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A RIGIDITY RESULT FOR ACTIONS OF
PROPERTY T GROUPS BY BERNOULLI SHIFTS

SORIN POPA

University of California, Los Angeles

ABsTRACT. Let o be the action of an infinite property T group G on the hyperfinite
type II; factor R = ®G(M2x2(iC),tr)g, by Bernoulli shifts. We prove that the
g€

cocycle actions obtained by reducing o to the algebras pRp, for p non-trivial projec-
tions in R, cannot be perturbed to actions. We also prove that any 1-cocycle for o
vanishes. More generally, we calculate all 1-cocycles for actions of property T groups
G by Bernoulli shifts of Connes-Stgrmer type and use this to provide an invariant
that distinguishes these actions up to cocycle conjugacy.

0. INTRODUCTION.

The study of automorphisms in the theory of von Neumann algebras has often
followed problems and phenomena already present in commutative ergodic theory.
But starting with the early 70’s, with the advent of Tomita-Takesaki theory and
Connes’ ground breaking work on the classification of factors, the full importance
and the distinguishing features of this “non-commutative ergodic theory” have be-
come increasingly evident.

A typically non-commutative aspect related to the study of automorphisms of a
von Neumann algebra N is that such automorphisms are regarded both as elements
in the automorphism group of N, AutN, and modulo perturbation by inner auto-
morphisms, in the quotient group Aut/N /IntN. This leads to the study of two types
of classification up to conjugacy for automorphisms, in AutN and respectively in
AutN /IntN. It also leads to considering cocycles for the corresponding actions.

Along these lines, the more general problem is to study morphisms from groups
G into AutN and into AutN/IntN, up to conjugacy. The former are called actions
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2 SORIN POPA

of G on N. Not all faithful group morphisms ¢ from G into AutN /Int/N can be
lifted to actions. Thus, Nakamura and Takeda have already pointed out in ([NT})
that to any such morphism o one can associate a scalar 3-cocycle u € H*(G,T) of
the group G, and that u gives an obtruction for ¢ to be liftable to a genuine action.
Also, it was shown in ([INT}]) that the morphism o has trivial obstruction p if and
only if it can be lifted to a cocycle action. It is a most interesting problem to decide
whether any cocycle action of a group G can be perturbed by inner automorphisms
to a genuine action of G. In other words, whether the 3-cocycle p is the only
obstruction for a ¢ to be liftable to an action.

One of the results in ([C38]) showed that this is indeed the case if G = Z/nZ
and N is an arbitrary type II; factor. Then in ([Su]) it was proved that this is
still the case for all finite groups G. It was further proved in ([Oc]) that the result
actually holds true for all countable amenable groups G, but when N is equal to
the hyperfinite type II; factor R. Finally, the condition that N be hyperfinite was
removed in ([Pol1,9]). Thus, all cocycle actions of an amenable group G on an
arbitrary type I1; factor N can be perturbed to genuine actions.

At the oposite end, Connes and Jones have found an example of a cocycle action
of a property T group G ([K|) on the free group factor N = L(F ) that cannot be
perturbed to an action ([CJ]). It remained however as an open problem of whether
such examples exist or not in the case N is the hyperfinite type I1; factor.

In this paper we solve this problem, by providing a class of examples of cocycle
actions on the hyperfinite type II; factor that cannot be perturbed to actions. More
precisely, we prove that if ¢ is an action of an infinite disctere group G with the
property T of Kazhdan on the hyperfinite type II; factor B = ® & (Max2(C),tr)g,

by Bernoulli shifts, and if p is an arbitrary projection in R, p # 0, 1 then the cocycle
actions obtained by reducing ¢ by p cannot be perturbed to genuine actions. The
same result is proved for the group G = SL(2,Z) x Z?, which doesn’t have the
property T.

Our result also implies that given any two projections of different trace p,¢ in R
the cocycle actions on pRp =~ R =~ gRgq, obtained by reducing o by p, respectively
g, are not outer conjugate, i.e., they are not conjugate in AutR/IntR.

At the same time, we also prove a vanishing 1-cohomology result for the action
o, showing that any 1-cocycle (modulo scalars) w for ¢ is a coboundary, medulo the
scalars. More precisely, if w : G — U(R) satisfies wgoy(wp) = wgn, Vg, h € G, mod-
ulo C, then there exists a unitary element v € U{R) such that wy = v*04(v),Vg € G,
modulo C. Related to this, recall that by ([C2]) any unitary l-cocycle for an ar-
bitrary action of a finite group G on a type IIy factor vanishes. Our result shows
that such a rigidity result may hold true for some special actions of infinite discrete
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groups as well.

This vanishing cohomology result for 1-cocycles also implies that if an action of
G on R is cocycle conjugate to the Bernoulli shift o, then it is actually conjugate
to it.

More generally, we explicitly calculate all the I-cocycles for actions of an infinite
property T group G by Bernoulli shifts of Connes-Stormer type. These are actions
oy on the hyperfinite type Il factor R obtained by restricting the Bernoulli shift of
G on the hyperfinite type 11, factor N = W@;(ngg(@), @ )g to its type II; core.

g€

We prove that all I-cocycles for o, are locally of the form vos g(v*), with v € N
isometries normalizing the core R of A, As a consequence, for each 1-cocycle w
the fixed point algebra of the action Adw o o follows atomic. Moreover, the scalar
A can be recuperated from the range of the trace on the set of minimal projections
of these fixed point algebras, thus being an outer conjugacy invariant for ¢. As a
consequence, we obtain that the actions 5,0 < A < 1, of the group G on R are
mutually non outer conjugate.

Similarily, we consider arbitrary Connes-Stermer Bernoulli shifts ¢ of G on the

core factor of N ="®& (Mix(C), o)y and show that the multiplicative subgroup
geG

of R generated by {t;/t;}: ;, where t; > 0 are the diagonal elements that determine
the faithful state gy of My«(C), is an outer conjugacy invariant for o.

Note that if in the above construction the group G one starts with is Z, then the
actions o, are the usual Connes-Stgrmer Bernoulli shifts in ([CS]) and they have
Conunes-Stermer entropy equal to —tlogt — (1 — t)log(l — ¢), where t/1 — ¢ = A
Thus, the entropy does distinguish the actions 0,0 < A < 1, up to conjugacy,
but by ([C2]) these actions are all outer conjugate. Similarily for G an arbitrary
amenable group, by ([Kal) and respectively ({Oc}). Our result shows that in the
case (G has the property T, the Connes-Stormer Bernoulli shifts o) become much
more rigid, as they are not even outer conjugate. Also, rather than entropical, our
invariant comes from the cohomology properties of the action.

We also obtain some results similar to the above for the free Bernoulli shifts of
an infinite property T group G on the free group factor L{F ) =~ L(Fg).

To prove these results we use the fact that if o is a Bernoulli shift of an infi-
nite property T group G on R then the identity automorphism on R®R can be
approximated by product-type automorphisms that are commuting with the action
o ® o on RRR. Using this deformation of the identity and the property T of the
group G, and assuming by contradiction that the reduced cocycle action by some
projection p € R can be perturbed to an action, one obtains non-zero intertwiners
that implement the flip automorphism on appropriate elements of R®R. When
suitably interpreted, this forces p = 1 and the cocycle to be trivial.
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The paper is organized as follows: In Section 1 we recall some basic definitions
of actions, cocycle actions and 1-cocycles. In Section 2 we give some examples of
actions, that are to be used in the paper, amply discussing the Bernoulli shifts
and their generalized version considered by Connes and Stormer. In Section 3 we
construct the cocycle actions obtained by reducing actions by projections (Propo-
sition 3.1). Also, we introduce a class of non-trivial 1-cocycles for Connes-Stgrmer
Bernoulli shifts that are needed in the sequel (Theorem 3.2).

In Section 4 we prove the main result of the paper, showing that the 1-cocycles
constructed in Section 3 give the list of all 1-cocycles of the actions of property T
groups by Connes-Stermer Bernoulli shifts (Theorem 4.1). In Section 5 we derive
some consequences of the main theorem, proving the existence of cocycle actions
that cannot be perturbed to actions (Corollary 5.7), the vanishing cohomology
result for Bernoulli shifts of property T groups (Corollary 5.6) and showing that the
outer conjugacy classes of the Connes-Stgrmer Bernoulli shifts can be distinguished
by the “cohomology picture” of those actions, a structure that comes from the
spectrum of the discrete decomposition of the type III) factors they are defined
on (Theorem 5.3, 5.4). Also, we make several remarks. In Section 6 we prove the
analogue result for free shifts. We include some remarks here as well.

I am very greatful to Dima Shlyakhtenko and Antony Wassermann for pointing
out to me several pertinent references related to this work.

1. PRELIMINARIES AND NOTATIONS.

Although the main results in this paper are stated in the framework of type
II; factors, their proofs will require some considerations on von Neumann factors
of type Iy, 0 < A < 1, as well. Thus, most of the definitions and notations on
actions of groups and their cocycles that we recall in this section will be stated in
the context of arbitrary von Neumann factors.

1.1. Actions and cross products. We denote by (N, @) a pair consisting
of a von Neumann factor N (typically of type II; or of type III,,0 < A < 1),
with a normal faithful state ¢ on it (typically a trace or a generalized trace). The
centralizer of ¢ is the set N, = {z € N | p(zy) = p(yx),Vz € N'}.

In case the von Neumann algebra A is specified to be a type 11, factor, we will
use the notation N instead of N. In this case the state ¢ will always be taken to
be the unique trace 7 on N.

An automorphism of (N,y) is an automorphism of A that preserves . We
sometimes denote the group of all such automorphisms of N by Aut(VN, ¢). Note
that any automorphism of (N, ¢) normalizes N,,.

An automorphism p of N is inner if there exists u in the unitary group of AV,
U(N), such that p(z) = Adu(z) = vzu*,Vz € N. Note that the set Int (N, p) of
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inner automorphisms of N that preserve ¢ coincides with the set of automorphisms
Adu with u € U{N,). Int (N, ) is clearly a normal subgroup of Aut (N, ).

An automorphism p of the factor N is properly outer (or simply outer) if it is
not inner.

Let &7 be a discrete group. An action of G on (N, ) is a group morphism o : G —
Aut(N, ). Note that in case A= N is a type II, factor, any automorphism of N
preserves the trace 7. We will simply denote by AutN the set of all automorphisms
of N.

Recall that the cross product algebra associated to an action o on (N, ¢) denoted
(N %5 G, @), is the von Neumann algebra generated inside B(£2(G, L*(N, ¢))) by
the unitaries vy € B(£2(G, L*(NV,))), g € G, where

ug(fY(R) = (g™ h), for f € £3(G, L* (N, p)),
and by a copy of the algebra N given by

(b-f)(g) =07 (b)f(g), forbe N, f € (G, L*(N,¢)), g € G.

together with the vector state p(X) = (X&,,&,), where &, € £2(G, L3N, p)) is
the function on G that takes the value £, at e and 0 elsewhere.
The cross product algebra N %, G can alternatively be viewed as the completion

{on bounded sequences) of the Hilbert algebra of finite formal sums ¥ Ughg, by €
geG

N, with multiplication rules ugup, = ugn, bug = ugagl(b), b= ucb = 1b, for g,h €
G, b € N, and *-operation (ugh)* = u,.104(b*), and with NV-valued expectation

E (Eugbg) def b. and scalar expectation
g

@ (Z ugbg) def i (E (Z ugbg)) = (be).

Recall that (A x, G, ) this way defined is itself a von Neumann algebra, with
¢ a faithful normal state. In case A/ is a finite von Neumann factor with ¢ a
trace, then this cross product algebra is a finite von Neumann algebra itself, with
@ = o F 3 faithful trace on it.

If the action ¢ is properly outer, i.e., if ¢4 is a properly outer automorphism,
Vg # e, then N'NN ' %,G = C. In particular, if o is properly outer then M = A x,G
is a factor.

1.2. Cocycle actions. A cocycle action ¢ of G on (N, ¢) is a map o : G —
Aut(N, p) with the property that there exists a map v : G x G — U(N,,) such that:

(1.2.1) 0. = id and agop = Ad vgaogn, Vg, h € G
(1.2.2) Vg hVUgh .k = 0g(Un k)Ug nks Vg, h. k € G.
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A map v satisfying (1.2.2) is called a 2-cocycle for o. The 2-cocycle is normalized
if vge = vey = 1, Vg € (. Note that, since N is a factor, any 2-cocycle satisfies
ve,e € C. Thus any 2-cocycle v can be normalized by replacing it, if necessary, by
Ugh = Vee Ughs G R EG.

All 2-cocycles considered from now on will be normalized. Furthermore, all
cocycle actions (in particular all actions) that we will consider in this paper are
assumed to be properly outer, le., o4 cannot be implemented by unitary elements
in ,Vg # e.

Also, when given a cocycle action o, we will sometimes specify from the beginning
the 2-cocycle it comes with, thus considering it as a pair (o, v).

Note that the 2-cocycle v is unique modulo perturbation by a scalar 2-cocycle
p. More precisely, v’ : G x G — U(N), with v, . = 1, satisfies conditions (1.2.1),
(1.2.2) if and only if v = pv for some scalar valued function y : G x G — T
satisfying pe . = 1 and

(12'3) Hg hltgh k= KHh kMg hk, vga h: ke G

A 2-cocycle v for the action o is triwial {(or it is a coboundary) if there exists a
map w : G — U{N) such that w. = 1 and v = Ow, i.e.:

(1.2.3) Vo b = (OW)g.n d“—EEfO' (w}:)'w*w hy Vg, h € G.
g, g, g g8

The 2-cocycle v is weakly trivial if there exists w : G — U(N) such that w, = 1
and v = dw modulo scalars, i.e.:

(1.2.4) we0 o (Wh Vg nWyy € Cl, Vg, h € G.
Note that this is equivalent to
(1.2.47) (Ad wgog) (Ad wpon) = Ad wepogn, Vg, h

. def . .
ie., to a; = Ad wyo, being an action.

A weakly trivial 2-cocycle is not necessarily trivial. In fact, if we take any scalar
valued 2-cocycle, then the conditions (1.2.1), (1.2.2) and (1.2.4') are satisfied for
any genuine action ¢ of G (taking p for v and w = 1). Thus u is a weakly trivial
2-cocycle, in the above sense. But if we take N = C1 it is not always true that given
any u like this there exists some w : G — T such that p = dw. In fact, for most
groups G there do exist scalar 2-cocycles g that are not trivial (or coboundary).
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Let us also recall here some well known vanishing cohomology results. The
first result along these lines is due to Connes, who considered the vanishing co-
homology and classification problems for actions of the cyclic groups Z, Z/nZ,
n > 2, on factors ({C2, 3]).

