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Abstract

Let F = (E, p, B; Y ) be a fiber bundle where E, B and Y are con-
nected finite polyhedra. Let f : E → E be a fiber-preserving map and
A ⊆ E a closed, locally contractible subset. We present necessary and
sufficient conditions for A and its subsets to be the fixed point sets of
maps fiber-homotopic to f . The necessary conditions correspond to those
introduced by Schirmer in 1990 but, in the fiber-preserving setting, ho-
motopies are fiber-preserving. Those conditions are shown to be sufficient
in the presence of additional hypotheses on the bundle and on the map f .
The hypotheses can be weakened in the case that f is fiber homotopic to
the identity.
Subject Classification 55M20; 55R10

1 Introduction

Let f : X → X be a self-map of a compact, connected polyhedron.
In [10], Schirmer presented necessary and sufficient conditions for a
subset A of X to be the set of fixed points Fix(g) of some map g
homotopic to f . Her results were extended to more general spaces
and to maps of pairs in [11]. The purpose of this paper is to inves-
tigate Schirmer’s problem in the setting of fiber-preserving maps of
bundles.
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Schirmer defined a subset A of X to satisfy condition (C1) for a
map f : X → X if there exists a homotopy HA : A × I → X from
f |A, the restriction of f to A, to the inclusion i : A →֒ X. Condition
(C2) is satisfied if for every essential fixed point class F of f there
exists a path α : I → X with α(0) ∈ F, α(1) ∈ A and

{α(t)} ∽ {f ◦ α(t)} ∗ {HA(α(1), t)},

where the symbol ∽ denotes homotopy of paths with endpoints fixed
and ∗ the path product.

Schirmer showed that (C1) and (C2) are both necessary condi-
tions for realizing A as the fixed point set of a map g homotopic
to f : X → X ([10], Theorem 2.1). She then invoked the notion of
by-passing ([9], Definition 5.1) to prove a sufficiency theorem ([10]
Theorem 3.2) using (C1) and (C2). A subset A ⊆ X can be by-
passed in X if every path in X with endpoints in X−A is homotopic
relative to the endpoints to a path in X − A.

A topological pair (X, A) will be called a suitable pair if X is a
finite polyhedron with no local cut points and A is a closed, locally
contractible subspace of X such that X − A is not a 2-manifold
and A can be by-passed in X. The following is a restatement of
Theorem 3.5 of [11] in a form that is convenient for our purposes. It
demonstrates that the hypotheses for a suitable pair (X, A) makes
it a suitable setting in which to realize sets as fixed point sets.

Theorem 1.1. Let (X, A) be a suitable pair and let f : X → X be
a map such that A satisfies (C1) and (C2) for f . If Z is a closed
subset of A that intersects every component of A, then there exists
a map g homotopic to f such that Fix(g) = Z.

We will use the term bundle F = (E, p, B; Y ) in the sense of [2].
Thus F consists of a map p : E → B, an open cover {Uα} of B and
a local trivialization consisting of homeomorphisms φα : Uα × Y →
p−1(Uα) such that pφα = π where π : Uα ×Y → Uα is the projection
map.

A map f : E → E is fiber-preserving with respect to F if e1, e2 ∈ E
with p(e1) = p(e2) implies pf(e1) = pf(e2). Thus f induces a map
f̄ : B → B such that f̄p = pf . Moreover, if f̄(b) = b, then the
restriction of f to p−1(b) is a map fb : p−1(b) → p−1(b). A homotopy
H : E × I → E is fiber-preserving if each map ht : E → E defined
by ht(e) = H(e, t), for t ∈ I, is fiber-preserving, and then h0 is said
to be fiber homotopic to h1, written h0 ⋍F h1. A fiber homotopy
H : E × I → E induces a homotopy H : B × I → B.

Given a bundle F = (E, p, B; Y ) and a fiber-preserving map
f : E → E we will investigate conditions on a locally contractible
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subset A ⊆ E so that there is a map g : E → E fiber homotopic to f
with Fix(g) = A. We next present a simple example in which A is
the fixed point set of a map g that is homotopic to a fiber-preserving
map f : E → E but A cannot be the fixed point set of any map that
is fiber homotopic to f . This example illustrates the fact that the
characterization of fixed point sets for a homotopy class becomes
significantly different in the fiber-preserving setting.

Example 1.1. Consider the fiber space F = (E, p, B) in which E =
S1×S1 = T 2, the 2-dimensional torus, B = S1 and p : E → B is the
projection map onto the first coordinate. We represent points of T 2

as pairs (ei2πs, ei2πt) and define a fiber-preserving map f : T 2 → T 2

by
f(ei2πs, ei2πt) = (ei2πs, ei2π(3t)).

