It is enough to prove the lemma when \mathcal{H} has one more object, Q, than \mathcal{G} . Let $\lambda \in \operatorname{Hom}_{\mathcal{S}_{\mathcal{G}}}(\operatorname{Res}^{\mathcal{H}}_{\mathcal{G}}\mathcal{V}, \operatorname{Res}^{\mathcal{H}}_{\mathcal{G}}\mathcal{V}')$.

Assume first there is $g \in G$ such that $Q^g \in \mathcal{G}$ and let $\psi = {}_Q g_{Q^g} \in \operatorname{Hom}_{\mathcal{H}}(Q, Q^g)$. Let $\lambda'_R = \lambda_R$ for $R \neq Q$ and $\lambda'_Q = [\psi^{-1}]' \lambda_{Q^g}[\psi]$. In order to prove that $\{\lambda'_R\}$ gives a map between \mathcal{V} and \mathcal{V}' (extending λ), it is enough to check commutativity of the diagram (3) for the map ψ , thanks to Lemma 3.3. This is immediate.

Assume now $Q^g \notin \mathcal{G}$ for all $g \in G$. Let $f : \operatorname{Br}(V_Q) \to \operatorname{Br}(V'_Q)$ be the restriction of λ to $\mathcal{S}_{\mathcal{H}(Q)}$ (cf Lemma 3.4). By the fullness of Br applied to $N_G(Q)/Q$ (Lemma 3.5), there is a map $\lambda'_Q : V_Q \to V'_Q$ such that $\operatorname{Br}(\lambda'_Q) = f$. Let $\lambda'_R = \lambda_R$ for $R \in \mathcal{G}$. Since every map in \mathcal{H} starting from Q is the composition of a map from Q to R, with Q a strict normal subgroup of R and of a map in \mathcal{G} , Lemma 3.3 shows that $\{\lambda'_R\}$ defines a map between \mathcal{V} and \mathcal{V}' , extending λ . \Box

We now complete the proof of Theorem 3.1 by showing the essential surjectivity of Br. Let $\mathcal{V} \in \mathcal{S}$. We will prove by induction on the cardinality of $\{Q|V_Q \neq 0\}$ that \mathcal{V} is in the image of Br.

For $Q \in \mathcal{T}_G$, let L_Q be a projective direct summand of V_Q such that V_Q/L_Q has no projective direct summand. We denote by $\alpha_Q : V_Q \to L_Q$ the canonical surjection.

Let $M = \operatorname{Ind}_{N_G(Q)}^G L_Q$ and $\mathcal{M} = \operatorname{Br} M$. We have $M(Q) \simeq L_Q$ by Green's correspondence. Let $\zeta : V_Q \xrightarrow{\alpha_Q} L_Q \xrightarrow{\sim} M(Q)$. Let $\mathcal{H} = \mathcal{T}_G$ and \mathcal{G} be the full subcategory of \mathcal{T}_G with objects the *p*-subgroups containing Q. Let $\zeta'_R = 0$ for $R \in \mathcal{G}, R \neq Q$ and $\zeta'_Q = \zeta$. Then, $\{\zeta'_R\} \in \operatorname{Hom}_{\mathcal{S}_{\mathcal{G}}}(\operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{V}, \operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{M})$. By Lemma 3.7, there is $\chi \in \operatorname{Hom}_{\mathcal{S}}(\mathcal{V}, \mathcal{M})$ extending $\{\zeta'_R\}$.

Let now $V' = \bigoplus_{Q \in \mathcal{I}_G/G} \operatorname{Ind}_{N_G(Q)}^G L_Q$, $\mathcal{V}' = \operatorname{Br} V'$ and $\lambda : \mathcal{V} \to \mathcal{V}'$ be the sum of the morphisms constructed for each Q above.

Then, for all Q, the restriction of λ_Q to L_Q is injective. By Lemma 3.6, (ii), we deduce that λ_Q is a split injection for all Q. Let then \mathcal{W} be the cokernel of λ .

Take R with $V_R = 0$. Then, $V_Q = 0$ whenever R is contained up to G-conjugation in Q. So, V' has no direct summand with vertex R, hence $W_R = 0$. Let now Q be maximal such that $V_Q \neq 0$. Then, $\lambda_Q : V_Q = L_Q \rightarrow (\operatorname{Ind}_{N_G(Q)}^G L_Q)(Q)$ is an isomorphism. So, $W_Q = 0$. It follows that $\{Q|W_Q \neq 0\}$ is strictly contained in $\{Q|V_Q \neq 0\}$. By induction, there is a p-permutation kG-module W (without projective direct summand) such that $\mathcal{W} = \operatorname{Br} W$. By fulness of Br (Lemma 3.5), the canonical morphism $\mathcal{V}' \rightarrow \mathcal{W}$ comes from a morphism $f : V' \rightarrow W$. By Lemma 3.6, (i), dualized, f is a split surjection. Hence, ker f is a p-permutation kG-module and we have an isomorphism $\mathcal{V} \xrightarrow{\sim} \operatorname{Br}(\ker f)$. This finishes the proof of Theorem 3.1.

References

- [Bou1] S. Bouc, Résolutions de foncteurs de Mackey, in "Groups, representations : cohomology, group actions and topology", Proc. of Symp. in Pure Math., p. 31–83, vol. 63, AMS, 1998.
- [Bou2] S. Bouc, Le complexe de chaînes d'un G-complexe simplicial acyclique, preprint (1998).
- [Br] M. Broué, On Scott modules and p-permutation modules : an approach through the Brauer morphism, Proc. Amer. Math. Soc. **93** (1985), 401–408.
- [Li] M. Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, preprint (1997).
- [Th] J. Thévenaz, "G-algebras and modular representation theory", Oxford University Press, 1995.