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AN EXAMPLE OF A PROPERTY I' FACTOR
WITH COUNTABLE FUNDAMENTAL GROUP

SORIN POPA

University of Californial' LosAngeles

0. INTRODUCTION.

The first examples of type II; factors M having countable fundamental group
F(M) have been constructed by Connes in (JC1))T" as group algebrasM = L(G) for
G discrete ICC groups with the property T of Kazhdan. Since thenl'many more
examples of such factors have been constructed (see e.g.I' [B1T'3] or{Gol]). But all
such constructions are using property T groupsI in a vay or another. For instancel’
it is proved in ({Pol}} that if a type II; factor M contains a group von Neumann
algebra L(G) for some ICC property T group G then F(A]) is countable.

All the factors M having F(M) countable that have been constructed so far do
not have non-trivial asymptotically central sequencesI'i.e.I'they do not have the
property I' of Murray and von Neumann (equivalentlyl’ theyare full factorsl'in the
sense of [C]). In this respect]' note that if a factor M has non-commuting such
central sequences then by a result of McDuff ([McD}]) they split-off the hyperfinite
type II; factorI'thus having fundamental group equal to R%. Thusl'if it is for a
property I' factor M to have fundamental group # R} I'then its central sequences
must commute,.

In this paper we construct a class of examples of factors which do have the
property I' vet have countable fundamental group. The construction does not
use property T groupsI but instead uses the rigidity properties of the inclusion
Z? ¢ Z? x4 SL(2,Z)Talso due to Kazhdan ([Kaz]). We will also use perturbation
resultsI'separability arguments and the recent striking results of Gaboriau on the
cost of equivalence relations.
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2 SORIN POPA

The paper is organised as follows: In Section 1 we prove some perturbation
result for Cartan subalgebras in type II; factorl'in the spirit of some well known
results of Eric Christensen. In Section 2 we prove the main result of the paper
(Theorem 2.3)I" proiding some classes of factors with countable fundamental groupl’
both with and without property I'. These factors do not contain type II; factors
with the property T of ([CJ1])Tnor can be embedded into free group factorsI'yet
they seem to be closer to the latter class. In Section 3 we make some commentsl’
and sketch another construction of property I' factors with countable fundamental
grouplthis time by using property T groups (Remark 3.1). We also construct a
class of examples of property T’ factors with fundamental group R% which however
are not McDuff (Remark 3.2).

I am most greatful to George Skandalis for his kind help with property (3.1.1)
and to Dima Shiyakhtenko for a most useful discussion related to Remark 3.2.

1. SOME PERTURBATION RESULTS.

In this Section we prove some perturbation results for subalgebras in type II
factors.

The first such perturbation result concerns maximal abelian *-subalgebras (abre-
viated as m.a.s.a. hereafter) of type II; factors. Besides the technique from [Chil’
the proof uses the “pull down” lemma in the basic construction ([PiPo]) and some
considerations on the geometry of projectionsInotably a result of Kadison ({K]).

1.1. Theorem. Let N be a type II; factor and By, By C N be m.a.s.a.’s of N
such that sup{|ju — Ep, (w)||2 | v € Us} < 1, for some unitary subgroup Up C Bo
satisfying UY = By. Then there exists a non-zero partial isometry v € N such that
v*v € By, vv* € By and vBov® = Byvv*.

Proof. Consider first the basic construction for the inclusion By C N: Thusl’
we let e be the orthogonal projection of L?(N,7) onto L?(B;, )T and which is
known to satisfy exe = FEp, (z)e,¥Yz € N. Then we let Ny = (N,¢) be the von
Neumann algebra generated inside B(L2(N, 7)) by NV and e. Note that eNye = Be.
We endow N; with the unique normal semifinite faithful trace T+ which satisfies
Tr(zey) = 7(xy),Ve,y € N. Note that there exists a unique N — N bilinear map
& from spNeN C N into N satisfying ®(zey) = xy,Vz,y € N. This bilinear map
satisfies the “pull down” identity eX = e®(eX),vX € N; from ([PiPo]).

Let now K. = " {ugeul | uo € Up}. We clearly have 0 < a <1 and Tr{a) <
1,Va € K.. MoreoverI'K, is contained in the Hilbert space L2(N;,Tr)T whereit is
still weakly closed. Let h € K. be the unique element of minimal norm || llz,r» in
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K.. Since vhu* € K, and [uhu*|la e = |2||2.7r, Yu € Ul by the uniqueness of h
it follows that uhu* = h,Vu € Uy. Thus h € Uy N Ny = By N Ny.
On the other hand[since Tr(euver*) = ||Eg,(w)]if = 1 — |ju — Eg, (u)||3Tif we

denote § = l—sup{l/lu— Ep, (u)|l2 | v € Up}T it follovs that Tr(eueu®} > 4,.Vu € Us.
Taking appropriate linear combinations and weak limitsI it follws that Tr(eh) > 4.
Since by hypothesis we have ¢ > 0T itfollows that h # 0.