Let A = S1 × {1}. The map g : T 2 → T 2 defined by

g(ei2πs, ei2πt) = (ei2π(s+t−t2), ei2π(3t)).

is homotopic to f and Fix(g) = A. However, any fiber-preserving
map that is fixed on A must take each fiber to itself. If such a map
were fiber homotopic to f , then its degree on each fiber would be
the same as that of f , that is three, and therefore it must have at
least two fixed points on each fiber, so A could not be the entire
fixed point set.

In the next section, we present the fiber-preserving analogues of
Schirmer’s conditions (C1) and (C2) and show that, given a fiber-
preserving map f : E → E of a bundle F, they are necessary condi-
tions on a subset A of E for the existence of a map g fiber homotopic
to f such that Fix(g) = A. Section 3 is devoted to bundle construc-
tions that we use in Section 4 to obtain sufficient conditions for the
existence of such a map g. In Section 5 we discuss another approach
to sufficiency that applies to a class of fiber deformations, that is,
maps fiber homotopic to the identity.

We thank Ed Fadell, of whom the first author is a student and the
second a grand-student, for sharing with us his insights concerning
the topology of bundles. We also thank the referee of the paper who
wrote a thorough and thought-provoking report.

2 Necessary Conditions

Throughout the paper, we will assume that, for the bundle F =
(E, p, B; Y ), the spaces E, B and Y are connected finite polyhedra.
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We give here two conditions, analogous to Schirmer’s conditions
(C1) and (C2), that any subset A of the total space E must satisfy if
we wish to realize A as the fixed point set of a map fiber homotopic
to a given fiber-preserving map f : E → E. Later we will show that
they are sufficient when appropriate hypotheses are added.

Definition. We say that A satisfies conditions (C1F) and (C2F) for
a given fiber-preserving map f : E → E if the following are satisfied:

(C1F) There exists a fiber-preserving homotopy HA : A × I → E
from f |A to the inclusion i : A →֒ E,

(C2F) for every essential fixed point class F of f , there exists a path
α : I → E with α(0) ∈ F, α(1) ∈ A and

{α(t)} ∼ {f ◦ α(t)} ∗ {HA(α(1), t)},

where HA is the fiber-preserving homotopy from (C1F).

Thus, for both conditions, the only change is that the homotopy
HA must be fiber-preserving.

Theorem 2.1. (Necessity) Let F = (E, p, B; Y ) be a bundle where
E, B and Y are connected finite polyhedra. Let f : E → E be a
fiber-preserving map and let A be a subspace of E. If there exists a
map g fiber-homotopic to f with Fix(g) = A, then A satisfies (C1F)
and (C2F) for f .

Proof. Let H : E × I → E denote the fiber-preserving homotopy
from f to g and let HA = H|A be the restriction of H to A. To
verify (C1F), we must show that HA is a fiber-preserving homotopy
from f |A to i : A →֒ E. It is clear that HA is a homotopy from f |A
to i. To see that it is also fiber-preserving, recall that since H is
fiber-preserving, we have

p ◦ H = H ◦ (p × id)

for H : B × I → B. Thus by restricting to A,

p ◦ H|A = H ◦ (p × id)|(A×I)

⇒ p ◦ HA = H ◦ (p|A × id),

and we see that (C1F) holds.
To verify (C2F), choose any essential fixed point class F of f .

Then there exists a unique essential fixed point class G of g that is
H-related to F. In particular, we can find a path α : I → E with
α(0) ∈ F, α(1) ∈ G and
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{α(t)} ∼ {H(α(t), t)}

∼ {H(α(t), 0)} ∗ {H(α(1), t)}

= {f ◦ α(t)} ∗ {HA(α(1), t)},

where the equality follows from the definitions of H and HA.

The following lemma provides a version of condition (C2) on the
base space B that we will use in the next section.

Lemma 2.1. Let F = (E, p, B; Y ) be a bundle where E, B and Y
are connected finite polyhedra and let f : E → E be a fiber-preserving
map. Suppose A ⊆ E satisfies (C1F) and (C2F) for f . Then for
every essential fixed point class F of f there exists a path ᾱ : I → B
with ᾱ(0) ∈ p(F), ᾱ(1) ∈ p(A) and

{ᾱ(t)} ∽ {f̄ ◦ ᾱ(t)} ∗ {HA(p ◦ α(1), t)}.

Proof. Choose any essential fixed point class F of f . From (C2F),
there exists a path α : I → E with α(0) ∈ F, α(1) ∈ A and

{α(t)} ∼ {f ◦ α(t)} ∗ {HA(α(1), t)}.

