GLUING p-PERMUTATION MODULES

RAPHAËL ROUQUIER

1. Introduction

We give a "local" construction of the stable category of p-permutation modules : a p permutation $k G$-module gives rise, via the Brauer functor, to a family of p-permutation modules for $k N_{G}(Q) / Q$, where Q runs over the non-trivial p-subgroups of G, together with certain isomorphisms. Conversely, the data of a compatible family of $k N_{G}(Q) / Q$-modules comes from a p-permutation $k G$-module, unique up to a unique isomorphism in the stable category.

This should be the first half of a paper with a second part devoted to complexes of p permutation modules.

2. The Brauer functor

Let G be a finite group and k a field of characteristic $p>0$.
Let Q be a p-subgroup of G. We denote by Br_{Q} the Brauer functor $\mathrm{Br}_{Q}: k G-\bmod \rightarrow$ $k N_{G}(Q)-\bmod$.

For V be a $k G$-module,

$$
\operatorname{Br}_{Q}(V)=V^{Q} /\left(\sum_{P<Q} \operatorname{Tr}_{P}^{Q} V^{P}\right)
$$

We write also $V(Q)$ for $\operatorname{Br}_{Q}(V)$. For basic results about p-permutation modules and the Brauer functor, see $[\mathrm{Br}]$ and [Th, §27].

Restriction induces a fully faithful functor $k N_{G}(Q) / Q-\bmod \rightarrow k N_{G}(Q)-\bmod$ and we will identify $k N_{G}(Q) / Q-\bmod$ with the full subcategory of $k N_{G}(Q)-\bmod$ of the modules with a trivial action of Q.

We denote by $k G$ - perm the full subcategory of $k G-\bmod$ of p-permutation modules. This is the smallest full additive subcategory of $k G-\bmod$ closed under direct summands and containing the permutation modules.

From now on, we will always consider the restriction of the Brauer functor $\mathrm{Br}_{Q}: k G-$ perm \rightarrow $k N_{G}(Q)$ - perm.

Let Ω be a G-set. The composition $\gamma_{\Omega}=\gamma_{\Omega}^{Q}: k \Omega^{Q} \hookrightarrow(k \Omega)^{Q} \rightarrow(k \Omega)(Q)$ is an isomorphism. It induces an isomorphism of functors $\gamma: k(-)^{Q} \xrightarrow{\sim} \operatorname{Br}_{Q} k(-)$, i.e., there is a diagram of functors, commutative up to isomorphism :

The following easy result describes the effect of the Brauer construction on a permutation module. Let H and L be two subgroups of G. We put $T_{G}(L, H)=\left\{g \in G \mid L \leq H^{g}\right\}$.

Lemma 2.1. We have

$$
(G / H)^{L}=\bigcup_{g \in H \backslash T_{G}(L, H) / N_{G}(L)} N_{G}(L) /\left(N_{G}(L) \cap H^{g}\right)
$$

as $N_{G}(L)$-sets.
2.1. Tensor product and duality. Let us describe the effect of the functor Br_{Q} on tensor products and duality.

Let V and W be two p-permutation $k G$-modules. The inclusion $V^{Q} \otimes W^{Q} \rightarrow(V \otimes W)^{Q}$ induces a map $\alpha_{V, W}: V(Q) \otimes W(Q) \rightarrow(V \otimes W)(Q)$.

Restriction $\left(V^{*}\right)^{Q}=\operatorname{Hom}_{k Q}(V, k) \rightarrow\left(V^{Q}\right)^{*}=\operatorname{Hom}_{k}\left(V^{Q}, k\right)$ induces a map $\beta_{V}: V^{*}(Q) \rightarrow$ $V(Q)^{*}$.

We put $\Delta G=\{(x, x) \mid x \in G\} \subseteq G \times G$.
Lemma 2.2. The maps $\alpha_{V, W}$ and β_{V} are isomorphisms and induce isomorphisms of functors from $k G-\operatorname{perm} \times k G-$ perm to $k N_{G}(Q)-$ perm

$$
\alpha: \operatorname{Res}_{\Delta N_{G}(Q)}^{N_{G}(Q) \times N_{G}(Q)} \operatorname{Br}_{Q \times Q} \xrightarrow{\sim} \operatorname{Br}_{Q} \operatorname{Res}_{\Delta G}^{G \times G}
$$

and from $k G-$ perm to $k N_{G}(Q)-$ perm

$$
\beta: \operatorname{Br}_{Q}(-)^{*} \xrightarrow{\sim}(-)^{*} \mathrm{Br}_{Q} .
$$

Proof. In order to prove that $\alpha_{V, W}$ and β_{V} are isomorphisms, it is enough to consider permutation modules. So, let $V=k \Omega$ and $W=k \Psi$, where Ω and Ψ are G-sets.