Let eg be a non-zero spectral projection of h. ThusT'eg is a finite projection in /V;
and eg commutes with By (since h does). Since Bgeg is abelianI’ it is comained in a
maximal abelian subalgebra B of ¢gNjeg. (Note that any element in B commutes
with Bg.) By a result of Kadison ([K})I'B contains a non-zero abelian projection e;
of N7 (i.eT'eyNqe; is abelian). Since e has central valued (semifinite) trace equal
to 1T itfollows that e majorizes e;.

Let V' € Ny be a partial isometry such that V*V = ¢y < gy and VV* < e.
Moreover V' Be; V™ is a subalgebra of eNye = Bje. Since e; commutes with Bpl'it
follows that if we denote by f' the maximal projection in By such that f'e; = 0
and let fo = 1 — f'T'then there exists a unique isomorphism  from By fp into By
such that ¢(b)e = VbV*. Vb € Byf. Let f1 = ¢(fo) € B1.

It follows that ¢(b)eV = eVb,¥b € Byfy. By applying @ to both sides and
denoting a = ®(eV) € NTit follows that ¢(b)a = ab,Vb € By. Since ea = eV = VT
it follows that a # 0.

By the usual trickl'if we denote by vg € N the unique partial isometry in the
polar decomposition of a such that the right supports of @ and vy comcidel’ then
Do = Vplp € Bé NN = BoI'p; = wvevg € Q(Be)fg M f1N f1 and @(b)vg = veb, Vb €
By fo.

But By fo maximal abelian in fo/N fo implies that vBpv* = @(Bg)p; is maximal
abelian in vovd Nvgus. Since any element in p; Byp; commutes with ¢(Bg)p: I’ whik
is maximal abelianI” it follovs that p, Bip1 = @(Bo)p1. Thusl'if P; denotes the von
Neumann algebra generated by p; and B f; inside fiN fiI'then P; is like a basic
construction for the inclusion ¢(By)fi ¢ Bifil'with p; playing the role of the
“Jones projection”. In particualarI'p, Pyp1 = ¢(Bo)p1 is abelian.

ThusI'p; is an abelian projection in P;. Since P is a finite von Neumann algebral’
there exists a central projection z; of PiI'under the central support of p; in AT
such that pyzy # 0 and such that P;z; is homogeneous of type n['for some n > 1.
Note that the center of P is included in B f; the latter being maximal abelian in
fiNfil'thus in Py C fiN fi. Thusl'zy; € By f1.

Nowl since piz; has central trace equal to 1/n in Pyz; and Bz is maximal
abelian in Pz, T it follevs that there exists a projection fi; € Bif: such that fiq is
equivalent to pyzy in Pz (see [K]). Let v1 € P12z be such that v1v] = fi1,viv; =
pi1z1. Since pizq is abelian in PiTf11 is also abelianl'thus f1;.P fi1 = B1f11. This
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implies that vi{(@(Bo)p121)v; = Bifi1.

FinallyI" sinceBg fo 3 b — @(b) € »(Bg) f1 and p121 belongs to ¢(Be)p11 it follevs
that there exists a projection foo in Bofo such that o{feo)p1 = z1p1- In particularl’
viv1 = Up foovg.

AltogetherT" this shavs that if we denote v == vyvgfool' thenw is a partial isometry
satsifying v*v = fop € Bo,vv* = fi1 € By and vBov* = Byvv™. Q.E.D.

In Section 2 we will in fact need a consequence of Theorem 1.1. To state itl" recall
from ([D1]) that a m.a.s.a. A of a von Neumann factor N is called semiregular if the
set of unitaries of N that normalize 4 generate a factor. AlsoI'A is called regular
if this normalizer generetes all the ambient factor N. Such regular m.a.s.a.’s were
later called Cartan subalgebrasin ([FM])T a terminology that seems to hare prevailed
and which we will therefore adopt.

We will also use the following notations from ([Ch}):

1.2. Notation. Let By, B; be von Neumann subalgebras of a type II; factor N.
If sup{||zo — Es, (zo)ll2 | o € Bo, lizell < 1} < ¢ then we write By C. By. Alsol ve
denote by d(Bo, B;) the maximum between sup{||zo — Es, (zo)ll2 | 2o € Bo. |lzol] <
1} and sup{||lzo — Es,(zo)ll2 | o € Bo, |zol| < 1}).

1.3. Corollary. Let N be an arbitrary type II; factor and Ag, Ay C N be semireg-
wlar m.a.s.a.’s of N. If Ag Ci1-s Ay for some & > 0 then there exists a unitary
element v € N such that uAgqu* = Ay. In particular, this is the case if Ao, A1 are
Cartan subalgebras of N.