Since f and HA are both fiber-preserving, we have

{p ◦ α(t)} ∽ {p ◦ f ◦ α(t)} ∗ {p ◦ HA(α(1), t)}

= {f̄ ◦ p ◦ α(t)} ∗ {HA(p ◦ α(1), t)},

from the definitions of f̄ and H̄ . Setting ᾱ = p ◦ α, we obtain

{ᾱ(t)} ∽ {f̄ ◦ ᾱ(t)} ∗ {HA(p ◦ α(1), t)}.

3 The Construction Over B − p(A)

For any self-map f on a compact, connected polyhedron, a set µ ⊆
Fix (f) is called a set of essential representatives of f if µ contains
exactly one point from every essential fixed point class of f ([3],
Definition 4.1).

Definition. ([4], Def. 6.1) Let f be a fiber-preserving map for F =
(E, p, B; Y ). The fiberwise Nielsen number NF(f, p) of f is defined
by

NF(f, p) =
∑

b∈µ

N(fb),

where µ is any set of essential representatives of f̄ .
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The purpose of this section is to prove

Theorem 3.1. Let F = (E, p, B; Y ) be a bundle where E, B and Y
are connected finite polyhedra and let f : E → E be a fiber-preserving
map. Suppose A is a closed subset of E such that (B, p(A)) is a
suitable pair and A satisfies (C1F) and (C2F) for f , then there exists
a map g : E → E fiber-homotopic to f such that

A ⊆ Fix(g) ⊆ p−1(p(A))

and Fix(ḡ) ∩ (B − p(A)) is finite.

Proof. First let us consider the case when A = ∅. As (C2F) holds
for A, and no essential fixed point class can be connected to ∅ by
a path, we know that N(f) = 0. Consequently, NF(f, p) = 0 ([4],
Proposition 7.3(1)). Next observe that the base space B satisfies
the hypotheses of Theorem 5.3 of [6]. Thus, there exists a map ḡ
homotopic to f̄ with N(f̄ ) fixed points. This implies that the fiber
map f is fiber homotopic to a map with NF (f, p) = 0 fixed points
([4], Theorem 8.2), which concludes the proof for A = ∅.

Suppose A 6= ∅, then p(A) is a nonempty closed subset of B. If
we let HA : A × I → E denote the fiber-preserving homotopy from
(C1F), then the induced map HA : p(A) × I → B is a homotopy
from f̄ |p(A) to ip(A) : p(A) →֒ B. Thus, f̄ satisfies condition (C1)
for p(A). We will prove the theorem in three steps.

Step 1. We will show that there exists a homotopy H : B×I → B,
extending HA, from f̄ to a map ū : B → B such that

(i) Fix (ū) = p(A) ∪ {b1, b2, . . . , br},

(ii) each bj forms an essential fixed point class of ū with the prop-
erty that {bj} is not H-related to any essential fixed point class
of f̄ that lies in the image under p of any essential fixed point
class of f .

Consider any essential fixed point class F of f̄ satisfying F = p(F)
for some essential fixed point class F of f . The map f̄ satisfies (C2)
for p(A) with respect to this class F by Lemma 2.1.

We can apply the homotopy extension property to extend HA

to a homotopy H1: B × I → B and define a map ū1 : B → B by
ū1(x) = H1(x, 1). By the proof of Theorem 4.1 of [9], there exists
a star cover K of p(A) and a map ū2 homotopic to ū1 such that
Fix(ū2) ∩ (St(p(A)) − p(A)) = ∅, the fixed point set of u2 contains
p(A) and ū2 is fix-finite on B−St(p(A)).
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By the proof of Lemma 3.1 of [10], we can find a map ū : B → B
homotopic to ū2 (and hence homotopic to f̄) with the property that
p(A) ⊆ Fix ū and every point bj ∈ Fix(ū)− p(A) forms an essential
fixed point class {bj} of ū. Let H : B×I → B denote the homotopy
from f̄ to ū. Then H extends HA by the proof of Lemma 3.1 of [10].
Further, every bj ∈ Fix(ū) − p(A) is H-related to an essential fixed

point class F of f̄ .
Now if this F lies in the image under p of an essential fixed point

class F of f , then we have ᾱ as in Lemma 2.1

{ᾱ(t)} ∽ {f̄ ◦ ᾱ(t)} ∗ {HA(ᾱ(1), t)}

∽ {H(ᾱ(t), 0)} ∗ {H(ᾱ(1), t)}

∽ {H(ᾱ(t), t)},

because H extends HA.
Then by H-relatedness, ᾱ(1) ∈ {bj}. Since bj is the only fixed

point in its class, ᾱ(1) = bj . But ᾱ(1) ∈ p(A), contradicting our
assumption that bj /∈ p(A). Thus, there are no points bj ∈ Fix(ū)−
p(A) that are H-related to p(F) for any essential fixed point class F

of f . This completes Step 1.