We have an isomorphism $t_{\Omega, \Psi}: k \Omega \otimes k \Psi \xrightarrow{\sim} k(\Omega \times \Psi)$ given by $\omega \otimes \psi \mapsto(\omega \times \psi)$ for $\omega \in \Omega$ and $\psi \in \Psi$.

There is a commutative diagram :

Hence, $\alpha_{V, W}$ is an isomorphism.
We have an isomorphism $d_{\Omega}: k \Omega \xrightarrow{\sim}(k \Omega)^{*}$ given by $\omega \mapsto\left(\sum_{\omega^{\prime} \in \Omega} a_{\omega^{\prime}} \omega^{\prime} \mapsto a_{\omega}\right)$ for $\omega \in \Omega$. The composition

$$
k \Omega^{Q} \hookrightarrow(k \Omega)^{Q} \xrightarrow{d_{\Omega}}\left((k \Omega)^{*}\right)^{Q} \rightarrow(k \Omega)^{*}(Q)
$$

is an isomorphism. Since the following diagram is commutative

we deduce that β_{V} is an isomorphism.
Let us now check that $\alpha_{V, W}$ and β_{V} induce natural transformations of functors.

Let V_{1}, V_{2}, W_{1} and W_{2} be p-permutation $k G$-modules and $f_{i} \in \operatorname{Hom}\left(V_{i}, W_{i}\right)$. The following diagram is commutative :

Hence, $\alpha_{V, W}$ induces a morphism of functors : $\operatorname{Res}_{\Delta N_{G}(Q)}^{N_{G}(Q) \times N_{G}(Q)} \operatorname{Br}_{Q \times Q} \rightarrow \operatorname{Br}_{Q} \operatorname{Res}_{\Delta G}^{G \times G}$. The commutativity of the diagram :

shows finally that β_{V} induces a morphism of functors: $\mathrm{Br}_{Q}(-)^{*} \xrightarrow{\sim}(-)^{*} \mathrm{Br}_{Q}$.

Proposition 2.3. There is a commutative diagram

where the horizontal maps are isomorphisms provided by the adjoint pairs $\left(-\otimes W^{*},-\otimes W\right)$ and $\left(-\otimes W(Q)^{*},-\otimes W(Q)\right)$.

Proof. More explicitely, the first horizontal map is the composition

$$
\operatorname{Hom}(V, W) \xrightarrow{-\otimes W^{*}} \operatorname{Hom}\left(V \otimes W^{*}, W \otimes W^{*}\right) \xrightarrow{\operatorname{tr}(W)_{*}} \operatorname{Hom}\left(V \otimes W^{*}, k\right)
$$

where $\operatorname{tr}(W): W \otimes W^{*} \rightarrow k$ is the trace map.
Thanks to Lemma 2.2, we have a commutative diagram

We will be done if we prove that the image of $\operatorname{tr}(W): W \otimes W^{*} \rightarrow k$ under the morphism

$$
\operatorname{Hom}\left(W \otimes W^{*}, k\right) \xrightarrow{\beta \alpha^{-1} \mathrm{Br}_{Q}} \operatorname{Hom}\left(W(Q) \otimes W(Q)^{*}, k\right)
$$

is $\operatorname{tr}(W(Q))$. It is enough to prove this for W a permutation module.
Let $W=k \Omega, \Omega$ a G-set. The claim follows from the commutativity of the diagram

2.2. Compatibilities. Let us define a category \mathcal{T}_{G}. Its objects are the non-trivial p-subgroups of G. Let P and Q be two non-trivial p-subgroups of G. Then, the set of maps between P and Q in \mathcal{T}_{G} is $\left\{{ }_{P} g_{Q} \mid g \in T_{G}(P, Q)\right\}$. The composition of maps is the product in G : $\left({ }_{Q} h_{R}\right) \cdot\left({ }_{P} g_{Q}\right)={ }_{P}(h g)_{R}$. We put $\bar{\phi}=g$ for $\phi={ }_{P} g_{Q}$ and $\phi(P)={ }^{g} P$.

We call a map $\phi={ }_{P} g_{Q}$ in $\operatorname{Hom}_{\mathcal{T}_{G}}(P, Q)$ normal if ${ }^{g} P$ is normal in Q. Every normal map can be expressed uniquely as the composition of an isomorphism with a normal inclusion $\phi=\phi_{\triangleleft} \phi_{\sim}$ where $\phi_{\sim}={ }_{P} g_{g_{P}}$ and $\phi_{\triangleleft}=g_{P} 1_{Q}$.

An important property of the normal maps is that they generate the category \mathcal{T}_{G}, i.e., every map in \mathcal{T}_{G} is a composition of normal maps.

