
GLUING p-PERMUTATION MODULES

RAPHAËL ROUQUIER

1. Introduction

We give a “local” construction of the stable category of p-permutation modules : a p-
permutation kG-module gives rise, via the Brauer functor, to a family of p-permutation modules
for kNG(Q)/Q, where Q runs over the non-trivial p-subgroups of G, together with certain iso-
morphisms. Conversely, the data of a compatible family of kNG(Q)/Q-modules comes from a
p-permutation kG-module, unique up to a unique isomorphism in the stable category.

This should be the first half of a paper with a second part devoted to complexes of p-
permutation modules.

2. The Brauer functor

Let G be a finite group and k a field of characteristic p > 0.
Let Q be a p-subgroup of G. We denote by BrQ the Brauer functor BrQ : kG − mod →

kNG(Q) − mod.
For V be a kG-module,

BrQ(V ) = V Q/

(

∑

P<Q

TrQP V
P

)

.

We write also V (Q) for BrQ(V ). For basic results about p-permutation modules and the
Brauer functor, see [Br] and [Th, §27].

Restriction induces a fully faithful functor kNG(Q)/Q−mod → kNG(Q)−mod and we will
identify kNG(Q)/Q− mod with the full subcategory of kNG(Q) − mod of the modules with a
trivial action of Q.

We denote by kG−perm the full subcategory of kG−mod of p-permutation modules. This is
the smallest full additive subcategory of kG−mod closed under direct summands and containing
the permutation modules.

From now on, we will always consider the restriction of the Brauer functor BrQ : kG−perm →
kNG(Q) − perm.

Let Ω be a G-set. The composition γΩ = γQΩ : kΩQ ↪→ (kΩ)Q ³ (kΩ)(Q) is an isomorphism.

It induces an isomorphism of functors γ : k(−)Q
∼
→ BrQ k(−), i.e., there is a diagram of

functors, commutative up to isomorphism :

G− sets //
k(−)

²²
(−)Q

kG− perm

²²
BrQ

NG(Q) − sets //
k(−)

kNG(Q) − perm

The following easy result describes the effect of the Brauer construction on a permutation
module. Let H and L be two subgroups of G. We put TG(L,H) = {g ∈ G|L ≤ Hg}.
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Lemma 2.1. We have

(G/H)L =
⋃

g∈H\TG(L,H)/NG(L)

NG(L)/ (NG(L) ∩Hg)

as NG(L)-sets.

2.1. Tensor product and duality. Let us describe the effect of the functor BrQ on tensor
products and duality.

Let V and W be two p-permutation kG-modules. The inclusion V Q ⊗WQ → (V ⊗W )Q

induces a map αV,W : V (Q) ⊗W (Q) → (V ⊗W )(Q).
Restriction (V ∗)Q = HomkQ(V, k) → (V Q)∗ = Homk(V

Q, k) induces a map βV : V ∗(Q) →
V (Q)∗.

We put ∆G = {(x, x)|x ∈ G} ⊆ G×G.

Lemma 2.2. The maps αV,W and βV are isomorphisms and induce isomorphisms of functors
from kG− perm× kG− perm to kNG(Q) − perm

α : Res
NG(Q)×NG(Q)
∆NG(Q) BrQ×Q

∼
→ BrQ ResG×G

∆G

and from kG− perm to kNG(Q) − perm

β : BrQ(−)∗
∼
→ (−)∗ BrQ .

Proof. In order to prove that αV,W and βV are isomorphisms, it is enough to consider permu-
tation modules. So, let V = kΩ and W = kΨ, where Ω and Ψ are G-sets.

We have an isomorphism tΩ,Ψ : kΩ ⊗ kΨ
∼
→ k(Ω × Ψ) given by ω ⊗ ψ 7→ (ω × ψ) for ω ∈ Ω

and ψ ∈ Ψ.
There is a commutative diagram :

(kΩQ) ⊗ (kΨQ) Â Ä //
**

'

²²
t
ΩQ,ΨQ '

(kΩ)Q ⊗ (kΨ)Q // //

²²
tΩ,Ψ

(kΩ)(Q) ⊗ (kΨ)(Q)

²²
αV,W

k(Ω × Ψ)Q Â Ä //
44

'

(k(Ω × Ψ))Q // // k(Ω × Ψ)(Q)

Hence, αV,W is an isomorphism.