A general vanishing cohomology result for arbitrary finite groups was obtained
by Sutherland ([Su] see also [J1]), who proved that any 2-cocycle from a cocycle
action of a finite group G on an arbitrary type Il; factor N is coboundary.

In the same vein, Ocneanu proved that any 2-cocycle from a cocycle action of
a countable amenable group ¢ on the hyperfinite type I factor R is coboundary
([Oc]). It was then proved in ([Pol,9]} that the same vanishing cohomology result
holds true for cocycle actions of amenable groups G on arbitrary type 11; factors
N. Thus, in particular, any cocycle action of a countable amenable group on an
arbitrary type Il; factor can be perturbed to a genuine action.

Connes and Jones provided the first example of a cocycle action of a. countable
discrete group G on a type Il factor N that cannot be perturbed to an action
([CJ)]). In their example, G had the property T of Kazhdan, with N being the free
group factor L{F ) (see the Appendix 2.1 at the end of this paper).

1.3. l-cocycles for actions. Let us now take ¢ to be a genuine action of G
on (N, ). A map w: G - U(N,,) satisfying condition

(1.3.1) WeOg(Wh) = wgn, Vg, h

is called a 1-cocyele for . Such a 1-cocycle for o is a coboundary (or it is trivial)
if there exists a unitary element w € U (N} such that wy = w*o (w), Vg. (Clearly,
such maps w, do satisfy the 1-cocycle condition (1.3.1)).

The map w is called a weak 1-cocycle if it satisfies the relation (1.3.1) modulo
the scalars, i.e.,

(1.3.1") wgog(wp)wy, € TLVg, h € G

Note that this is equivalent to Adw, o o, being an action. Note also that if w is a
weak 1-cocycle then pgn = wyoq(wn)wyy, is a scalar 2-cocycle.

A (weak) 1-cocycle w is weakly trivial (or weak cobouboundary) if there exists a
unitary element w € U(N) such that wwgog{w)* € T1,Vyg.

Two (weak) l-cocycles w,w’ of the action o are equivalent if there exists a
unitary element v € N such that wj, = vw,0,(v)*,Vg € G (resp. modulo scalars).
Thus, a weak 1-cocycle is weakly trivial iff it is equivalent to a scalar valued weak
1-cocycle (N.B.: this are just plain scalar functions on G). Note that the scalar
valued genuine 1-cocycles are just characters of G.
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Recall that by Connes 2 by 2 matrix trick ([C3]) any 1-cocycle for an action of
a finite group G on an arbitrary type II; factor is trivial (the result in {C3] is for
G = Z/nZ, but the proof there goes the same way for G finite; for all the results
on finite groups see also [J1}).

1.4. Generalized 1-cocycles. Like in 1.3, let ¢ be a genuine action of the
discrete group G on the factor N. We consider the following general version of
1-cocycles: Let p be a non-zero projection in N, and w : G — N, be so that
wy € N, are partial isometries satisfying Wy = P, Wy = aq(p),g € G, with
w, = p. If w satisfies the condition

(1.4.1) WyOg{Wh) = Wgn, Y9, R € G
then w is called a generalized 1-cocycle for o. If w satisfies the weaker condition
(1.4.17) weog(wp)wg, € Tp,Vg,h € G

then it is called a generalized weak 1-cocycle. Note that (1.4.1") is equivalent to
o) = Ad(wg)ogparp being an action of G on pAp. The projection p is called the
support of w. Also, like for weak 1-cocycles, note that if w satisfies (1.4.1") then
the scalar valued function g p satisfying wgog(wn) = pg aWen is a 2-cocycle.

Note that in case its support is equal to 1, a generalized (weak) 1-cocycle w is a
{weak) cocycle.

The generalized 1-cocycle w is #rivial if there exists a partial isometry v € N
such that vv* = o4(vv*) and wy = v*o,(v), for all g € G. Similarily, if w is a weak
generalized cocycle and the above condition is satisfied modulo scalars then the w
is weakly trivial,

Note that if ¢ is ergodic then it cannot have generalized 1-cocycles of support
# 1. Also, if w is a generalized (weak) 1-cocycle of support p and ¢ € pNp is a
projection in the fixed point algebra of ¢/ = Adw o o then {qwg}, is a generalized
(weak) 1-cocycle for o as well.

1.5. Cocycle conjugacy of actions. Two cocycle actions (o,v), (¢/,v") of G
on (N,¢) are cocycle conjugate if there exists an automorphism p of (N, ¢) such
that the following conditions are satisfied:

(1.5.1) pog p~t = Ad wyo,, Vg.

(1.5.2) plugn) = woo g (wp)vy p, Wiy, Vg, b
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The cocycle actions o, 0’ are outer conjugate (or weakly cocycle conjugate) if con-
dition (1.5.1) is satisfied. Note that outer conjugacy is equivalent to the image mor-
phisms of ¢, ¢’ in Aut (N, ¢)/Int (N, ¢) being conjugate in Aut (N, )/Int (N, @)
by an automorphism of (A, ¢).

The (cocycle) actions 0,0 are conjugate if there exists an automorphism p of
(N, @) such that conditions (1.5.1) is satisfied with w = 1. We then write o ~ o',

Recall that Connes proved in ([C3]) that in the case A is isomorphic to the
hyperfinite type II; factor R, any two actions of Z/nZ on it are conjugate. Then
Jomnes proved that any two actions of an arbitrary finite group G on R are conjugate.
Also, it was proved in ([C2]) that any two actions of Z on R are cocycle conjugate.
Finally, Ocneanu proved in ({Oc]) that any two actions of an arbitrary amenable
group & on R are cocycle conjugate.

2. EXAMPLES OF ACTIONS.

Let us mention some interesting classes of examples of actions and cocycle ac-
tions, that will intervene in the sequel.

2.1. Bernoulli shifts. Let (Np,7g) be a finite von Neumann factor with a

faithful normal trace 79, 70(1) = 1. Let G be a discrete group and (N, 1) Lef

@;(Ng,fg), where (Ng,7,) = (Ng, 7o), Vg € G. We let 0 : G — Aut N be defined
g€

by o, (h® bh) = ® b}, where ® b, € ® Nj has only finitely many entries
G heG heG

heG
# 1 and by, = by-1p.

An action o defined this way is called a Bernoulli shift. When we need to be
more specific, we’ll say that ¢ is a (Np, 79)-Bernoulli shift. Note that, with this
terminology, we have that o ® o is a Ny&@Ny-Bernoulli shift.

It is well known that if either (G is infinite and Ny # C, or if G is finite and
Np has no atoms, then the Bernoulli shift ¢ is a properly outer action of G on N. .
Moreover, if GG is infinite then o is also ergodic (it is even strongly mixing: see 2.4
hereafter).

Also, note that if Ny is a factor (respectively an approximately finite dimensional
finite von Neumann algebra) then so is N.

In particular, by taking N to be isomorphic to the hyperfinite type II; factor,
this shows that any discrete countable group G admits a properly outer (+ ergodic,
if |G| = o) action on R (: ® Rg).

geq

2.2. Connes-Stgrmer Bernoulli shifts. Let us now consider a generalized

version of the above example, as introduced in ([CS]). To this end, we first need
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to recall some basic facts about ITPF1 factors and, more generally, about factors
having a discrete decomposition (AW, C4,5]).

2.2.0. Factors with discrete decomposition. We let (N, ¢) be a von Neumann
factor with the centralizer N = A, satisfying N' NN = C. We denote

V={veN|vv=1uvNv"=uv*Now*, ovX)=pvv)p(Xv),vX € N}.

Remark that in fact for an isometry v € A to be in V it is sufficient to satisfy
(v X) = plvv*)p(Xv), VX € N (see e.g. [C4,5)).

We denote by H; = {p(vv* | v € V} and for each 8 € Hy, denote Vg = {v e V|
p(vv*) = B}, Thus, V = UgVs. Also, we clearly have VgV, = V3, and V; = U(N).
Actually, for any two isometries v, v’ € Vg the element w = v'v* is a partial isometry
in N with v' = wv. Also, it is easy to see that if v € V3,v" € Vg, with 8 # ', then
E(v*v') = 0= E(v'v*), where E = E¥ is the @-preserving conditional expectation
of A onto N.

We further assume that the set V generates AV as a von Neumann algebra. By
(ICs1), this is equivalent to (N, ¢) having a discrete decomposition over N. More
precisely, if for each 8 € H, we choose an isometry vg € Vg then each X € N has
a cross product type decomposition X = LgFE(Xvg)vg + EgvgE(vgX).

In fact, if we denote by H the multiplicative group generated by Hy, ie., H =
Hi U H{', then (N®B(f*(N)) < NBB(f*(N)) is isomorphic to (NRB(£2(N)) C
(N®B(£2(N)) » H). Moreover, if we denote by pg € N®B(£2(N)) a projection of
the form 1y ® go, where gp is a one dimensional projection, and by {ug}gen the
canonical unitaries in N®B(£2(N)) ~ N®B(¢%(N)) »x H that implement the action
of the group H then pougpy = vg and poug-1po = vE,Vﬁ € H,.

In terms of modular theory, it is easy to see that (A, ) has a discrete decom-
position as above iff the modular automorphism group associated with ¢ is almost
periodic and has pure point spectrum. We call the group H the spectrum of the
discrete decomposition.

Examples of such situations are, for instance, when (N, @) is a type II; factor
N with its trace, because then V equals the set of unitary elements in N, with
H = {1}. Another example is when (N, ) is a type III, factor, 0 < A < 1,
with ¢ its generalized trace (cf. [C4, 5]). In this case H = {A\" | n € Z} and
H; = {A\" | n > 0}. The type III; factors that can be obtained as tensor products
of some type III, factors, 0 < A; < 1,i = 1,2, ..., k, have discrete decompositions
as well. In this case H is the multilicative subgroup of R generated by {A;},.

2.2.1. ITPF1 factors. An important class of concrete factors having a discrete

decomposition is as follows: Let (Ng, o) to be a finite dimensional factor with a

faithful state on it. Let G be an infinite discrete group as before and (A, ¢) def
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_@;(Ng,gog), where (N, ¢,) = (Np,wo), Vg € G, be the corresponding infinite
ge

tensor product, or ITPF1 factors ([P, AW]).

In case Ny = May2(C) and ¢y is given by the diagonal element (¢,1 —t) with
t < 1/2, then N is a type III, factor, where A = t/1 — ¢, and ¢ is its generalized
trace. Thus, if N = AN, then (N, ¢) has a discrete decomposition over V.

In general, if Ny = M (C) and the state g is given by a diagonal element with
spectrum 0 < ¢y < tg... <t then N is a type Il factor if t; = ... = ty, it is a type
I, factor, for some 0 < A < 1, if the multiplicative group generated by {t;/%;}; ;
in R% is equal to {A" | n € Z} and it is a type III; factor if the the multiplicative
group generated by {t;/t;}; ; is not single generated. (Thus, generically, the IPTF1
factors A are of type II1;.)

In this general case the centralizer N = N, of the state ¢ still satisfies N'NA = C
and in fact (A, ¢) has a disrete decomposition over IV, with spectrum H C R} given
by the multiplicative group generated by {t;/t; |1 <i,j <k} CR;.

2.2.2. Generalized Bernoulli shifts. With N = ®¢{Mixx(C), po)s as above,
let ¢ : G — AutMN be defined as follows: first define ¢ to be the Bernoulli shift
on the algebraic infinite tensor product ®,N,, as before; then note that on this
dense sbalgebra of A we have ¢ 0 oy = ¢, Vy; thus each o, can be extended to a
@-preserving automorphism o, on all . Note that when G is infinite o is properly
outer and ergodic ([CS]). Such an action is called a generalized Bernoulli shift or a
(No, wo)-Bernoulli shift.

Note that the generalized Bernoulli shift o leaves each one of the sets of isomteries
Vs invariant, i.e., 04,(Vg) = Vg, Vg € G,V8 € H;. In fact, if v € V then w, =
vog(v*) are partial isometries in N with o,(v) = wjv.

2.2.3 Connes-Stgrmer Bernoulli shifts. Let (N,¢), o, N = N, C N be as
before. Since ¢ is invariant to o, o4(N) = N,V¥g. Moreover, by (AW, C1,4]),
the von Neumann algebra N (which satisfies N' " A = () is isomorphic to the
hyperfinite type II; factor R.

Moreover, the action o4 = o,y is properly outer and ergodic on N ([CS]). Such
actions are called Connes-Stgrmer Bernoulli shifts of G on the hyperfinite type II;
factor.

Note that if o is a (Ny, wo)-Bernoulli shift on (N, ¢) as before then o ® o is a
(No ® Ng, ¢o ® @o)-Bernoulli shift on on (NEN, ¢ ® ¢). However, if we let N be
the centralizer of ¢ ® » in N®N and denote by 6, the restriction of o, ® 0, to N,
then 6 is a Connes-Stermer Bernoulli shift, with N D N®N and the restriction of
8 to N&N equals o)y ® o, but in general N is different from N®N and afortiori
f +# o ® o as well.

2.3. Free Bernoulli shifts. Let (By, 79) be a finite von Neumann algebra with
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a finite faithful normal trace on it. Let {(By, 74)}gec be copies of (Bg, 79) indexed

by the discrete group G. Define (N, 1) fef gg(Ng,fg) to be the free product of
_ g

the algebras (B, 74) (see [V1]). Then we define o, (zbh) = zb}z, where b}, = by-1,

(see e.g. [S, Po3]). Such an action is called a free Bernoulli shift of the group G.

Note that by ([Dy1]), if G is infinite and By # C then N is a factor. Moreover,
o is then easily seen to be properly outer and ergodic.

Also, by ([Dy1]), if By is AFD, or if By is a free group factor, then N is isomor-
phic to the free group factor L(Fy ).

Thus, any discrete countable group G acts properly outer (+ ergodic, if |G| = co)
on the free group factor L(Fy ).

Note that one can also define a Connes-Stormer version of the free Bernoulli
shifts, by using Dykema’s free version of the IPTF1 factors ({Dy2]). Thus, one
starts with a fixed finite dimensional von Neumann algebra with a faithful state on

it, (Bg, @p). One defines (N, ¢) et éG(Bg, pq), where (Bg, ¢4) = {Bo, vo),Vg € G,
g

noting that ¢ is quasi-periodic on N {[Sh]}, being a generalized trace if By =
Ms+2(C). One takes N to be the centralizer of the state ¢. Then one considers the
free Bernoulli shift ¢ on A (which we could call a generalized free Bernoulli shift),
noting that it preserves . Finally, one takes the free Connes-Stormer Bernoulli
shift to be the restriction of o to N, which by ([Dy2]) is isomorphic to L{F ) (see
also [Sh}).