For $g \in G$ and H a subgroup of G, we denote by

$$
g_{*}: k H-\bmod \xrightarrow{\sim} k^{g} H-\bmod
$$

the isomorphism of categories induced by the group isomorphism $H \xrightarrow{\sim}{ }^{g} H, \quad x \mapsto{ }^{g} x$. We also denote by

$$
g_{*}: H-\text { sets } \xrightarrow{\sim}{ }^{g} H-\text { sets }
$$

the isomorphism of categories induced by this group isomorphism. We have the obvious compatiblity with the previous isomorphism of categories.

Let V be a p-permutation $k H$-module and $\phi \in \operatorname{Hom}_{\mathcal{T}_{G}}(P, Q)$ invertible. Then, the isomorphism of $N_{g_{H}}(Q)$-modules $\bar{\phi}_{*}\left(V^{P}\right) \xrightarrow{\sim}\left(\bar{\phi}_{*} V\right)^{Q}, v \mapsto v$, induces an isomorphism

$$
\langle\phi\rangle_{V}^{0}: \bar{\phi}_{*}(V(P)) \xrightarrow{\sim}\left(\bar{\phi}_{*} V\right)(Q) .
$$

If $H=G$, then we have an isomorphism of $k G$-modules

$$
\iota_{\bar{\phi}, V}: V \mapsto \bar{\phi}_{*} V, v \mapsto \bar{\phi} v
$$

and an isomorphism of $k N_{G}(Q)$-modules

$$
\langle\phi\rangle_{V}=\operatorname{Br}_{Q}\left(\iota_{\bar{\phi}, V}^{-1}\right) \cdot\langle\phi\rangle_{V}^{0}: \bar{\phi}_{*}(V(P)) \xrightarrow{\sim} V(Q) .
$$

Let now $P \unlhd Q$ and $\phi={ }_{P} 1_{Q}$. The canonical map $V^{Q} \hookrightarrow V^{P} \rightarrow V(P)$ factors through the inclusion $V(P)^{Q} \hookrightarrow V(P)$ to give a map $V^{Q} \rightarrow V(P)^{Q}$. Composing with the canonical map $V(P)^{Q} \rightarrow V(P)(Q)$, we get a map $V^{Q} \rightarrow V(P)(Q)$ which factors through the canonical map $V^{Q} \rightarrow V(Q)$. The induced map $V(Q) \rightarrow V(P)(Q)$ is an isomorphism and we denote the inverse isomorphism by $\langle\phi\rangle_{V}$

$$
\langle\phi\rangle_{V}: V(P)(Q) \xrightarrow{\sim} V(Q)
$$

Let us summarize the construction by the following commutative diagram :

For $\phi \in \operatorname{Hom}_{\mathcal{T}_{G}}(P, Q)$ a normal map with $P \leq H, Q \leq{ }^{\bar{\phi}} H$ and V a p-permutation $k H$ module, we put

$$
\langle\phi\rangle_{V}^{0}=\left\langle\phi_{\triangleleft}\right\rangle_{\bar{\phi}_{*} V} \cdot \operatorname{Br}_{Q}\left(\left\langle\phi_{\sim}\right\rangle_{V}^{0}\right):\left(\bar{\phi}_{*}(V(P))\right)(Q) \xrightarrow{\sim}\left(\bar{\phi}_{*} V\right)(Q) .
$$

If V is a p-permutation $k G$-module, we put

$$
\langle\phi\rangle_{V}=\left\langle\phi_{\triangleleft}\right\rangle_{V} \cdot \operatorname{Br}_{Q}\left(\left\langle\phi_{\sim}\right\rangle_{V}\right):\left(\bar{\phi}_{*}(V(P))\right)(Q) \xrightarrow{\sim} V(Q) .
$$

This gives an isomorphism of functors from $k H-\operatorname{perm}$ to $k N_{\bar{\phi}_{H}}(\phi(P), Q)-$ perm

$$
\langle\phi\rangle^{0}: \operatorname{Br}_{Q} \bar{\phi}_{*} \operatorname{Br}_{P} \xrightarrow{\sim} \operatorname{Res}_{N_{\bar{\phi}_{H}}(\phi(P), Q)}^{N_{\bar{\phi}_{H_{2}}}(Q)} \operatorname{Br}_{Q} \bar{\phi}_{*} .
$$

and an isomorphism of functors from $k G$ - perm to $k N_{G}(\phi(P), Q)$ - perm

$$
\langle\phi\rangle: \operatorname{Br}_{Q} \bar{\phi}_{*} \operatorname{Br}_{P} \xrightarrow{\sim} \operatorname{Res}_{N_{G}(\phi(P), Q)}^{N_{G}(Q)} \operatorname{Br}_{Q} .
$$

When $V=k \Omega, \Omega$ a G-set, we have a commutative diagram

where

$$
\langle\phi\rangle_{\Omega}:\left(\bar{\phi}_{*} \Omega^{P}\right)^{Q} \xrightarrow[\rightarrow]{\sim} \Omega^{Q}, \omega \mapsto \bar{\phi}^{-1} \omega .
$$

Note that this justifies the claim that $\langle\phi\rangle_{V}$ is an isomorphism for V a permutation module and consequently for V an arbitrary p-permutation module.