We have an isomorphism dΩ : kΩ
∼
→ (kΩ)∗ given by ω 7→

(
∑

ω′∈Ω aω′ω′ 7→ aω
)

for ω ∈ Ω.
The composition

kΩQ ↪→ (kΩ)Q
dΩ−→ ((kΩ)∗)Q ³ (kΩ)∗(Q)

is an isomorphism. Since the following diagram is commutative

(kΩ)Q //dΩ
((kΩ)∗)Q

²²

// // (kΩ)∗(Q)

²²
βV

kΩQ //
d
ΩQ

'?Â

OO

(kΩQ)∗ (kΩ)(Q)∗oo
γ∗Ω

'

we deduce that βV is an isomorphism.

Let us now check that αV,W and βV induce natural transformations of functors.
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Let V1, V2, W1 and W2 be p-permutation kG-modules and fi ∈ Hom(Vi,Wi). The following
diagram is commutative :

V1(Q) ⊗ V2(Q) //
f1(Q)⊗f2(Q)

²²

αV1,V2

W1(Q) ⊗W2(Q)

²²

αW1,W2

V Q
1 ⊗ V Q

2
//f1⊗f2

Ä _

²²

hhhhPPPPPPPPPPPP

WQ
1 ⊗WQ

2Ä _

²²

66 66mmmmmmmmmmmmm

(V1 ⊗ V2)
Q //f1⊗f2

vvvvnnnnnnnnnnnn

(W1 ⊗W2)
Q

(( ((RRRRRRRRRRRRR

(V1 ⊗ V2)(Q) //
(f1⊗f2)(Q)

(W1 ⊗W2)(Q)

Hence, αV,W induces a morphism of functors : Res
NG(Q)×NG(Q)
∆NG(Q) BrQ×Q → BrQ ResG×G

∆G .

The commutativity of the diagram :

W ∗
1 (Q) //

f∗1 (Q)

²²

βW1

V ∗
1 (Q)

²²

βV1

(W ∗
1 )Q //

f∗1

²²

eeeeJJJJJJJJJ

(V ∗
1 )Q

²²

:: ::uuuuuuuuu

(WQ
1 )∗ //

f∗1
(V Q

1 )∗

W1(Q)∗ //
f1(Q)∗

, ¯

99ttttttttt

V1(Q)∗
R2

ddIIIIIIIII

shows finally that βV induces a morphism of functors : BrQ(−)∗
∼
→ (−)∗ BrQ.

Proposition 2.3. There is a commutative diagram

Hom(V,W )

²²

BrQ

//'
Hom(V ⊗W ∗, k)

²²
BrQ

Hom((V ⊗W ∗)(Q), k)

²²
' βα−1

Hom(V (Q),W (Q)) //'
Hom(V (Q) ⊗W (Q)∗, k)

where the horizontal maps are isomorphisms provided by the adjoint pairs (− ⊗W ∗,− ⊗W )
and (−⊗W (Q)∗,−⊗W (Q)).

Proof. More explicitely, the first horizontal map is the composition

Hom(V,W )
−⊗W ∗

−→ Hom(V ⊗W ∗,W ⊗W ∗)
tr(W )∗
−→ Hom(V ⊗W ∗, k)

where tr(W ) : W ⊗W ∗ → k is the trace map.
Thanks to Lemma 2.2, we have a commutative diagram
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Hom(V,W ) //−⊗W ∗

²²

BrQ

Hom(V ⊗W ∗,W ⊗W ∗)

²²
BrQ

Hom((V ⊗W ∗)(Q), (W ⊗W ∗)(Q))

²²
α−1

Hom(V (Q) ⊗W ∗(Q),W (Q) ⊗W ∗(Q))

²²
β

Hom(V (Q),W (Q))

