AN EXAMPLE OF A PROPERTY Γ FACTOR WITH COUNTABLE FUNDAMENTAL GROUP SORIN POPA | | | , | | |--|--|---|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # AN EXAMPLE OF A PROPERTY Γ FACTOR WITH COUNTABLE FUNDAMENTAL GROUP SORIN POPA Publication of this manuscript is funded in part by the National Science Foundation. MSRI wishes to acknowledge support through grant no. DMS-9701755. | | | • | | |--|--|---|---| | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * | | | | | • | | | | | | | | | | | | | | | | | | | | | ## AN EXAMPLE OF A PROPERTY Γ FACTOR WITH COUNTABLE FUNDAMENTAL GROUP #### SORIN POPA University of CaliforniaΓ LosAngeles #### 0. Introduction. The first examples of type II_1 factors M having countable fundamental group $\mathcal{F}(M)$ have been constructed by Connes in ([C1]) Γ as group algebras M = L(G) for G discrete ICC groups with the property Γ of Kazhdan. Since then Γ many more examples of such factors have been constructed (see e.g. Γ [Po1 Γ 3] or [Gol]). But all such constructions are using property Γ groups Γ in a way or another. For instance Γ it is proved in ([Po1]) that if a type Π 1 factor M contains a group von Neumann algebra L(G) for some ICC property Γ group G then $\mathcal{F}(M)$ is countable. All the factors M having $\mathcal{F}(M)$ countable that have been constructed so far do not have non-trivial asymptotically central sequences Γ i.e. Γ they do not have the property Γ of Murray and von Neumann (equivalently Γ they are full factors Γ in the sense of [C]). In this respect Γ note that if a factor M has non-commuting such central sequences then by a result of McDuff ([McD]) they split-off the hyperfinite type Π_1 factor Γ thus having fundamental group equal to \mathbb{R}_+^* . Thus Γ if it is for a property Γ factor M to have fundamental group $\neq \mathbb{R}_+^*$ Γ then its central sequences must commute. In this paper we construct a class of examples of factors which do have the property Γ yet have countable fundamental group. The construction does not use property T groups Γ but instead uses the rigidity properties of the inclusion $\mathbb{Z}^2 \subset \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})\Gamma$ also due to Kazhdan ([Kaz]). We will also use perturbation results Γ separability arguments and the recent striking results of Gaboriau on the cost of equivalence relations. Supported in part by a NSF Grant 9801324. The paper is organised as follows: In Section 1 we prove some perturbation result for Cartan subalgebras in type II_1 factor Γ in the spirit of some well known results of Eric Christensen. In Section 2 we prove the main result of the paper (Theorem 2.3) Γ providing some classes of factors with countable fundamental group Γ both with and without property Γ . These factors do not contain type II_1 factors with the property Γ of ([CJ1]) Γ nor can be embedded into free group factors Γ yet they seem to be closer to the latter class. In Section 3 we make some comments Γ and sketch another construction of property Γ factors with countable fundamental group Γ this time by using property Γ groups (Remark 3.1). We also construct a class of examples of property Γ factors with fundamental group \mathbb{R}_+^* which however are not McDuff (Remark 3.2). I am most greatful to George Skandalis for his kind help with property (3.1.1) and to Dima Shlyakhtenko for a most useful discussion related to Remark 3.2. #### 1. Some perturbation results. In this Section we prove some perturbation results for subalgebras in type II_1 factors. The first such perturbation result concerns maximal abelian *-subalgebras (abreviated as m.a.s.a. hereafter) of type II_1 factors. Besides the technique from [Ch] Γ the proof uses the "pull down" lemma in the basic construction ([PiPo]) and some considerations on the geometry of projections Γ notably a result of Kadison ([K]). **1.1. Theorem.** Let N be a type Π_1 factor and $B_0, B_1 \subset N$ be m.a.s.a.'s of N such that $\sup\{\|u - E_{B_1}(u)\|_2 \mid u \in \mathcal{U}_0\} < 1$, for some unitary subgroup $\mathcal{U}_0 \subset B_0$ satisfying $\mathcal{U}_0'' = B_0$. Then there exists a non-zero partial isometry $v \in N$ such that $v^*v \in B_0, vv^* \in B_1$ and $vB_0v^* = B_1vv^*$. Proof. Consider first the basic construction for the inclusion $B_1 \subset N$: Thus Γ we let e be the orthogonal projection of $L^2(N,\tau)$ onto $L^2(B_1,\tau)\Gamma$ and which is known to satisfy $exe = E_{B_1}(x)e, \forall x \in N$. Then we let $N_1 = \langle N, e \rangle$ be the von Neumann algebra generated inside $\mathcal{B}(L^2(N,\tau))$ by N and e. Note that $eN_1e = B_1e$. We endow N_1 with the unique normal semifinite faithful trace Tr which satisfies $Tr(xey) = \tau(xy), \forall x, y \in N$. Note that there exists a unique N-N bilinear map Φ from $\operatorname{sp} NeN \subset N_1$ into N satisfying $\Phi(xey) = xy, \forall x, y \in N$. This bilinear map satisfies the "pull down" identity $eX = e\Phi(eX), \forall X \in N_1$ from ([PiPo]). Let now $K_e = \overline{\operatorname{co}}^{\mathrm{w}}\{u_0eu_0^* \mid u_0 \in \mathcal{U}_0\}$. We clearly have $0 \leq a \leq 1$ and $Tr(a) \leq 1, \forall a \in K_e$. Moreover ΓK_e is contained in the Hilbert space $L^2(N_1, Tr)\Gamma$ whereit is still weakly closed. Let $h \in K_e$ be the unique element of minimal norm $\|\cdot\|_{2,T_r}$ in K_e . Since $uhu^* \in K_e$ and $||uhu^*||_{2,T_r} = ||h||_{2,T_r}, \forall u \in \mathcal{U}_0\Gamma$ by the uniqueness of h it follows that $uhu^* = h, \forall u \in \mathcal{U}_0$. Thus $h \in \mathcal{U}'_0 \cap N_1 = B'_0 \cap N_1$. On the other hand Γ since $Tr(eueu^*) = ||E_{B_1}(u)||_2^2 = 1 - ||u - E_{B_1}(u)||_2^2 \Gamma$ if we denote $\delta = 1 - \sup\{||u - E_{B_1}(u)||_2 | u \in \mathcal{U}_0\}\Gamma$ it follows that $Tr(eueu^*) \geq \delta, \forall u \in \mathcal{U}_0$. Taking appropriate linear combinations and weak limits Γ it follows that $Tr(eh) \geq \delta$. Since by hypothesis we have $\delta > 0\Gamma$ it follows that $h \neq 0$. Let e_0 be a non-zero spectral projection of h. Thus Γe_0 is a finite projection in N_1 and e_0 commutes with B_0 (since h does). Since B_0e_0 is abelian Γ it is contained in a maximal abelian subalgebra B of $e_0N_1e_0$. (Note that any element in B commutes with B_0 .) By a result of Kadison ([K]) ΓB contains a non-zero abelian projection e_1 of N_1 (i.e. $\Gamma e_1N_1e_1$ is abelian). Since e has central valued (semifinite) trace equal to Γ it it follows that Γ majorizes Γ it. Let $V \in N_1$ be a partial isometry such that $V^*V = e_1 \le e_0$ and $VV^* \le e$. Moreover VBe_1V^* is a subalgebra of $eN_1e = B_1e$. Since e_1 commutes with $B_0\Gamma$ it follows that if we denote by f' the maximal projection in B_0 such that $f'e_1 = 0$ and let $f_0 = 1 - f'\Gamma$ then there exists a unique isomorphism φ from B_0f_0 into B_1 such that $\varphi(b)e = VbV^*, \forall b \in B_0f$. Let $f_1 = \varphi(f_0) \in B_1$. It follows that $\varphi(b)eV = eVb, \forall b \in B_0f_0$. By applying Φ to both sides and denoting $a = \Phi(eV) \in N\Gamma$ it follows that $\varphi(b)a = ab, \forall b \in B_0$. Since $ea = eV = V\Gamma$ it follows that $a \neq 0$. By the usual trick Γ if we denote by $v_0 \in N$ the unique partial isometry in the polar decomposition of a such that the right supports of a and v_0 coincide Γ then $p_0 = v_0^* v_0 \in B_0' \cap N = B_0 \Gamma p_1 = v_0 v_0^* \in \varphi(B_0) f_1' \cap f_1 N f_1$ and $\varphi(b) v_0 = v_0 b, \forall b \in B_0 f_0$. But B_0f_0 maximal abelian in f_0Nf_0 implies that $vB_0v^*=\varphi(B_0)p_1$ is maximal abelian in $v_0v_0^*Nv_0v_0^*$. Since any element in $p_1B_1p_1$ commutes with $\varphi(B_0)p_1\Gamma$ which is maximal abelian Γ it follows that $p_1B_1p_1=\varphi(B_0)p_1$. Thus Γ if P_1 denotes the von Neumann algebra generated by p_1 and B_1f_1 inside $f_1Nf_1\Gamma$ then P_1 is like a basic construction for the inclusion $\varphi(B_0)f_1 \subset B_1f_1\Gamma$ with p_1 playing the role of the "Jones projection". In particular $\Gamma p_1P_1p_1=\varphi(B_0)p_1$ is abelian. Thus Γp_1 is an abelian projection in P_1 . Since P_1 is a finite von Neumann algebra Γ there exists a central projection z_1 of $P_1\Gamma$ under the central support of p_1 in $P_1\Gamma$ such that $p_1z_1 \neq 0$ and such that P_1z_1 is homogeneous of type $n\Gamma$ for some $n \geq 1$. Note that the center of P_1 is included in B_1f_1 the latter being maximal abelian in $f_1Nf_1\Gamma$ thus in $P_1 \subset f_1Nf_1$. Thus $\Gamma z_1 \in B_1f_1$. Now Γ since p_1z_1 has central trace equal to 1/n in P_1z_1 and B_1z_1 is maximal abelian in $P_1z_1\Gamma$ it follows that there exists a projection $f_{11} \in B_1f_1$ such that f_{11} is equivalent to p_1z_1 in P_1z_1 (see [K]). Let $v_1 \in P_1z_1$ be such that $v_1v_1^* = f_{11}, v_1^*v_1 = p_1z_1$. Since p_1z_1 is abelian in $P_1\Gamma f_{11}$ is also abelian Γ thus $f_{11}P_1f_{11} = B_1f_{11}$. This implies that $v_1(\varphi(B_0)p_1z_1)v_1^* = B_1f_{11}$. Finally Γ since $B_0 f_0 \ni b \mapsto \varphi(b) \in \varphi(B_0) f_1$ and $p_1 z_1$ belongs to $\varphi(B_0) p_1 \Gamma$ it follows that there exists a projection f_{00} in $B_0 f_0$ such that $\varphi(f_{00}) p_1 = z_1 p_1$. In particular Γ $v_1^* v_1 = v_0 f_{00} v_0^*$. Altogether Γ this shows that if we denote $v = v_1 v_0 f_{00} \Gamma$ then v is a partial isometry satisfying $v^* v = f_{00} \in B_0$, $vv^* = f_{11} \in B_1$ and $vB_0v^* = B_1vv^*$. Q.E.D. In Section 2 we will in fact need a consequence of Theorem 1.1. To state it Γ recall from ([D1]) that a m.a.s.a. A of a von Neumann factor N is called *semiregular* if the set of unitaries of N that normalize A generate a factor. Also ΓA is called *regular* if this normalizer generetes all the ambient factor N. Such regular m.a.s.a.'s were later called $Cartan\ subalgebras\ in\ ([FM])\Gamma$ a terminology that seems to have prevailed and which we will therefore adopt. We will also use the following notations from ([Ch]): - 1.2. Notation. Let \mathcal{B}_0 , \mathcal{B}_1 be von Neumann subalgebras of a type II₁ factor N. If $\sup\{\|x_0 E_{\mathcal{B}_1}(x_0)\|_2 \mid x_0 \in \mathcal{B}_0, \|x_0\| \le 1\} \le \varepsilon$ then we write $\mathcal{B}_0 \subset_{\varepsilon} \mathcal{B}_1$. Also Γ we denote by $d(\mathcal{B}_0, \mathcal{B}_1)$ the maximum between $\sup\{\|x_0 E_{\mathcal{B}_1}(x_0)\|_2 \mid x_0 \in \mathcal{B}_0, \|x_0\| \le 1\}$ and $\sup\{\|x_0 E_{\mathcal{B}_1}(x_0)\|_2 \mid x_0 \in \mathcal{B}_0, \|x_0\| \le 1\}$. - **1.3. Corollary.