We will now check a transitivity property of the isomorphisms constructed above.
Lemma 2.4. Let $\phi \in \operatorname{Hom}_{\tau_{G}}(P, Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{T}_{G}}(Q, R)$ such that ϕ, ψ and $\psi \phi$ are normal maps and let V be a p-permutation $k G$-module. Then, the following diagram is commutative

Proof. Indeed, it is enough to check commutativity for $V=k \Omega$ a permutation module. It follows from the commutativity of the following diagram

The difference between $\langle\phi\rangle$ and $\langle\phi\rangle^{0}$ is is given by the following lemma:
Lemma 2.5. Let $\psi \in \operatorname{Hom}_{\mathcal{T}_{G}}(Q, R)$ be a normal map with $\bar{\psi}=1, g \in G$ and V a p-permutation $k G$-module. Then, the following diagram is commutative

In particular, if $\phi \in \operatorname{Hom}_{\mathcal{T}_{G}}(P, Q)$ is any normal map, then $\langle\phi\rangle_{V}=\operatorname{Br}_{Q}\left(\iota_{\bar{\phi}, V}^{-1}\right) \cdot\langle\phi\rangle_{V}^{0}$.
Proof. Again, it is enough to deal with $V=k \Omega$ a permutation module. Then, the lemma reduces to the commutativity of

For the second part of the lemma, we take $\psi=\phi_{\triangleleft}$ and $g=\bar{\phi}$ in the commutative diagram.

3. A category of sheaves on p-Subgroups complexes

3.1. Definition. Let \mathcal{F} be a subcategory of \mathcal{T}_{G}. We define a category $\mathcal{S}_{\mathcal{F}}$ of "sheaves" on \mathcal{F}.

Its objects are families $\left\{V_{Q},[\phi]\right\}_{Q, \phi}$ where Q runs over the objects of \mathcal{F} and ϕ over the normal maps of \mathcal{F}. Here, V_{Q} is a p-permutation $k N_{G}(Q) / Q$-module and for $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$ normal, [ϕ] is an isomorphism of $k N_{G}(\phi(P), Q)$-modules

$$
[\phi]:\left(\bar{\phi}_{*} V_{P}\right)(Q) \xrightarrow{\sim} \operatorname{Res}_{N_{G}(\phi(P), Q)}^{N_{G}(Q)} V_{Q} .
$$

We require the following two conditions to be satisfied :
For $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, Q)$, we have

$$
\begin{equation*}
[\phi]=\iota_{\bar{\phi}, V_{Q}}^{-1} . \tag{1}
\end{equation*}
$$

Let $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ such that ϕ, ψ and $\psi \phi$ are normal maps. Then, the following diagram should be commutative

For $\mathcal{V}=\left\{V_{Q},[\phi]\right\}$ and $\mathcal{V}^{\prime}=\left\{V_{Q}^{\prime},[\phi]^{\prime}\right\}$ two objects of $\mathcal{S}_{\mathcal{F}}, \operatorname{Hom}_{\mathcal{S}_{\mathcal{F}}}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$ is the set of families $\Lambda=\left\{\lambda_{Q}\right\}_{Q}$, where Q runs over the objects of \mathcal{F}. Here, $\lambda_{Q} \in \operatorname{Hom}_{k N_{G}(Q)}\left(V_{Q}, V_{Q}^{\prime}\right)$. Furthermore, Λ should have the following property : for every normal map $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$, the following diagram is commutative

Thanks to the results of $\S 2.2$, we have a functor

$$
\operatorname{Br}: k G-\operatorname{perm} \rightarrow \mathcal{S}, \quad V \mapsto\left\{V(Q),\langle\phi\rangle_{V}\right\}
$$

where $\mathcal{S}=\mathcal{S}_{\mathcal{T}_{G}}$.
We can now state our main result :
Theorem 3.1. The functor Br induces an equivalence of categories

$$
k G-\operatorname{perm} / k G-\operatorname{proj} \xrightarrow{\sim} \mathcal{S} .
$$

3.2. Some properties of $\mathcal{S}_{\mathcal{F}}$. Let us give a special case of the commutative diagram (2).

Lemma 3.2. Let $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ be two normal maps with $\bar{\psi} \in$ $N_{G}(\phi(P))$. Then, the following diagram is commutative