2.4. Bernoulli shifts are mixing. Both the “hyperfinite” (2.1, 2.2) and the
“free” (2.3) Bernoulli shifts have the property that they are “very ergodic”. More
precisely, they satisfy the following property.

2.4.1. Definition. Let A be a von Neumann algebra with a faithful normal state
¢. Let ¢ : G — AutA be a properly outer action of the discrete group G on N
that preserves . The action o is strongly mizing if

lim o(y104(@)y2) = () e(y1y2), Yz, 41, 12 € N
G

Strongly mixing actions are clearly ergodic. In fact their ergodicity is so “strong”
that it goes through to tensor products. More precisely, one has:

2.4.2. Lemma. Let o1 be a strongly mizing action of a group G on the von
Neumann algebra (N, p) and oq an arbitrary action of G on a von Neumann algebra
(No,@o). Denote by 8" the action of G on N@Ny given by 0, = 0, ® 00,9,9 € G.

Then (N@Np)? = C@NJ°.
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Proof. Let ¢ = ¢ ® @p. Let 1 € (N@Np)?,z # 0 and ¢ > 0. Denote by Y,
the '-preserving expectation of z onto C ® Ny and Xy = x — Y5. Note that
Yo € CR NS C (NBNy)?'. Thus X, belongs to (NBNYY as well.

By the density of the algebra AV ® Ny in N®N), there exists an orthonormal
system g = 1, %1, T2, .... Tn € N and elements yo = Yo, y1, Y2, - Yn € Np such that

if we denote ¢’ = .ngi ® y; then we have
=

o~ 2'llyr < &/@llzller) andfla’lyr < llzller

Since ¢ is mixing, there exists g € & such that
Z.E__lhﬂ(ffg(fi)fﬂ;)l lpo{oo,g(i)y; )] < e/3.

T
Thus, if we denote X = ,212715 ®y; = ¢’ — Yy then we have
=

|0 (85(X5)Xp")| < e/3 and}|Xo — Xgller = llwo — zoller < &/Bliller)-
As a consequence we get
1XoliZ = ¢/ (8(X0)X3)

< le"(8,(X0) X + 21| Xo — Xolle | Xolly <e

Since € > 0 was arbitrary, it follows that X = 0 so that z = Yj belongs to CRN°.
Q.E.D.

2.4.3. Corollary. If ¢ is a strongly mizing action of a group G on the von
Neumann algebra (N, ) then C1 C N is the only finite dimensional subspace of
L*(N, @) which is invariant to 04,V¥g € G.

Proof. By applying 2.4.2 to 6g = o and by taking into account that the Hilbert
space of Hilbert-Schmidt operators on L2(A/, ¢), with the action implemented by
o on it, can be naturally identified with L2(N, ¢)®L3(N, @), with the action o ® ¢
on it, it follows that the one dimensional projection of L2(A, ¢} onto C1 is the only
fixed point for the former. Q.E.D.

As mentioned before, let us point out that the hyperfinite and the free Bernoulli
shifts provide examples of strongly mixing actions.
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2.4.4. Lemma. All hyperfinite Bernoulli shifts (including the “generalized” and
the “Connes-Stormer” ones) and the free Bernoulli shifts are strongly miring.

Proof. Let (Ng, wo) be either the hyperfinite type II; factor with oo = 7 its trace,

or a finite dimensional factor with ¢g a faithful state on it. Let G be a discrete

group and (N, ) & 9§G(Ng, ©g), where (Ng,@,) = (No, o), Vg € G.

By using first the Kaplansky density theorem then the Cauchy-Schwartz inequal-
ity, it follows that it is suficient to prove the statement for y; » in the algebraic tensor
product ®,4(Ng, ©g).

Assume that in this infinite algebraic tensor product y; 2 are supported by a
finite subset S ¢ G. Since each such element is a linear combination of elements

of the form ®Se§9 g where ef , € Ny =~ Ny are matrix units chosen so that g is
g€ ’ ’

supported on the diagonal {ef, }.

It follows that it is suficient to prove the statement for yq 2 of the form ®Se
ge

But for each such element y; there exists a non-zero scalar ¢; such that p(x'y;) =
ciplyx’), V' € N.

Thus p(y104(z)y2) = cap(yayiog(x)). By approximating x with elements in
the algebraic tensor product ®4(Ny, ¢y) and by applying again Cauchy-Schwartz
inequality, it follows that in calculating the limit nlﬂiﬂ}x%o o(y2y104(z)), it is sufficient

g
tgidg”

to take £ € ®4(Ny, pgy). But for such z, 31, y2 we clearly have nlerc}oga(ygylag(ﬁ)) =
ply2y1)e(x) = ¢ p(y1y2)p(x). Altogether, it follows that lim ¢(y104(z)ys2) =

e(y1y2)e(z).
The proof of the free group case is similar, so we leave it as an exercise for the
reader (see e.g. [S]). Q.E.D.

2.5. Product type actions. Let us also mention a class of examples of properly
outer actions that are not ergodic. Thus, with the notations of the examples 2.1-
2.2, let Go ¢ AutNp be a subgroup of automorphisms with g, # 2d,Vv # 1, and
o © (g, = o, YU € Gg, where ag,, is the image of v € Go in AutNg. Gp will be
considered with the topology inherited from AutNp.

Let N denote the von Neumann algebra constructed from (Ng, wo) by infinite
tensor product indexed by the infinite discrete group G (or simply indexed by N),

as in 2.2. We let e : Gy — Aut NV be defined by «, ( ® bh> = & b}, where
hecCG he@

b;z = ag,,,(bh),‘dh €G.

It is easy to see that « is a continuous, properly outer action of Gp on (N, ¢).
In particular, since o preserves ¢, it leaves the centralizer N = N, of ¢ invariant,
thus implementing on it an action. Moreover, if Ny is finite dimensional then the
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action o has fixed point algebra N'® satisfying N’ MA = C1 {{W]). Thus, « is far
from being ergodic.

Note that the action o commutes with the (Ng, @o)-Bernoulli shift o on (N, ¢)
considered in 2.1, 2.2. Thus, oy commutes with o)y as well.

A particular case of product type automorphism is the flip authomorphism on
N@N, that takes z ® y into vy ® . This automorphism will play an important
role in Section 3. In fact, we will need the existence of some continuous path of
automorphisms that relate the identity to the flip automorphism.

2.5.1. Lemma. With the notations used in 2.2, let (N, ¢qo) be a finite dimensional
factor and o be the (Ng, ¢o)- Bernoulli shift of the group G on the factor (N, p).
Let N be the centralizer of p® ¢ on N®N and 8 be the Connes-Stormer Bernoulli
shift on N obiained by restricting the {No ® No, po @ @o)-Bernoulli shift o @ o
from N&N to N. Then there exists a continuous product type action o of R on
(NBN, ¢ @ w) such that:

1°. o is ¢ ® p-preserving and leaves N invariant, thus implementing on it an
action still denoted by «.

2°. @ commutes with the generalized Bernoulli shift o ® o and its restriction to
N commautes with 8.

3 apNeC =CaN.

If in addition we assume (Ny, po) = (Man x20 (C), o) =~ 1<®< (M2x2(C), wo,i)i »
TTL

for somen > 1, then v can be constructed so that there ezists a period 2 product type
automorphism B on N@N that preserves ¢ @ y, leaves N invariant and satisfies
the conditions:

4°. N®Cl C NP,

5°, ﬁatﬁ_I = a_t,Vt.

Proof. Let us first assume o is of step 2. We use the notations of 2.2.

We let {e;;}i =12 be a matrix unit for Ng = M3,2(C) such that the state g on
Ny is given by a dyagonal operator ¥;A;e;;.

We first take the action ag of R on Ny ® Ny to be defined by ag +(x) = Ad(v:)(x),
t € R, with the unitary vy € Ny ® Ny being given by

1 0 0
0 coswt/2 sinwt/2
0 —sinwt/2 coswt/2
0 0 0

=0 oo

Then we define the period 2-automorphism 3 on No ® Ny as Adug, where the
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unitary ug is given by:

1 6 ¢ O
61 o0 O
0 0 -1 0
00 0 -1

Note that the unitaries v;,¢ € R, and wug belong to the centralizer of the state
wo & wa on Ng ® Ny. Moreover, ug lies in C® Ny. An easy calculation shows that
Boo 85" = ap_; and that Ad(vi1)(No ® C) = C® N.

Define a; to be the product-type action ®g(ag )y and 8 to be the automorphism
®4(Bo)g- Then both « and 3 leave the centralizer N of the product state ¢ @ ¢ =
®g (0 ® o)y invariant.

Moreover, by the way «, 5 are defined, conditions 1° — 5° are trivially satisfied.

Note that by taking tensor products of the above contsruction, this also proves
the case (No, o) = 1<§’<n((M2x2(C)s ©0,i)i-

Now, in the general case when Ny = My x(C), let {e;;};; be a matrix unit with
wo given by a dyagonal operator in Alg{e;; };, as before. Let also

v = Liey & ey

+i§‘COSWt/2(6M ® €jj + €44 ®K 6:5,7;) -+ sin 7rt/2(8@;j @ ejg- — €4 & 61;_.,').
J

Then clearly 1° — 3° are satisfied. Q.E.D.

3. EXAMPLES OF COCYCLES.

We first explain a method for producing a family of cocycle actions from a given
action. Then we construct a class of examples of non-trvial 1-cocycles for actions
on type II; factors that come from a discrete decomposition.

Thus, we first let (A, ) be a von Neumann factor with centralizer N = N,. We
assume N to be a factor itself. We consider properly outer cocycle actions (o, v) of
the discrete group G on (N, ¢). Thus, N is invariant to any such o.

Let p € P(N) be a non-zero projection. Since N is a factor and o, are tace
preserving on N, for each g € G the projections p and o,(p) are equivalent in N.
Choose partial isometries wy € N, of left support p such that wyo,(plw; = p and
We = P.

3.1. Proposition. Let o : G — Aut(N}) be defined by of (pzp) = wyo4(prp)wy,
for x € N. Let also vg,h = wgag(wh)vg,hw;h,g,h € G, which we regard as an
element in (Ny)p = pNyp. Then (oF,vP) is a properly outer cocycle action of G on
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(Np. ©p, where pp(z) = p(pzp)/o(p), x € pN'p. Moreover, up to cocycle conjugacy,
the cocycle action (oF,vP) does not depend on the choice of the partial tsometries
Wy.

Proof. A straightforward calculation shows that v? checks the conditions (1.2.1),
(1.2.2) with respect to o?. Q.E.D.

Assume now AN is the type II; factor N. Since {(pNp,of) =~ (¢Ng,09) if p,q €
P(N) have same trace, from Lemma 3.1 we see that the isomorphism class of
(Np, o?), up to cocycle conjugacy, only depends on 7(p). Thus, we can denote it
by (N, o), for each 0 < ¢t < 1. More generally. we consider the following:

3.1.1. Notation. If t > 0 then we denote by (IVy, o) the reduced of (M, (N),
id & o), for some n > t, by a projection p with normalized trace 7(p) satisfying
nr(p) = t. Again, by the above Lemma, up to cocycle conjugacy this action only
depends on . We call (N, ¢*) the amplification of (N,a) by &.

Note that if in 3.1 we take o to be a genuine action (so v = 1) and take the
projection p in the fixed point algebra N7 then the 2-cocycle v is vanishing, in
other words the cocycle action (o, vP) can be perturbed to an actual action. Indeed,
because we can take wg = p,Vg. Thus, if N contains projections of any trace, then
all 2-cocycle as in 3.1, obtained by reducing ¢ by projections, vanish.

However, we will see in the next section that for certain ergodic actions ¢ of
property T groups, these cocycle actions cannot be perturbed to actions.

We now consider actions o of groups G on type II; factors N with the property
that N is the core of a discrete decomposition of some type III factor (N, ),
in a way that the action o itself be the restriction to N of an action on (N, p).
An example of actions satisfying this property is provided by the Connes-Stormer
Bernoulli shifts defined in 2.2.3.

The next result provides a class of examples of non-trivial 1-cocycles for such
actions. We'll show in Section 4 that if G is infinite and has the property T, with
o being an action of G as in 2.2.3, then in fact these cocycles give the complete
list of 1- cocycles for o. But the construction may have an independent interest for
general groups G as well.

To simplify notations, for each scalar 2-cocycle p for G (see 1.2) we denote
by F, the set of finite dimensional, unitary, projective representations of G' with
scalar 2-cocycle p, ie., w € F, if # : G — U(n) for some n > 0 and it satisfies
mw(g)m(h) = pg nm{gh). Vg, h € G. The 0 representation is contained in F,,Vu. Note
that if 4 = 1 then F; is just the set of finite dimensional representations F of G.
This set contains the trivial representation of the group G and in fact any finite
multiple of this representation.

Let (N, ) be a von Neumann factor with a discrete decomposition, as in 2.2.0.
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Let N = Ng, and H be the spectrum of this discrete decomposition, i.e., H is the
multiplicative subgroup of R, such that (N ¢ M)@B(3(N)) = (NeB(£#(N)) C
N@B(£2(N)) x H). Let Hy = {8 € H | B < 1}. We denote by Fi' the set of
families of elements ng in F,, indexed by # € H; such that ZgngfB < 1, where
ng = dimmg. Note that some of the representations mg may be equal to 0. In
fact, if m; # 0 then this forces w; to be a one dimensional representation, thus a
character of G, and all other mg, 5 < 1, must be zero.

Let G be an infinite group and ¢ an action of G on (N, ¢), with its restriction
to N = N, still denoted by o.

3.2. Theorem. Let {mg}g € F&1. For each 8 let vP 1 < i < ng, be isometries in

Vg such that {'vf? }g.i have mutually orthogonal left supports. Let (mg(g))i; denote
the coefficients of the representation g with respect to some orthonormal basis. Let
w: G — N be defined by:

(3.2.1) wy = EgEi,j(Wﬁ(Q))ijUfJg(vf ),9€G

1°. wy are partial isometries in N = N, and in fact w is a generalized weak
1-cocycle for o with support p = E,g,z-'vf vf? " and scalar 2-cocycle p.
2°. Let o, = Ad(wg) 0 o4 and denote by B the von Neumann subalgebra of oNp

generated by the matrix unit
wP? 7 |1<i<ng1<i <ng,B,B €H)
Let also B be the von Neumann subalgebra of B generated by
{vf‘vg* 11 <1,i <ng,B € Hyi}

Then B = BN N = (B), = E{(B) and 0(B) = B,0y(B) = B, with o, =~
Ad(n(g)),Yg € G, where 1 = Bgmp is viewed as a representation on the Hilbert
space Ppli(ng), with B being identified with the algebra B(®gmg) of all bounded
operators on this Hilbert space.