** Let N be an arbitrary type Π_1 factor and $A_0, A_1 \subset N$ be semiregular m.a.s.a.'s of N. If $A_0 \subset_{1-\delta} A_1$ for some $\delta > 0$ then there exists a unitary element $u \in N$ such that $uA_0u^* = A_1$. In particular, this is the case if A_0, A_1 are Cartan subalgebras of N. Proof. The condition implies that $\sup\{\|u-E_{A_1}(u)\|_2 \mid u \in \mathcal{U}(A_0)\} < 1$. Thus Γ by Theorem 1.1 there exists a non-zero partial isometry $v \in N$ such that $v^*v \in A_0, vv^* \in A_1, vA_0v^* = A_1vv^*$. Moreover Γ by cutting v from the right with a smaller projection in $A_0\Gamma$ we may clearly assume $\tau(vv^*) = 1/n$ for some integer n. Since A_0, A_1 are semiregular Γ there exist partial isometries $v_1, v_2, ..., v_n \Gamma$ respectively $w_1, w_2, ..., w_n$ in the normalizing groupoids of A_0 respectively A_1 such that $\sum_i v_i v_i^* = 1, \sum_j w_j w_j^* = 1$ and $v_i^* v_i = v^* v, w_j^* w_j = v v^*, \forall i, j$. But then $u = \sum_i w_i v v_i^*$ is a unitary element and $v A_0 v^* = A_1$. Let us also mention another application of Theorem 1.1 which Γ although not needed later in this paper Γ has some independent interest. Thus Γ recall from ([D1]) that a m.a.s.a. A of a von Neumann algebra N is singular if the only unitaries in N that normalize A are the unitaries of A. When N is a type II₁ factor Γ in ([B3]) a numerical invariant $\delta(A)$ was associated to m.a.s.a.'s A of $N\Gamma$ as a "measure of singularity" Γ as follows: For each non-zero partial isometry $v \in N$ with vv^*, v^*v mutually orthogonal projections in $A\Gamma$ denote $\delta(vAv^*, A) = \sup\{||x - E_A(x)||_2 \mid x \in vAv^*, ||x|| \leq 1\}$. Then define $\delta(A)$ to be the infimum of $\delta(vAv^*, A)/\|vv^*\|_2\Gamma$ as v runs over the set of all such partial isometries. In ([Po3]) it was noted that $\delta(A) > 0$ implies A is singular and examples of m.a.s.a.'s with $\delta(A) > 0$ were constructed in any type II₁ factor with separable predual. But it was left as an open question to calculate the possible values the constants $\delta(A)$ can take. This problem was recently revived in ([SiSm]). From 1.1 we get: **1.4.** Corollary. Let N be an arbitrary type II_1 factor and $A \subset N$ a singular m.a.s.a. Then $\delta(A) = 1$. Proof. If for some partial isometry $v \in N$ with $vv^*, v^*v \in A\Gamma v \neq 0, v^2 = 0$ we have $\sup\{\|x - E_{Avv^*}(x)\|_2/\|vv^*\|_2 \mid x \in vAv^*, \|x\| \leq 1\} < 1\Gamma$ then it follows that the m.a.s.a.'s $B_0 = vAv^*, B_1 = Avv^*$ in the factor vv^*Nvv^* (with its normalized trace) verify the condition in Theorem 1.1. Thus Γ there exists a non-zero partial isometry $v_0 \in vv^*Nvv^*$ such that $v_0^*v_0 \in vAv^*, v_0v_0^* \in Avv^*$ and $v_0vAv^*v_0^* \subset A$. But this contradicts the singularity of A. We end this section by mentioning two well known perturbation results from $([Ch])\Gamma$ needed in the sequel. We have included a proof for the sake of completeness. **1.5. Lemma.** [Ch]. Let N be a type II_1 factor and $B_0, B_1 \subset N$ be von Neumann subalgebras of N. Assume there exists a subgroup \mathcal{U}_0 of the unitary group of B_0 such that $\mathcal{U}_0'' = B_0$ and $\|u_0 - E_{B_1}(u_0)\|_2 \leq \varepsilon, \forall u_0 \in \mathcal{U}_0$. Then $B_1' \cap N \subset_{2\varepsilon} B_0' \cap N$. Proof. Let $x \in B'_1 \cap N$, $||x|| \leq 1$. Since $E_{B'_0 \cap N}(x)$ is the element of minimal norm-2 in the weakly compact convex set $\overline{\operatorname{co}}^{\mathbf{w}}\{u_0xu_0^* \mid u_0 \in \mathcal{U}_0\}\Gamma$ it follows that $\forall \delta > 0, \exists u_1, u_2, ..., u_n \in \mathcal{U}_0$ such that $||1/n\Sigma_i u_i x u_i^* - E_{B'_0 \cap N}(x)||_2 < \delta$. But by hypothesis Γ for all i = 1, 2, ..., n we have the estimates: $$||x - u_i x u_i^*||_2 \le ||x - E_{B_1}(u_i) x u_i^*||_2 + ||u_i - E_{B_1}(u_i)||_2$$ $$= ||x - x E_{B_1}(u_i) u_i^*||_2 + ||u_i - E_{B_1}(u_i)||_2 \le 2||u_i - E_{B_1}(u_i)||_2 \le 2\varepsilon.$$ Altogether Γ this implies that $||x - E_{B_0' \cap N}(x)||_2 < 2\varepsilon + \delta\Gamma$ with δ arbitrary Γ showing that $x \in_{2\varepsilon} B_0' \cap N$. Since x was taken arbitrary in the unit ball of $B_1' \cap N\Gamma$ we have shown that $B_1' \cap N \subset_{2\varepsilon} B_0' \cap N$. Q.E.D. **1.6. Lemma.