Proof. Let $\psi^{\prime}=\psi \phi$ and $\phi^{\prime}={ }_{P}\left(\bar{\phi}^{-1} \bar{\psi}^{-1} \bar{\phi}\right)_{P}$. We have $\psi_{\triangleleft} \phi=\psi^{\prime} \phi^{\prime}$. By (1), we have $\left[\phi^{\prime}\right]=\iota_{\bar{\phi}^{\prime}, V_{P}}^{-1}$. We have also $\bar{\psi}_{*} \bar{\phi}_{*} l_{\bar{\phi}^{\prime}, V_{P}}^{-1}=\iota \iota_{\psi}, \bar{\phi}_{*} V_{P}$. The commutativity of the diagram (2) applied to ψ^{\prime} and ϕ^{\prime} gives the commutative diagram

and we obtain the commutativity of the diagram of the lemma since $\langle\psi\rangle_{\bar{\phi}_{*} V_{P}}=\operatorname{Br}_{R}\left(\iota_{\bar{\psi}, \bar{\phi}_{*} V_{P}}^{-1}\right)$. $\langle\psi\rangle_{\bar{\phi}_{*} V_{P}}^{0}$ by Lemma 2.5.

The diagram (3) need be checked only on a generating set:
Lemma 3.3. Let E be a set of normal maps in \mathcal{F} such that every normal map of \mathcal{F} is a product of elements of E and of inverses of invertible elements of E.

Then, the commutativity of the diagram (3) for $\phi \in E$ implies the commutativity for every normal map ϕ of \mathcal{F}

Proof. Let $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$ and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ such that ψ and $\psi \phi$ are normal maps. Then, ϕ is a normal map and the following diagram is commutative

The lemma follows.
We now define a restriction functor from G to $N_{G}(P) / P$.
Let P be an object in \mathcal{F}. We assume ${ }_{P} 1_{Q} \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$ for every Q in \mathcal{F} with $P \triangleleft Q$. Let $\mathcal{F}(P)$ be the subcategory of $\mathcal{T}_{N_{G}(P) / P}$ whose objects are the Q / P where Q is in \mathcal{F} and $P \triangleleft Q, P \neq Q$ and where $\operatorname{Hom}_{\mathcal{F}(P)}(Q / P, R / P)$ is given by the image in $T_{N_{G}(P) / P}(Q / P, R / P)$ of $\operatorname{Hom}_{\mathcal{F}}(Q, R)$.

Let $\mathcal{V}=\left\{V_{Q},[\phi]\right\}$ be an object of $\mathcal{S}_{\mathcal{F}}$. Let $V_{Q / P}^{\prime}=V_{Q}$. For $\phi^{\prime} \in \operatorname{Hom}_{\mathcal{F}(P)}(Q / P, R / P)$, we put $\left[\phi^{\prime}\right]=[\phi]$ where $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ has image ϕ^{\prime} in $\operatorname{Hom}_{\mathcal{F}(P)}(Q / P, R / P)$. It follows from (1) (and from the diagram (2)) that this is independent of the choice of ϕ.

The restriction functor is

$$
\operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}}: \mathcal{S}_{\mathcal{F}} \rightarrow \mathcal{S}_{\mathcal{F}(P)}, \quad\left\{V_{Q},[\phi]\right\} \mapsto\left\{V_{Q / P}^{\prime},\left[\phi^{\prime}\right]\right\}
$$

We denote by $E_{P}: \mathcal{T}_{\mathcal{F}} \rightarrow k N_{G}(P) / P-$ perm the functor sending \mathcal{V} on V_{P}.
The commutative diagram in Lemma 3.2 says that objects can be "glued locally" :
Lemma 3.4. For \mathcal{V} in $\mathcal{S}_{\mathcal{F}}$, we have an isomorphism $\left\{\left[{ }_{P} 1_{Q}\right]\right\}_{Q}: \operatorname{Br} E_{P}(\mathcal{V}) \xrightarrow{\sim} \operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}} \mathcal{V}$. This induces an isomorphism of functors $\operatorname{Br} E_{P} \xrightarrow{\sim} \operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}}$. So, we have a diagram, commutative up to isomorphism :

Proof. Let $\mathcal{V}=\left\{V_{Q},[\phi]\right\}$ in $\mathcal{S}_{\mathcal{F}}$ and $\mathcal{V}^{\prime}=\operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}} \mathcal{V}$. We have $\operatorname{Br}\left(V_{P}\right)=\left\{W_{Q / P},\langle\psi\rangle_{V_{P}}\right\}$ with $W_{Q / P}=V_{P}(Q)$.