22
−⊗W ∗(Q)

eeeeeeeeeeeeeeeeeeeeeeeeeeee

//
−⊗W (Q)∗

Hom(V (Q) ⊗W (Q)∗,W (Q) ⊗W (Q)∗)

We will be done if we prove that the image of tr(W ) : W ⊗W ∗ → k under the morphism

Hom(W ⊗W ∗, k)
βα−1 BrQ
−→ Hom(W (Q) ⊗W (Q)∗, k)

is tr(W (Q)). It is enough to prove this for W a permutation module.
Let W = kΩ, Ω a G-set. The claim follows from the commutativity of the diagram

(kΩ ⊗ kΩ)Q //1⊗dΩ
(kΩ ⊗ (kΩ)∗)Q

²²²²

kΩQ ⊗ kΩQ

((

1⊗d
ΩQ

QQQQQQQQQQQQ

) ª

66mmmmmmmmmmmm

(kΩ ⊗ (kΩ)∗)(Q)

²²
βα−1

kΩQ ⊗ (kΩQ)∗ //
γΩ⊗(γ−1

Ω )∗

kΩ(Q) ⊗ kΩ(Q)∗

2.2. Compatibilities. Let us define a category TG. Its objects are the non-trivial p-subgroups
of G. Let P and Q be two non-trivial p-subgroups of G. Then, the set of maps between
P and Q in TG is {PgQ|g ∈ TG(P,Q)}. The composition of maps is the product in G :
(QhR) · (PgQ) = P (hg)R. We put φ̄ = g for φ = PgQ and φ(P ) = gP .

We call a map φ = PgQ in HomTG(P,Q) normal if gP is normal in Q. Every normal map can
be expressed uniquely as the composition of an isomorphism with a normal inclusion φ = φ¢φ∼

where φ∼ = PggP and φ¢ = gP1Q.
An important property of the normal maps is that they generate the category TG, i.e., every

map in TG is a composition of normal maps.

For g ∈ G and H a subgroup of G, we denote by

g∗ : kH − mod
∼
→ kgH − mod

the isomorphism of categories induced by the group isomorphism H
∼
→ gH, x 7→ gx. We also

denote by

g∗ : H − sets
∼
→ gH − sets

the isomorphism of categories induced by this group isomorphism. We have the obvious com-
patiblity with the previous isomorphism of categories.

Let V be a p-permutation kH-module and φ ∈ HomTG(P,Q) invertible. Then, the isomor-

phism of NgH(Q)-modules φ̄∗(V
P )

∼
→ (φ̄∗V )Q, v 7→ v, induces an isomorphism

〈φ〉0V : φ̄∗(V (P ))
∼
→ (φ̄∗V )(Q).
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If H = G, then we have an isomorphism of kG-modules

ιφ̄,V : V 7→ φ̄∗V, v 7→ φ̄v

and an isomorphism of kNG(Q)-modules

〈φ〉V = BrQ(ι−1
φ̄,V

) · 〈φ〉0V : φ̄∗(V (P ))
∼
→ V (Q).

Let now P £ Q and φ = P1Q. The canonical map V Q ↪→ V P
³ V (P ) factors through the

inclusion V (P )Q ↪→ V (P ) to give a map V Q → V (P )Q. Composing with the canonical map
V (P )Q ³ V (P )(Q), we get a map V Q → V (P )(Q) which factors through the canonical map
V Q
³ V (Q). The induced map V (Q) → V (P )(Q) is an isomorphism and we denote the inverse

isomorphism by 〈φ〉V
〈φ〉V : V (P )(Q)

∼
→ V (Q)

Let us summarize the construction by the following commutative diagram :

V P // // V (P )

V Q
?Â

OO

²²²²

// V (P )Q
?Â

OO

²²²²
V (Q) //'

V (P )(Q)

For φ ∈ HomTG(P,Q) a normal map with P ≤ H, Q ≤ φ̄H and V a p-permutation kH-
module, we put

〈φ〉0V = 〈φ¢〉φ̄∗V · BrQ(〈φ∼〉
0
V ) :

(

φ̄∗(V (P ))
)

(Q)
∼
→ (φ̄∗V )(Q).