Step 2. We will show that f is fiber homotopic to a map v : E →
E with Fix(v) ⊆ p−1(p(A)).

By the homotopy lifting property, we can find a fiber-preserving
homotopy H : E × I → E lifting H where for each e ∈ E, H(e, 0) =
f(e). We define u(e) = H(e, 1). Then u maps every fiber in
p−1(Fix(ū)) to itself and moves every other fiber in E. In particular,

Fix(u) ⊆ p−1(Fix(ū)) = p−1

(

p(A) ∪
r
⋃

j=1

bj

)

.

For each point bj ∈ Fix(ū) − p(A), consider the restriction of u to
p−1(bj) which we denote by ubj

: p−1(bj) → p−1(bj). We will show
that N(ubj

) = 0. To obtain a contradiction, we suppose there is an
essential fixed point class of ubj

and choose any point ebj
∈ p−1(bj)

lying in this class. By the construction in Step 1, p(ebj
) = bj is

an essential fixed point class of ū. This implies that ebj
must also

lie in an essential fixed point class of u ([13], Theorem 4.1). As
u is fiber-homotopic to f , this essential fixed point class must be
H-related to an essential fixed point class of f . But this implies
that their images under p are H-related, contradicting Step 1 (ii)
for bj . Therefore N(ubj

) = 0 and hence ubj
is homotopic to a fixed

7



point free map on the fiber ([6], Theorem 5.3). Denote this map by
vbj

: p−1(bj) → p−1(bj).
We wish to extend the homotopy between the ubj

and vbj
to the

total space E. We consider the map G : E×{0}∪(p−1(Fix(ū))×I →
E defined by G(e, 0) = u(e), G(e, t) = u(e) if p(e) ∈ A and, on
p−1(bj), let G(e, t) be the homotopy from ubj

to vbj
. Then, by the

fiber homotopy extension theorem ([1], Theorem 2.1), we can extend
G to a homotopy G : E × I → E. The map v : E → E is defined
by v(e) = G(e, 1). We note that, by construction, the map of B
induced by v is ū.

Step 3. We will show that f is fiber-homotopic to a map g : E →
E with A ⊆ Fix(g) ⊆ p−1(p(A)).

Since f |A ⋍F iA from (C1F) and v ⋍F f , we can construct
a fiber-preserving homotopy J : A × I → E from v|A to iA. For
j = 1, . . . , r and e ∈ p−1(bj), define J(e, t) = vbj

(e) for all t. With
another application of the fiber homotopy extension theorem, we
extend J to a homotopy H : E × I → E satisfying H(e, 0) = v(e)
for any e ∈ E. Define the map g : E → E by g(e) = H(e, 1) for
e ∈ E.

Observe that g|A = iA by construction, thus, A ⊆ Fix(g). Also,
as all homotopies have been fiber-preserving, and as all fixed fibers
outside A have no fixed points, Fix(g) ⊆ p−1(p(A)).

Corollary 3.1. Let F = (E, p, B; Y ) be a bundle where E, B and
Y are finite polyhedra. Suppose A is a closed subset of E such that
p−1(p(A)) = A and (B, p(A)) is a suitable pair. If A satisfies (C1F)
and (C2F) for a fiber-preserving map f : E → E, then there exists a
map g : E → E fiber-homotopic to f such that Fix(g) = A.

4 Sufficient Conditions

The difficulty in making constructions in bundles comes from the
fact that, if Uα and Uβ are in the locally trivializing cover of B,
then p−1(Uα ∩ Uβ) has two different trivializations given by restric-
tions of φα and φβ. Thus, for instance, local cross-sections may not
combine into a global cross-section, as obstruction theory demon-
strates. In the extensive literature of the fixed point theory of a
fiber-preserving map f : E → E, it has been customary to first ho-
motope f̄ : B → B to a map with finitely many fixed points and
then use the homotopy lifting property to produce a map that is
fiber homotopic to f and can have fixed points in only finitely many
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fibers. Neighborhoods of those isolated fibers can be given trivial-
izations without concern for the overlapping trivialization problem
that occurs in constructing cross-sections. Since, for the problem of
realizing a subset A of X as the fixed point set of a map homotopic
to a given fiber-preserving map we cannot change A, we need to
impose an appropriate condition. Of course the requirement that
p(A) is finite would allow us to proceed, and that is an interesting
special case, but we can employ a less restrictive condition.