3°. Assume in addition that o is strongly mizing on N'. Then (pN'p)? = B? =
m(G)' N B, (pNp)° = B? = x(G)' N B. Moreover, any finite dimensional vector
subspace of pN'p (resp. pNp) which is invariant to o’ is contained in B (resp. B)
and in fact B (resp. B) is the closure of the span of finite dimensional invariant
subspaces of pNp (resp. pNp).

4°. Let w respectively w' be cocycles constructed out of {mg}g € FI' and {vP}g.,

respectively {my}p € Fﬁ‘ and {vgﬂ}g’i, as in (3.2.1). If p=p' and mg ~ 7y, VB €
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H; then w and w' are equivalent. If in addition we assume o is strongly ergodic
then, conversely, w ~ w' implies y = (' and mg ~ 7, V5.

Proof. 1°. An easy calculation shows that if we denote pg = Eifuf *vf then pj is
fixed by oj,Vg. Note also that pg this way defined is in the center of By. Thus,
by replacing w, by pgw,, we see that in order to prove 1° in its full generality it is
sufficient to prove it in the case all but one of the representations #g are equal to
zero, i.e., for m = ng, for some B € H;.

Thus, we may assume w, is of the form ¥, ; (w(g))@jvf ag(yf ="). For simplicity,
denote v; = vf and ¢f; = (7(g))i;- Taking into account that

h R
E.?'cgjcjl = Hg,nCy
and that v; have mutually orthogonal left supports, we get:
wyog(wh) = (Tijc50i0g(v5*)og(Tkichvron(v*))

= Li(Zief;cl)viogn(vr™)

h
= g nZi1ch viogn(vr™) = pg ntgh.

2°. Since E¥ (v'v*) = 0forv € Vg and v’ € Vg with 8 # /', we have E%4(B) = B.

To check that O';(B) = B, we need to show that J;(vaf‘f’*) € B,vi,i,3,5. We
have:
8.8 BB\ %

Tk
U;(”i Uy ) = Weog{v; v )’wg

= (Sa ket (Ta(@)mvgo (0f *Nog(vivh ) (Earp v (mar(9)prvf og(vf )"

D * 1 E H %
= Sk (mp(9)kimer (@)wrarvyog (0] ))ag(wi vl )og(vl Yoy
= S (15(9))ki(mp (9)wvirvyy -
Since this latter element lies in B8, we are done. The above computation also shows
that if we take 8 = £’ then a’(vaf ) lies in sp{v2v?, }g s, thus in B.

Moreover, it shows that if we identify the von Neumann algebra B generated by
the matrix unit {vaf, | 3,7, B, 8"} with B(@gl?(ng)), then for each z = vaf €
B we have o (x) = n(g)zm(g)*.

3°. Recall that

Wy = Bo g, 1{7al9))avioq(v]).
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Hence
—— r xS
w; = Ea’Ek',zf(Wa'(g))k',ua'g(vﬁ Jug

Any element x € B can be expressed in the form

T = 2}5”@23’ y’l)ﬁl"i’? ’U'Ef y

ap'

7 € B. For such x we have:

for some z

ORI ERRLACSEACBLACAD
By taking into account that v}*"v {3 = 0qpd; and vf’:'*vf}' = §gror8ypr it follows that
ag(vi™)og(v] Ay = dap0y and O‘g(’Uz-, )'crg(vf,") = 8O as well. Thus we have:

(3.2.2) weog(T)wy = Lga Tk ko Biit (Ta(g))ki(mar (9) ki 'Uﬁa%(mn' )%’k'

The equation wyoy(z)w; = z is then equivalent to the set of equations

(3.2.3) it (malg))ri(mer (9w ‘U a'g(-’E )ka = xkk, :VZ i, 6,8

pa" 88’

Letting y = crg(a:ﬁﬁ ’) and :3*6 - o4-1(y;; ), this shows in particular that

i’
the finite dimensional space sp{yu, |1 <i < ng,t <i < ngtisinvariant to
o-1.V9 € G, thus to op,Vh € G. Since o is strongly mixing on N, by 2.4.3 this

implies yff " are all scalars. Thus, xﬁfj " are scalars as well implying that x lies in B.
By part 2° it follows that z € B® = x(G)' N B. Restricting to elements = € pNp,
we also get (pNp)° = B° = x(G) n B.

Let now Hg < pA'p be a finite dimensional vector subspace invariant to o'. Since

the projection pg Eivf vf " are fixed by o', V8, it follows that

(3.2.4) X = psHopg = S X8
is invariant to ¢’ as well, where ,ffg =) *’Hovgl.

But the calculation (3.2.2) above shows that

(3.2.5) 'wgo'g(X)w = Nk kg (T (g))ka(’ﬁﬁ’ (9)wi ’vka‘g("fm’ )'Uf'
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Equating (3.2.4) with (3.2.5) and letting yﬁ?' = ag(X{?ﬁ@f), 518! = ag-a(yg’?’)? it
follows that the finite dimensional vector space ::‘.p{}’ﬁf3 1<i<ng, 1< <ng}
is invariant to o4-1,Yg € G, thus to oy, Vh € G.

By 2.4.3 it follows again that all the spaces yﬁﬁ " are equal to C. Th Xﬁ,’ﬁ ‘=
as well, implying that A = Ziyir@vf vgt . This proves that Ho C B.

Since pgBpg: are all invariant subspaces and they span B, the last part of the
statement follows as well.

4°. Note first that the equivalence class of the cocycle w does not depend on the
choice of the isometries @f , once the family of representations mg is fixed.

If the two given families of representations satisfy ng ~ W}%,Vﬁ € H,, then in
particular dim(ng) = dim(7g), V8. It follows that in the contruction of w and w’

we can take the same set of isometries {v’f }g.i- Thus, both mg, 75 “live” in pgBpg,
where pg = Eivf vf " as usual.

if for each 8 € H; with ng # 0 we take ug € pgBpg to be the unitary element
that implements the equivalence of 71“5,7:'}’3 then an immediate calculation shows
that u = @gug also implements the equivalence of w with w'.

Note that this same computation shows that the converse also holds true, pro-
vided dim(rmg) = dim(mg). But this equality does hold true if we assume o is
strongly ergodic, by the last part of 3°. Indeed, because by that part we have that
the fixed point algebras B, respectively B’, of the actions Ad(w)oo and respectively
Ad{w') o o, are conjugate in pNp. Since the traces of the minimal projections in
psBpg and pj; B'ply must both be equal to 3, thus being different for distinct 43, it fol-
lows that the the unitary element u € pNp that satisfies uBu* = B’ must carry pro-
jections of trace 8 onto projections of trace 3, implying that upgBpgu* = pjp B'pl
and thus ng = nj, V. Q.E.D.

An immediate consequence of Theorem 3.2 is that any cocycle action constructed
by reduction-amplification of an action o as in 3.2, but with the factor A being of
type II, can in fact be perturbed to an action. We will later see that in case A is
of type Il;, then this may not be the case.

3.3 Corollary. With o as in 3.2 above, assume in addition that Hy # {1} (equiv-
alently, the factor (N, ) is of type III). For each t > 0, let o* be a choice of a
cocycle action on N* obtained by reducing, or amplifying the action o on N = N,
as in 3.1.. Then o can be perturbed to an action.

Proof. Let m be an integer such that m > . Since H; # {1}, it contains some
£ < 1. Thus, 8" € Hy,Vn > 1 as well. But then there exist some non-negative
integers ky such that £,k,5" = t/m and we can apply Theorem 3.2 to the action
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o ®idy of G on N @ Myyxm(C) (which is the core of the discrete decomposition of
(N @ M, (C), ¢ @ tr)), to provide a generalized 1-cocycle w for ¢ with support
p, where p € N @ My, »m(C) is a projection of trace £/m. Q.E.D.

Our next result gives an abstract characterization of the cocycles w constructed
in the previous Theorem. Namely, we show that w is locally of the form (3.2.1)
iff the projective representation £ — o,(£)w; has finite dimensional invariant sub-
spaces. This observation will be needed in the next Section.

3.4. Proposition. With the same notations and hypothesis as in 3.2, assume the
action 0 : G — Auwt(N, ¢) is strongly mizing. Let w be a generalized weak I1-cocycle
for o with support p € P(N) and scalar 2-cocycle p.

1°. For g € G and £ € L*(Np, ) denote o (§) = og(&)w;. Then o¥ is a
projective unitary representation of G on L(N'p, ) with scalar 2-cocycle p.

2°. Let H be the Hilbert space of Hilbert-Schmidt operators on L2(N'p, p). For
each X € H let 5 (X) = U;"Xd;"*. Then &% is a unitary representation of G on
H.

3°. The following conditions are equivalent:

(i). &% contains a copy of the trivial representation.

(11). o has a non-trivial, invariant, finite dimensional subspace Ho C L*(N'p, ) §

(ii1). There exist some 5 € Hy and a finite set of isometries vy, va, ...,vn € Vg
with mutually orthogonal left supports such that Ho = Z;Cv] is tnvariant to o
and ¢ = T;v;vF < p is fived by the action o' = Adw o 0.

(iv). There exists a non-zero projection q € pNp fized by o’ such that qw is of the
form quwg = T; j(mo(g))ijviog(v;*)), g € G, for some mg € F, and some isometries
vi,1 < i < dim{wg), lying all in some Vg and having mutually orthogonal left
supports.

(v). There exists a non-zero projection qg € pNp fized by o' such that gow is of
the form (3.2.1), for some family {rg}p € F', and such that there are no non-zero
projections ¢ < {p — qo), ¢ € By with the property that quw is of the form (3.2.1).

Proof. 1°. By the definitions, o, are clearly unitary operators acting on L2(Np, p).
Also, we have

og (04 (€)) = o9 (on(§)wp)
= 0 (on(§)wy)wy = ogn(§)ag(wy)wy
= pig,h0gn(E)Wyp,-
proving 1°.

2°. By 1° it follows that

Gy (61(X)) = og oy Xay a)”
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— g 1 ) WO W
- #Qahﬂg»hagthgh = C’gh(X)-

3°. Noticing that 6% extends from the ideal of Hilbert-Schmidt operators to
all B{(L%(Np, ¢)), it follows that if X € H is a fixed point for 6* then the trace
class operator X*X is also a fixed point for &%. Thus all spectral projections
P of X*X, are fixed points for 6% as well. Since P have finite trace, they are
finite dimensional. Let #¢ C L2(N'p,¢) be a non-zero finite dimensional space
corresponding to some spectral projection P # 0. By the definitions, 6 (FP) is the
orthogonal projection onto o (Ho). Since &' (P) = P, it follows that oy (?{o) = Hg.
This proves (i) == (ii).

To prove (i) = (iii}, note first that if v € V then each of the subspaces
L*(v*Np, ) and L*(Nup, ) of L2(N,¢) are invariant to o*. Thus, if ¢ has a
non-trivial finite dimensional invariant subspace Hgo then by compressing it to one
of these spaces and taking into account that they span all L2(Ap, ¢) it follows that
we may assume g is contained either in some L?(v*Np, ) or in some L2(Nuvp, ¢).

In either case, denote by {£;}; an orthonormal basis of Hg. By the definition of

v it follows that L;£,6F € LY(N, ¢) is fixed by o. Since o is strongly mixing, it is
ergodic. Thus ;¢ € C1 implying that §; are actually in Ap.

Similarily, the finite dimensional vector space H}, =spHoHg C N is invariant to
o. It follows that H{ = C implying that ;€7 € C1,V4, 5. This in turn implies that
each £ is a scalar multiple of an isometry v; and that A = sp{v,,;v;‘ |1<i,7<n}
is a finite dimensional factor. Thus, by replacing if necessary the elements {v;};
by some elements {a;v;}; for some appropriate partial isometries a; € A, we may
assume the isometries v; have mutually orthogonal left supports, yet still generate
Hg. Since all elements in L2(Nwvp, ) have left supports # 1 while the left support
of & = v} is 1, it follows that #y cannot be a subspace of some L?(Nwvp, @), forcing
it to be a susbspace of some L?(v*Np,¢),v € V. This implies v; € Vg, Vi, where
B = p({vv*) € H;. Moreover, since spHjHg is invariant to

pNp 3 z = wyog(z)w; = o4(z)

and the support projection ¢ of the elements in this vector space is X;v;v], it follows
that og(q) = q,Vg € G.

Assuming (#44) holds true, let 8 € H; and vy, v, ..., vy € Vg be such that Hy =
¥;Cuf is invariant to o®. It follows that for each 1 < ¢ < n and g € G there exist

some scalars {b;}; ; such that og(v})w} = L8677, Vi.

Denote by cg = bg We have to prove that c; are the coefficients of a projective
unitary representamon of G with the same scalar 2-cocycle i as w.
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Since og(v])wy = X;blv7, Vi, we have qug = E; j¢ivjo,.(v]). Similarily qu, =

Sigchvion(vy). It follows that
weog(wr) = (i gzngg( PN (Zk, Eczkgg(?fl)ggh(?’k))

= % k(Tschicli ) vjogn (vf).
Smilarily,we have
Wgh = Ej,kcgzvjdgh(v,:).
Replacing the above in the equation wgon(wy) = pg pwen and multiplying on the
left by v;v7 and to the right by vivg, we get

20 c e = lbg,hC; k,‘dy,k g.

But this means cfj are the coeflicients of a projective representation #g of G on
£2(n) with 2-cocycle . . . . . .

To prove (iv) == (v} we use a maximality argument. Thus, we let S denote
the set of families of mutually orthogonal projections (¢*); C pNp such that ¢* €
(pNp)° and g*w is of the form (3.2.1). We endow S with the obvious order <
given by inclusion. (S, <) this way defined is clearly inductively ordered. Let (qﬂ)
be a maxzmai element, which by (iv) we may suppose non-zero. Let g5 = Z;q8 €
{(pNp)? . Then gp clearly satisfies the required conditions, or else the maximality
of (¢%); wouid be contradicted.

The implication (v) == (iv) is trivial. Finally, (fv) == () follows by taking
P € H to be the orthogonal projection of L?(N'p, ¢) onto Hy = X;Cv’. Indeed,
because by hypothesis we have

oq(v])wg = X;(mo(g))izv;
showing that oy (Ho) = Hao, equzvalen’ely oy (P)=PV¥g€G. Q.E.D.

4. COHOMOLOGY OF CONNES-STORMER BERNOULLI SHIFTS.

Let No = Mgxr(C) and @y be a faithful state on Ny. Let G be an infinite
property T group. Let (Na 99) = “?Z(Ng: Qag)a where (Nya§09) = (NG-: ‘190)5V.g € G.
g.

As explained in 2.2.0, the ITPF1 factor (N, ) has a discrete decomposition over
N = N, with the type II; factor N being isomorphic to the hyperfinite factor.