** [Ch]. Let N be a type II₁. Assume there exists a subgroup \mathcal{U}_0 of the unitary group of N and a group morphism $\rho: \mathcal{U}_0 \to \mathcal{U}(N)$ such that $\|\rho(u_0) - u_0\|_2 \le \varepsilon, \forall u_0 \in \mathcal{U}_0$. Then there exists a partial isometry $v \in N$ such that $v^*v \in \mathcal{U}'_0 \cap N$, $vv^* \in \rho(\mathcal{U}_0)' \cap N$, $\|1 - v\|_2 \le 2\varepsilon$ and $Ad(v)(u_0) = \rho(u_0)vv^*, \forall u_0 \in \mathcal{U}_0$. Proof. Let $K_{\rho} = \overline{\operatorname{co}}^{\mathsf{w}} \{ \rho(u_0) u_0^* \mid u_0 \in \mathcal{U}_0 \}$. Let $k \in K_{\rho}$ be the unique element of minimal norm-2. Since $\rho(u_0) K_{\rho} u_0^* \subset K_{\rho}$ and $\|\rho(u_0) k' u_0^*\|_2 = \|k'\|_2 \Gamma$ for all $u_0 \in \mathcal{U}_0$ $\mathcal{U}_0, k' \in K_{\rho}\Gamma$ it follows that $\rho(u_0)ku_0^* = k, \forall u_0 \in \mathcal{U}_0$. Thus $\Gamma\rho(u_0)k = ku_0, \forall u_0 \in \mathcal{U}_0$. By the usual trick Γ it follows that if v denotes the partial isometry in the polar decomposition of k with right support equal to the right support of k then v is an intertwiner between ρ and id on \mathcal{U}_0 . Also Γ since any element k' in K_{ρ} satisfies $||k'-1||_2 \leq \varepsilon \Gamma$ by standard estimates (see e.g. Γ [C2] or [Ch]) one gets $||v-1||_2 \leq 2\varepsilon$. Q.E.D. #### 2. Examples of factors M with countable $\mathcal{F}(M)$. In this section we construct a class of examples of type II_1 factors with countable fundamental group. Some of them have the property Γ of Murray and von Neumann while others don't. The construction relies on the rigidity properties of the embedding of the group $G_0 = \mathbb{Z}^2$ inside the group $G = \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}^2)\Gamma$ discovered by Kazhdan in the late 60's ([Kaz]). However Γ as we will prove in the next section Γ the factors that we construct in this section do not contain any subfactor with the property Γ other than the finite dimensional ones. 2.1. The construction. Let (X_0, μ_0) be the 2-dimensional thorus Γ regarded as the dual group of $\mathbb{Z}^2\Gamma$ endowed with the Haar measure μ_0 . Note that μ_0 is the same as the Lebesgue measure on $X_0 = \mathbb{T}^2$. Let σ_0 be the action of $SL(2,\mathbb{Z})$ on X_0 implemented by the action of $SL(2,\mathbb{Z})$ on \mathbb{Z}^2 . Let (X_1,μ_1) be a probability space with a measure preserving ergodic transformation σ_1 of $SL(2,\mathbb{Z})$ on it. Let $\sigma = \sigma_0 \times \sigma_1$ be the product action on the probability space $(X,\mu) = (X_0 \times X_1, \mu_0 \times \mu_1)$. Denote $A = L^{\infty}(X,\mu)$ and $M = A \rtimes_{\sigma} SL(2,\mathbb{Z})$. Also Γ denote $A_0 = L^{\infty}(X_0,\mu_0)$ and $M_0 = A_0 \rtimes_{\sigma_0} SL(2,\mathbb{Z})$. Note that we can regard A_0 as a subalgebra $A\Gamma$ in which case the canonical unitaries $u_g, g \in SL(2, \mathbb{Z}) \subset M$ implementing the action σ on A also implement the action σ_0 on A_0 . Thus ΓM_0 can be viewed as a subfactor of M. Moreover Γ we can view A_0 as $L(\mathbb{Z}^2)\Gamma$ in which case M_0 is identified with $L(\mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}))$. Given any arbitrary ergodic action σ_1 as in 2.1 Γ the action σ and the algebras defined above have the following properties: - **2.2.** Lemma. 1°. The action σ is a free, ergodic action of $SL(2,\mathbb{Z})$ on the probability space (X,μ) . - 2° . The action σ_0 is strongly ergodic. The action $\sigma = \sigma_0 \times \sigma_1$ is strongly ergodic if and only if σ_1 is strongly ergodic. - 3°. There exist ergodic actions σ_1 of $SL(2,\mathbb{Z})$ that are not strongly ergodic. - 4° . M_0 is a non- Γ type II_1 factor and $A_0 \subset M_0$ is a Cartan subalgebra of M_0 . More generally, M is a type II_1 factor, $A \subset M$ is a Cartan subalgebra in M and M is non- Γ if and only if σ_1 is strongly ergodic. - 5°. When regarded as a subalgebra in M, A_0 satisfies $A'_0 \cap M = A$. *Proof.* 1°. It is well known that a non-inner automorphism of a group G implements a properly outer automorphism on L(G) that preserves the canonical trace of L(G). Thus Γ since each non-trivial element g in the group $SL(2,\mathbb{Z})$ implements a non-inner automorphism of \mathbb{Z}^2 it follows that $\sigma_0(g)$ is properly outer $\forall g \in SL(2,\mathbb{Z}), g \neq e$. Since the tensor product of any properly outer automorphism with an arbitrary automorphism is properly outer Γ it follows that $\sigma(g)$ is properly outer $\forall g \in SL(2,\mathbb{Z}), g \neq e\Gamma$ as well. Furthermore Γ the action σ_0 is well known to be mixing. More precisely Γ it is easy to see that given any finite set $F \subset SL(2,\mathbb{Z})$, $e \notin F\Gamma$ there exists $g \in SL(2,\mathbb{Z})$ such that $gF \cap F = \emptyset$. But this implies not only that σ_0 is ergodic Γ but also that its tensor product with any ergodic action is still ergodic. - 2°. The first part is a well known result of Klaus Schmidt ([S1]). The second part is an immediate consequence of the proof of this result in ([S1]). - 3°. This is a consequence of a theorem of Connes and Weiss ([CW]) Γ showing that any discrete group G_1 which doesn't have the property T has a free Γ ergodic but not strongly ergodic action σ_1 on a probability space. Thus Γ one simply applies this result to $G_1 = SL(2, \mathbb{Z})\Gamma$ which doesn't have the property T. One can in fact avoid using the general result in ([CW]) Γ by noticing that since $SL(2,\mathbb{Z})$ has an infinite amenable group H as a quotient (see e.g. Γ [dHV]) Γ any ergodic action of H on a non-atomic probability space (e.g. Γ a Bernoulli shift action of H) composed with the quotient map $G_1 \to H$ gives an ergodic but not strongly ergodic action of $SL(2,\mathbb{Z})$ (note that the resulting action of $SL(2,\mathbb{Z})$ is not free though Γ in fact not even faithful Γ but freeness is not necessary in the construction 1.1). - 4°. Since $SL(2,\mathbb{Z})$ is close to be a free group (see e.g. $\Gamma[dHV]$) Γ it is easy to see that any central sequences in a type II_1 factor of the form $B \rtimes_{\sigma} SL(2,\mathbb{Z})$ obtained as the cross product of a finite von Neumann algebra (B,τ) by a free $\Gamma\tau$ -preserving action σ of $SL(2,\mathbb{Z})$ on it must be supported on B. - 5°. Note that if $b = \sum_g a_g u_g \in M = A \rtimes_{\sigma} SL(2, \mathbb{Z})$ commutes with all $a \in A_0$ and $a_g \neq 0$ for some $g \neq e$ then $aa_g u_g = a_g u_g a, \forall a \in A_0\Gamma$ implying that $a_g a = a_g \sigma_g(a), \forall a \in A_0$. This in turn contradicts the fact that σ_g is properly outer on A_0 . Thus Γ all a_g with $g \neq 0$ must be equal to 0Γ implying that b lies in A. Q.E.D. - **2.3. Theorem.** Given any ergodic action σ_1 of $SL(2,\mathbb{Z}^2)$ on a probability space (X_1, μ_1) , the type Π_1 factor M constructed in 2.1 has countable fundamental group. To prove the Theorem Γ w'll use first a "separability argument" Γ then the result of Kazhdan on the rigidity of the embedding of the group \mathbb{Z}^2 inside $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ ([Kaz]) Γ then the perturbation results from the previous section Γ and finally the recent rigidity result of the free ergodic actions of the free groups on probability spaces of Gaboriau ([G]). We split the corresponding arguments in a series of lemmas. **2.4. Lemma.** Let N be a separable type II_1 factor. If $\mathcal{F}(N)$ is uncountable then there exist projections $p_n \in \mathcal{P}(N)$, with $p_n \neq 1, p_n \nearrow 1$, and isomorphisms $\theta_n : N \simeq p_n N p_n$, such that $\lim_{n \to \infty} \|\theta_n(x) - x\|_2 = 0, \forall x \in N$. Moreover, the projections $\{p_n\}_n$ can be taken to lie in any given diffuse abelian von Neumann subalgebra A_0 of N. *Proof.* Let $\{q_t \mid 0 \leq t \leq 1\} \subset N$ be a totally ordered set of projections with $\tau(q_t) = t, \forall 0 \leq t \leq 1$. For each $t \in S = (1/2, 1) \cap \mathcal{F}(N)$ choose an isomorphism $\theta'_t : N \simeq q_t N q_t$ and denote $\mathcal{I} = \{\theta'_t \mid t \in S\}$. Note that Γ since $\mathcal{F}(N)$ is uncountable Γ is uncountable. Let $\{x_n\}_{n\geq 1}$ be a sequence of elements in the unit ball N_1 of $N\Gamma$ such that as a set it is dense in N_1 in the norm $\|\cdot\|_2$ and such that each element appears infinitely many times in the sequence. Since $\{\theta'_t(x_1)\}_{t\in S}$ is a subset of $N_1\Gamma$ by covering N_1 with countably many open balls of $\|\|\|_2$ -radius 1/2 and using the separability of $(N_1, \|\|\|_2)$ it follows that there exists an uncountable subset $S_1 \subset S$ such that $\|\theta_t(x_1) - \theta'_{t'}(x_1)\|\|_2 < 1, \forall t, t' \in S_1$. Similarly Γ is repeatedly using the separability of N_1 to cover it by countably many balls of radius $1/2n\Gamma$ we construct recursively a decreasing sequence of uncountable sets $S_n \subset S, n \geq 1\Gamma$ such that $$\|\theta'_t(x_n) - \theta'_{t'}(x_n)\|_2 < 1/n, \forall t, t' \in S_n.$$ For each $n \geq 1$ choose now two distinct $t_n, t'_n \in S_n\Gamma$ say with $t_n > t'_n$. Since $\theta'_{t_n}(1) \geq \theta'_{t_n}(1)\Gamma$ $$\theta_n(x) = {\theta'}_{t_n}^{-1}(\theta'_{t'}(x)), x \in N,$$ gives a well defined isomorphism of N onto $p_n N p_n \Gamma$ where $$p_n = \theta'_{t_n}^{-1}(\theta'_{t'_n}(1)) = \theta_{t_n}^{-1}(q_{t'_n}) \in \mathcal{P}(N).$$ Moreover Γ since $t_n, t'_n \in S_j, \forall j \leq n\Gamma$ we have for each $n \geq 1$ and $1 \leq j \leq n$ the estimates: $$\|\theta_n(x_j) - x_j\|_2^2 = \tau(q_{t_n})^{-1} \|\theta'_{t_n}(x_j) - \theta'_{t_n}(x_j)\|_2^2 \le 2/j.$$ Since each x_j appears infinitely many times Γ it follows that $\lim_{n\to\infty} \|\theta_n(x_j) - x_j\|_2 = 0, \forall j \geq 1$. By the density of $\{x_n\}_n$ in $N_1\Gamma$ it follows that $\lim_{n\to\infty} \|\theta_n(x) - x\|_2 = 0, \forall x \in N_1\Gamma$ and thus for all $x \in N$. Finally Γ in case we want the projections $\{p_n\}_n$ to lie in a given diffuse abelian von Neumann subalgebra $A_0\Gamma$ then we first choose projections $\{p'_n\}_n \subset A_0$ with $\tau(p'_n) = \tau(p_n), \forall n\Gamma$ and note that $\|p'_n - p_n\|_2 \to 0$ (because both sequences tend to 1). Thus Γ there exist partial isometries $v_n \in N$ such that $v_n v_n^* = p_n, v_n^* v_n = p'_n, \forall n$ and $\|v_n - 1\|_2 \to 0$ (see e.g. Γ [C2] or [Ch]). But then Γ by replacing n p'_n for p_n and Λ and Γ for Γ for Γ for Γ the last condition will also be satisfied. Q.E.D. We are now going to use the rigidity of the embedding of the group \mathbb{Z}^2 inside $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ (cf. [Kaz]). We recall that if G_0 is a subgroup of a discrete group G then we say that G_0 has the property T inside G if there exist $g_1, g_2, ..., g_n \in G$ and $\varepsilon > 0$ such that if π is a unitary representation of G on a Hilbert space \mathcal{H} such that for some unit vector $\xi \in \mathcal{H}$ one has $\|\pi(g_i)\xi - \xi\| \leq \varepsilon, \forall i$ then there exists a non-zero vector $\xi_0 \in \mathcal{H}$ such that $\pi(h)\xi_0 = \xi_0, \forall h \in G_0$. Note that if this is the case Γ then by a well known argument it follows that $\exists K \geq 1$ such that $\forall \delta < \varepsilon \Gamma$ if $\|\pi(g_i)\xi - \xi\| \leq \delta, \forall i$ then $\|\pi(h)\xi - \xi\| \leq K\delta, \forall h \in G_0$ (see e.g. Γ [De-Ki]). **2.5.