If V is a p-permutation kG-module, we put

〈φ〉V = 〈φ¢〉V · BrQ(〈φ∼〉V ) :
(

φ̄∗(V (P ))
)

(Q)
∼
→ V (Q).

This gives an isomorphism of functors from kH − perm to kNφ̄H(φ(P ), Q) − perm

〈φ〉0 : BrQ φ̄∗ BrP
∼
→ Res

Nφ̄H
(Q)

Nφ̄H
(φ(P ),Q) BrQ φ̄∗.

and an isomorphism of functors from kG− perm to kNG(φ(P ), Q) − perm

〈φ〉 : BrQ φ̄∗ BrP
∼
→ Res

NG(Q)
NG(φ(P ),Q) BrQ .

When V = kΩ, Ω a G-set, we have a commutative diagram

k(φ̄∗Ω
P )(Q) //

BrQ φ̄∗γ
P
Ω

(φ̄∗(kΩ)(P ))(Q)

²²

〈φ〉Vk(φ̄∗Ω
P )Q

77γQ
φ̄∗ΩP

ooooooooooo

''k〈φ〉Ω OOOOOOOOOOOO

kΩQ //
γQΩ

(kΩ)(Q)

where

〈φ〉Ω : (φ̄∗Ω
P )Q

∼
→ ΩQ, ω 7→ φ̄−1ω.
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Note that this justifies the claim that 〈φ〉V is an isomorphism for V a permutation module
and consequently for V an arbitrary p-permutation module.

We will now check a transitivity property of the isomorphisms constructed above.

Lemma 2.4. Let φ ∈ HomTG(P,Q) and ψ ∈ HomTG(Q,R) such that φ, ψ and ψφ are normal
maps and let V be a p-permutation kG-module. Then, the following diagram is commutative

ψ̄∗

(

(φ̄∗(V (P )))(Q)
)

(R) //
BrR ψ̄∗〈φ〉V

²²
〈ψ〉0

φ̄∗(V (P ))

(ψ̄∗(V (Q)))(R)

²²
〈ψ〉V

((ψ̄φ̄)∗(V (P )))(R) //
〈ψφ〉V

V (R)

Proof. Indeed, it is enough to check commutativity for V = kΩ a permutation module. It
follows from the commutativity of the following diagram

ψ̄∗

(

(φ̄∗(Ω
P ))Q

)R //ω 7→ψ̄φ̄−1ψ̄−1ω

²²
ω 7→ω

(ψ̄∗(Ω
Q))R

²²
ω 7→ψ̄−1ω

((ψ̄φ̄)∗(Ω
P ))R //ω 7→ψ̄φ̄

−1
ω

ΩR

The difference between 〈φ〉 and 〈φ〉0 is is given by the following lemma :

Lemma 2.5. Let ψ ∈ HomTG(Q,R) be a normal map with ψ̄ = 1, g ∈ G and V a p-permutation
kG-module. Then, the following diagram is commutative

(V (Q))(R) //
〈ψ〉V

V (R)

((g∗V )(Q))(R) //
〈ψ〉g∗V

OO

BrR BrQ(ι−1
g,V

)

(g∗V )(R)

OO

BrR(ι−1
g,V

)

In particular, if φ ∈ HomTG(P,Q) is any normal map, then 〈φ〉V = BrQ(ι−1
φ̄,V

) · 〈φ〉0V .

Proof. Again, it is enough to deal with V = kΩ a permutation module. Then, the lemma
reduces to the commutativity of

(ΩQ)R //ω 7→ω
ΩR

((g∗Ω)Q)R //
ω 7→ω

OO

ω 7→g−1ω

(g∗Ω)R

OO

ω 7→g−1ω

For the second part of the lemma, we take ψ = φ¢ and g = φ̄ in the commutative diagram.