Let F = (E, p, B; Y ) be a bundle, so we have an open cover {Uα}
of B and homeomorphisms φα : Uα ×Y → p−1(Uα) such that pφα =
π. A topological pair (E, E0) is a bundle pair (see [2], page 440)
with respect to the bundle F = (E, p, B; Y ) if there is a nonempty
subspace Y0 of Y such that the restriction of each local trivialization
φα of F to Uα × Y0 is a homeomorphism onto p−1(Uα) ∩ E0. Thus
we have a bundle F0 = (E0, p, B; Y0) with respect to the same cover
{Uα} and the restrictions of the φα.

Lemma 4.1. Let (F, F0) = ((E, E0), p, B; (Y, Y0)) be a bundle pair
where E, B and Y are connected finite polyhedra, E0 is a closed,
locally contractible subset of E and B is contractible. Let f : E → E
be a fiber-preserving map such that pf = p, that is, f maps each fiber
to itself, and E0 ⊆ Fix(f). Suppose (Y, Y0) is a suitable pair and E0

intersects every essential fixed point class of fb0 : p−1(b0) → p−1(b0)
for some b0 ∈ B. If (E0, Z) is a bundle pair such that Z is a
closed subset of E0 that intersects all of the components of E0, then
there exists a map g : E → E that is fiber homotopic to f such that
Fix(g) = Z.

Proof. Since a bundle with contractible base is trivial ([12], Cor.
11.6, page 53), we have a homeomorphism φ : B × Y → E such
that φ(B × Y0) = E0 and pφ = π. Define f ∗ = φ−1fφ : B × Y →
B × Y and note that πf ∗ = π. Thus we may write f ∗ in the form
f ∗(b, y) = (b, f ∗

b (y)). Since B is contractible, there is a homotopy
K : B × I → B such that, for all b ∈ B, we have K(b, 0) = b and
K(b, 1) = b′, for some b′ ∈ B. Define U∗ : (B × Y ) × I → B × Y by

U∗((b, y), t) =

{

(b, f ∗

K(b,2t)(y)) 0 ≤ t ≤ 1
2

(b, f ∗

K(b0,2−2t)(y)) 1
2
≤ t ≤ 1,

where, by hypothesis, b0 ∈ B has the property that every essential
fixed point class of fb0 is intersected by E0. Then U∗((b, y), 0) =
(b, f ∗

b (y)) = f ∗(b, y) and U∗((b, y), 1) = (b, f ∗
b0

(y)) so f ∗ is fiber
homotopic to id × f ∗

b0
, where id denotes the identity map of B.

If (b, y) ∈ B × Y0, then φ(b, y) ∈ E0 so E0 ⊆ Fix(f) implies
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that f ∗(b, y) = (b, y) and thus B × Y0 ⊆ Fix(f ∗). In particular,
Y0 ⊆ Fixf ∗

b for each b ∈ B, and thus Y0 ⊆ Fix(f ∗
b0

). By the com-
mutativity property of the fixed point index, φ−1 determines a one-
to-one correspondence between the essential fixed point classes of
fb0 and those of f ∗

b0
(see [7], page 20). By hypothesis, each essen-

tial class of fb0 is intersected by E0 and thereby also intersected by
E0 ∩ p−1(b0). Therefore, since φ−1(E0 ∩ p−1(b0)) = b0 × Y0, the one-
to-one correspondence implies that Y0 intersects all essential fixed
point classes of f ∗

b0
.

Thus, by Theorem 4.2(ii) of [10], Y0 satisfies conditions (C1) and
(C2) for f ∗

b0
. For the bundle pair (F0, Z) = ((E0, Z), p, B; (Y0, ζ)),

the set Z intersects every component of E0 by hypothesis and E0 is
homeomorphic to B × Y0, so φ−1(Z) intersects every component of
b0 ×Y0 and hence ζ intersects every component of Y0. Therefore the
hypotheses of Theorem 1.1 are satisfied and there is a map g∗

b0
: Y →

Y , homotopic to f ∗
b0

by a homotopy we denote by V ∗ : Y × I → Y ,
such that Fix(g∗

b0
) = ζ . Define H∗ : (B × Y ) × I → B × Y by

H∗((b, y), t) =

{

U∗((b, y), 2t) 0 ≤ t ≤ 1
2

(b, V ∗(y, 2 − 2t)) 1
2
≤ t ≤ 1.

Thus f ∗ is fiber homotopic to id×g∗
b0

where, we note, Fix(id×g∗
b0

) =
B × ζ . Now define H : E × I → E by

H(e, t) = φ(H∗(φ−1(e), t))

then H(e, 0) = f(e) and, for g defined by g(e) = H(e, 1), we have
Fix(g) = φ(B × ζ) = Z.