Let $\lambda_{Q / P}=\left[{ }_{P} 1_{Q}\right]: W_{Q / P} \xrightarrow{\sim} V_{Q / P}^{\prime}$ and $\Lambda=\left\{\lambda_{Q / P}\right\}$.
Let $\phi={ }_{P} 1_{Q}$ in \mathcal{F} and $\psi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ be two normal maps with $\bar{\psi} \in N_{G}(P)$.
We have a commutative diagram (Lemma 3.2)

This shows that Λ defines a map $\operatorname{Br}\left(V_{P}\right) \rightarrow \mathcal{V}^{\prime}$. This induces an isomorphism between $\mathrm{Br} \cdot E_{P}$ and $\operatorname{Res}_{\mathcal{F}(P)}^{\mathcal{F}}$.
3.3. Proof of Theorem 3.1. Let us first note that $\operatorname{Br}(V)=0$ if V is projective, hence Br induces indeed a functor $\overline{\mathrm{Br}}: k G-\operatorname{perm} / k G-\operatorname{proj} \rightarrow \mathcal{S}$.
Lemma 3.5. The functor $\overline{\mathrm{Br}}$ is fully faithful.
Proof. We have to prove that $\overline{\mathrm{Br}}$ induces an isomorphism

$$
\overline{\operatorname{Hom}}(V, W) \xrightarrow{\sim} \operatorname{Hom}(\operatorname{Br} V, \operatorname{Br} W)
$$

for V and W any p-permutation $k G$-modules.
Thanks to Proposition 2.3, we have a commutative diagram :

So, it is enough to consider the case $W=k$.
Since the modules $k(G / Q), Q$ a p-subgroup of G, generate $k G$ - perm as an additive category closed under taking direct summands, we may assume $V=k(G / Q)$. We may take $Q \neq 1$ since otherwise V is projective.

Now, $\operatorname{Hom}(k G / Q, k) \simeq \overline{\operatorname{Hom}}(k G / Q, k)$ is a one-dimensional vector space, generated by the unique map f between the G-sets G / Q and G / G.

The map $\operatorname{Br}_{Q}(f): V(Q)=k(G / Q)^{Q} \rightarrow k$ is induced by the unique map between the sets $N_{G}(Q) / Q$ and $N_{G}(Q) / N_{G}(Q)$. In particular, it is non-zero, hence $\operatorname{Br}(f) \neq 0$.

Let $\Lambda \in \operatorname{Hom}(\operatorname{Br} k G / Q, \operatorname{Br} k)$. Since $\operatorname{Hom}(V(Q), k)$ is one-dimensional, we have $\lambda_{Q}=$ $\alpha \operatorname{Br}_{Q}(f)$ for some $\alpha \in k$. So, $\Lambda-\alpha \operatorname{Br}(f)$ vanishes on $V(Q)$.

We assume now $\lambda_{Q}=0$. We will prove that $\lambda_{P}=0$ for all P. This is clear if P is not conjugate to a subgroup of Q, since then $V(P)=0$. We will now prove the result for $P \leq Q$ by induction on $[Q: P]$.

Let $P<Q$ and $g \in T_{G}(P, Q)$. Let R be a p-subgroup of G such that $P \triangleleft R \leq Q^{g}$, $P \neq R$. Then, $\left(N_{G}(P) / N_{G}(P) \cap Q^{g}\right)^{R} \neq \emptyset$. Now, λ_{P} and λ_{R} have the same restriction to $\left(N_{G}(P) / N_{G}(P) \cap Q^{g}\right)^{R}$. Consequently, λ_{P} is zero on $\left(N_{G}(P) / N_{G}(P) \cap Q^{g}\right)^{R}$, by induction. By Lemma 2.1, we deduce that $\lambda_{P}=0$.

The first part of following lemma is essentially due to Bouc [Bou1, Bou2] (cf also [Li, Lemma 5.4]).

Lemma 3.6. (i) Let $f: V \rightarrow W$ be a morphism between two p-permutation $k G$-modules such that $B r_{Q}(f)$ is injective for all $Q \neq 1$. Then, there is a morphism $\sigma: W \rightarrow V$ such that σf is a stable automorphism of V. In particular, if V has no projective direct summand, then f is a split injection.
(ii) Let $\Lambda: \mathcal{V} \rightarrow \mathcal{W}$ be a morphism between two objects of \mathcal{S}. Assume for all Q, there is a projective direct summand L_{Q} of the $k N_{G}(Q) / Q$-module V_{Q} such that the restriction of λ_{Q} to L_{Q} is injective and V_{Q} / L_{Q} has no projective direct summand. Then, for all Q, λ_{Q} is a split injection.

Proof. Let us prove part (i) of the lemma. We can assume V has no projective direct summand. Assume G is a p-group.
Let us first consider a morphism $f: V=k(G / Q) \rightarrow W=k(G / R)$ such that $\operatorname{Br}_{Q}(f)$ is injective, where Q and R are non-trivial p-subgroups of G. The module $V(Q)$ is a projective indecomposable $k N_{G}(Q) / Q$-module. Since $W(Q) \neq 0, Q$ is contained in R, up to conjugacy. Without changing W, we can assume $Q \leq R$.