3. A category of sheaves on p-subgroups complexes

3.1. Definition. Let F be a subcategory of TG. We define a category SF of “sheaves” on F .

Its objects are families {VQ, [φ]}Q,φ where Q runs over the objects of F and φ over the normal
maps of F . Here, VQ is a p-permutation kNG(Q)/Q-module and for φ ∈ HomF(P,Q) normal,
[φ] is an isomorphism of kNG(φ(P ), Q)-modules

[φ] : (φ̄∗VP )(Q)
∼
→ Res

NG(Q)
NG(φ(P ),Q) VQ.
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We require the following two conditions to be satisfied :
For φ ∈ HomF(Q,Q), we have

[φ] = ι−1
φ̄,VQ

. (1)

Let φ ∈ HomF(P,Q) and ψ ∈ HomF(Q,R) such that φ, ψ and ψφ are normal maps. Then,
the following diagram should be commutative

ψ̄∗

(

(φ̄∗VP )(Q)
)

(R) //
BrR ψ̄∗[φ]

²²
〈ψ〉0

φ̄∗VP

(ψ̄∗VQ)(R)

²²
[ψ]

((ψ̄φ̄)∗VP )(R) //
[ψφ]

VR

(2)

For V = {VQ, [φ]} and V ′ = {V ′
Q, [φ]′} two objects of SF , HomSF

(V ,V ′) is the set of families
Λ = {λQ}Q, where Q runs over the objects of F . Here, λQ ∈ HomkNG(Q)(VQ, V

′
Q). Furthermore,

Λ should have the following property : for every normal map φ ∈ HomF(P,Q), the following
diagram is commutative

(φ̄∗VP )(Q)

²²
[φ]

//
BrQ φ̄∗λP

(φ̄∗V
′
P )(Q)

²²
[φ]′

VQ //
λQ

V ′
Q

(3)

Thanks to the results of §2.2, we have a functor

Br : kG− perm → S, V 7→ {V (Q), 〈φ〉V }

where S = STG .
We can now state our main result :

Theorem 3.1. The functor Br induces an equivalence of categories

kG− perm /kG− proj
∼
→ S.

3.2. Some properties of SF . Let us give a special case of the commutative diagram (2).

Lemma 3.2. Let φ ∈ HomF(P,Q) and ψ ∈ HomF(Q,R) be two normal maps with ψ̄ ∈
NG(φ(P )). Then, the following diagram is commutative

ψ̄∗

(

(φ̄∗VP )(Q)
)

(R) //
BrR ψ̄∗[φ]

²²
〈ψ〉φ̄∗VP

(ψ̄∗VQ)(R)

²²
[ψ]

(φ̄∗VP )(R) //
[ψ¢φ]

VR

Proof. Let ψ′ = ψφ and φ′ = P (φ̄−1ψ̄−1φ̄)P . We have ψ¢φ = ψ′φ′. By (1), we have [φ′] = ι−1
φ̄′,VP

.

We have also ψ̄∗φ̄∗ι
−1
φ̄′,VP

= ιψ̄,φ̄∗VP . The commutativity of the diagram (2) applied to ψ′ and φ′

gives the commutative diagram

(φ̄∗VP )(R)

++
[ψ¢φ]

VVVVVVVVVVVVVVVVVVVVVVVV

//
BrR ιψ̄,φ̄∗VP

((ψ̄φ̄)∗VP )(R)

²²
[ψφ]

VR
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and we obtain the commutativity of the diagram of the lemma since 〈ψ〉φ̄∗VP = BrR(ι−1
ψ̄,φ̄∗VP

) ·

〈ψ〉0
φ̄∗VP

by Lemma 2.5.

The diagram (3) need be checked only on a generating set :

Lemma 3.3. Let E be a set of normal maps in F such that every normal map of F is a product
of elements of E and of inverses of invertible elements of E.