Proof. The condition implies that sup{jlu ~ Ea, (u)ll2 | v € U({Ag)} < 1. Thusl’
by Theorem 1.1 there exists a non-zero partial isometry v € N such that v*v €
Ag, vv* € Ay, vAgv* = Ayvv*. Moreoverl ly cutting v from the right with a smaller
projection in Ag¢l'we may clearly assume 7(vv*) = 1/n for some integer .

Since Ag, A; are semiregularI'there exist partial isometries vy, va, ..., vpl Tespec-
tively wq, wa, ..., Wy, in the normalizing groupoids of Ag respectively Ay such that
vy = 1, Ljwjw; =1 and viv; = v, wiw; = vo*, Vi, 7. But then v = Z;w;vv]
is a unitary element and vAgv™ = A;. Q.E.D.

Let us also mention another application of Theorem 1.1 whichl"although not
needed later in this paperl’ has some independen interest. ThusI recall from ([D1])
that a m.a.s.a. A of a von Neumann algebra N is singulor if the only unitaries in
N that normalize A are the unitaries of A. When N is a type II; factorI’ in ([R3])
a numerical invariant §{A4) was associated to m.a.s.a’s A of NT'as a “measure of
singularity”I" asfollows:

For each non-zero partial isometry v € N with vv*,v*v mutually orthogonal
projections in ATl'denote §(vAv*, A) = sup{|lz — Ea(z)|l2 | z € vAv*,{lzf| < 1}
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Then define §{A4) to be the infimum of é(vAv*, A}/|lvv*l|sTas v runs over the set
of all such partial isometries. In ({Po3]) it was noted that §(A4) > 0 implies A is
singular and examples of m.a.s.a.'s with §{ A) > O were constructed in any type 11
factor with separable predual. But it was left as an open question to calculate the
possible values the constants §(4) can take. This problem was recently revived in
([SiSm}). From 1.1 we get:

1.4. Corollary. Let N be an arbitrary type 11y factor and A C N a singular
m.a.s.a. Then §(A) = 1.

Proof. If for some partial isometry v € N with vo*, v*v € ATv # 0,0% = 0 we have
sup{|lz — Eave (@)]j2/|[vv*ll2 | € vAv*,||z]} < 1} < IT'then it follows that the
m.a.s.a.’s By = vAv*, By = Avv* in the factor vo* Nvv* (with its normalized trace)
verify the condition in Theorem 1.1. Thusl' there exists a non-zero partial isometry
vp € vv* Nov* such that vjvg € vAv*, vov§ € Ave™ and vovAvtv§ C A. But this
contradicts the singularity of A. Q.E.D.
We end this section by mentioning two well known perturbation results from
([Ch)T" needed in the sequel. We have included a proof for the sake of completeness.

1.5. Lemma. [Ch]. Let N be a type II; factor and By, By C N be von Neurmnann
subalgebras of N. Assume there exists a subgroup Uy of the unitary group of By
such that U} = By and {jug — Eg, (ug)llz < &,Yug € Up. Then By NN Cy. BaNN.
Proof. Let @ € By N N,|jz]| £ 1. Since Ep nn(r) is the element of minimal
norm-2 in the weakly compact convex set t0" {upzuy) | up € Up}l'it follows that
V8 > 0, Jus, ug, ..., Un € Uy such that ||1/nE;uzul — EBGQN(:r)Hz < 4.

But by hypothesisl'for all ¢ = 1,2,..,n we have the estimates:

|z — wizuillz < ||z — Ep, (ui)zuf|l2 + jlui — Ep, (u:)li2
= llo — ¢ Ep, (ui)uj |2 + llus — Ep, (ui)ll2 < 2||ui — Ep, (us)il2 € 2¢.

AltogetherI" this implies that||z — Ep;nn(@)]l2 < 22461 withd arbitraryl’ shoving
that x €5. BJN N. Since = was taken arbitrary in the unit ball of B} N NT w have
shown that By NN Co. BN N. Q.E.D.

1.6. Lemma. [Ch]. Let N be a typeIly. Assume there exists a subgroup Uy of the
unitary group of N and a group morphism p : Uy — U(N) such that || p(ug) —upliz <
¢,Yug € Uy. Then there exists a partial isometry v € N such that viv € Uy N N,
vo* € p(Up) NN, |1 —v|la € 2¢ and Ad(v)(us) = p(uo)vv™, Vue € Up.

Proof. Let K, = " {p(ug)uy | uo € Up}. Let k € K, be the unique element of
minimal norm-2. Since p(ug)K,uf C K, and ||p(ug)k’ugllz = ||&||2T forall ug €
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Up, k' € K, T'it follows that p(ug)kug = k,Vup € Up. Thusl p(ug)k = kug.Vug € Up.
By the usual trickI'it follows that if v denotes the partial isometry in the polar
decomposition of & with right support equal to the right support of k then v is
an intertwiner between p and id on Uy. Alsol'since any element k' in Iy, satisfies
1k’ - 1llz < T Yy standard estimates (see e.g.I’ [C2] or [Ch]) one gets|jv — 1||z < 2=.
Q.E.D.

