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Abstract. We establish a modi�ed segment inequality on metric spaces that
satisfy a generalized volume doubling property. This leads to Sobolev and
Poincaré inequalities for such spaces. We also give several examples of spaces
that satisfy the generalized doubling condition.

1. Introduction

Haj÷asz and Koskela showed in [5] that a weak Poincare Inequality is su¢ cient
to derive Sobolev Inequalities on any space with a doubling measure. In this paper
we demonstrate that by strengthening the metric measure condition we can in fact
establish the Poincaré inequality. Namely, instead of insisting on just concentric
balls growing at a more or less predictable rate, we de�ne a generalized doubling
property. Here, we say that for any compact set and point in our space we can
select a set of distance minimizing segments from the set to the point such that the
measure of the set of t midpoints of these segments is at least a certain fraction of
the measure of the �nal set. This not only contains the standard doubling condition
as a special case, but also implies a slightly modi�ed version of Cheeger-Colding�s
segment inequality [3], and thus a weak (1; 1)-Poincare Inequality.

Furthermore, we show by example that this condition is easy to check in
a number of cases including vector spaces with Minkowski norms, Riemannian
manifolds, Finsler manifolds, certain Carnot-Caratheodory spaces, and Gromov-
Hausdor¤ limit spaces of a sequence that satis�es generalized doubling. We also
provide examples of easy to de�ne spaces, such as a wedge of spheres, which do not
satisfy generalized doubling or, incidentally, Poincare inequality. The fact that our
condition holds on such a variety of spaces indicates that it is not a good way of
generalizing Ricci curvature. This despite the fact that on Riemannian manifolds
our condition is essentially equivalent to lower Ricci curvature bounds. The work
in [9], [14], and [15] indicate that a somewhat more intricate condition is needed in
order to �nd the correct framework for Ricci curvature on metric measure spaces.

In [12] Semmes discusses a condition similar to our own. He considers the
question of existence of a collection of paths with common endpoints each not too
much longer than minimal and shows that existence of a measure with special
properties on such a collection is equivalent to certain topological information as
well as analytic inequalities.
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For more information about analysis on metric spaces we recommend the text
[6] by Heinonen.

The authors would like to thanks Toby H. Colding for bringing our attention
to the theorem by Haj÷asz and Koskela and for encouraging us to write this note.

2. Volume Comparison

Throughout we assume that (X; d; �) is a metric measure space. The metric
space (X; d) is proper in the sense that all closed balls are compact, and in addition
all pairs of points can be joined by a segment, i.e., a curve whose length equals the
distance between the end points. The measure � is assumed to be Radon, i.e., it
is a regular Borel measure where all compact sets have �nite measure. For subsets
A;B � X let �A;B be the set of segments 
 : [0; 1] ! X such that 
 (0) 2 A and

 (1) 2 B:

There are several ways of formulating the generalized volume comparison. On a
space where �p;q consists of a single segment for almost all p; q 2 X these conditions
are all equivalent. In particular they are equivalent for Riemannian manifolds. For
p 2 X de�ne Et : �p;X ! X by Et (
) = 
 (t) : Backward comparison is de�ned as

C�
�
Et
�
E�11 (A)

��
� � (A) ; for all compact A � X:

While forward comparison is

C� (B) � �
�
E1
�
E�1t (B)

��
; for all compact B � X:

If we let B = Et
�
E�11 (A)

�
then we immediately get that

�
�
E1
�
E�1t (B)

��
= �

�
E1
�
E�1t

�
Et
�
E�11 (A)

����
� �

�
E1
�
E�11 (A)

��
= � (A) :

Thus forward comparison implies backward comparison. In a space where segments
are not unique a.e. forward comparison is too strong a condition, while backward
comparison could be too weak to tell us much. Thus we make a selection of segments
�0p;X � �p;X such that the restriction E01 : �

0
p;X ! X is a Borel bijection. This

uses the Borel measurable selection principle for proper maps (see [8] and [10]).
We then have the two alternate versions

C�
�
E0t

�
(E01)

�1
(A)
��
� � (A) ; for all compact A � X;

and

C� (B) � �
�
E01

�
(E0t)