Then, the commutativity of the diagram (3) for φ ∈ E implies the commutativity for every
normal map φ of F

Proof. Let φ ∈ HomF(P,Q) and ψ ∈ HomF(Q,R) such that ψ and ψφ are normal maps. Then,
φ is a normal map and the following diagram is commutative

((ψ̄φ̄)∗VP )(R)

²²

BrR(ψ̄φ̄)∗λP

//
[ψφ]

VR

²²

λR

ψ̄∗

(

(φ̄∗VP )(Q)
)

(R) //
BrR ψ̄∗[φ]

²²
BrR ψ̄∗ BrQ φ̄∗λP

ii 〈ψ〉0
φ̄∗VP

SSSSSSSSSSSSSS

(ψ̄∗VQ)(R)

::
[ψ]

uuuuuuuuuu

²²
BrR ψ̄∗λQ

ψ̄∗

(

(φ̄∗V
′
P )(Q)

)

(R) //
BrR ψ̄∗[φ]′

uu

〈ψ〉0
φ̄∗V

′
P

kkkkkkkkkkkkkk

(ψ̄∗V
′
Q)(R)

$$

[ψ]′

IIIIIIIIII

((ψ̄φ̄)∗V
′
P )(R) //

[ψφ]′

V ′
R

The lemma follows.

We now define a restriction functor from G to NG(P )/P .
Let P be an object in F . We assume P1Q ∈ HomF(P,Q) for every Q in F with P ¢ Q.

Let F(P ) be the subcategory of TNG(P )/P whose objects are the Q/P where Q is in F and
P ¢ Q, P 6= Q and where HomF(P )(Q/P,R/P ) is given by the image in TNG(P )/P (Q/P,R/P )
of HomF(Q,R).

Let V = {VQ, [φ]} be an object of SF . Let V ′
Q/P = VQ. For φ′ ∈ HomF(P )(Q/P,R/P ), we

put [φ′] = [φ] where φ ∈ HomF(Q,R) has image φ′ in HomF(P )(Q/P,R/P ). It follows from (1)
(and from the diagram (2)) that this is independent of the choice of φ.

The restriction functor is

ResFF(P ) : SF → SF(P ), {VQ, [φ]} 7→ {V ′
Q/P , [φ

′]}.

We denote by EP : TF → kNG(P )/P − perm the functor sending V on VP .

The commutative diagram in Lemma 3.2 says that objects can be “glued locally” :

Lemma 3.4. For V in SF , we have an isomorphism {[P1Q]}Q : BrEP (V)
∼
→ ResFF(P ) V. This

induces an isomorphism of functors BrEP
∼
→ ResFF(P ). So, we have a diagram, commutative

up to isomorphism :

SF
//

ResF
F(P )

''EP OOOOOOOOOOOOO
SF(P )

kNG(P )/P − perm

OO

Br
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Proof. Let V = {VQ, [φ]} in SF and V ′ = ResFF(P ) V . We have Br(VP ) = {WQ/P , 〈ψ〉VP } with
WQ/P = VP (Q).

Let λQ/P = [P1Q] : WQ/P
∼
→ V ′

Q/P and Λ = {λQ/P}.

Let φ = P1Q in F and ψ ∈ HomF(Q,R) be two normal maps with ψ̄ ∈ NG(P ).
We have a commutative diagram (Lemma 3.2)

(ψ̄∗VP (Q))(R)

²²
〈ψ〉VP

//
BrR ψ̄∗[φ]

(ψ̄∗VQ)(R)

²²
[ψ]

VP (R) //
[ψ¢φ]

VR

This shows that Λ defines a map Br(VP ) → V ′. This induces an isomorphism between Br ·EP

and ResFF(P ).

3.3. Proof of Theorem 3.1. Let us first note that Br(V ) = 0 if V is projective, hence Br
induces indeed a functor B̄r : kG− perm /kG− proj → S.

Lemma 3.5. The functor B̄r is fully faithful.

Proof. We have to prove that B̄r induces an isomorphism

Hom(V,W )
∼
→ Hom(BrV,BrW )

for V and W any p-permutation kG-modules.
Thanks to Proposition 2.3, we have a commutative diagram :

Hom(V,W ) //'

²²
Br

Hom(V ⊗W ∗, k)

²²
Br

Hom(BrV,BrW ) //'
Hom(Br(V ⊗W ∗),Br k)

So, it is enough to consider the case W = k.
Since the modules k(G/Q), Q a p-subgroup of G, generate kG−perm as an additive category

closed under taking direct summands, we may assume V = k(G/Q). We may take Q 6= 1 since
otherwise V is projective.