The requirement that Z be a bundle allows us to apply Theorem
1.1 to obtain a homotopy on a single fiber and then extend that
homotopy to all of E. The restrictions on Z are otherwise very mild
since it need only be a closed subset of E0 that intersects all of its
components.

In order to take advantage of the local product structure of bun-
dles yet allow our fixed point sets sufficient generality to include
a variety of examples, we will generalize the bundle pair concept.
We will use the concept of the restriction of F = (E, p, B; Y ) to
W ⊆ B which is defined to be the bundle F|W = (p−1(W ), p, W ; Y )
where the local trivialization φα : (Uα ∩ W ) × Y → p−1(Uα ∩ W )
is the restriction of φα (compare [5], Def. 5.1, page 17). We will
say that a subset A of E is a bundle subset of the bundle F if,
for each component p(A)j of p(A), the pair (p−1(p(A)j), Aj), where
Aj = A∩p−1(p(A)j), is a bundle pair with respect to the restriction
bundle F|p(A)j .
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Note that the definition of bundle subset allows for the possibil-
ity that, for the various components of p(A)j , there may be differ-
ent subbundle fibers Yj ⊆ Y . Example 4.6 of [4] describes fiber-
preserving maps whose fixed point sets are of this type. The bundle
is the standard fibration p : K2 → S1 of the Klein bottle over the
circle. Given an odd integer r and an integer q, a map f is defined
with the property that Fix(f̄) consists of |r−1| points . In the fiber
over half the points of Fix(f̄), the map f has |1 − q| fixed points
whereas, in the fiber over every one of the other points of Fix(f̄),
the number of fixed points of f is |1 + q|.

Theorem 4.1. Let F = (E, p, B; Y ) be a bundle where E, B and Y
are connected finite polyhedra, let f : E → E be a fiber-preserving
map and let A be a closed, locally contractible subset of E that is a
bundle subset of E such that each component p(A)j of p(A) is con-
tractible and (B, p(A)) and (Y, Yj), for all subbundle fibers Yj of A,
are suitable pairs. Suppose A satisfies (C1F) and (C2F) for f and A
intersects every essential fixed point class of fbj

: p−1(bj) → p−1(bj)
for at least one bj in each component p(A)j. If Z is a closed bundle
subset of A that intersects every component of A, then there exists a
map g : E → E that is fiber homotopic to f such that Fix(g) = Z.

Proof. By Theorem 3.1, we may assume that

A ⊆ Fix(f) ⊆ p−1(p(A))

and f̄ : B → B has a finite set F of fixed points on B − p(A). By
the proof of the same theorem, we may also assume A 6= ∅. Let
fj : p−1(p(A)j) → p−1(p(A)j) be the restriction of f and note that
pfj = p. Since the hypotheses of Lemma 4.1 are satisfied for the
bundle pairs (p−1(p(A)j), Aj) and (Aj , Zj), where Zj = Z∩Aj , there
is a fiber-preserving homotopy Hj : p−1(p(A)j) × I → p−1(p(A)j)
such that Hj(e, 0) = fj(e) and, for gj defined by gj(e) = Hj(e, 1),
we have Fix(gj) = Zj. Let

H : E × {0} ∪ (p−1(F ) ∪ p−1(p(A))) × I → E

be defined by

H(e, t) =

{

f(e) t = 0 or p(e) ∈ F

Hj(e, t) p(e) ∈ p(A)j

By the fiber homotopy extension theorem, H can be extended to a
map G : E × I → E such that for each t, pG(e, t) = f̄p(e). Defining
g : E → E by g(s) = G(e, 1) gives us a map that is fiber homotopic
to f and Fix(g) = Z.
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Corollary 4.1. Let F = (E, p, B; Y ) be a bundle where E, B and
Y are finite polyhedra, let f : E → E be a fiber-preserving map and
let A be a closed, locally contractible subset of E such that p(A) =
{b1, . . . , br} and (B, p(A)) and all (p−1(bj), Aj) are suitable pairs.
Suppose A satisfies (C1F) and (C2F) for f and Aj intersects every
essential fixed point class of fbj

: p−1(bj) → p−1(bj), for j = 1, . . . , r.
If Z is a closed subset of A that intersects every component of A,
then there exists a map g : E → E that is fiber-homotopic to f such
that Fix(g) = Z.

