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Abstract

On October 31st 2013 I spoke in the Thursday seminar on Mahowald’s ηj paper. Nerves got
the better of me in some places and I didn’t say things how I would have liked. These are my
cleaned up lecture notes. I hope that they will be useful for those who attended.

1 Introduction to the notes

The goal of Mahowald’s paper is to prove the following theorem.

Theorem (Mahowald). For j ≥ 3 there exist classes ηj ∈ π2j (S
0) detected by

h1hj = {[ξ2
1 |ξ2j

1 ]} ∈ Cotor2,2j+2
A∗

(F2,F2).

His proof proceeds by constructing two maps for each j ≥ 3: gj : S2j −→ Xj and fj : Xj −→ S0.
gj is supposed to correspond to h1 and fj is supposed to correspond to hj . The composite is the
class

ηj : S2j −→ S0.

It is clear that we have to say something about the spectra Xj appearing in the maps above. The
Thursday seminar in the Fall of 2013 was based around Brown-Gitler spectra and sure enough,
each Xj is a supension of a Brown-Gitler spectrum. This paper would have been much harder to
talk about if we had not already devoted seven weeks to the study of these spectra!

In preparing the talk I tried to proceed linearly through Mahowald’s paper and the order in
which material was presented reflected the order in which I understood the various results. I had a
hard time describing the first part of Mahowald’s paper and I think that the material of the second
and third parts of the talk is easier to digest.

2 Introduction to the talk

The main goal of this talk is to prove the following theorem of Mahowald.

Theorem (Mahowald). For j ≥ 3 there exist classes ηj ∈ π2j (S
0) detected by

h1hj = {[ξ2
1 |ξ2j

1 ]} ∈ Cotor2,2j+2
A∗

(F2,F2).
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The talk will proceed in three stages.

1. Firstly, we will focus attention on the “hj part” of ηj . This involves some pretty classical
constructions.

2. Along my journey through Mahowald’s paper I became distracted by the cofibration sequences
he uses:

B(2n− 2) −→ B(2n) −→ ΣnB(n).

In the second part of the talk I will discuss some of the observations I made about these
cofibration sequences.

3. Finally, we will focus on the “h1 part” of ηj . Mahowald’s construction was complicated by
the fact that he could not prove the spectra he used were Brown-Gitler spectra. His original
arguments are insightful and so we will discuss them, but just as we reach the point at which
more details are necessary, we will show how his argument can be simplified. [Mahowald was
surely aware of this simplification; it was Frank Adams who pointed out that he had not
proved the spectra he was using were Brown Gitler spectra and that he could not make such
an argument without this fact.]

3 The “hj part” of the map

For j = 3 we have a map S2j−1 −→ S0 detected by hj : it is the Hopf invariant one class σ : S7 −→
S0. For j > 3 we do not have Hopf invariant one classes S2j−1 −→ S0 since d2hj = h0h

2
j−1.

One might hope that we can succeed in constructing a “Hopf invariant one map” if we replace
S2j−1 by some other connected complex of dimension 2j − 1 which only has one (2j − 1)-cell.

Notation. In this talk the Brown-Gitler spectra B(n) are indexed so that B(2n) = B(2n+ 1).

Definition. For j ≥ 3 let k(j) = 2j−3 and Xj = Σ7k(j)B(k(j)).

Lemma. Xj has dimension 2j − 1, H2j−1(Xj) = Z/2〈e2j−1〉 and H∗(Xj) = 0 for ∗ < 2j − 2j−3.

Proof. X3 = S7 and so the result is easily seen to be true when j = 3.
Assume j ≥ 4. Then B(k(j)) = B(2 · 2j−4) and so by previous talks H∗(B(k(j))) has basis

{χSqI : I = (i1, i2, . . .) is admissable and i1 ≤ 2j−4}.

The highest degree basis element is thus

χ(Sq2j−4
Sq2j−5 · · · Sq2Sq1)

which has degree 2j−3 − 1. Xj = Σ7k(j)B(k(j)) and

7k(j) = (23 − 1)2j−3 = 2j − 2j−3

which completes the proof.

Xj is a candidate for a replacement of S2j−1 on which we can construct a “Hopf invariant one
map” Xj −→ S0. The following proposition is the desired result.
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Proposition. We can construct a map fj : Xj −→ S0 so that the top and bottom cohomology

classes in the cofiber of fj are related by Sq2j .

fj is what we mean by the “hj part” of the map; we will construct another map gj : S2j −→ Xj ,
which will be the “h1 part” of the map.

Let’s construct the map fj right away. We need to recall a theorem which Mike Hopkins spoke
about a few weeks back.

Theorem. Σ∞Ω2S9 =
∨
k>0 Σ7kB(k).

Definition. For j ≥ 3 let ιj : Xj −→ Σ∞Ω2S9 denote the inclusion map.

We are now equipped to define fj .

Definition. Let d : S7 −→ SO be a generator for π7(SO) = Z. SO is a double loop space and so d
extends uniquely to double loop map d from Ω2S9. 2-locally we have the following diagram where
σ is a generator for π7(S0) = Z/16.

