CORRECTIONS ON THEORY OF OPERATOR ALGEBRAS VOLUME II

Masamichi Takesaki

Page 8, line $\downarrow 16$

"
$$f(\lambda) = \lambda g(\lambda) f(\lambda)$$
" \Rightarrow " $f(\lambda) = \lambda g(\lambda)$ "

line $\downarrow 17$

$$\begin{array}{ccc} g(h)hf(h & \Rightarrow & g(h)h \\ g(k)kf(k) & \Rightarrow & g(k)k \end{array} \text{ i.e., Erase } f(h) \text{ and } f(k) \\ \end{array}$$

Page 12, line $\downarrow 14$

$$\mathfrak{D}(\Delta^{-\frac{1}{2}})\cap\mathfrak{D}(\Delta^{-\frac{1}{2}})\quad \Rightarrow\quad \mathfrak{D}(\Delta^{\frac{1}{2}})\cap\mathfrak{D}(\Delta^{-\frac{1}{2}})$$

Page 49, line $\uparrow 7$

$$\omega_{\eta_{\varphi}}(x_n) \quad \Rightarrow \quad \omega_{\eta_{\varphi}(x_n)}$$

Page 59, line $\downarrow 13$

$$(\mathcal{M})_*^+ \Rightarrow (\mathcal{M}')_*^+$$

Page 60, The arguments between the line \uparrow 11 and the line \uparrow 9: "Since $\theta'(\mathfrak{m}_r^+) \subset \mathcal{M}_*^+$, ω'_a is positive and

$$\|\omega_a'\| = \cdots = \lambda < +\infty.$$

Hence ω_a' is bounded, so that \cdots by ω_a' again."

 \Downarrow

"Since $\theta'(\mathfrak{m}_r^+) \subset \mathcal{M}_*^+$, ω_a' is positive and

$$\sup\{\omega_a'(y): y \in \mathfrak{m}_r^+ \cap \mathfrak{S}_0'\} = \sup\{\langle a, \theta'(y) \langle : y \in \mathfrak{m}_r^+ \cap \mathfrak{S}_0'\}\}$$
$$= \sup\{\langle a, \omega \rangle : \omega \in \Phi_{\ell, 0}\} = \psi(a) = \lambda < +\infty.$$

Since the intersection $\mathfrak{m}_r \cap \mathcal{A}$ of \mathfrak{m}_r and any abelian von Neumann subalgebra \mathcal{A} is an ideal of \mathcal{A} , the absolute value |h|, the positive part h_+ and the negative part h_- of a self-adjoint element $h \in \mathfrak{m}_r$ are all in \mathfrak{m}_r , so that

$$|\omega_a'(h+ik)| \le \omega_a'(h_+) + \omega_a'(h_-) + \omega_a'(k_+) + \omega_a'(k_-)$$

 $\le 4\lambda ||h+ik||$

for every self adjoint $h, k \in \mathfrak{m}_r$. Hence ω'_a is bounded, so that it can be extended to the norm closure A_r of \mathfrak{m}_r as a positive linear functional, which will be denoted by ω'_a again. Then the norm $\|\omega'_a\|$ of ω'_a is precisely equal to λ ."

Page 253, line \uparrow 12:

$$\delta_G(r)^{\frac{1}{2}} \quad \Rightarrow \quad \delta_G(s)^{\frac{1}{2}}$$

Page 363, line $\uparrow 4$

Section 5, is devoted \Rightarrow Section 5 is devoted

Department of Mathematics, University of California, Los Angeles, California 90095-1555