5 Fiber deformations

For S a subset of a space X, we introduce the notation Sc to de-
note the closure of the complement X − S of S. For a bundle pair
(F, F0) = ((E, E0), p, B; (Y, Y0)), we define the corresponding com-
plement bundle Fc

0 = (Ec
0, pc, B; Y c

0 ) where pc is the restriction of p.
Restricting φα gives the local trivialization Uα ×Y c

0 → p−1
c (Uα) that

makes Fc
0 a bundle with respect to the cover {Uα} of B that was

used for both F and F0.
We will say that a bundle pair (F, F0) has trivial complement if

the corresponding complement bundle Fc
0 is trivial, that is, there

is a homeomorphism φ : B × Y c
0 → Ec

0 such that pcφ = π. The
bundle pair (F, F0) has trivial complement if F is a trivial bundle,
but bundle pairs with trivial complement are not limited to trivial
bundle pairs.

For an example where neither F nor F0 is trivial but they have
trivial complement, let the Klein bottle K2 be represented as the
quotient space of [−1, 1] × [−1, 1] under the equivalence relation
(s,−1) ∼ (s, 1) and (−1, t) ∼ (1,−t). Then projection on the first
factor gives a nontrivial bundle F0 = (E0 = K2, p, S1; S1). Now
represent the torus T 2 = S1 × S1 as [−1, 1] × [−1, 1] under the
equivalence relation (s,−1) ∼ (s, 1) and (−1, t) ∼ (1, t). Let E be
the space obtained by imposing on the disjoint union of T 2 and K2

the equivalence relation that [s, t] ∈ T 2 is equivalent to [s′, t′] ∈ K2

if and only if s = s′ and t = t′ = 0. Projection on the first factor
gives a nontrivial bundle F = (E, p, S1; S1 ∨ S1) such that (F, F0) is
a bundle pair which has trivial complement because Fc

0 is just the
projection of T 2 to S1.

We will generalize this example, for later use, as follows. Let F0 =
(E0, p, B; Y0) be a nontrivial bundle with a cross-section σ : B → E0,
that is, pσ : B → B is the identity map. For instance, F0 could
be the tangent sphere bundle of a differentiable manifold B that
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is of Euler characteristic zero so that it has a nonvanishing vector
field. To define E, take the disjoint union of E0 and B × Q, for
some space Q, and choose q0 ∈ Q. The space E is obtained by
identifying σ(b) and (b, q0) for each b ∈ B and extending p to E by
projecting B × Q to B. Thus we obtain the bundle pair (F, F0) =
((E, E0), p, B; (Y0∨Q, Y0)) which has trivial complement because Fc

0

is the projection of B × Q onto B.
A finite polyhedron X is 2-dimensionally connected if for any two

maximal simplices s, s′ of X of dimension at least two, there is a set
s1, . . . , sk of maximal simplexes such that s = s1, s

′ = sk and the
dimension of sj ∩ sj+1 is at least one, for each j = 1, . . . , k−1. By a
fiber deformation of a bundle F = (E, p, B; Y ) we mean a map that
is fiber homotopic to the identity map of E.

Lemma 5.1. Let (F, F0) = ((E, E0), p, B; (Y, Y0)) be a bundle pair
with trivial complement where E, B and Y are connected finite poly-
hedra, E0 is a closed, locally contractible subset of E and Y c

0 is a
2-dimensionally connected polyhedron. Then there exists a fiber de-
formation g : E → E such that Fix(g) = E0.

Proof. Since Y c
0 is 2-dimensionally connected, by Theorem 4.1

of [10], there is a deformation g∗ : Y c
0 → Y c

0 such that Fix(g∗) =
bd(Y0) where bd denotes the boundary. By hypothesis, there is
a homeomorphism φ : B × Y c

0 → Ec
0 such that pcφ = π. Define

g0 : Ec
0 → Ec

0 by g0(e) = φ((id × g∗)(φ−1(e))). Note that g0 is a
fiber deformation because g∗ is a deformation and that Fix(g0) =
bd(E0). Extending g0 to g : E → E by letting g be the identity on
E0 completes the proof.

Theorem 5.1. Let F = (E, p, B; Y ) be a bundle where E, B and Y
are connected finite polyhedra and B is 2-dimensionally connected.
Suppose a closed, locally contractible subset A of E is a bundle subset
of E such that, for each component p(A)j of p(A), the bundle pair
(p−1(p(A)j), Aj) has trivial complement and Y c

j is a 2-dimensionally
connected polyhedron. Then there exists a fiber deformation g : E →
E such that Fix(g) = A.