We denote by ¢ both the (Ny, o )-Bernoulli shift of G on (N, ¢) and the Connes-
Stgrmer Bernoulli shift obtained by restricting this action to N. In Theorem 3.2
of the previous section we constructed a family of generalized weak 1-cocycles for
such Connes-Stgrmer Bernoulli shifts . In this section we prove that the cocycles
in 3.2 give a complete list of cocycles for o. The notations V, Vg, Hq, F,, Ff 1 are
the ones used in 2.2.0 and 3.2.



RIGIDITY FOR BERNOULLI SHIFTS 25

4.1. Theorem. Let w be a generalized weak 1-cocycles of the Connes-Stormer
Bernoulli shift o, with support p and 2-cocycle p. Let By be the fized point algebra
of the aclion oy = Ad(wy) 0 04,9 € G, on pNp. Then we have:

1°. If 2 € By is the mazimal central projection of By such that Bz is atomic,
then there exist a family of finite dimensional, projective, unitary representations
{mg| 8 e Hy} C le of the property T group G and some isometries {vf |1 <1<
dimng} C Vg,8 € H 1, such that Xp zfvﬁ B+ = 2 and such that the generalized weak
1-cocycle zw s given by the formula:

(4.1.1) 2wy = Sp(Tij(mp(g))ivlog(vF7)), g € G

2°. Assume in addition that {Ng, ©p) = ® (No.iy 9o,:), where Ngi =~ Maya(C)

and @o ; are faithful states on Ny, 1 <4 < k Then By is atomic, t.e., z = lg, = p,
so the above formula (4 1.1) holds true for the given cocycle w(= pw) itself.

To prove the theorem we first need some lemmas. To state them, recall some
notations from 2.2.1-2.2.2. Thus, we consider the generalized (Ny ® Ny, o ® po)
-Bernoulli shift of G on N®N which we identify in the obvious way with c ® 0. We
denote by 0 the associated Connes-Stgrmer Bernoulli shift of (G on the centralizer
Nofp=9¢®¢pon N®N. Thus, §, = (og®o‘g)|}§r,g€ G.

We denote by « : R — AutN the product type action considered in 1o-30 of
2.5.1. Note that o commutes with the Bernoulli shift action # defined above. Thus,
# and o implement an action 8 @ « of the group G &R on N.

For the next two lemmas, the discrete group G can be arbitrary. Other than
that, we are under the general assumptions of 4.1.

4.2. Lemma. Let M denote the type II) factor obtained by taking the cross product
ofJ\Tr by the action 0 @ a of the group G = G ® R on it, in which R is regarded as
a discrete group. Let (Un)neg C M be the canom’cal unitaries implementing this
action. Let also Uy = wyUy, g € G, and P = {Ug} . C pMp be the factor with
support 1p = p they generate in pMp. Fiz x € N N @C. For eacht € R put
0 ¥E propmp(pxUp)Uy. Then we have:

1°. z, belongs to N being in fact the unique element of minimal norm-2 in the
weakly closed conver subset of N

Ki(z) = @ {UzUU U }gec = €0 {wgog(z)on(wy) }gec-
2°. z; satisfies the equivalent conditions

(a) U;l‘t = il?tAdUt(U;),Vg e
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(b) wobgl(xs) = wpoy(wy), Vg € G

Also, y is the unique element in K{(z) that satisfies these equivalent conditions.
3°. 1z} € Bo®C and zfz: € ou(Bo @ C).
4°, ppr = a_3(py)* and (bx), = b{zy), Vb € By.

Proof. Since the set {U} },eq is total in P, E prpmp(2Us) is the unique element of
minimal norm-2 in Ky(x) = 0" {U;zU;U,* }ec (see e.g., [Pod]). But UgzlUUg* =
wy0g(x)Uyw; = wyog(x)ar(wy)Uy, implying that Ki(z) = K (z)U} and that z; =
Epinprp(2Us) U is the unique element of minimal norm-2 in the set K{(z). This
proves 1°.

The commutation relation U, (x,U;) = xtUtU;, which holds true for all g € G, is
equivalent to the condition Ujr; = z,AdU(U,) (by multiplying the former to the
right by U}). This shows that (a) in 2° holds true. But condition (a) amounts to
welUgry = 2, Uwg U,Uf , which multiplied from the right by Ug gives condition (b)
(after apropriate simplifications).

Moreover, since

uEpipap(y)u” = Epinpmpluyu™),Yu € Py € pMp,

it follows that Eprpmp(y) = Eprpmp(peUsp),Vy € Ki(r), so that z:U; is the
unique element in K (z) = K{(z)U, that commutes with all Uj,g € G. By the
equivalence between the commutation relation and the conditions (a) and (b}, this
proves the uniqueness in 2°.
Since by the way it is defined the element z;U; commutes with the *-algebra P,
2.4.2 implies that )
zyxy = (w:Up)(2:U)" € PPNpNp

= (pNp)? = (pNp)” @ C = By ®C,

where ¢’ is the action of G on pNp given by 0, =0,@04.9€G.
Similarly, we get

a_.t(iE:.'Et) = (SUtUt)*(ﬂ'JtUt) < P! ﬂp]\?p = B(} & CC,

implying that z}z; € a4(By ® C). This proves 3°.
Taking —t for t, by the definitions we get p_+U_¢ = Eprnpmp(pU_sp). Thus

UtP*-_t Ut* = EP’ﬂpMp(pUtp)U -t = Pty

showing that a;(p_,)* = p;, which by taking adjoints and applying (oy)~! = a_4
gives the first part of 4°. The second part is trivial by the definitions. Q.E.D.
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4.3. Lemma. Let u(t) = (pp})~Y?p, € N denote the partial isometry in the
polar decomposition of p, and denote by I{t) = w(t)u(t)*, r(t) = w(t)*u(t) its left
support and right support. Then we have:

1°. Ugult) = w(t)UU U Vg € G.

2°. u(—t) = a_(ult))*.

3°. I{(t) € By, r(t) € az(By) and u(t)*Bou(t) = r(t)a(Bo)r(t).

Proof. By multiplying the relation 4.2.2° by (p:p?)~"? € By from the left, we get
2°.

Since by 4.2.4° we have p_; = a_4(p¢)*, by the definitions of u(t) and u(—t) we
immediately get u(—t) = a_;{u(t))*. This proves 2°.

Taking (psp}) ™72 to be the element b in 4.2.4°, by 4.2.30 and the definitions we
get [(t) = u(t)u(t)* = b} € By and r(t) = u(t)*ult) = bjbs € a(Byp).

Similarily, if we let g be an arbitrary projection in I(£)Bpl(t) and take this time
q(pip;)~Y? to be the element b in 4.2.40, then we get u(t)*qu(t) = bb; € a:(By).
Since any element in B can be approximated in uniform norm by a linear com-
bination of projections, it follows that u(t)* Bou(t) C r(t)a:(Bo)r(t), proving one
inclusion in 1°.

Taking —t for ¢ in this inclusion, we also have u(—t)Bou(—t)* C r(—t)a_:(Bs)r(—t).}
Applying «(t) on both sides we get:

ar(u(—t))a(Bo)our(u(—t)*) C ar(r(-1))Boc(r(—t)).

But by part 20 we have ap(u(~t)) = u{t)* and I(t) = I{o(u(—1))*) = as(r(~t)), so
the above implies
u({tY o (Bo)ult) C 1{£)Bol(t).

Equivalently,
oy (Bg) C ult)* Boult).

This proves the opposite inclusion in 3°. Q.E.D.
For the next three lemmas we will assume that the group G has the property T,
as in the hypothesis of 4.1. All other assumptions and notations are as in 4.1-4.3.

4.4. Lemma. For each b € By, the function t — b; from R into the unit ball of
N C M is continuous at t = 0, with respect to the norm-2 topology. Moreover,

E}m%““(t) —pil2 = 0.

Proof. By 4.2.4°, to prove the continuity at ¢ = 0 of the function ¢ > b; it is
sufficient to prove it for the function ¢ — p;.
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Since t — «y is pointwise continuous in the norm-2 topology, there exists £, > 0
such that if £ € R satisfies |t| < &; then

llwg, as(wg,}* — pau(p)lle < eollp — pas(p)ll2, V1 < i < m.

Consider the representation = of G on L*(pMp) given by 7(g)¢ = UyU,*. Then
for t € R and £ = pU,p, we have

im(9)€ ~ €ll = UV U™ — pUsp|l2

= ”ngvw; —PUtPilz = nwgat(wg)* -—pat(p)llz,\fg €G.
Applying this to ¢ = g;,1 = 1,2, ..., n, we get

17(9:)€ — &Il = llwg, ae(wg,)" — par(p)liz-
By Lemma A.1l it thus follows that

lwgas(wy)™ ~ poe(p)ll2 < Kmax;llwg, o (wg,)* — pou(p)il2. Vg € G.
By part 2° it follows that '

e — pas(p)|l2 < Kmaxilwg, ar(wg,)” — pas(p)ll2
forall t € R with |t! < 1. In particular, since po = p and {|pas(p) — pliz — 0 as
t — 0, this implies the continuity at ¢ = 0 of the function p;, finishing the proof of
the statement.

The continuity of u(t) at t = 0 follows trivially from the first part and 4.3.
Q.E.D.

4.5. Lemma. Let zq € By be a central projection of By such that Bozg is a finile
dimensional algebra. Then there exists € > 0 such that if {t] < € then zp < u(t)u(t)*
and u(t)* Bozou(t) = a:(Bozg)-

Proof. By Lemma 4.4 we have %%u(t)u(t)* = lp, = p. Since zg is central in By
and Bozg is a finite von Neumann algebra, it follows that for [t| small enough we
have 29 < u(t)u(l)*.

Let ¢ > 0 be the minimal trace of a non-zero projection in Byzg. Note that for
|t| small enough, ay{zg) is close to zo. By 4.4, u(t)*zou(t) is also close to z5. Thus,
by 4.3 it follows that a:(z0) and u(t)*zou(t) are projections of a;(Bg) which are
close one to another for [t} small. Moreover, a;(zp) is central in «,(By).

Since the minimal trace of a non-zero projection in both

uw(t)*(Bozo)u(t) = u(t)” zou{t)a:(Bo)ult)” zou(t)
and in
at(Bozo) = at(Bo)at(zo)

is ¢, it follows that if ||u(t)*zou(t) — a:(20)||3 < c then u(t)*zou(t) = a(zp). Thus,
for |t| small enough we have u(t)* Bozou(t) = a(Bozo). Q.E.D.
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4.6. Lemma. Let z € By be the mazimal atomic projection of Bg, as in the
staternent of Theorem 4.1.. There exists a partial isometry u € N such that uu* =
z € Bo. u"u= a1{z) € a1(By) and

(wg ® 1)Ugu = u(l ® wy)U,, Vg € G.

Proof. T.et {2;}; be a partition of z with central projections in By such that each
Boz; is finite dimensional. It is suficient to prove that for each z; there exists a
partial isometry u; € N such that z; = ugu; and (we ® 1Ugu; = u;(1®@wy)Uy, Vg €
G. Indeed, because then we can just define u = @;u; and use the fact that for this
u we have g;{wy @ 1)Ugu = (wy ® 1)Ugu;. Summing up this gives (w, ® 1)Uu =
u(l @ wy)U,.

This shows that by replacing w by z;w and By by Bpz; we may suppose By is
finite dimensional. Denote zp = 1p,. By 4.5 it follows that there exists n > 1 such
that w(t,)*zou(tn) = o (20), where t,, = 1/27.

By applying recursively (cy, )* to this equation, for k = 1,2,...,n — 1, it follows
that the element

u = u(tn) (o, (ur,)) (g, (u(tn)))---(af 7 ((u(tn)))

is a partial isometry in N which satisfies u*zou = af (z9) = 01(zp). In particular,
uu* = zg.
Moreover, by multiplying the relation
Ugulty) = ult, ) Uy, U UL Vg € G
{(which holds true by 4.3.1°) from the right by a;_ (u(t,)) , it follows that
Ug(ultn)o, (u(ta))) = u(tn)Up, UgUf, ax, (u(ts))
= u(tn)Us, U UL (Us, ultn)UY ) = u(tn)Us, (Ugu(tn)) UL,
= u(tn) Uy, (u(ta)Us, U UL YUY,
= (u(ta)a, (u(tn))) (UL UgUEY)

n—1
Recursively, we obtain that u = [] af satisfies Ugu = w(U YU (U )*, which by
E==()
taking into account that UJ? = Uy gives Ugu = wl U UY.
Since Uy = (wy ® 1)U, and Uy(wy ® 1)U = 1 ® wy, from this last relation we
get (wy @ 1)Ugu = u(1 @ wy)U,, as desired. Q.E.D.
For the next lemma and the end of the proof of Theorem 4.1 we’ll use the nota-
tions in Proposition 3.4. Thus, we denote by H the Hilbert space of Hilbert-Schmidt
operators on L#(N'p,¢), by o¥ the projective representation of G on L*(Np, )
given by £ = oy ({)w; and by " the representation of G on H implemented by %
(see 3.4.2°).
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4.7. Lemma. Assume the representation 6% of G on H does not contain the
trivial representation. Given any finite dimensional subspace Hy C L*(N'p, @) and
any € > 0, there exists g € G such that if Py denotes the orthogonal projection of
L3(N'p,¢) onto Hy, regarded as an element in H, then 0 < Tr(Pocy (Fo)) <e.

Proof. This is quite standard, but we prove it in details for convenience. We denote
K(Po) =" {5(Py) | 9 € G} C .

Since K (F) is convex and weakly closed, by the inferior semicontinuity of the norm
in H with respect to the weak topology, it follows that there exists an element
Yo € K(P) with minimal Hilbert-Schmidt norm. Also, by the convexity of K (F,),
Yo is the unique element with this property. Since 63 (Yp) belongs to K(Fp) and
has the same norm in H as Yy, it follows that &;"(Yo) = Yy, Vg € G. Since 6% does
not contain the trivial representation, it follows that Y, = 0.

But if for some ¢ > 0 we would have ReTr(Pg&;"(Pg)) > g,Vg € G, then by
taking convex combinations and weak closure, we would have ReTr(PY) > ¢,VY €
K(F,). Taking Y = Yy = 0, this gives a contradiction. Thus, there exists g € G
such that ReT'r(Posy (Fo)) < e.

Since Py is a projection and 6} (Fy) = o™ (g)Poc™(g)*, it follows that oy (Fo) is
a projection as well. Thus, Tr(Pyoy (Fo)) = 0. Q.E.D.