2. EXAMPLES OF FACTORS M WITH COUNTABLE F(M ).

In this section we construct a class of examples of type 1I; factors with countable
fundamental group. Some of them have the property I' of Murray and von Neu-
mann while others don’t. The construction relies on the rigidity properties of the
embedding of the group Go = Z? inside the group G = Z? x SL(2, Z?)['discovered
by Kazhdan in the late 60’s ([KKaz]). Howeverl’ as ve will prove in the next sectionl’
the factors that we construct in this section do not contain any subfactor with the
property TTother than the finite dimensional ones.

2.1. The construction. Let (Xg, ug) be the 2-dimensional thorusl'regarded as
the dual group of Z°T endaved with the Haar measure up. Note that pg is the same
as the Lebesgue measure on Xg = T%. Let og be the action of SL(2,Z) on X
implemented by the action of SL(2,Z) on Z2. Let (X;.p1) be a probability space
with a measure preserving ergodic transformation oy of SL(2,Z) on it. Let 0 =
op X o1 be the product action on the probability space (X, 1) = (Xo x X1, o % p1).
Denote A = L(X,py) and M = A x, SL(2,Z). Also['denote Ag = L™=(Xp, po)
and Mg = Aﬂ Hgo SL(Q,Z).

Note that we can regard Ay as a subalgebra ATlin which case the canonical
unitaries ug, g € SL(2,Z) C M implementing the action ¢ on A also implement the
action og on Ag. ThusI'My can be viewed as a subfactor of M. Moreover['we can
view Ag as L{Z?)I'in which case Mg is identified with L(Z* x SL(2, Z)).

Given any arbitrary ergodic action o; as in 2.1I'the action ¢ and the algebras
defined above have the following properties:

2.2. Lemma. 1°. The action o is a free, ergodic action of SL(2,Z) on the
probability space (X, u).

2°. The action og is strongly ergodic. The action 0 = 0y X o1 5 strongly ergodic
if and only if o1 is strongly ergodic.

3°. There exist ergodic actions oy of SL(2,7Z) that are not strongly ergodic.

4°. My is a non-T' type 11y factor and Ag C My is a Cartan subalgebra of Mp.
More generally, M is a type II; factor, A C M 1s a Cartan subalgebra in M and
M is non-I' if and only if o1 is strongly ergodic.

5°. When regarded as a subalgebra in M, Ay satisfies AyN M = A,
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Proof. 1°. It is well known that a non-inner automorphism of a group &G implements
a properly outer automorphism on L(G) that preserves the canonical trace of L(G).
Thus! since eahr non-trivial element g in the group SL(2, Z) implements a non-inner
automorphism of Z? it follows that oo(g) is properly outer Vg € SL{2,Z),g # e.

Since the temsor product of any properly outer automorphism with an arbi-
trary automorphism is properly outerT'it follows that o(g) is properly outer Vg €
SL(2.Z), g # elas well.

Furthermorel” the actionog is well known to be mixing. More preciselyl it is easy
to see that given any finite set F C SL(2,Z),¢ ¢ FT'there exists g € SL(2,Z) such
that gF N F = @. But this implies not only that op is ergodicI'but also that its
tensor product with any ergodic action is still ergodic.

2°. The first part is a well known result of Klaus Schmidt ([S1]). The second
part is an immediate consequence of the proof of this result in ({S1]).

3°. This is a consequence of a theorem of Connes and Weiss ([CW])I'showing
that any discrete group G; which doesn’t have the property T has a freel'ergodic
but not strongly ergodic action o7 on a probability space. Thusl' one simply applies
this result to Gy = SL(2,Z)T whih doesn’t have the property T.

One can in fact avoid using the general result in ([CW}])I'by noticing that since
SL(2,Z) has an infinite amenable group H as a quotient (see e.g.I'[dHV])[ any
ergodic action of H on a non-atomic probability space (e.g.I" a Bernoulli shift action
of H) composed with the quotient map G; — H gives an ergodic but not strongly
ergodic action of SL(2,Z) (note that the resulting action of SL(2,Z) is not free
thoughT'in fact not even faithfull'but freeness is not necessary in the construction
1.1).

4°. Since SL(2,Z) is close to be a free group (see e.g.I'{[dHV])Tit is easy to see
that any central sequences in a type II; factor of the form B %, SL(2,Z) obtained
as the cross product of a finite von Neumann algebra (B, 7) by a freel'r-preserving
action ¢ of SL(2,Z) on it must be supported on B.