�1
(B)

��
; for all compact B � X:

This selection makes backward comparison a stronger condition while forward com-
parison becomes weaker. In fact the two conditions are now equivalent. It is again
clear that forward comparison gives us backward comparison. To check the reverse
we note that

E0t

�
(E01)

�1
�
E01

�
(E0t)

�1
(B)

���
= E0t

�
(E0t)

�1
(B)

�
� B
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since E01 is a bijection. Therefore, if A = E
0
1

�
(E0t)

�1
(B)

�
we have

C� (B) � C�
�
E0t

�
(E01)

�1
(A)
��

� � (A)

= �
�
E01

�
(E0t)

�1
(B)

��
For a metric measure space (X; d; �) we say that it satis�es the generalized

volume doubling property with constant C if for all p 2 X there are subsets �0p;X �
�p;X as above such that

C�
�
E0t

�
(E01)

�1
(A)
��
� � (A) ; for all compact A � X; and t � 1

2
;

or equivalently that

C� (B) � �
�
E01

�
(E0t)

�1
(B)

��
; for all compact B � X; and t � 1

2
:

If we construct the �contractions�

Fp;t : X ! X;

x ! E0t (E
0
1)
�1
(x)

we see that the two equivalent conditions can be stated as

C� (Fp;t (A)) � � (A) ; for t � 1

2
;

(Fp;t)� � � C�; for t � 1

2
:

Note that the contractions have the scaling property:

d (p; Fp;t (x)) = td (p; x) ;

and that the curves

p;x (t) = Fp;t (x)

are the selected segments from p to x 2 X:

3. Basic Properties

In this section we establish some simple properties of spaces that satisfy the
generalized doubling condition. First note that when A = B (p; r) is a ball centered
at p we get the usual volume doubling condition

C�
�
B
�
p;
r

2

��
� � (B (p; r)) :

The doubling condition for metric balls centered at p immediately implies that

(2t � r)log2 C � (B (p; t � r)) � � (B (p; r))
and hence that all open sets have nonzero measure. A similar result holds for
generalized doubling.

Proposition 1. Let (X; d; �) satisfy the generalized doubling condition, then

(Fp;t)� � �
�
t

2

�� log2 C
�:
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Proof. The key is to use that

Fp;t1 � Fp;t2 = Fp;t1t2
for all t1; t2 2 [0; 1] : Thus for if s = t

1
k � 1

2 , then

(Fp;t)� � = (Fp;s)
k
� � � C

k�

So for all t 2
h�

1
2

�k
;
�
1
2

�k�1�
we have

(Fp;t)� � � C
k� =

�
1

2

��k log2 C
�
�
t

2

�� log2 C
�:

�

This proof can also be used to show that if

(Fp;t)� � � C�; for t � 1� ";

then

(Fp;t)� � � C
k�; for t � 1

2
;

as long as

k � �1
log2 (1� ")

:

With generalized doubling we can also get an upper bound for the volume of
balls.

Proposition 2. Let (X; d; �) satisfy the generalized doubling condition. Then

� (B (p; ")) = O (") :

Proof. Consider a set B with diamB � " and assume that we can �nd p 2 X
such that d (p;B) � R: Then Fp;t (B) \ Fp;s (B) = ; if jt� sj > "

R . So if we select
1
2 � t1 < t2 < � � � < tN � 1 with ti+1 � ti > "

R ; then we get N disjoint sets
Fp;ti (B) � B (p;R+ ") and hence

� (B (p;R+ ")) �
NX
i=1

� (Fp;ti (B)) � C�1N� (B) :

As we can select N > R
2" � 1 we get that

� (B) � C� (B (p;R+ "))
R
2" � 1

� "
3C� (B (p; 2R))

R

if R >> ": �

Finally we show that generalized doubling is preserved under convergence.