Now, Hom(kG/Q, k) ' Hom(kG/Q, k) is a one-dimensional vector space, generated by the
unique map f between the G-sets G/Q and G/G.

The map BrQ(f) : V (Q) = k(G/Q)Q → k is induced by the unique map between the sets
NG(Q)/Q and NG(Q)/NG(Q). In particular, it is non-zero, hence Br(f) 6= 0.

Let Λ ∈ Hom(Br kG/Q,Br k). Since Hom(V (Q), k) is one-dimensional, we have λQ =
αBrQ(f) for some α ∈ k. So, Λ − αBr(f) vanishes on V (Q).

We assume now λQ = 0. We will prove that λP = 0 for all P . This is clear if P is not
conjugate to a subgroup of Q, since then V (P ) = 0. We will now prove the result for P ≤ Q
by induction on [Q : P ].

Let P < Q and g ∈ TG(P,Q). Let R be a p-subgroup of G such that P ¢ R ≤ Qg,
P 6= R. Then, (NG(P )/NG(P ) ∩ Qg)R 6= ∅. Now, λP and λR have the same restriction to
(NG(P )/NG(P )∩Qg)R. Consequently, λP is zero on (NG(P )/NG(P )∩Qg)R, by induction. By
Lemma 2.1, we deduce that λP = 0.

The first part of following lemma is essentially due to Bouc [Bou1, Bou2] (cf also [Li, Lemma
5.4]).
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Lemma 3.6. (i) Let f : V → W be a morphism between two p-permutation kG-modules such
that BrQ(f) is injective for all Q 6= 1. Then, there is a morphism σ : W → V such that
σf is a stable automorphism of V . In particular, if V has no projective direct summand,
then f is a split injection.

(ii) Let Λ : V → W be a morphism between two objects of S. Assume for all Q, there is a
projective direct summand LQ of the kNG(Q)/Q-module VQ such that the restriction of λQ
to LQ is injective and VQ/LQ has no projective direct summand. Then, for all Q, λQ is a
split injection.

Proof. Let us prove part (i) of the lemma. We can assume V has no projective direct summand.
Assume G is a p-group.
Let us first consider a morphism f : V = k(G/Q) → W = k(G/R) such that BrQ(f) is

injective, where Q and R are non-trivial p-subgroups of G. The module V (Q) is a projective
indecomposable kNG(Q)/Q-module. Since W (Q) 6= 0, Q is contained in R, up to conjugacy.
Without changing W , we can assume Q ≤ R.

Assume Q 6= R. Then, for any g ∈ TG(Q,R), there is S such that P ¢ S ≤ Qg, P 6= S.
So, kNG(Q)/(NG(Q)∩Rg) is not a projective kNG(Q)/Q-module. By Lemma 2.1, V (Q) is not
isomorphic to a submodule of W (Q) and we have reached a contradiction.

If Q = R, then f becomes invertible in the quotient EndkNG(Q)/Q(V (Q)) of the local ring
EndkG(V ), hence f is invertible.

Let now f : V → W be a morphism between two p-permutation modules such that BrQ(f)
is injective for Q non trivial. In order to prove that f is injective, we may assume V is
indecomposable, i.e., V = k(G/Q) for some subgroup Q of G. We can assume Q 6= 1, otherwise
V is projective. Since V (Q) is indecomposable, there is an indecomposable direct summand

W ′ of W such that if f ′ is the composition V
f

−→ W ³ W ′, then BrQ(f ′) is injective. Now,
the considerations above show that f ′ is an isomorphism and we are done.

Take now G an arbitrary finite group. Let U = ker f and let S be a Sylow p-subgroup of
G. We know that the inclusion ResGS U → ResGS V is projective. So, the inclusion U → V is
projective, hence U = 0 since we assume V has no projective direct summand. Finally, the
short exact sequence 0 → V → W → W/V → 0 splits, since it splits by restriction to S.