5°. Note that if b = Z,a,uy € M = A x, SL(2,Z) commutes with all a € Ag
and ay # O for some g # e then aguy = azuqa,Va € Apl'implying that aga =
agoq(a),Va € Ap. This in turn contradicts the fact that o, is properly outer on Ag.
ThusTall a, with ¢ % 0 must be equal to OI' implying thatb lies in A. Q.E.D.

2.3. Theorem. Given any ergodic action oy of SL(2,Z*) on a probability space
(X1, 1), the type Iy factor M constructed in 2.1 has countable fundamental group.

To prove the TheoremI” w’'ll use first a “separability argument”I" thenthe result
of Kazhdan on the rigidity of the embedding of the group Z? inside Z? x SL(2,Z)
({Kaz])T'then the perturbation results from the previous sectionl’and finally the
recent rigidity result of the free ergodic actions of the free groups on probability
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spaces of Gaboriau ([G]).
We split the corresponding arguments in a series of lemmas.

2.4, Lemma. Let N be a separable type II; factor. If F{N) is uncountable then

there exist projections p,, € P(N), with p, # 1,p, /" 1. and isomorphisms 8, :

N =~ p,Np,, such that lim ||0,(x) — x|z = 0.Ye € N. Moreover, the projections
n—00

{pn}n can be taken to lie in any given diffuse abelian von Neumann subalgebra Ao
of N.

Proof. Let {g; | 0 <t < 1} C N be a totally ordered set of projections with
7(g¢) = t,¥0 < t < 1. For each t € S = (1/2,1) N F(N) choose an isomorphism
6} : N ~ ¢;Ng; and denote T = {6, | t € §}. Note thatI' since¥ (V) is uncountablel
S is uncountable.

Let {n}n>1 be a sequence of elements in the unit ball N7 of NT'such that as a
set it is dense in Ny in the norm || |l> and such that each element appears infinitely
many times in the sequence.

Since {#!(x1)}tes is a subset of N1T'hy covering N; with countably many open
balls of |} |lo-radius 1/2 and using the separability of (Vy, || [i2) it follows that there
exists an uncountable subset Sy C S such that {16;(x1) — 8. (x1)l]z < 1,VE. ' € Sy.
SimilarilyT ly repeatedly using the separability of /N1 to cover it by countably many
balls of radius 1/2nI" ve construct recursively a decreasing sequence of uncountable
sets S, C S,n > 1I'such that

16} (z2) — O} (2)i|2 < 1/n,VE, ' € Sy,

For each n > 1 choose now two distinct t,,t, € S,Isay with t,, > ¢,. Since
6, (1) > ), (1)T

0,(z) = 0.1 (8}, (x)),z € N,
gives a well defined isomorphism of N onto p, Np,I'where
pn =67 (0, (1) = 6, ar,) € P(N),

MoreoverI'since t,,t,, € S;,Vj < nI'we have for each n > 1 and 1 < j < n the
estimates:

16 () — 25113 = 7(qe,) " 0, (5) — 02, (x)lz < 2/3.
Since each z; appears infinitely many timesTit follows that hm |l9 (z;) —xjllg =

0,Vj > 1. By the density of {x, }, in N;T it follevs that hm ]]9 (:z:) xllz = 0.Vz €
Niland thus for all z € N.
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FinallyI'in case we want the projections {p,}. to lie in a given diffuse abelian
von Neumann subalgebra Agl'then we first choose projections {p},}, C Ao with
7(p,) = T(pn), Vnl' andnote that ||p], — pnll2 = 0 (because both sequences tend to
1). ThusI'there exist partial isometries v, € N such that v,v) = p,. viv, = pl,,Vn
and |jv, — 1]z — 0 (see e.g.T [C2lor [Ch]). But thenI'by replacing n p], for p, and
Ad(v,)8, for 8,1°Vn > 1T thelast condition will also be satisfied. Q.E.D.

We are now going to use the rigidity of the embedding of the group Z? inside
Z? % SL(2,Z) (cf. [Kaz]). We recall that if Gy is a subgroup of a discrete group
G then we say that Gg has the property T inside G if there exist g1, g2, ..., g € G
and £ > 0 such that if 7 is a unitary representation of G on a Hilbert space H such
that for some unit vector £ € H one has ||7w(g;)€ — &} < ¢,Vi then there exists a
non-zero vector & € H such that w(h)¢y = &.Yh € Gp. Note that if this is the
casel'then by a well known argument it follows that IR > 1 such that Vd < elif
l7w(g:)€ — &} < 6,Vi then {|x{h)E — &]| < K4,¥h € Gp (see e.g.I’ {De-Ki).

2.5. Lemma. Let G be a discrete group and Go < G a property T embedding
of a group Gy into G (e.q., Go = Z2? G = Z? x SL(2,Z%). Let (Ag C M) =
(L(Go) C L(G)). Denote by uy, g € G, the canonical unitaries in My. Let N be a
type 11, factor that contains My. Assume {6,}, i5 a sequence of non-necessarily
unital endomorphisms of N such that tlil;fé”(?n(ug) = ugl|le = 0,Vg € G. Then for

any € > 0 there erxists n. such that if n > n. then |10, (uy) —~ uplle < =, Yh € Gy.