Proposition 3. If (Xi; di; �i)! (X; d; �) is a convergent sequence of spaces in
the measured Gromov-Hausdor¤ topology that all satisfy generalized doubling with
the same constant C; then the limit space also satis�es generalized doubling with
the constant C:
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Proof. The convergence (Xi; di; �i) ! (X; d; �) is equivelent to saying that
we have Borel measurable maps

fi : Xi ! X;

gi : Xi ! X;

and a sequence "i ! 0 such that

jd (fi (x) ; fi (y))� d (x; y)j � "i; for all x; y 2 Xi
jdi (gi (x) ; gi (y))� di (xi; yi)j � "i; for all x; y 2 X;

fi (Xi) is "i-dense in X; gi (X) is "i-dense in Xi;

j� (A)� (fi)� �i (A)j � "i; for all A � X;
j�i (B)� (gi)� � (B)j � "i; for all A � Xi:

The selected segments 
p;q : [0; 1] ! X are obtained as the limits of the (dis-
continuous) curves fi � 
gi(p);gi(q) where 
gi(p);gi(q) : [0; 1] ! Xi is the selected
segment in Xi: If we let

Fp;t : X ! X;

x ! 
p;x (t)

and similarily

F ip;t : Xi ! Xi;

x ! 
p;x (t)

then we note that�
fi � F igi(p);t � gi

�
(x) = fi

�

gi(p);gi(x) (t)

�
! 
p;x (t)

= Fp;t (x) :

Thus we also have that �
fi � F igi(p);t � gi

�
�
(�)! (Fp;t)� �:

Since

j� (A)� (fi)� (�i) (A)j � "i;

C
�
fi � F igi(p);t

�
�
(�i) (A) � (fi)� (�i) (A) ;����fi � F igi(p);t�� (�i) (A)� �fi � F igi(p);t � gi�� (�) (A)��� � "i:

this �nishes the argument. �

Since the generalized doubling property with constant C is invariant under
scaling the metric and/or the measure, we see that this property is transferred to
the tangent cones of the space.
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4. Examples

Here are some basic examples of spaces that satisfy the generalized doubling
condition.

Example 1. X = Rn with the Euclidean metric and C = 2n: Since the space
is homogeneous we just need F0;t (x) = tx and that

detDF0;t = t
n:

Example 2. Again X = Rn with the same measure but a Minkowski norm that
comes from letting the unit ball be a convex set containing the origin. Since such
a norm is still scaling invariant with respect to positive scalars we can again use
F0;t (x) = tx: This means that C = 2n as in the Euclidean case.

Things are a bit di¤erent if we consider the more general volume comparisons
were no selection of geodesics is made. Backwards comparison always holds but
forwards comparison might not. Take, e.g., the maximum norm on R2: If p = (0; 0)
and q =

�
1
2 ; 0
�
then

f(1; s) : s 2 [�1; 1]g � E1
�
E�11

2

(q)
�
:

So if B = B (q; ") ; then we have that

� (B) � "2;

�
�
E1

�
E�11

2

(B)
��

� ":

Therefore, the unrestricted forward comparison cannot hold.

Example 3. This leads to an interesting convergence example. Consider Rn
with the p-norm

kxk =
��
x1
�p
+ � � �+ (xn)p

� 1
p

when p is an even integer this is a smooth Finsler space. As p ! 1 we see that
it converges to Rn with the maximum norm. In view of the previous example this
shows that unrestricted forward comparison is not preserved by measured Gromov-
Hausdor¤ convergence.

Example 4. The Heisenberg group is generalized doubling. Since the space is
homogeneous we only need to �nd the contractions at one point. The space is R3
with the usual Lebesgue measure, and the metric comes from the �norm�

jj(x; y; z)jj =
��
x2 + y2

�2
+ z2

� 1
4

The contraction map is then given by

F0;t (x; y; z) =
�
tx; ty; t2z

�
This is linear with Jacobian determinant t4 so we get the generalized doubling prop-
erty with C = 24 (see also [11] and [7].)