Proof 0f 4.1.1°. By 3.4.3°(v) there exists a projection gg € By such that gow is of the
form (4.1.1) and such that there are no non-zero projections g1 < (p— g¢), g1 € By
with giw of the form (4.1.1). Note right away that gy < z, where z is the maximal
atomic projection of By. Indeed, this is because gow is a generalized weak 1-cocycle
with Ad(gow) o o having atomic fixed point algebra (cf. 3.2.3°).

We have to prove that gg = z, i.e., (2—¢p) = 0. We will proceed by contradiction,
assuming that (2 — go) # 0. By replacing if necessary w by (z — go)w, which is
still a generalized weak 1-cocycle for o, with the same scalar 2-cocycle as w, we
may assume that the algebra By = (pNp)® is atomic and, furthermore, that there
exists no non-zero projection ¢; < p = 1p,,q1 € By, such that g;w is of the form
(4.1.1).

By Proposition 3.4 the latter condition is equivalent to the fact that the represen-
tation ¢* of G on the Hilbert space H of Hilbert-Schmidt operators on L*(Np, ¢)
does not contain the trivial representation.

But H can be identified with the space L2(N'p, ¢)®@L?(pN, ¢). Under this iden-
tification, the representation “ becomes:

()@ ® ") = (a4(2')wy) ® (wyo4(s")7), 9 € G, 2',a" € Np.
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By Lemma 4.6 there exists a partial isometry v in N with left support p= l1pg, €
By = By ® C C N ® C and right support a1(p) = 1 ® p and satisfying:

(wg ® 1)Ugu = u(l @ wy)lU,, Vg € G.

Note that u actually belongs to (p® )N(1® p) C (pN)®(N p). We want to prove
that p = 0. To obtain this, we’ll prove that
(*) plu(z®y”)) =0,Vz,y e N
Since the elements of the form z ® y*, with z,y € N, are total in N®AN, this will
show that « € N is equal to zero, implying that p = uu* = 0. Since p(u{z®@y*)) =
elu{(zq) @ (yg)*)), it is sufficient to establish (*) for z,y € Np.
For each g € (G, by Lemma 4.6 we get:
plulz @ y*)) = e(Uy(u(z @ y*))U,")
~ ¢ (10, ® DUy (u(z & y" )3 (w) @ 1))
= o{(u(1 @ wy)Uy(z @ y"))Ug (w, ® 1))
= @((u(1 @ wy)(og(x) ® g(y™))(wy @ 1))
= 90(“(0"9(1')'1”; ® wyo4(y")))-
But if we identify the Hilbert spaces H and L*(Np, ¢)®L*(N'p, ¢)* in the usual
way, then we have
(og(x)wy) ® (wgae(y™)) = 6¥(g)x @ ¥")
so that by Lemma 4.7, for any given § > 0 we can find recursively ¢1,92,...,9m €
G such that w(gr41){z ® y*) is § orthogonal (with respect to the scalar product
implemented by ¢ = ¢®¢) to each of the vectors 7(g; ) {z®v*),i = 1,2, ..., k. Thus,

the vectors {(1 ® wy,)Uy, (z ® y*)U; (wy ® 1)}1<j<m, are mutually -orthogonal.
By the Cauchy-Schwartz inequality we thus obtain:

lo(u(z ® y*))I* = |p(ul /m(T5(1 @ wy, g,z @ y* Uy (w; @ 1))
< Nulf [11/m(25(1 @ wy,)Ug, (x @ y") Uy (w5, ® )13
< lullz iz ® yliz/m +m(m — 1)4.
Since § > 0 was arbitrary, independently of m, taking first § — 0 then m — oo, we

are done. Q.E.D.

In order to prove 4.1.2° (and thus end the proof of 4.1) we need to show that in
k
case (Np, o) is taken to be of the special form '®1(N0,i, ©0,s), where Ny ; o Myy2(C)
and o ; are faithful states on Np;, 1 < ¢ <k, then the fixed point algebra By must
be atomic.
We do this in the next two lemmas.
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4.8. Lemma. With the assumptions of 2.5.1, let « be as in the first part of 2.5.1
and 3 € AutN be a period 2 automorphism like in the last part of 2.5.1, i.e., such
that BoS~' = a_y and such that N ® C < NP, Assume there erists a diffuse
weakly closed *-subalgebra B® ¢ N = N ® C and a partial isometry vy € N such
that viug = 1o and voB%§ C ayjon (N ® C), for some n > 1. Then v = 0.

Proof. We will construct by induction over k some partial isometries v, € N and
diffuse weakly closed von Neumann subalgebras B, C N ® C such that

(4.8.1) r(vpvf) = 7(vv*), vivg = 1p,, veBrvg C oy pn-(N @ C)

Letting By = B®, 19 = vg, we see that the relation holds true for k£ = 0. Assume
we have constructed v, B, for j =0,1,... , k. By applying the automorphism § of
2.5.1 to the inclusion in (4.8.1) and using the properties of 3, it follows that

(4.8.2) B(vk)BrB(v)” C a_yon-+ (N @ C)

By further applying oy 9»-» to this latter inclusiuon it follows that

(4.8.3) Biy1 = o on-r(B(vk))atrjan—k (Br)ojan- (B(v})) C N ®C

By conjugating (4.8.3) with o /sn-+(8(v})) we thus get:

(4.8.4) Qpyan-k (B(vg))Brs1eryan— (B(vk)) = ayyon-k (Bk) C ayjan-x (N @ C)
On the other hand, by applying ay/sn—+ to (4.8.1) we also have:

(4.8.5) oty jan— (Vg )ty yan—r (Br)ay jan—r (Vi) C ayygn-s-1(N & C)

Altogether, it follows that if we let vgi1 = oyjgn-#(Ug)ayon-+(B(vy)) then by
(4.8.4) and (4.8.5) we get:

’Uk+1Bk+1'Uk.§.1 C Qy fan—k-1 (N & C)

Moreover, since B(vivg) = vjvg, we also have vgy1vf, = ayjgn-»(vrvy), SO that
T(Vk4105 1) = T(vrvE).

This ends the induction argument. Taking k& = n, it follows that v, Bpv, C
a1{(N @ C) = C® N, because oy is the flip automorphism.

But by (Lemma 4.3 in {Po3], or 2.6 in [Po6]), this implies that v, = 0. Since
T{vnv}) = 7(vv*), it follows that v = 0. Q.E.D.
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4.9. Corollary. Under the assumptions of 4.1.2°, the algebra By = N’ follows
atomic.

Proof. By 4.3 and 4.4 it follows that if n > 1 is sufficiently large then the partial
isometry v/ = u(1/2")* is non-zero, has right support in By and satisfies v’ Bov'* C
ay/9n (N ® C). But if we assume Byv'*v’ has a non-zero diffuse part B and we let
vp = v'1 o, then 4.8 applies to infer that v = 0, a contradiction. Thus, v""v' Bev' v’
1s atomic.

Since v"*v’ = u(1/2™)u(1/2")* tends to p as n tends to oo, it follows that By is

atomic. Q.E.D.
Proof of 4.1.2°, By Lemma 4.9 the algebra By follows atomic. But then, 4.1.1°
applies to obtain that w is necessarily of the form (3.2.1). Q.E.D.

5. SOME CONSEQUENCES AND COMMENTS.

The first application of 4.1 that we are going to emphasize is that, for an action
of the property T group G by Connes-Stermer Bernoulli shifts ¢ on N = A, the
multiplicative group H C R} arising as the spectrum of the discrete decomposition
of the associated ITPF1 factor (N, ) is an outer conjugacy invariant for o. In
fact, we define a certain outer conjugacy invariant for arbitrary actions o of groups
G, and then use 4.1.1° to prove that if the group G has the property T then this
invariant can be explicitly calculated, being equal to Hy = {f€ H | 3 < 1}.

5.1. Definition. Let o be an action of a group G on a type 1I; factor N. Let #}
be the set of generalized weak 1-cocycles w of o satisfying the following properties:

1°. The fixed point algebra of the action Ad(wy) 0 04,9 € G, on pNp is atomic,
where p is the support of w.

2°. There exists an atomic von Neumann subalgebra BY C pNp such that
Ad(wg) 0 04(B¥) = B¥,Vg € G and such that if B C pNp is atomic and Ad(wg) o
o4(B) = B,Yg € G then B C B}.

For each w € H} let P¥ be the set of minimal (non-zero) projections of By
Define

H(o) = {r(q) | Jw € Hz,q € P;'},
with the convention that H(c) = {0} if HL =0
5.2. Proposition. H{o) is an ouler conjugacy invariant for o.

Proof. By the definitions, it follows that if w is a weak 1-cocycle for o then H} =

H!,w*, where ¢ = Ad(w) o 5. Moreover, if w' € H) then BY = BY* . This

implies H(o) = H(o'). Q.E.D.
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5.3. Theorem. 2°. Assume (G is an infinite group with the property T of Kazh-
dan and ¢ is an action of G on the hyperfinite type I, factor by Connes-Stgrmer
Bernoulli shifts, as in the hypothesis of 4.1. Let Hy C (0,1} be the set associated
with the discrete decomposition of the ITPF1 factor (N, ) on which o is defined,
as in 2.2.0 — 2.2.2 (thus, H; = {# € H | B < 1}, with H being the spectrum of the
discrete decomposition of (N,p)). Then H(o) = H;.

Moreover, if N is of type I (equivalently, H # {1}), 0 <t < 1 and o* is chosen
to be a genuine action (cf. 3.3), then H{o) = {B/t | B € Hy,B < t}.

Proof. To prove the first part, note that by Theorem 4.1.1°, any generalized weak 1-
cocycle w € H? is of the form (3.2.1). But for such cocycles, Proposition 3.4 shows
that there exists indeed an atomic von Neumann subalgebra invariant to Adw oo
satisfying the maximality condition 5.1.2°. Moreover, by 3.2, 3.4 the traces of the
minimal projections in this atomic algebra are in the set Hy. Thus, H(o) C Hj.

Conversely, if #y € H; then there always exist some non-negative integers ng, g €
Hi, such that ng, # 0 and Tgngf = 1 (exercise !). For each 8 € H, take mg to be
a ng-multiple of the trivial representation of G, on the Hilbert space £%(ng). Let w
be a 1-cocycle constructed out of {ng}g, for some appropriate choice of isometries
in V, as in (3.2.1). By 3.4 it follows that w € H} and by 3.2 the corresponding BY
is given by the algebra B constructed in 3.2.2°. By construction, it follows that if
g is a minimal projection in BY then 7(q) = S¢. Thus, H; C H{(o) as well.

To prove the last part of the statement, let w be a generalized 1-cocycle for o
of support p, with 7(p) = ¢ such that ¢* = Ad(w) o 0. Note that any l-cocycle
w' for ot gives rise to a generalized l-cocycle w'w for o. Thus, by 4.1.1°, w'w is
of the form (3.2.1), having an atomic invariant subalgebra B described by 3.2.2°.
Moreover, by 3.2.3°, B contains all other atomic subalgebras of N invariant to o*.
Then 3.2.3° applies to show that the traces of the minimal projections on B are of
the form 3/t with 8 € H,, 8 < t. The other inclusion is proved in the same way as
the similar inclusion above. Q.E.D.

5.4. Corollary. Let 0,0’ be two Connes-Stormer Bernoulli shifts of the property
T group G on the hyperfinite type II; factor. Let H, H' be the corresponding multi-
plicative groups, arising as the spectra of the discrete decornpositions of the ITPF1
factors (N, @), (N, ') on which o,0" are defined. Let t,t' > 0 and o®, 0" be co-
eycle actions defined as in 3.1.1, out of 0,0’. If ot is outer conjugate to o’ d then

H = H' end t/t' € H. If in addition o**,cr’t' are genuine actions, then they follow
conjugate.

Proof. Let s = max{t,#'}. Then we have (¢*)!/* is outer conjugate to (a’t‘)lf‘*.
This shows that we may assume t' =1 and t < 1.
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There are two possibilities: Either A is of type 1I; and H = {1} or A/ is of type
I11.

If NV = N is of type II; and t < 1 then o® outer conjugate to ¢’ implies there
exists a generalized 1-cocycle w for o of support p such that 7(p) = ¢ and such that
Ad(w) o o is conjugate to ¢’. In particular, Ad(w) o o is ergodic, so it has trivial
(in particular atomic) fixed point algebra. By 4.1.1° it follows that w is given by
(3.2.1). But H = {1}, so p is forced to be equal to 1 and w to be a weakly trivial
weak I-cocycle. Thus ¢ = 1 and ¢ follows conjugate to ¢’. In particular, by 4.1.1°,
H=H={1}.

If A is of type 11, then by 3.3 we can choose o* to be a genuine action. Since
1 € H; and H| = H(o') (cf. 5.3) it follows that 1 € H(c¢"). But by 5.3, we also
have H(ot) = {8/t | B € N,8 < t}. Since ¢ is outer conjugate to o* and H(o)
is an outer conjugacy invariant, we have 1 € H(c*). The only situation when 1
can be contained in H (o) is when ¢ belongs to Hy = H{s). But then (N*, o%) is
conjugate to (N, o) by Adv, where v is an isometry in V;. Thus, o follows outer
conjugate to ¢’, implying that H(o) = H(d').

Moreover, if ¢’ (which is strongly mixing) is conjugate to Ad(w) o o for some
weak l-cocycle w for o, then the fixed point algebra of Ad{w) o ¢ is equal to C1
and by 4.1.1° it follows that w is of the form (3.2.1). Also, since Ad(w) o o follows
strongly mixing itself (as being conjugate to ¢’), it leaves no non-trivial atomic
von Neumann subalgebra invariant. By 4.1.1°, this implies the weak 1-cocycle w is
weakly trivial. Thus, o’ ~ 0. Q.E.D.

We now derive some consequences of Theorem 4.1 and of the above results,
in the case of “classical” Bernoulli shifts. The first such consequence is derived
from 4.1.1°, being a particular case of 5.4 and dealing with arbitrary Bernoulli
shifts. The other two Corollaries are derived from 4.1.2° and they are proved for
Man «on (C)-Bernoulli shifts only.

5.5. Corollary. Let o; be My xn, (C)- Bernoulli shifts, i = 1,2, of the infinite
property T group G on the hyperfinite type I factor, as in 2.1. Let also 1,12 > 0.
If ail is outer conjugate to oif then t1 = ty and oy is conjugate to oa. In particular,
taking n1 = ng = n, 0y = 02 = 0, t1 = 1 and to = m it follows that the genuine
actions {o ® idy, };m are mutually non-outer conjugate.

Proof. This is just a particular case of 5.6. Q.E.D.