** Lemma. Let G be a discrete group and $G_0 \subset G$ a property T embedding of a group G_0 into G (e.g., $G_0 = \mathbb{Z}^2, G = \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}^2)$). Let $(A_0 \subset M_0) = (L(G_0) \subset L(G))$. Denote by $u_g, g \in G$, the canonical unitaries in M_0 . Let N be a type Π_1 factor that contains M_0 . Assume $\{\theta_n\}_n$ is a sequence of non-necessarily unital endomorphisms of N such that $\lim_{t\to 0} ||\theta_n(u_g) - u_g||_2 = 0, \forall g \in G$. Then for any $\varepsilon > 0$ there exists n_{ε} such that if $n \geq n_{\varepsilon}$ then $||\theta_n(u_h) - u_h||_2 \leq \varepsilon$, $\forall h \in G_0$. Proof. Let $\pi_n : \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}^2) \to \mathcal{U}(\mathcal{H}_n)$ be the unitary representation on the Hilbert space $\mathcal{H}_n = \theta_n(1)L^2(M,\tau)$ defined by $\pi_n(g)(\xi) = \theta_n(u_g)\xi u_g^*, g \in \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}^2)$. If we let $\xi_n \in \mathcal{H}_n$ be the projection $p_n \in M$ regarded as a vector in \mathcal{H}_n then $$\|\pi_n(g)\xi_n - \xi_n\| = \|\theta_n(u_g)u_g^* - p_n\|_2$$ $$= \|\theta_n(u_g) - p_n u_g\|_2 \le \|\theta_n(u_g) - u_g\|_2 + \|1 - p_n\|_2, \forall n \ge 1, g \in G.$$ SimilarilyΓ $$\|\pi_n(g)\xi_n - \xi_n\| \ge \|\theta_n(u_g) - u_g\|_2 - \|1 - p_n\|_2, \forall n \ge 1, g \in G.$$ By the hypothesis and the first set of estimates it follows that $\lim_{n\to\infty} \|\pi_n(g)\xi_n - \xi_n\| = 0, \forall g \in \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}^2)$. Since $\|\xi_n\|^2 = \tau(p_n) \to 1$ as $n \to \infty\Gamma$ by the property T of \mathbb{Z}^2 inside $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}^2)$ and the second set of estimates Γ it follows that $$\lim_{n\to\infty} \sup_{h\in\mathbb{Z}^2} \|\theta_n(u_h) - u_h\|_2 = 0.$$ **2.6. Lemma.** With the same notations as in the statement of Lemma 2.5, if in addition we assume the projections $p_n = \theta_n(1)$ lie in $A_0, \forall n$, then for any $n \geq n_{\varepsilon}$ we have $d(\theta_n(A_0)' \cap N, A_0 p'_n \cap N) \leq 2\varepsilon (1-\varepsilon)^{-1}$. *Proof.* By using the fact that $p_n \in A_0 = \{u_h\}_{h \in \mathbb{Z}^2}^n$ and applying Lemma 1.5 Γ first to $\mathcal{U}_0 = \theta_n(\{u_h\}_{h \in \mathbb{Z}^2})$ then to $\mathcal{U}_0 = \{u_h p_n\}_{h \in \mathbb{Z}^2}\Gamma$ regarded as unitary subgroups in the type II₁ factor $p_n N p_n \Gamma$ endowed with the normalized trace $\tau(p_n)^{-1} \tau \Gamma$ it follows that $$d(A_0p'_n \cap p_nNp_n, \theta_n(A_0)' \cap p_nNp_n) \le 2\varepsilon\tau(p_n)^{-1/2} \le 2\varepsilon(1-\varepsilon)^{-1}.$$ Q.E.D. Proof of Theorem 2.3. If $\mathcal{F}(M)$ is uncountable then by Lemma 2.4 there exists a sequence of projections $p_n \in A_0, p_n \neq 1\Gamma$ and isomorphisms θ_n of M onto $p_n M p_n$ such that $\lim_{n\to\infty} \|\theta_n(x) - x\|_2 = 0, \forall x \in M$. In particular Γ applying this to $x = u_g \in M_0 \subset M, g \in \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})\Gamma$ we have $$\lim_{n \to \infty} \|\theta_n(u_g) - u_g\|_2 = 0, \forall g \in \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}).$$ By 2.5 and 2.6 Γ it follows that for n large enough Γ if we denote $p = p_n$ and $\theta = \theta_n$ then we have $d(A_0p' \cap pMp, \theta(A_0)p' \cap pMp) < 1$. But by Lemma 2.1 Γ $A_0p' \cap pMp = Ap$ is a Cartan subalgebra of pMp. Similarly $$\theta(A_0)p' \cap pMp = \theta(A'_0 \cap M) = \theta(A)$$ is a Cartan subalgebra of pMp as well. By Corollary 1.4 it follows that the Cartan subalgebras Ap and $\theta(A)$ of pMp are conjugate by a unitary element u of pMp. Thus $\Gamma\theta' = \mathrm{Ad}(u) \circ \theta$ is an isomorphism of M onto pMp carying A onto Ap. But by the results of Gaboriau the cost $c(A \subset M)$ of the Cartan subalgebra A of M is equal to 13/12 while the cost $c(Ap \subset pMp)$ of its restriction to p is equal to $1/12\tau(p)+1\Gamma$ which is larger than 13/12. Since the cost is invariant to the isomorphism $\theta'\Gamma$ we get a contradiction. Thus $\Gamma\mathcal{F}(M)$ is uncountable. Q.E.D. - **2.7.** Corollary. 1°. The type Π_1 factor $M_0 = L(\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ is non- Γ and has countable fundamental group $\mathcal{F}(M_0)$. - 2°. If σ_1 is chosen to be ergodic but not strongly ergodic (cf 2.2.3°), then the type Π_1 factor $M = A \rtimes_{\sigma} SL(2,\mathbb{Z})$, where A and σ are defined as in 2.1, then M has the property Γ and countable fundamental group $\mathcal{F}(M)$. *Proof.