Let us come to part (ii) of the lemma.
We prove the result by inverse induction on the order of Q. When Q is a Sylow p-subgroup

of G, then VQ = LQ, so λQ is a split injection.
Assume now Q is not a Sylow p-subgroup of G. Consider the restriction f : MQ → WQ of

λQ, where VQ = LQ ⊕MQ. By induction, BrR/Q(f) is injective, for all p-subgroups R with
Q ¢ R, Q 6= R. By part (i) of the Lemma applied to NG(Q)/Q, we deduce that f is a split
injection. Hence, λQ is a split injection.

Lemma 3.7. Let G and H be two full subcategories of TG closed under inverse inclusion with
G ⊆ H. Let V ,V ′ ∈ SH. Then, the restriction map

HomSH
(V ,V ′) → HomSG

(ResHG V ,ResHG V ′)

is surjective.

Proof. It is enough to prove the lemma when H has one more object, Q, than G. Let λ ∈
HomSG

(ResHG V ,ResHG V ′).
Assume first there is g ∈ G such that Qg ∈ G and let ψ = QgQg ∈ HomH(Q,Qg). Let λ′R = λR

for R 6= Q and λ′
Q = [ψ−1]′λQg [ψ]. In order to prove that {λ′

R} gives a map between V and V ′

(extending λ), it is enough to check commutativity of the diagram (3) for the map ψ, thanks
to Lemma 3.3. This is immediate.
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Assume now Qg /∈ G for all g ∈ G. Let f : Br(VQ) → Br(V ′
Q) be the restriction of λ to

SH(Q) (cf Lemma 3.4). By the fullness of Br applied to NG(Q)/Q (Lemma 3.5), there is a map
λ′Q : VQ → V ′

Q such that Br(λ′
Q) = f . Let λ′R = λR for R ∈ G. Since every map in H starting

from Q is the composition of a map from Q to R, with Q a strict normal subgroup of R and of
a map in G, Lemma 3.3 shows that {λ′

R} defines a map between V and V ′, extending λ.

We now complete the proof of Theorem 3.1 by showing the essential surjectivity of Br. Let
V ∈ S. We will prove by induction on the cardinality of {Q|VQ 6= 0} that V is in the image of
Br.

For Q ∈ TG, let LQ be a projective direct summand of VQ such that VQ/LQ has no projective
direct summand. We denote by αQ : VQ → LQ the canonical surjection.

Let M = IndGNG(Q) LQ and M = BrM . We have M(Q) ' LQ by Green’s correspondence.

Let ζ : VQ
αQ
−→ LQ

∼
→ M(Q). Let H = TG and G be the full subcategory of TG with objects

the p-subgroups containing Q. Let ζ ′R = 0 for R ∈ G, R 6= Q and ζ ′Q = ζ. Then, {ζ ′R} ∈

HomSG
(ResHG V ,ResHG M). By Lemma 3.7, there is χ ∈ HomS(V ,M) extending {ζ ′R}.

Let now V ′ =
⊕

Q∈TG/G
IndGNG(Q) LQ, V ′ = BrV ′ and λ : V → V ′ be the sum of the morphisms

constructed for each Q above.
Then, for all Q, the restriction of λQ to LQ is injective. By Lemma 3.6, (ii), we deduce that

λQ is a split injection for all Q. Let then W be the cokernel of λ.
Take R with VR = 0. Then, VQ = 0 whenever R is contained up to G-conjugation in Q. So,

V ′ has no direct summand with vertex R, hence WR = 0. Let now Q be maximal such that
VQ 6= 0. Then, λQ : VQ = LQ →

(

IndGNG(Q) LQ
)

(Q) is an isomorphism. So, WQ = 0. It follows
that {Q|WQ 6= 0} is strictly contained in {Q|VQ 6= 0}. By induction, there is a p-permutation
kG-module W (without projective direct summand) such that W = BrW . By fulness of Br
(Lemma 3.5), the canonical morphism V ′ → W comes from a morphism f : V ′ → W . By
Lemma 3.6, (i), dualized, f is a split surjection. Hence, ker f is a p-permutation kG-module

and we have an isomorphism V
∼
→ Br(ker f). This finishes the proof of Theorem 3.1.
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