Assume $Q \neq R$. Then, for any $g \in T_{G}(Q, R)$, there is S such that $P \triangleleft S \leq Q^{g}, P \neq S$. So, $k N_{G}(Q) /\left(N_{G}(Q) \cap R^{g}\right)$ is not a projective $k N_{G}(Q) / Q$-module. By Lemma 2.1, $V(Q)$ is not isomorphic to a submodule of $W(Q)$ and we have reached a contradiction.

If $Q=R$, then f becomes invertible in the quotient $\operatorname{End}_{k N_{G}(Q) / Q}(V(Q))$ of the local ring $\operatorname{End}_{k G}(V)$, hence f is invertible.

Let now $f: V \rightarrow W$ be a morphism between two p-permutation modules such that $\mathrm{Br}_{Q}(f)$ is injective for Q non trivial. In order to prove that f is injective, we may assume V is indecomposable, i.e., $V=k(G / Q)$ for some subgroup Q of G. We can assume $Q \neq 1$, otherwise V is projective. Since $V(Q)$ is indecomposable, there is an indecomposable direct summand W^{\prime} of W such that if f^{\prime} is the composition $V \xrightarrow{f} W \rightarrow W^{\prime}$, then $\operatorname{Br}_{Q}\left(f^{\prime}\right)$ is injective. Now, the considerations above show that f^{\prime} is an isomorphism and we are done.

Take now G an arbitrary finite group. Let $U=\operatorname{ker} f$ and let S be a Sylow p-subgroup of G. We know that the inclusion $\operatorname{Res}_{S}^{G} U \rightarrow \operatorname{Res}_{S}^{G} V$ is projective. So, the inclusion $U \rightarrow V$ is projective, hence $U=0$ since we assume V has no projective direct summand. Finally, the short exact sequence $0 \rightarrow V \rightarrow W \rightarrow W / V \rightarrow 0$ splits, since it splits by restriction to S.

Let us come to part (ii) of the lemma.
We prove the result by inverse induction on the order of Q. When Q is a Sylow p-subgroup of G, then $V_{Q}=L_{Q}$, so λ_{Q} is a split injection.

Assume now Q is not a Sylow p-subgroup of G. Consider the restriction $f: M_{Q} \rightarrow W_{Q}$ of λ_{Q}, where $V_{Q}=L_{Q} \oplus M_{Q}$. By induction, $\operatorname{Br}_{R / Q}(f)$ is injective, for all p-subgroups R with $Q \triangleleft R, Q \neq R$. By part (i) of the Lemma applied to $N_{G}(Q) / Q$, we deduce that f is a split injection. Hence, λ_{Q} is a split injection.

Lemma 3.7. Let \mathcal{G} and \mathcal{H} be two full subcategories of \mathcal{T}_{G} closed under inverse inclusion with $\mathcal{G} \subseteq \mathcal{H}$. Let $\mathcal{V}, \mathcal{V}^{\prime} \in \mathcal{S}_{\mathcal{H}}$. Then, the restriction map

$$
\operatorname{Hom}_{\mathcal{S}_{\mathcal{H}}}\left(\mathcal{V}, \mathcal{V}^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{S}_{\mathcal{G}}}\left(\operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{V}, \operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{V}^{\prime}\right)
$$

is surjective.
Proof. It is enough to prove the lemma when \mathcal{H} has one more object, Q, than \mathcal{G}. Let $\lambda \in$ $\operatorname{Hom}_{\mathcal{S}_{\mathcal{G}}}\left(\operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{V}, \operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{V}^{\prime}\right)$.

Assume first there is $g \in G$ such that $Q^{g} \in \mathcal{G}$ and let $\psi={ }_{Q} g_{Q^{g}} \in \operatorname{Hom}_{\mathcal{H}}\left(Q, Q^{g}\right)$. Let $\lambda_{R}^{\prime}=\lambda_{R}$ for $R \neq Q$ and $\lambda_{Q}^{\prime}=\left[\psi^{-1}\right]^{\prime} \lambda_{Q^{g}}[\psi]$. In order to prove that $\left\{\lambda_{R}^{\prime}\right\}$ gives a map between \mathcal{V} and \mathcal{V}^{\prime} (extending λ), it is enough to check commutativity of the diagram (3) for the map ψ, thanks to Lemma 3.3. This is immediate.

Assume now $Q^{g} \notin \mathcal{G}$ for all $g \in G$. Let $f: \operatorname{Br}\left(V_{Q}\right) \rightarrow \operatorname{Br}\left(V_{Q}^{\prime}\right)$ be the restriction of λ to $\mathcal{S}_{\mathcal{H}(Q)}$ (cf Lemma 3.4). By the fullness of Br applied to $N_{G}(Q) / Q$ (Lemma 3.5), there is a map $\lambda_{Q}^{\prime}: V_{Q} \rightarrow V_{Q}^{\prime}$ such that $\operatorname{Br}\left(\lambda_{Q}^{\prime}\right)=f$. Let $\lambda_{R}^{\prime}=\lambda_{R}$ for $R \in \mathcal{G}$. Since every map in \mathcal{H} starting from Q is the composition of a map from Q to R, with Q a strict normal subgroup of R and of a map in \mathcal{G}, Lemma 3.3 shows that $\left\{\lambda_{R}^{\prime}\right\}$ defines a map between \mathcal{V} and \mathcal{V}^{\prime}, extending λ.