* This is now an immediate consequence of Lemma 2.2 and Theorem 2.3. Q.E.D. #### 3. Further remarks. 3.1. More examples of factors M with countable $\mathcal{F}(M)$. Recall that the first examples of factors M with countable fundamental group were constructed by Connes in ([C1]) Γ as group von Neumann factors associated to dicrete ICC groups G having the property Γ of Kazhdan. More examples of factors with countable fundamental group were constructed in ([Po1 Γ 3 Γ 5][Gol]). All these examples had relied in a way or another on constructions involving property Γ groups and they were non- Γ factors. The examples in the previous section are still using some rigidity phenomena Γ but the milder one involving the inclusion $\mathbb{Z}^2 \subset \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$. Although these examples seem "closer" to free group factors Γ they cannot be embedded in any free group factor Γ by the same argument as the one in [CJ1] (see [Po]). But they cannot contain property Γ groups either Γ because of the "relative Haagerup property" that the inclusion $L(\mathbb{Z}^2) \subset L(\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ has (see [Po]). One can actually construct another class of examples of factors having the property Γ but countable fundamental group Γ by using property Γ groups and a strategy reminiscent of ($[C1]\Gamma$ [CJ1]) and($[Po1\Gamma3]$) Γ as follows: Let G be an ICC group with the property T of Kazhdan and satisfying the following condition: (3.1.1). Given any finite set $F \subset G - \{e\}$ there exists $g \in G$ such that $gFg^{-1}F \cap FgFg^{-1} = \emptyset$. Note that this implies in particular $gFg^{-1} \cap F = \emptyset$. (We are greatful to George Skandalis for confirming to us that the groups $SL(n,\mathbb{Z})$ with $n \text{ odd}\Gamma n \geq 3$ do satisfy this condition Γ besides having the property T by Kazhdan's classical result). Then we let $(\mathbb{T}_g, \mu_g), g \in G$, be copies of the thorus \mathbb{T} with its Lebesgue measure and (X, μ) be the product of these spaces Γ with the corresponding product measure. We let σ be the action of G on (X, μ) by Bernoulli shifts. We let M_0 be the corresponding type H_1 factor obtained by the group-measure space construction Γ i.e. Γ $M_0 = L^{\infty}(X, \mu) \rtimes_{\sigma} G$. Finally Γ we consider the action α of \mathbb{Z} on $M_0\Gamma$ implemented by the "transversal" action of \mathbb{Z} on (X, μ) given by rotation by the same irrational number on each copy of the thorus $(\mathbb{T}_q, \mu_g), \forall g \in G$. We denote $M = M_0 \rtimes_{\sigma_0} \mathbb{Z}$. It is easy to see that M has the property Γ . Using Lemmas 2.4 and 2.5 (the latter for $G_0 = G$) and adding some more work Γ one can show that if $\mathcal{F}(M)$ is uncountable then there exists a projection $p \in A_0 = \{u_h\}_{h \in \mathbb{Z}}^n \subset M\Gamma$ with $p \neq 1\Gamma$ and an isomorphism $\theta : M \to pMp\Gamma$ with $\theta(u_g) = u_g p, \forall g \in G$. This implies $\theta(A_0) = A_0 p$ and then the condition (3.1.1) easily implies that $\theta(L^{\infty}(X, \mu) \rtimes \mathbb{Z}) = p(L^{\infty}(X, \mu) \rtimes \mathbb{Z})p$. This forces each Haar unitary v_h generating $L^{\infty}(\mathbb{T}_h)$ to be so that $\theta(v_h)$ has a certain specific form. But then Γ by using again (3.1.1) Γ it follows that for appropriate $g \in G$ the unitaries $\theta(v_h)$ and $\sigma_g(\theta(v_h))$ are "supported" on almost disjoint finite segments of the product $\otimes_g L^{\infty}(\mathbb{T}_g)$ cross product with \mathbb{Z} . But then it is easy to see that $\theta(v_h)$ and $\sigma_g(\theta(v_h))$ cannot commute Γ acontradiction. 3.2. Examples of factors M with $\mathcal{F}(M) = \mathbb{R}_+^*$. Recall that in ([V] Γ [Ra]) the free group factor $L(\mathbb{F}_{\infty})$ was proved to have fundamental group equal to \mathbb{R}_+^* . This is the most striking example Γ so far Γ of a non- Γ type II₁ factor with fundamental group same as the hyperfinite factor. The following construction provides a class of examples of type II_1 factors which have the property $\Gamma\Gamma$ are not McDuff Γ and yet have fundamental group \mathbb{R}_+^* : Let Q be an arbitrary non-atomic finite von Neumann algebra. Let $A \subset R$ be the hyperfinite type Π_1 factor with its Cartan subalgebra. Let $M = Q \overline{\otimes} A *_A R$ be the amalgamated free product with respect to the trace preserving conditional expectations Γ as in ([Po3]). By the proof of (4.1 and 7.1 in [Po3]) Γ we see that any central sequence of M must lie in A. On the other hand Γ any central sequence of R that lies in R is also a central sequence of R. Thus Γ has the property Γ Γ without being McDuff. Note that M can be alternatively described as follows: Denote by σ the irrational rotation on the thorus Γ viewed as an automorphism of $L(\mathbb{Z})$. We still denote by σ the action $id * \sigma$ of \mathbb{Z} on $Q * L(\mathbb{Z})$. Then $M \simeq Q * L(\mathbb{Z}) \rtimes_{\sigma} \mathbb{Z}\Gamma$ with Q (respectively $A \subset R$) in the first construction