5.6. Corollary. Let o be a Mynx2n (C)-Bernoulli shift action of the infinite prop-
erty T group G on the hyperfinite type Il factor N. Then any weak 1-cocycle w
for o is weakly trivial, ie., if w : G — U(N) is so that Ad(wy) © g4 is an ac-
tion of G on N, then there exists a unitary element v € U(N) such that wy =
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viog(v), modC,Vg € G. Moreover, the set of 1-cocycles for o, modulo equivalence,
coincides with the set of characters of G, thus being finite.

Proof. By 4.1.2°, since in the case of classical Bernoulli shifts the multiplicative
group H is equal to {1} and V = U(N), it follows that any weak 1-cocycle w with
scalar 2-cocycle p is of the form w, = Agv*oy(v) for some unitary element v € N
and projective one dimensional representation A : G — T having scalar 2-cocycle
p. That implies A, =1 and py 5 = )\g)\hm, Vg, h € G.

In particular, if w is a 1-cocycle then p = 1 and X follows a character. Moreover, if
A is a character and v is a unitary element in NV such that Ay = v*o,(v), Vg € G then
oq{v) € Cv,Vg. Since o is strongly mixing, by 2.4.3 this implies v € C itself. Thus,
different characters give different 1-cocycles. The number of characters is finite by
([K]). In fact, by ([V2]), even the number of equivalence classes of representations
of a fixed dimension of a group with the property T is finite. Q.ED.

5.7. Corollary. Assume o,G are as in 5.6. For each 1 >t > 0, let o be a choice
of a cocycle action on Nt ~ R obtained by reducing, or amplifying the action o, as
in 3.1.1. Then o cannot be perturbed by inner qutomorphisms to a genuine action.

Proof. If ¢* would be perturbable to a genuine action then ¢ would have a gener-
alized weak 1-cocycle w of support p, with p € N a projection of trace t < 1. But
in the case of classical Bernoulli shifts the group H is equal to {1} and by 4.1.2°,
w must be of the form (3.2.1), thus it must have support equal to 1. Q.E.D.

Let us point out that even milder rigidity properties on a group G can be suficient
to ensure that results similar to 5.5-5.7 hold true: f

5.8. Theorem. All the conclusions in 5.5 — 5.7 hold true for the group G =
SL(2,Z) % Z? as well.

Proof. The only modifications needed, from the proof of the case G has the property
T, are as follows:

Assume w is a generalized 1-cocycle for the My ox (C)-Bernoulli shift o of the -
group G = SL(2,Z) x Z* on N = @4(Mary2s(C),tr)g. Then in Lemma 4.2 one
defines the set K{(x) as the weak closure of the convex hull of elements of the form
UpgzU U * Uy, with g running over the subgroup Z? (rather than over all G). The
proofs of 4.2, 4.3 do work in this case as well (cf. observation before statement of
lemma 4.2).

Next, Lemma, 4.4 holds true, due the rigidity of the inclusion Z? C SL(2,Z) x Z?
{cf. [K], [DKi]). All the proofs of 4.5-4.7 (4 the proof of 4.1.1°) are the same, to
conclude that if z denotes the maximal atomic projection in By then the restriction
of zw to Z* is a weak coboundary, if nozero, i.e., for some apropriate v € R one
has zwg = v*0,(v), modC, Vg € Z?. This already implies that the support of zw is
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equal to 1, due to the ergodicity of the action ojz: on N (this restriction being a
R-Bernoulli shift).

Moreover, by replacing wy by w, = vwgog(v*), g € G one gets a weak cocycle for
o which is scalar valued when restricted to Z2. Let a, b be the generators of SL(2,Z).
It follows that Adw, o, and Adw,oy, normalize o(%?), implying that w),o,(w),™) and
wyog(wy”) are scalars Vg € Z2. Thus, o,(w!,) € Cw/, and similarily for b. Since the
only finite dimensional vector subspace of L?(NN) that is invariant to o)z2 is C1 (cf.
2.4.3), it follows that w}, wy, are scalars. Thus, w, = v*04(v), modC, Vg € G.

This proves 4.1.1° in the case of classical M, «,(C)- Bernoulli shifts. But then
4.1.2° follows by simply noticing that Lemmas 4.8 did not require & to have the
property T and deducing 4.9 from this lemma and the version of 4.4.3°3, 4.5 that
are valid for G = SL(2,Z) x Z? (as explained bove). Q.E.D.

5.9. Remarks. 1°. The results obtained in 4.1.2°, 5.6.2°, 5.7 and (part of)
5.8 are for {Np, @e)- Connes-Stermer Bernoulli shifts, in which (Np, @g) is a tensor
product of 2 by 2 matrix algebras with faithful states on them. The only time we
need this special type of algebra (Ny, @g) is for the construction of the period 2
automorphism 8 in Lemma 2.5.1. This automorphism, in turn, is being used only
in the proof of Lemma 4.8. In fact, one can avoid using the existence of 3 in the
proof of 4.8.

More precisely, one can prove 4.8 for (Ny, ¢g)-Connes-Stormer Bernoulli shifts
with (Np, o) = (Mixx(C), ) for arbitrary k& and arbitrary faithful state g.
Unfortunately though, the argument we have is rather long and complicated, due to
the more involved geometry of the corresponding unitary groups U(2k), especially
when taking into account the centralizer of g ® wo in this group. With this,
however, the conclusions in the above mentioned results follow for all Connes-
Stgrmer Bernoulli shifts of a property T group G or for G = SL(2,Z) = Z2.

5.9.2°. We only needed the assumption that ¢ is a Bernoulli shift for the ergod-
icity properties that such actions have (strongly mixing) and for the rich structure
of the commutant of ¢ in AutN. Thus, the following assumptions on an action o
on a type 1I; factor NV are in fact sufficient to insure that a statement similar to
4.1 holds true:

(a). G is an infinite property T group.

(b). N is a type II; factor and (N, ¢) is a von Neumann factor with M, = N,
such that (A, ) has a discrete decomposition over N.

(c). o is a strongly mixing action of G on (N, ).

(d). There exists a type II; factor N containing N such that ¢ extends to an
action # of G on N and such that there exists a one parameter group of automor-
phisms @ of R on N, cornmuting with the action # and with the property that if



38 SORIN POPA

there exists a partial isometry u € N satisfying wy8,(u) = ua;(w,),Yg € G, for
some generalized weak 1-cocycle w for o then w is of the form (3.2.1).

(e). There exists a period 2 automorphism 3 of N such that N ¢ N? Ba.8 =
&_y, Yt.

(f). If a partial isometry u € N satisfies u*u = 1o, uB%* C a;(B°) for some
diffuse von Neumann algebra B® € N then u = 0.

Thus, conditions (a)-(d) imply 4.1.1° and together with the conditions (e)-(f)
they imply 4.1.2° as well. For Bernoulli shifts in Sections 4 and 5 we have taken
N = N&®N and 6 = 0 @ 0. In Section 6 we will give another example when this
abstract framework can be realized.

5.10. Remarks. Let us mention some more remarks related to the vanishing
cohomology results in this section, as well as some problems:

5.10.1. Note that Corollary 5.5 cannot distinguish between the M, x,{C)-
Bernoulli shifts, for n = 2,3, .... This points towards the following problem:

Let G be an infinite group and o; the My, xn, (C)-Bernoulli shifts, i = 1,2, of the
group G. Is it true that o1 conjugate to oq implies ny =ng ¢

If solved in the affirmative then, together with the Corollary 5.5, the My, xn(C)-
Bernoulli shifts by a property T group GG would follow mutually non-outer conju-
gate, n > 2.

Note that the case G is amenable of this problem was proved in the affirmative
by Kawahigashi in ([Ka]). But the invariant he used, which is an addaption to the
case of actions by amenable groups of the Connes-Stormer entropy, doesn’t work
beyond that case, at least not in an evident way. Note in this respect that if an
entropy invariant could be defined for non-amenable groups as well, along the lines
~of ([CS, Kal), then by using 5.3 one could easily find Connes-Stgrmer Bernoulli
shifts ¢ with distinct invariant H(o) yet same entropy.

5.10.2. One can also prove a (slightly modified) version of 3.2, 3.4 and 4.1 for
actions o0 ® id, on N @ Mxm(C) with o as in 4.1. As a result, one obtains a
calculation of the invariant H(eo ® id,,) for these actions. As a consequence, one
gets some versions of 5.2.4°, 5.5.1° for all £ > 0 (not just for 1 > ¢ > 0).

5.10.3. Any finitely generated subgroup H of RY can be realized as the invariant
H (o) of some Connes-Stgrmer Bernoulli shift of the type considered in 5.3.2°.

5.10.4. Note that M. Choda has already constructed in ([Ch]) a continuous
family of mutually non-conjugate actions by the property T groups G = SL(n,Z)
on R, for n > 3. Moreover, these actions were proved to be mutually non-cocycle
conjugate, modulo countable sets, in ([Kal). The argument in ([Ka]) relies on first
proving that the set of ergodic 1-cocycles of an ergodic action o by a property T
group G is countable, then using ([Ch}). Note that in this respect, our Corollary
5.6 gives a list of all 1-cocycles (not just the “ergodic” ones), in the special case
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when ¢ is a Manx2n (C)-Bernoulli shift, but for arbitrary property T groups G.

Note that the actions of G = SL(n, Z) considered in {{Ch, Ka}) are not Bernoulli
shifts. Indeed, those actions are so that the corresponding cross products R x G
have the property T as von Neumann algebras (in the sense of [CJ]), while the cross
product algebras associated to Bernoulli shift actions can never have the property
T (cf. [Ch]). This is because the automorphism group of such a cross product is
large (for instance, AutR/IntR contains a copy of T, see 2.5.1).

5.10.5. It seems to us that some of the results 4.1, 5.2-5.5 could be true for
a larger class of non-amenable groups, than the property T and SL(2,Z) 72 we
considered here. Related to this, the following question is of obvious interest:

What is the class G(R) of all groups G for which any cocycle action on the
hyperfinite type II; factor R can be perturbed to a genuine action ¢

Note that besides the amenable groups (cf. [Oc]), the class G(R) of such groups
contains the free groups F,, (which have no 2-cocycles) and more generally any group
G of the form G = G g G2 *g Ga..., where G; are amenable groups and H C G;
is a common finite group (cf. [Su, J1}). We will prove in another paper that this
class contains some other products with amalgamation, such as F2 8 Z = Z? *z Z2.
Note that not all free products with amalgamation of amenable groups belongs to
G(R). Indeed, by 5.8 we have that G == SL(2,Z) x Z* does not belong to G(R).

6. COHOMOLOGY OF FREE BERNOULLI SHIFTS.

- We prove in this section that the same results as in 5.5-5.8 hold true for actions
of infinite property T groups G (or of the group G = SL(2,Z) » Z?) on the free
group factor L(Fg) ~ L(F ), by free Bernoulli shifts.

Thus, we consider a special case of the construction in 2.3, which for simplicity
we describe in an alternative way: We lable the free generators of the group Fo by
{a, | g € G} and re-denote this group by Fg. We denote by o the (left) action of
the group G on L(Fg) determined by:

Ug(ah) = afg"“ihavg&h €@,

and call it the action of G on L(Fg) by (left) free shifts.

6.1 Theorem. With G,L(Fg),0, as above, we have:

1°. Any weak 1-cocycle w for o is weakly trivial and any 1-cocycle is equivalent
to a character.

2°. For each t > 0, let o* be a choice of a cocycle action on (L(Fg))* (~ L(Fg),
by [V3, Ral]), obtained by reducing, or amplifying the action o, as in 3.1. If
0 <t < 1 then ot cannot be perturbed by inner automorphisms to a genuine action.
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3°. With the notation in 2°, the cocycle actions {ot}ys0, all regarded as acting
on L{Fg) ~ (L{Fg))t, are mutually non-outer conjugate. In particular, by taking t
to be integers, it follows that the sequence of genuine actions {o ® id,}rn on L{Fg)
are not ouler conjugate.

Proof. For simplicity, denote N = L(F, ). To prove the statement it is suficient
to show that if w is a generalized weak 1-cocycle with support p for the action o
then p = 1 and there exists v € U(N) such that vwgzoy(v)* € C,¥g € G. Indeed,
because then the arguments in the proof of 5.5 — 5.8 apply identically to get the
above 1°,2°,

The proof of the vanishing of the generalized weak l-cocycles is basically the
same as the proof of 4.1, except that the role of the tensor product N ® N will this
time be played by the free product N = N. Due to this, it is convenient to keep
the notation {ag4}4 for the generators of N x C and denote these same generators of
C+ N by {bg},.

We split the proof in a number of “steps”.

Step 1. We first show that there exists a continuous action « : R — Aut{N x N)
and a period 2 automorphism 8 € Aut{N = N) such that

(a). a1 (N =C) = Ny where Ny is free with respect to N = N «C and N, Ny
generate N « N.

(b). NxC C (N *N)».

(C)' 60!{,,6 = a-—-fHVt'

(d). « and 5 commute with the free shift § = o * 0.

This construction plays the role of Lemma 2.5.1 in the sequel.

To construct these automorphisms, let A; € C+ N be self-adjoint elements with
spectrum in [0, 2] such that by = exp(mihgy), Vg. We then put ay(ay) = exp(withy)a,
and ay(by) = by, Vg € G,t € R. By ([V1]) exp(nithy)ay and b, are mutually free
and they clearly generate the same von Neumann algebra as ag4, b,. Thus, «; defines
an automorphism of N, V. Similarily, b,a, is free with respect to b, and they jointly
generate the same algebra as a4, b, do. Thus, (a) is satisfied.

Moreover, by the definition we clearly have oy = gy, VE, s € R. Thus, o is a
continuous action and it is immediate to see that it commutes with § = o % o.

Also, define S(ay) = a4 and B(by) = b;,Vg € G. This clearly defines a period 2
automorphism of N x N that commutes with o.

Moreover, a1 (N = C) = Ny, with N, Ny generating N* N and N+ C C (N % N)~.
Further on, we have

Bla(Blag))) = Blaw(ay))
= Blexp(mithg)a,) = exp(mwithg)*a,

= exp(~mithg)a, = a_4(ay).
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Similarily, we get
Bla{Blbg))) = by = a—s(by).

This shows that all the required conditions are satisfied.

Step 2. Denote by 6% the representation of G on L2(Np, T)®L%(pN,7), as in
3.4. Apply 3.4.3° for N = N and H; = {1} to deduce that if 6% contains the
trivial representation then p = 1 and there exists a unitary element v € N such
that vwgo,(v)* € C,Vg € G. Thus, we are left to prove the Theorem 6.1 when &%
doesn’t contain the trivial representation. More precisely, we want to show that
this assumption leads to a contradiction.