We now complete the proof of Theorem 3.1 by showing the essential surjectivity of Br. Let $\mathcal{V} \in \mathcal{S}$. We will prove by induction on the cardinality of $\left\{Q \mid V_{Q} \neq 0\right\}$ that \mathcal{V} is in the image of Br .

For $Q \in \mathcal{T}_{G}$, let L_{Q} be a projective direct summand of V_{Q} such that V_{Q} / L_{Q} has no projective direct summand. We denote by $\alpha_{Q}: V_{Q} \rightarrow L_{Q}$ the canonical surjection.
Let $M=\operatorname{Ind}_{N_{G}(Q)}^{G} L_{Q}$ and $\mathcal{M}=\operatorname{Br} M$. We have $M(Q) \simeq L_{Q}$ by Green's correspondence. Let $\zeta: V_{Q} \xrightarrow{\alpha_{Q}} L_{Q} \xrightarrow{\sim} M(Q)$. Let $\mathcal{H}=\mathcal{T}_{G}$ and \mathcal{G} be the full subcategory of \mathcal{T}_{G} with objects the p-subgroups containing Q. Let $\zeta_{R}^{\prime}=0$ for $R \in \mathcal{G}, R \neq Q$ and $\zeta_{Q}^{\prime}=\zeta$. Then, $\left\{\zeta_{R}^{\prime}\right\} \in$ $\operatorname{Hom}_{\mathcal{S}_{\mathcal{G}}}\left(\operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{V}, \operatorname{Res}_{\mathcal{G}}^{\mathcal{H}} \mathcal{M}\right)$. By Lemma 3.7, there is $\chi \in \operatorname{Hom}_{\mathcal{S}}(\mathcal{V}, \mathcal{M})$ extending $\left\{\zeta_{R}^{\prime}\right\}$.

Let now $V^{\prime}=\bigoplus_{Q \in \mathcal{T}_{G} / G} \operatorname{Ind}_{N_{G}(Q)}^{G} L_{Q}, \mathcal{V}^{\prime}=\operatorname{Br} V^{\prime}$ and $\lambda: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ be the sum of the morphisms constructed for each Q above.

Then, for all Q, the restriction of λ_{Q} to L_{Q} is injective. By Lemma 3.6, (ii), we deduce that λ_{Q} is a split injection for all Q. Let then \mathcal{W} be the cokernel of λ.

Take R with $V_{R}=0$. Then, $V_{Q}=0$ whenever R is contained up to G-conjugation in Q. So, V^{\prime} has no direct summand with vertex R, hence $W_{R}=0$. Let now Q be maximal such that $V_{Q} \neq 0$. Then, $\lambda_{Q}: V_{Q}=L_{Q} \rightarrow\left(\operatorname{Ind}_{N_{G}(Q)}^{G} L_{Q}\right)(Q)$ is an isomorphism. So, $W_{Q}=0$. It follows that $\left\{Q \mid W_{Q} \neq 0\right\}$ is strictly contained in $\left\{Q \mid V_{Q} \neq 0\right\}$. By induction, there is a p-permutation $k G$-module W (without projective direct summand) such that $\mathcal{W}=\mathrm{Br} W$. By fulness of Br (Lemma 3.5), the canonical morphism $\mathcal{V}^{\prime} \rightarrow \mathcal{W}$ comes from a morphism $f: V^{\prime} \rightarrow W$. By Lemma 3.6, (i), dualized, f is a split surjection. Hence, $\operatorname{ker} f$ is a p-permutation $k G$-module and we have an isomorphism $\mathcal{V} \xrightarrow{\sim} \operatorname{Br}(\operatorname{ker} f)$. This finishes the proof of Theorem 3.1.

References

[Bou1] S. Bouc, Résolutions de foncteurs de Mackey, in "Groups, representations : cohomology, group actions and topology", Proc. of Symp. in Pure Math., p. 31-83, vol. 63, AMS, 1998.
[Bou2] S. Bouc, Le complexe de chaînes d'un G-complexe simplicial acyclique, preprint (1998).
[Br] M. Broué, On Scott modules and p-permutation modules : an approach through the Brauer morphism, Proc. Amer. Math. Soc. 93 (1985), 401-408.
[Li] M. Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, preprint (1997).
[Th] J. Thévenaz, " G-algebras and modular representation theory", Oxford University Press, 1995.