corresponding to Q (resp. $\lambda(\mathbb{Z})'' \subset L(\mathbb{Z}) \rtimes_{\sigma} \mathbb{Z}$) in this construction. The fact that M has Γ but is not McDuff can then also be deduced from ([Po4]). Using the first representation of $M\Gamma$ we see that if p is a non-zero projection in A then $p(Q\overline{\otimes} A*_A R)p$ is trivially isomorphic to $Q\overline{\otimes} Ap*_{Ap}pRp$. But by Dye's theorem $(Ap\subset pRp)$ is isomorphic to $(A\subset R)\Gamma$ while $Q\overline{\otimes} Ap$ is trivially isomorphic to $Q\overline{\otimes} A$. Thus $\Gamma pMp\simeq M$ for any non-zero projection in M. Thus $\mathcal{F}(M)=\mathbb{R}_+^*$. Due to the resemblence of the above construction of M with the amalgamated free product construction in ([Po3]) Γ it is likely that in the case $Q = L(\mathbb{F}_{\infty})$ the factor M has the same universality property ([PoSh]) as the free group factor $L(\mathbb{F}_{\infty})\Gamma$ namely that any standard lattice \mathcal{G} can "act" on it. #### REFERENCES - [A-De] C. Anantharam-Delaroche: On Connes' property T for von Neumann algebras Γ Math. Japon. **32** (1987) Γ 337-355. - [Bi-N] J. Bion-Nadal: von Neumann subalgebras of a type II_1 factor: correspondences and property $T\Gamma J$. Operator Theory. - [Ch] E. Christensen: Subalgebras of a finite algebra Math. Ann. **243** (1979) Γ 17-29. - [C1] A. Connes: A type II_1 factor with countable fundamental group Γ J. Operator Theory 4 (1980) Γ 151-153. - [C2] A. Connes: Classification of injective factors Γ Ann. of Math. Γ 104 (1976) Γ 73-115. - [C3] A. Connes: Notes on $correspondences\Gamma$ unpublished manuscript 1980. - [C4] A. Connes: Classification des facteurs ΓProc. Symp. Pure Math. 38 (Amer. Math. Soc. Γ 1982) Γ 43-109. - [CJ1] A. ConnesΓV.F.R. Jones: Property T for von Neumann algebrasΓBull. London Math. Soc. 17 (1985)Γ 57-62. - [CJ2] A. Connes Γ V.F.R. Jones: A II_1 factor with two non-conjugate Cartan subalgebras Γ Bull. AAmer. Math. Soc. 6 (1982) Γ 211-212. - [CW] A. Connes Γ B. Weiss: Property Γ and asymptotically invariant sequences Γ Israel. J. Math. **37** (1980) Γ 209-210. - [DeKi] C. Delaroche Γ Kirilov: Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermes Γ Se. Bourbaki Γ 20'eme année Γ 1967-1968 Γ no. 343 Γ juin 1968. - [D1] J. Dixmier: Sous-anneaux abéliens maximaux dans les facteurs de type finiΓ Ann. Math. **59** (1954)Γ 279-286. - [D2] J. Dixmier: "Les algèbres d'opérateurs sur l'espace Hilbertien (Algèbres de von Neumann)" Γ Gauthier-Villars Γ Pris Γ 1969. - [F] A. Furman: Orbit equivalence rigidity Γ Ann. Math. (1999) Γ . - [G] D. Gaboriau: Cout des rélations d'équivalence et des groupes Γ Invent. Math. 139 (2000) Γ 41-98. - [H] U. Haagerup: An example of non-nuclear C*-algebra which has the metric approximation propertyΓ Invent. Math. 50 (1979)Γ 279-293. - [dHV] P. de la HarpeΓ A. Valette: "La propriété T de Kazhdan pour les groupes localement compacts" ΓAstérisque 175 (1989). - [J] V.F.R. Jones: A converse to Ocneanu's theorem Γ J. Operator Theory 10 (1983) Γ 61-63 - [K] R.V. Kadison: Diagonalizing matrices Γ Amer. Math. Journal (1984) Γ 1451-1468. - [Kaz] D. Kazhdan: Connection of the dual space of a group with the structure of its closed subgroups Γ finct. Anal. and its Appl. 1 (1967) Γ 63-65. - [McD] D. McDuff: Central sequences and the hyperfinite factor ΓProc. London Math. Soc. 21 (1970) Γ 443-461. - [MvN] F. Murray Γ J. von Neumann: Rings of operators $IV\Gamma$ Ann. Math. **44** (1943) Γ 716-808. - [PiPo] M. PimsnerΓ S. Popa: Entropy and index for subfactorsΓ Ann. Scient. Ec. Norm. Sup. 19 (1986) Γ 57-106. - [Po1] S. Popa: CorrespondencesΓ INCRESTpreprint 1986Γ unpublished. - [Po2] S. Popa: Singular maximal abelian *-subalgebras in continuous von Neumann algebras Γ J.Funct. Anal. Γ50 (1983) Γ 151-166. - [Po3] S. Popa: Markov traces on universal Jones algebras and subfactors of finite index Γ Invent. Math. Γ 111 (1993) Γ 375-405. - [Po4] S. Popa: Maximal injective subalgebras in factors associated with free groups Γ Adv. in Math. Γ 50 (1983) Γ 27-48. - [Po5] S. Popa: Free independent sequences in type II_1 factors and related problems Γ Asterisque 232 (1995) Γ 187-202. - [PoSh] S. PopaΓD. Shlyakhtenko: Universal properties of $(L(\mathbb{F}_{\infty}))$ in subfactor theory. Γ Preprint ΓMSRIΓ 2000. - [Ra] F. Radulescu: The fundamental group of the von Neumann algebra of a free group on infinitely many generators is $\mathbb{R}_+\Gamma$ JournalA.M.S. - [S1] K. Schmidt: Asymptotically invariant sequences and an action of $SL(2,\mathbb{Z})$ on the 2-sphere Γ Israel. J. Math. **37** (1980) Γ 193-208. - [S2] K. Schmidt: Amenabilty, Kazhdan's propety T, strong ergodicity and invariant means for ergodic group-actions Γ Ergod. Th. & Dynam. Sys. 1 (1981) Γ 223-236. - [SiSm] . A. Sinclair Γ R. Smith: Strongly singular mass in type II₁ factor Γ preprint 2001. - [V] D. Voiculescu: Symmetries of some reduced free product C*-algebrasΓ In: Operator Algebras and their Connections with Topology and Ergodic TheoryΓ Lecture Notes in Math. Vol. 1132Γ566-588 (1985). MATH.DEPT., UCLA, LA, CA 90095-155505 E-mail address: popa@math.ucla.edu