Step 9. Denote o' = Ad(w) oo and By = (pNp)® . Consider the action of GG R
implemented by the commuting actions € = o * ¢ and a on N *+ N. Then define
pr € N x N the same way as in Lemma 4.2 and u(t) the same way as in Lemma
4.3. Thus, u(t) is an isometry in N x N such that if we put I(¢) = u(t)u(t)*,r(t) =
u(t)*u(t) then conditions 1°-3° of Lemma 4.3 are satisfied, where By is identified
with BG x C.

Step 4. The function ¢ — p; follows continuous, with respect to the norm-2
topology, in exactly the same way as in Lemma 4.4, by using the property T of the
group G.

Step 5. Lemma 4.8 holds in this “free product” context as well: Indeed, we just
replace N by N * N and N ® C by N % C throughout the proof of that lemma to
deduce that if there exists a diffuse von Neumann subalgebra B ¢ N+ C and a
partial isometry vg € N * N satisfying v3vo = 1po and voB%g C a2 (N * C) for
some n > 1 then there exists a partial isometry v, € N * N and a diffuse algebra
B, C N xC such that 7{v,v}) = m(vov]), v}v, = 1p, and v,Bav, C Ny, where
Np = o1(N x C) as denoted in Step 1.

Since N = N % C and Ny are mutually free and they generate N = N, by (4.3 in
[Po8)) it follows that v, = 0, thus vp = 0 and B? = 0.

Step 6. One applies the results in Steps 4, 5 to By, u(1/2") the same way as in
the proof of Lemma 4.5, to first conclude that Bol(1/2™) is atomic, then pursue
with the same argument as in that proof to conclude that all By follows atomic,
and that on each minimal central projection of By Ad(u(1/2")) implements o 9n,
for n sufficiently large.

Step 7. We conclude, by using exactly the same construction as in the proof of
Lemma 4.6, that there exists a partial isometry u € N * N such that uu”™ = 1p,
and

walgu = vay{wy)Uy, Vg € G,

where U, are the canonical unitaries in (N = N} ¥ G implementing the action ¢ of
Gon NxN.



42 SORIN POPA

Step 8. To end the proof of Theorem 6.1 we will prove that the relation in Step
7 entails u = 0, giving us the desired contradiction. To show this we prove that
T{uX})=0,vX € Nx N.

We use the fact that N+ N is generated by N = N x C and Ny = a1(N = C),
with N, Ny mutually free. We denote by b, = a1(a,). Thus, it is suficient to prove
that 7(uX) = 0 for X of the form XY, X,Y5... or of the form Y5 X Yi..., where X;
are words in ay and Y; are words in b,

By the relation in Step 7 we have:

T{uX) = 7(puXp) = T(U;(uX)U;*)

= 7(weUg(uX)Ugwy) = 1(uc; (wg) Uy XU wy)
= 7(uan (wg)fg(X)wy)

Thus, if X is a word of length at least 3 in X, Y;, with all “letters” X;,Y; of trace
0, then the “middle” letters have only 6, acting on them, being un-altered by the
left multiplication by w, € N * C and by the right multiplication by a;(w,) € Ny.
Since u can be approximated arbitrarily well by an element in the algebra generated
by {an, b, | g,k € S}, for some finite subset § C G, it follows that we have

g&n;or(ual(wg)Bg(X)w;) =0

for any such X. From the above equations, this implies 7(uX) = 0. A similar
argument shows that if X is of the form X;¥; with 7(X;) = 7(¥1) = 0 then
T(uX) = 0.

Thus, we are left to check the equality 7(uX) = 0 for X = Y,X;. But this brings
us to a situation equivalent to the hypothesis of Lemma 4.7. By using Step 2 and
Lemma 4.7 in the same way as in the Proof of 4.1.1°, it follows that 7(uX) = 0 in -
this case as well. Q.E.D.

6.2. Remark. Note that Theorem 6.1 provides a different class of cocycle
actions by property T groups G on L(F,,) that cannot be perturbed to genuine
actions, than the cocycle action of Connes and Jones ([CJ]; see the Appendix 2 in
this paper).

Indeed, each of our cocycle actions o on the factor (L{F.,))! (which is isomorphic
to L(F. ), Vt, by [V3, Ral]), obtained by reducing a free Bernoulli shift o by a
projection of trace ¢, has the property that its £~ amplification can be perturbed
to an action. While none of the amplifications of the cocycle action in ({CJ]) can
be perturbed to an action. Indeed, the argument is the same: (L(F,))® still has
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Haagerup’s compact approximation property {[H]), ¥s > 0, so L,(G) cannot be
embedded in it, Yy a scalar 2-cocycle of G.

6.3. Remarks. 1°. Related to 6.1, to the examples in ({CJ]) and to the problem
5.7.3, the following question is in place:

Find the class G of all groups for which any cocycle action on any type 11y factor
can be perturbed to a genuine action.

Note that, like for cocycle actions on the hyperfinite type 11y factor, the class &
contains all amenable groups ([Pol]) and, more generally, all the {free products of
amenable groups with amalgamation over finite subgroups (this follows trivialy by
applying [Su, J1] and [Pol]). We do not know of any other example of group in
this class.

2°. The Connes-Jones cocvcles seem to be “universally bad”, so the class of
groups G (with some specified presentation ¥,, ~» G — 1) for which such cocycles
vanish (or do not vanish) is an interesting test example to study for the Problem
6.3.1° above. The obvious obstruction for vanishing cohomology to look at in this
case would be the non-embeddability of the group algebra L{G) into L(IF,), like
in the argument in ([CJ]). So the following problem (see [Ge]), seems to be very
interesting : '

What is the class of von Neumann algebras that can be embedded in the free
group factors L(F,) ? In particular, what are the groups G for which L(G) can be
embedded in L(F,) %

3°. Along these lines, Liming Ge has speculated that L(IF,, ) does not contain non-
injective von Neumann subalgebras Ny with N} N L(F,,) diffuse (without atoms).
Equivalently, if Ny is not injective and Z(Np) ~ L*({0,1]) then Np cannot be
embedded in L(F,),n > 2. If true, Ge’s conjecture would imply that a group Gy is
non-amenable if and only if L(Go ® Z) cannot be embedded into L(F,, ). Related to
this, Shiyakhtenko has asked whether the factor (L{F. )®L>°([0,1], X)) * L(Fo ) is
isomorphic to L(F,,). An affirmative answer to Ge’s conjecture would imply these
factors are not isomorphic.

In fact, it even seems possible that no thin type 1I; factors ([Po2]) other than the
hyperfinite ones can be embedded into L(F, ). In particular, this would imply that
no non-injective factors with the property I' of Murray and von Neumann ((MvIN])
can be embedded into L(F,,) (such factors being thin by [GePol). In this respect,
let us point out the following:

6.4. Proposition. Assume the type II; factor N (with separable predual) contains
a non-injective von Neumann subalgebra Ny such that Ny O N“ is a diffuse von
Neumnann algebra, where N“ is an ultrapower algebra of N. Then there exists
a non-injective von Neumann subalgebra Ny C N such that N1 N N is diffuse.
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Moreover, if Ny is a factor then Ny can be taken to be a factor. In particular,
if N contains a non-hyperfinite subfactor with the property U then il contains a
non-hyperfinite subfactor with the property I with diffuse relative commutant.

Proof. Since Ny in not injective, there exists a finite set {z1,%2,... ,Zn} C Ng such
that the von Neumann algebra it generates is non-injective. By Connes’ character-
isation of injectivity with hypertraces it follows that there exists € > 0 such that if
{z},...,2,} C N are so that ||z} — z;||2 < ¢ then {z!}; generates a non-injective
von Neumann subalgebra in N.

Since Ny N is diffuse, it follows by induction that there exists a sequence of
mutually commuting, rindependent two dimensional abelian *-subalgebras A, C
N, with minimal projections of trace 1/2, such that if we denote by B, = A; V
Ag V.. A, then

1B, nn(z:) — il < g/27, Vi

But then we also have
|Epynn (@) ~ Eppan(Bar, an(@))llz < e/2"*1V1<i<n,

Since Ep:nn © EALH”N = Epr  on, if we denote by A = v, B, and take into
account that Eany = lim, Ep: nn (see e.g., [Po]), then by triangle inequalities we
get

lzi — Earnn(zi)ll2 < &, Vi.

Thus, if we take N; to be the von Neumann algebra generated by
z; = Eann(zi), 1 £ < m,

then N, satisfies the required conditions.

To get N; to be a factor when Ny is a factor, we take at the same time with
the elemnts z; some additonal finite sets of unitaries, at each step of the induction
argument, such that averaging of words of fixed length of elements previously chosen
are close to scalars. ' Q.E.D.

Remarks 6.5. 1°. There is a striking analogy between the symmetry structure
of the free group algebras and of the hyperfinite type II; factor, with the free group
factor L(F ) seemingly having an edge....

Thus, all discrete groups act freely on the factor L(Fy, ), by free Bernoulli shifts.
This should be compared with the fact that all groups act freely on the hyperfinite
factor, by Bernoulli shifts. Moreover, the first examples of embeddings of arbi-
trary finite groups G in some AutN/Int N, with a given arbitrary scalar 3-cocycle,
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were constructed in ([Su]) on a “free-like” factor. Soon after, such examples were
constructed in ([J1]) for arbitrary amenable groups G, on the hyperfinite type II;
factor N. In fact all “amenable symmetries” are now known to be present on the
hyperfinite II; factor by ([Po8, 9]).

All “finite symmetries” were shown to act on the free group factors L(F,,),V2 <
n < oo, in ([Ra2]). In ((ShU]) it has been shown that there exist prime actions of
any quantum group SU,(n) on the factor L(F, ). More generally, it was recently
proved in ({ShU]) that any symmetry “acts” on the free group factor L(Fy ). In
fact, by ([PoSh]) it seems that any kind of symmetry-phenomenon (the word being
taken in a very broad sense) that can be realized on some type II; factor, can be
realized on L(F.,) as well. Theorem 6.1 above, which parallels the “hyperfinite”
results 5.5-5.8, seemns to confirm this fact. Moreover, it seems that L{F. ) is the
unique factor having such a universality property with respect to symmetries.

2°. Related to the comments above, we have already mentioned in Remark
5.10.3° Choda’s result showing that there exist actions of SL(n,Z),n > 3 on the
hyperfinite factor such that the associated cross product algebra has the property
T (in the sense of (]CJ]). Yet we do not know to construct an action of a property
T group on L(F.,) that would give rise to a property T factor, via cross-product
construction. Same for L(F,),2 < n < .

In fact, while the free group algebras with finitely many generators apriori seem
to have lesser syminetries, it seems more “feasable” to construct such rigid actions
of property T groups on L(F,) than on L(Fy ). On the other hand, there is a
lack of examples of actions of arbitrary groups G on L(F,) that would behave as
the free Bernoulli shifts on L(F ) (for instance, actions of G on L{F, ) that would
implement a multiple of the left regular representation of G on £2(F,), as in [J2],
while not normalizing any non-trivial hyperfinite subalgebra of L(F,, }, as in [Po3]).

3°. Related to the proof of Theorem 6.1 above and to (Lemma 4.3.2 in {Pod]),
the following question on the group of automorphisms of the free group factors
seems natural to ask:

Is Aut(L(F,)),2 < n < oo, path-wise connected?

One should note that AutR does have this property, i.e., it is path-wise con-
nected. Indeed, this follows trivially by the classification of single automorphisms
in ([C2, 3]), which reduces the problem to some model automorphisms and ulti-
mately to aperiodic such automorphisms, as follows:

Any automorphism # € AutR is conjugate to an inner perturbation of a model
automorphism pg. But Ad(u) o po is.path-wise connected to py and po ~ po ® idg.
Taking the “model” aperiodic automorphism to be an irrational rotation p;, it
follows that p; is path-wise connected to idgr. Thus, pg follows path-wise connected
to pp ® p1. But the latter is aperiodic, so it is connected to p;, thus to :dg.
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APPENDIX.

A.1. Definition of property T. We recall here a well known equivalent
formulation of the property T for groups (see e.g., [DKi] or [dHV]; see also Lemma
4.1.5 in {Pod] for a general such statement).

A.1.1. Lemma. A group G has the property T of Kazhdan if and only if there
erist g1, 92, ...,9n € G, €0 > 0 and K > 0 such that for any representation n of G
on a Hilbert space H and any vector £ € H satisfying

lm(g:)€ — &li < eoliél], Vi,

one has
supgeclim(9)€ ~ &l < Kmaxicicnllm(g:)€ — €|

A.2. Group algebra extensions. An important class of cocycle actions
can be obtained from inclusions of group von Neumann algebras, as follows. Let
1 =+ H — K — G — 1 be an exact sequence of discrete groups and note that one
has:

A.2.1. Lemma. Let H C K be an inclusion of discrete groups. Then L(H)' N
L(K} = C if and only if K has infinite conjugacy classes relative to H, i.e., {hgh™1 |
h € H} is an infinite set Vg € G, g # e.

Proof. The proof is identical to the classical case for single groups ((MvN], [Di]).
Q.E.D.

For each g € G let k(g) € K be a lifting of g in K and denote by o, € Aut L(H)
the automorphism o4(z) = uk(g}xu;';( o TE L(H). Also for each g, g2 € G denote
by vg, g, the unitary element up € L(H) C L(K), where h = k(g1)k(g2)k(9192)" ! €
H. Then (o, v) is clearly a properly outer cocycle action and L(H) ¢ L(K) can be
viewed as the cocycle cross product N C N %, , G, where N = L{H) (see {NT}).

Along these lines, a particularly interesting example is the Connes-Jones co-
cycle (cf. [CJ]): Let G be an arbitrary countable discrete group with generators
91,92, - -+ 1 9n, Where 1 < n < oo, but with G # F,,. Let F,, — G -+ 1 be the
corresponding presentation of (G;¢:,...,9n). Let H = ker(F,, — @) and note that
H =~ Fup,, where m = |G|. Then F, has infinite conjugacy class relative to its
normal subgroup H. Thus (L(H) ¢ L(F,)) = (L(H) C L(H) X G) for an appro-
priate properly outer cocycle action (o,v) of G on L{H), with H ~ F,, whenever
G is an infinite group with generators g1,... , g, not all mutually free.

By ([CJ]), the Connes-Jones cocycle is non-vanishing when G is an infinite group
with the property T. The proof is based on the observation that L(G) cannot be
embedded in L(F, ), due to Haagerup’s compact approximation property for L(F,)
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([H]). The same argument actually works for the group G = SL(2,Z) x Z2, which
doesn’t have the property T. For the proof, one uses the rigidity of the inclusion
Z? C G to conclude that if one takes the approximation of the identity on L(F,)
by compact, unital, trace preserving maps then the identity on L(Z?) follows close
to a compact operator, uniformly on all the unitaries in L(Z?), a contradiction (see
[Po4] for a complete argument along these lines).
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