Proof. Let m, : Z% x SL(2.Z%) — U(H,) be the unitary representation on the
Hilbert space H, = 6,(1)L*(M,7)) defined by 7.(g)(£) = Onlug)éu;. g € Z? x
SL(2,Z?). If we let &, € H, be the projection p, € M regarded as a vector in H,,
then

Hﬂ'n(g)gn - gn“ = Hen(ug)u; - an2
= Hgn(ug) - pnu9”2 < Hgn(ug) - ugH2 + lll - ang,Vn >lged.
Similarilyl’
7n(g)€n — Enll 2 f10n (1ug) ~ ugliz ~ |1 —pall2, V> 1,9 € G.

By the hypothesis and the first set of estimates it follows that angO ma(g)en —

&0l = 0,Vg € Z2 x SL(2,Z?). Since [[€,]12 = 7(pn) — 1 as n —» ool ly the property
T of Z? inside Z2 x SL(2,Z?) and the second set of estimatesl itfollows that

lim sup [|6, (un) — unlls = 0.
nw)OOhEzz

Q.E.D.
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2.6. Lemma. With the same notations as in the statement of Lemma 2.5, if in
addition we assume the projections p, = 6,(1) lie in Ag,Vn, then for any n > n.
we have d(6,(Ag) NN, Agpl, N N) < 2¢(1 — )7L,

Proof. By using the fact that p, € Ag = {un}j s> and applying Lemma 1.5Fﬁr?t
to Uy = 0 ({un}rezz) then to Uy = {unpn trezel regarded as unitary subgroups in
the type II; factor p, Np,I' endowved with the normalized trace 7(p,, )~ 17T it follws
that

d(Aopl, N pa N, 0n(A0) NP Npa) < 2e7(pn) "2 < 26(1 — &)~

Q.E.D.

Proof of Theorem 2.3, If F(M) is uncountable then by Lemma 2.4 there exists

a sequence of projections p, € Ap.pn # 11" and isomorphismsf,, of M onto p, Mp,

such that 1Lm W6, (z) — x|ls = 0,¥z € M. In particularTaplying this to x = u, €
T oG

Mo C M,g€Z?x SL(2,Z)T w have
Hm [[fn(1g) = ugllz = 0,Yg € Z* x SL(2.Z).
T~y OO

By 2.5 and 2.6T'it follows that for n large enoughl'if we denote p = p, and
§ = 0, then we have d{Agp’ N pMp,0(Ap)p N pMp) < 1. But by Lemma 2.1T
Agp’ NpMp = Ap is a Cartan subalgebra of pMp. Similarilyl’

8(Ao)p’ NpMp = 8(A;N M) = 6(A)

is a Cartan subalgebra of pMp as well. By Corollary 1.4 it follows that the Cartan
subalgebras Ap and #(A) of pMp are conjugate by a unitary element u of pMp.
Thusl'd’ = Ad(u)of is an isomorphism of M onto pMp carying A onto Ap. But by
the results of Gaboriau the cost ¢{A C M) of the Cartan subalgebra A of M is equal
to 13/12 while the cost ¢(Ap C pMp) of its restriction to p is equal to 1/127(p)+ 1T
which is larger than 13/12. Since the cost is invariant to the isomorphism 6'T'we
get a contradiction. ThusI'F(M) is uncountable. Q.E.D.

2.7. Corollary. 1°. The type II; factor My = L(Z? x SL(2,Z)) is non-I' and has
countable fundamental group F(My).

2°. If o1 is chosen to be ergodic but not strongly ergodic (cf 2.2.3°), then the
type 11, factor M = A x, SL(2,Z), where A and o are defined as in 2.1, then M
has the property T and countable fundamental group F(M).

Proof. This is now an immediate consequence of Lemma 2.2 and Theorem 2.3.
Q.E.D.
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3. FURTHER REMARKS.

3.1. More examples of factors M with countable F(Af)}. Recall that the
first examples of factors A with countable fundamental group were constructed by
Connes in ({C1])Tas group von Neumann factors associated to dicrete ICC groups
G having the property T of Kazhdan. More examples of factors with countable
fundamental group were constructed in ([PolI'3I'5]fGol}). All these examples had
relied in a way or another on constructions involving property T groups and they
were non-I" factors. The examples in the previous section are still using some rigid-
ity phenomenal but the milder one involving the inclusion Z2 ¢ Z2? % SL(2,Z).
Although these examples seem “closer” to free group factorsI'they cannot be em-
bedded in any free group factorI'by the same argument as the one in {CJ1] (see
{Po]). But they cannot contain property T groups eitherI'because of the “relative
Haagerup property” that the inclusion L(Z2) C L(Z? x SL(2,Z)) has (see {Po}). .