Example 5. Let (M; g) be a Riemannian manifold with Ric � (n� 1) k; then
we can use

C = 2

 
sk (R)

sk
�
1
2R
�!n�1

if B � B (p;R) : When k = 0 this reduces to C = 2n as in the Euclidean case.
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Example 6. Let (M; g) be a compact Riemannian manifold with measure com-
ing from �dvol; where � is a positive function. If Ric � (n� 1) k then we can use

C =
max�

min�
2

 
sk (R)

sk
�
1
2R
�!n�1 :

Example 7. If we consider a family of pointed Riemannian manifolds (Mi; gi; pi)
with the renormalized measures �i =

1
vol(B(pi;1))

dvolgi where we assume that Ricgi �
(n� 1) k; then we have as in the previous example that these spaces satisfy gener-
alized doubling. This condition will be transfered to a limit space in the measured
Gromov-Hausdor¤ topology (see also [2] and [4].)

Example 8. Let (M;F ) be a Finsler space such that Ric � (n� 1) k and
jHj � h (see [13]) then we can use

C = 2

 
e
h
2R

sk (R)

sk
�
1
2R
�!n�1

if B � B (p;R) : In case M is Riemannian or all tangent spaces are isometric to
each other we can use h = 0: The special case where k = 0 and h = 0 allows us to
use C = 2n as in the case of Euclidean space with a Minkowski norm.

With the Heisenberg group in mind one can also see that compact regular
Carnot-Caratheodory spaces with �nite diameter are generalized doubling see also
[1].

Here is a simple example which is not generalized doubling, but nevertheless a
very nice space. A space is Ahlfors d-regular if there are constants d � 1 and C > 1
so that

C�1rd � � (B (p; r)) � Crd

for all p 2 X and r < diam (M) : Ahlfors spaces are clearly doubling spaces.

Example 9. A wedge of two spheres has this nice property but is not generalized
doubling. X = S1 _ S2; where S1 and S2 are isometric n-spheres. Let w be the
common wedge point and p the antipodal point on S1: Then consider an " annulus
B � S2 around the equator. This set has volume � ": The sets Bp;t then mostly
look like annuli as well. However when t � 2

3 the set Bp;t will be concentrated near
the wedge point and volume � "n. So we have

� (B) � ";

�
�
Bp; 23

�
� "n:

This shows that there can�t be a uniform C in the generalized doubling when "! 0:

Similar examples can be constructed where two spaces are glued together along
a set which has codimension � 2 in one of the spaces.

5. Segment and Poincaré Inequalities

We claim that generalized doubling implies a modi�ed and slightly stronger
segment inequality. The reason that it is stronger lies in the fact that we parametrize
our geodesics on [0; 1] rather than by arclength.
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Lemma 1. Let (X; d; �) be a metric measure space that satis�es generalized
doubling with constant C, thenZ

A�B
Fg (x; y) d (�� �) �

C

2
(� (A) + � (B))

Z
W

gd�;

where

Fg (x; y) = inf

x;y2�x;y

Z 1

0

g � 
x;ydt;

g is a measurable nonnegative function, and W is a set that contains the geodesics
in �0p;B and �

0
q;A for all p 2 A and q 2 B:

Proof. We basically follow the proof in [3]. Note that

Fg (p; y) �
Z 1

0

g � 
p;y (t) dt:

We have Z
B

Z 1

1
2

g � 
p;y (t) dtd� (y) =

Z 1

1
2

Z
B

g � 
p;y (t) d� (y) dt

=

Z 1

1
2

Z
B

g � Fp;td�dt

=

Z 1

1
2

Z
Fp;t(B)

gd
�
(Fp;t)� �

�
dt

� C

Z 1

1
2

Z
Fp;t(B)

gd�dt

� C

Z 1

1
2

�Z
W

gd�

�
dt

=
C

2

Z
W

gd�:

Integrating this over all p 2 A givesZ
A

Z
B

Z 1

1
2

g � 
p;ydtd� (y) d� (p) �
C

2
� (A)

Z
W

gd�:

To estimate the other part of the integralZ
A

Z
B

Z 1
2

0

g � 
x;ydtd� (y) d� (x)

we can for each q 2 B use thatZ
A

Z 1
2

0

g � 
x;qdtd� � C

2

Z
W

gd�;Z
B

Z
A

Z 1
2

0

g � 
x;qdtd� (x) d� (q) � C

2
� (B)

Z
W

gd�:

This gives the desired inequality. �

This gives us a weak (1; 1)-Poincaré inequality:
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Lemma 2. Let (X; d; �) be a metric measure space that satis�es generalized
doubling with constant C, then

1

vol
�
B
�
p; r2

�� Z
B(p; r2 )

��f (x)� �f
�� d� (x) � C2r

vol (B (p; r))

Z
B(p;r)

gd�;

�f =
1

vol
�
B
�
p; r2

�� Z
B(p; r2 )

f (y) d� (y)

where g is an upper gradient for f:

Proof. Again we proceed as in [3]. Let f be a function on B = B (p; r) with
upper gradient g: Then

jf (x)� f (y)j � d (x; y)Fg (x; y) � rFg (x; y)

for all x; y 2 B
�
p; r2

�
soZ

B(p; r2 )�B(p;
r
2 )
jf (x)� f (y)j d� (x) d� (y) � Crvol

�
B
�
p;
r

2

��Z
B(p;r)

gd�:

Keeping in mind that��f (x)� �f
�� =

1

vol
�
B
�
p; r2

�� �����
Z
B(p; r2 )

(f (x)� f (y)) d� (y)
�����

� 1

vol
�
B
�
p; r2

�� Z
B(p; r2 )

jf (x)� f (y)j d� (y)

we get Z
B(p; r2 )

��f (x)� �f
�� d� (x) � Cr Z

B(p;r)

gd�:

Since

Cvol
�
B
�
p;
r

2

��
� vol (B (p; r))

we get

1

vol
�
B
�
p; r2

�� Z
B(p; r2 )

��f (x)� �f
�� d� (x) � Cr

vol
�
B
�
p; r2

�� Z
B(p;r)

gd�

� C2r

vol (B (p; r))

Z
B(p;r)

gd�:

�

This next corollary follows directly from [6, Theorem 4.18 and Theorem 9.19],
given the conditions we have imposed on the space and that we have established
the weak (1; 1)-Poincaré inequality

Corollary 1. Let (X; d; �) be a compact metric measure space that satis�es
generalized doubling with constant C: Then the space is log2 C Loewner and satis�es
(q; 1)-Sobolev inequalities for suitable functions with

q � log2 C

(log2 C)� 1
:



10 COLIN HINDE AND PETER PETERSEN

References

[1] A. Bellaïche and J.-J. Risler Eds, Sub-Riemannian geometry, Birkhäuser, 1996.
[2] J. Cheeger, Di¤erentiability of Lipschitz functions on metric measure spaces. Geom. Funct.

Anal. 9 (1999), no. 3, 428�517.
[3] J. Cheeger and T.H. Colding, Lower bounds on Ricci curvature and the almost rigidity of

warped products. Ann. of Math. (2) 144 (1996), no. 1, 189�237.
[4] J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below

III. J. Di¤erential Geom. 54 (2000), no. 1, 37�74.
[5] P. Haj÷asz and P Koskela, Sobolev meets Poincare, C.R. Acad. Sci. Paris ser A Math 320

(1995), 1211-1215.
[6] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer Verlag, 2001.
[7] D. Jerison, The Poincare inequality for vector �elds satisfying Hörmander�s condition, Duke

Math. J. 53 (1986), 503-523.
[8] K. Kuratowski and A Mostowski, Set Theory, North-Holland, 1976.
[9] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,

Preprint, 2004.
[10] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, 1980.
[11] P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg C. R. Acad. Sci. Paris

Sér. I Math. 295 (1982), no. 2, 127�130.
[12] S. Semmes, Finding curves on general spaces through quantitative topology, with applications

to Sobolev and Poincaré inequalities. Selecta Math. (N.S.) 2 (1996), no. 2, 155�295.
[13] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv Math

128 (1997) 306-328.
[14] K-T. Sturm, On the geometry of metric measure spaces I. Acta Math. 196 (2006), no. 1,

65�131.
[15] K-T. Sturm, On the geometry of metric measure spaces II. Acta Math. 196 (2006), no. 1,

133�177. 53C23

Department of Mathematics, UCLA, Los Angeles, CA 90095
E-mail address : chinde@math.ucla.edu

E-mail address : petersen@math.ucla.edu