Proof. Since B is 2-dimensionally connected, by Theorem 4.1 of
[10], there is a deformation ḡ : B → B such that Fix(ḡ) = p(A).
Moreover, we can see from the proof of Theorem 3.1 of [8] that ḡ
can be made homotopic to the identity map of B by means of a ho-
motopy H : B×I → B with H(b, 0) = b such that, if b ∈ p(A), then
H(b, t) = b for all t. By the homotopy lifting property, there is a ho-
motopy U : E × I → E lifting H where, for each e ∈ E, U(e, 0) = e
and, if p(e) ∈ p(A), then U(e, t) = e for all t. Define u : E → E
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by u(e) = U(e, 1), then the restriction of the fiber deformation u
to p−1(p(A)) is the identity map and pu = ḡp. Since the hypothe-
ses of Lemma 5.1 are satisfied for the bundle pair (p−1(p(A)j), Aj),
there is a fiber homotopy Hj : p−1(p(A)j) × I → p−1(p(A)j) such
that Hj(e, 0) = e and, for gj defined by gj(e) = Hj(e, 1), we have
Fix(gj) = Aj . Let H : E × {0} ∪ p−1(p(A)) × I → E be defined
by H(e, 0) = u(e) and H(e, t) = Hj(e, t) if p(e) ∈ p(A)j. By the
fiber homotopy extension theorem, we can extend H to a homotopy
H : E×I → E such that pH(e, t) = ḡp(e). Defining a fiber deforma-
tion g : E → E by g(e) = H(e, 1) we note that since pg = ḡp where
Fix(ḡ) = p(A), then Fix(g) ⊆ p−1(p(A)) and therefore Fix(g) = A.

Lemma 5.1 implies that, for the examples

(F, F0) = ((E, E0), p, B; (Y0 ∨ Q, Y0))

above, constructed from a nontrivial bundle F0 = (E0, p, B; Y0) with
a cross-section and the trivial bundle obtained by projecting B ×Q
onto B, for any connected finite polyhedron Q, there is a fiber defor-
mation g such that Fix(g) = E0 provided that Y0 is 2-dimensionally
connected. The specific example obtained from the Klein bottle and
torus is easily modified to illustrate this class of examples. Let E0

be the cartesian product of the Klein bottle and the unit iterval I
represented as the quotient space of [−1, 1] × [−1, 1] × I under the
equivalence relation (s,−1, r) ∼ (−s, 1, r) and (−1, t, r) ∼ (1, t, r).
Then projection on the first factor gives a nontrivial bundle F0 =
(E0 = K2 × I, p, S1; S1 × I). Now the fiber Y0 = S1 × I is 2-
dimensionally connected. Again represent the torus T 2 = S1 × S1

as [−1, 1] × [−1, 1] under the equivalence relation (s,−1) ∼ (s, 1)
and (−1, t) ∼ (1, t). Let E be the space obtained by imposing on
the disjoint union of T 2 and K2 × I the equivalence relation that
[s, t] ∈ T 2 is equivalent to [s′, t′, r] ∈ K2 × I if and only if s = s′

and t = t′ = r = 0. Projection on the first factor gives a nontrivial
bundle F = (E, p, S1; (S1 × I) ∨ S1) such that (F, F0) is a bundle
pair which has trivial complement because Fc

0 is just the projection
of T 2 to S1. Therefore, there is a fiber deformation g : E → E with
Fix(g) = K2 × I.

Corollary 5.1. Let F = (E, p, B; Y ) be a bundle where E, B and Y
are connected finite polyhedra and B is 2-dimensionally connected.
Suppose a closed, locally contractible subset A of E is a bundle subset
of E such that each component p(A)j of p(A) is contractible and
Y c

j is a 2-dimensionally connected polyhedron for all j. Then there
exists a fiber deformation g : E → E such that Fix(g) = A.
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Theorem 5.2. Let F = (E, p, B; Y ) be a bundle where E, B and
Y are 2-dimensionally connected finite polyhedra. Suppose A is a
closed subset of E such that p(A) = {b1, . . . , br}, then there exists a
fiber deformation g : E → E such that Fix(g) = A.

Proof. As in the proof of Theorem 5.1, there is a deformation
ḡ : B → B such that Fix(ḡ) = p(A) and a fiber deformation u :
E → E such that pu = ḡp which is the identity map on p−1(p(A)).
By Theorem 4.1 of [10], for each j = 1, . . . , r there is a homotopy
Hj : p−1(bj)×I → p−1(bj) such that Hj(e, 0) = e and, for gj defined
by gj(e) = Hj(e, 1) we have Fix(gj) = A ∩ p−1(bj). Let

H : (E × {0}) ∪

(

r
⋃

j=1

p−1(bj) × I

)

→ E

be defined by H(e, 0) = u(e) and H(e, t) = Hj(e, t) for e ∈ p−1(bj).
Extend H to G : E × I → E by the fiber homotopy extension
theorem and set g(e) = G(e, 1) to define the fiber deformation such
that Fix(g) = A.
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