One can actually construct another class of examples of factors having the prop-
erty I' but countable fundamental groupI” ly using property T groups and a strategy
reminiscent of ({C1)T" [CJ1]) and({PolT'3])I" asollows:

Let G be an ICC group with the property T of Kazhdan and satisfying the
following condition:

(3.1.1). Given any finite set F' C G — {e} there exists g € G such that gFg™1F' N
FgFg=' = {.

Note that this implies in particular gFg~* N F = @. (We are greatful to George
Skandalis for confirming to us that the groups SL(n, Z) with n oddI'n > 3 do satisfy
this conditionI"besides having the property T by Kazhdan’s classical result).

Then we let (Ty, 114), g € G, be copies of the thorus T with its Lebesgue measure
and (X, i) be the product of these spacesI” with the corresponding product measure.
We let o be the action of G on (X, u) by Bernoulli shifts. We let Ay be the cor-
responding type II; factor obtained by the group-measure space constructionl'i.e.l
My = L>®(X, u) ®x, G. Finallyl' w consider the action « of Z on Ml implemened
by the “transversal” action of Z on (X, i) given by rotation by the same irrational
number on each copy of the thorus (Ty, py). Vg € G. We denote M = My x4, Z.

It is easy to see that M has the property I'. Using Lemmas 2.4 and 2.5 (the
latter for Gg = G) and adding some more workl'one can show that if (M) is
uncountable then there exists a projection p € Ag = {un}jcz € MTwith p % 1T
and an isomorphism € : M — pMpl'with 6(u,) = ugp,Vg € G. This implies
6{Ag) = Aop and then the condition (3.1.1) easily implies that §(L>®(X, u) x Z) =
p(L>=(X, 1) x Z)p. This forces each Haar unitary v;, generating L*°(T,) to be so
that #(vy,) has a certain specific form. But thenI'by using again (3.1.1)T'it follows
that for appropriate ¢ € G the unitaries #(v,) and o4 (@(vs)) are “supported” on
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almost disjoint finite segments of the product ®,L%°(T,) cross product with Z. But
then it is easy to see that (v} and o,(6(vy,)) cannot commutel’ acontradiction.

3.2. Examples of factors M with F{M) = R}. Recall that in ([V]T' [Ra]) the
free group factor L(F,, ) was proved to have fundamental group equal to R} . This
is the most striking exampleI'so farT'of a non-I" type II; factor with fundamental
group same as the hyperfinite factor.

The following construction provides a class of examples of type 1I; factors which
have the property I'Tare not McDuffTand yet have fundamental group R :

Let Q be an arbitrary non-atomic finite von Neumann algebra. Let A C R be
the hyperfinite type II; factor with its Cartan subalgebra. Let M = Q®A x4 R
be the amalgamated free product with respect to the trace preserving conditional
expectationsT'as in ([Po3]). By the proof of (4.1 and 7.1 in [Po3])T" ve see that any
central sequence of M must lie in A. On the other handl’ ay central sequence of R
that lies in A is also a central sequence of A/. Thus['M has the property I'T’ without
being McDuff.

Note that M can be alternatively described as follows: Denote by o the irrational
rotation on the thorusI'viewed as an automorphism of L{Z). We still denote by ¢
the action id o of Z on Q x L(Z). Then M ~ Q % L{Z) %, ZI" with@ (respectively
A C R) in the first construction corresponding to @ (resp. MZ)" C I(Z) X, Z)
in this construction. The fact that M has T' but is not McDuff can then also be
deduced from ([Pod]).

Using the first representation of MT ve see that if p is a non-zero projection in A
then p(Q® A* 4 R)p is trivially isomorphic to Q@ Ap+ 4, pRp. But by Dye’s theorem
(Ap C pRp) is isomorphic to (A C R)I' whileQ®Ap is trivially isomorphic to QRA.
ThusI'pMp ~ M for any non-zero projection in M. Thus F(M) =R}

Due to the resemblence of the above construction of M with the amalgamated
free product construction in ([Po3])T it is lilely that in the case @ = L{Fx ) the fac-
tor M has the same universality property ([PoSh]) as the free group factor L{Fo )T’
namely that any standard lattice G can “act” on it.

REFERENCES

[A-De] C. Anantharam-Delaroche: On Connes’ property T for von Neumann algebras’
Math. Japon. 32 (1987)I" 337-355.
[Bi-N] J. Bion-Nadal: von Neumann subalgebras of a type II, factor: correspondences
and property TTJ. Operator Theory.
[Ch] E. Christensen: Subalgebras of a finite algebral’ Math. Ann. 243 (1979)T" 17-29.
[C1] A. Connes: A fype II; factor with counteble fundamental groupl'J. Operator
Theory 4 (1980)I" 151-153.
{C2] A.Connes: Classification of injective factorsl’ Ann.of Math.I'104 (1976)I" 73-115.



PROPERTY T FACTOR 13

[C3] A. Connes: Notes on correspondencesI’ unpublishedmanuscript 1980.
[C4] A. Connes: Classification des facteursT Proc. Symp. Pure Math. 38 (Amer.
Math. Soc.I" 1982)" 43-109.
[CJ1] A. ConnesT'V.F.R. Jones: Property T for von Neumann algebrasiBull. London
Math. Soc. 17 (1985)I" 57-62.
[CJ2] A. ConnesI'V.F.R. Jones: A II factor with two non-conjugate Cartan subalge-
brasI’ Bull. AAmer. Math. Soc. 6 (1982)" 211-212.
[CW] A. ConnesI” B. Wéiss: Property I' and asymptotically invariant sequemcesl’ Israel.
J. Math. 37 (1980)I" 209-210.

[DeKi] C. Delarochel Kirilov: Sur les relations entre l'espace dual d'un groupe et la
structure de ses sous-groupes fermesI'Se. Bourbakil’20’eme annéel’ 1967-19681
no. 343I° juinl968.

D1} J. Dixmier: Sous-anneauz abéliens marimauz dans les facteurs de type fini" Ann.
Math. 59 (1954)" 279-286.
[D2] J. Dixmier: “Les algébres d’opérateurs sur U'espace Hﬂbertlen {Algebres de von
Neumann)”T' Gauthier-VillarsD' #isI'1957T" 1969.
[F] A. Furman: Orbit equivalence rigidityl’ Ann. Math. (1999)T" .
[G] D. Gaboriau: Cout des rélations d’équivalence et des groupesl Invent. Math.
139 (2000)T" 41-98.
[H] U. Haagerup: An example of non-nuclear C*-algebra which has the metric ap-
prozimation propertyl’ Ivent. Math. 50 (1979)I" 279-293.

[dHV] P. de la Harpel" A. Vilette: “La propriété T de Kazhdan pour les groupes locale-

ment compacts” ['Astérisque 175 {1989).
[J] V.F.R. Jones: A converse to Ocneanu’s theoremI' J. Operator Theory10 (1983)T
61-63.
[K] R.V.Kadison: Diagonalizing matricesT Amer.Math. Journal (1984)I' 1451-1468.
[Kaz] D. Kazhdan: Connection of the dual space of a group with the structure of its
closed subgroupsl Hinct. Anal. and its Appl. 1 (1967)[" 63-65.

[McD] D. McDuff: Central sequences and the hyperfinite factorl’Proc. London Math.
Soc. 21 (1970)I" 443-461.

[MvN] F. MurrayT'J. von Neumann: Rings of operators IVI' Ann. Math. 44 (1943)I
716-808.

[PiPo] M. PimsnerI’ S. Bpa: Entropy and indez for subfactorsI” Ann.Scient. Ec. Norm.
Sup. 19 (1986)I" 57-106.

[Pol] S. Popa: CorrespondencesI’ INCRESTpreprint 19861" unpublished.

[Po2] S. Popa: Singular mazrimal abelian x-subalgebras in continuous von Neumann
algebrasl” J.Funct. Anal.I'50 (1983)I' 151-166.

[Po3] S.Popa: Markov traces on universal Jones algebras and subfactors of finite indexl’
Invent. Math.I'111 (1993)I" 375-405.



14
[Pod]
[Pos5]

[PoSh]

[Ra]
[51]
[52]

[SiSm]
[V]

SORIN POPA

S. Popa: Mazimal injective subalgebras in factors associated with free groupsl’
Adv. in Math.I'50 (1983)I" 27-48.

S. Popa: Free independent sequences in type II factors and related problemsl’
Asterisque 232 (1995)T 187-202.

S. Popal'D. Shlyakhtenko: Universal properties of (L{F ) in subfactor theory.l’
Preprint TMSRIT2000.

F. Radulescu: The fundamental group of the von Neumann algebra of a free
group on infinitely many generators is R.T' JournalA.M.S.

K. Schmidt: Asymptotically invariant sequences and an action of SL(2,Z) on
the 2-spherel” Israel.J. Math. 37 (1980)I" 193-208.

K. Schmidt: Amenabilty, Kazhdan’s propety T, strong ergodicity and invariant
means for ergodic group-actionsl’ Ergod. Th. & Dynam. Sys. 1 (1981)" 223-236.
. A. Sinclairl"’ R. Smith: Strongly singular masas in type Iy factorl’ preprin 2001.
D. Voiculescu: Symmetries of some reduced free product C*-algebrasl’ In: Opera-
tor Algebras and their Connections with Topology and Ergodic Theoryl’ Lecture
Notes in Math. Vol. 1132I'566-588 (1985).

Matu.DEpT,, UCLA, LA, CA 90095-155505
E-mail address: popa@math.ucla.edu