S7 d //

��

σ

''
SO �
� // QS0 −1 // QS0

Ω2S9
d

77

σ

55

[Note that the composite SO −→ QS0 −1−→ QS0 induces the J-homomorphism.]
Adjoint to σ is a map σ̃ : Σ∞Ω2S9 −→ S0. For j ≥ 3 let fj : Xj −→ S0 be the composite

Xj
ιj // Σ∞Ω2S9 σ̃ // S0.

We state the proposition that we wish to prove more carefully.

Proposition. Let Cj be the cofiber of fj so that we have nonzero classes e0 ∈ H0(Cj) and e2j ∈
H2j (Cj). Then Sq2je0 = e2j .

How might we go about proving the proposition? We have the following diagram of Puppe
sequences.

Xj
fj //

ιj
��

S0 //

=

��

Cj
∂ //

lj
��

ΣXj

Σιj
��

Σ∞Ω2S9 σ̃ // S0 // D
∂ // Σ∞ΣΩ2S9

We are asking about cohomology classes in Cj . These classes pull back from cohomology classes in
D. Thus, we’d like to describe D and ∂ : D −→ Σ∞ΣΩ2S9 in a tractible way. For this we need a
classical result.
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Lemma. Suppose given a based CW complex M and a based map f : M −→ SO. We may view f
as a clutching function and define a stable bundle V over ΣM . On the other hand the adjoint to
the composite

M
f // SO �

� // QS0 −1 // QS0

is a map g : Σ∞M −→ S0.
The cofiber of g is homotopy equivalent to the Thom spectrum (ΣM)V .

Let’s indicate the prove for the finite dimensional version.

Lemma. Suppose given a based CW complex M and a based map f : M −→ SO(n). We may view
f as a clutching function and define an n-bundle V −→ ΣM . On the other hand the adjoint to the
composite

M
f // SO(n) �

� // ΩnSn
−1 // ΩnSn

is a map g : ΣnM −→ Sn.
The cofiber of g is homotopy equivalent to the Thom space (ΣM)V as long as n ≥ 2.

Proof. Firstly, let’s identify (ΣM)V in terms of a homotopy pushout diagram. Let F : M ×Rn −→
Rn be adjoint to the composite

M
f // SO(n) �

� //Map(Rn,Rn)

and i : M → CM be the inclusion of M into the reduced cone. By definition of a clutching function
we have the pushout diagram on the left. Thomifying gives the pushout diagram on the right.

M × Rn
(iπM ,F ) //

i×id
��

CM × Rn

��
CM × Rn // V

M+ ∧ Sn //

��

CM+ ∧ Sn

��
CM+ ∧ Sn // (ΣM)V

Thus (ΣM)V is the homotopy pushout of a diagram

Sn M+ ∧ Sn G //Ioo Sn.

I is the mapM+∧Sn −→ (∗)+∧Sn andG corresponds to the composite M
f // SO(n) �

� // ΩnSn

under the identification Top∗(M+ ∧ Sn, Sn) = Top∗(M+,Ω
nSn) = Top(M,ΩnSn).

The cofiber of g is given by the homotopy pushout of the diagram ∗ M ∧ Sn g //oo Sn

and so we now have two diagrams we wish to compare. It is crucial to note that we have a split
cofibration sequence

(∗)+
//M+

//M.

Since we assumed n ≥ 2 this means that after smashing with Sn the inner space decomposes as a
wedge of the outer spaces and so we obtain the following cofibration sequence

M ∧ Sn //M+ ∧ Sn // (∗)+ ∧ Sn.
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[We are using the fact that

(M+) ∧ S2 // ((M+) ∧ S2) ∨ ((M+) ∧ S2) // ((∗)+ ∧ S2) ∨ (M ∧ S2)

is a homology isomorphism between simply-connected CW complexes and thus a homotopy equiv-
alence. This is one place where we need n ≥ 2.]

We then consider the map of diagrams in which each column is a cofiber sequence.

∗

��

M ∧ Sn g //oo

��

Sn

id
��

Sn

id

��

M+ ∧ Sn G //Ioo

��

Sn

��
Sn (∗)+ ∧ Sn //idoo ∗

Taking homotopy pushouts gives a cofibration sequence cof(g) −→ (ΣM)V −→ ∗. One sees that
cof(g) and (ΣM)V are simply-connected (using n ≥ 2 again) and so this completes the proof.

Before proving the proposition we introduce some notation that will be useful.

Notation.

S7 d //

��

SO

Ω2S9
d

88 S8 D //

��

BSO

ΩS9
D

88

1. Writing SO = ΩBSO we have D : S8 −→ BSO adjoint to d.

2. Writing SO = Ω2B2SO we have e : S9 −→ B2SO adjoint to d.

3. Then Ωe : ΩS9 −→ BSO is D and Ω2e : Ω2S9 −→ SO is d.

4. Writing SO = ΩBSO the adjoint of d is

ΣΩ2S9 c // ΩS9 Ωe // BSO.

Proposition. Sq2je0 = e2j in H∗(Cj).

Proof. d : Ω2S9 −→ SO can be viewed as a clutching function for a stable bundle V over ΣΩ2S9

classified by (Ωe) ◦ c. By the lemma applied to d, our diagram of Puppe sequences becomes

Xj
fj //

ιj

��

S0 //

=

��

Cj
∂ //

lj
��

ΣXj

Σιj
��

Σ∞Ω2S9 σ̃ // S0 // (ΣΩ2S9)V
∂ // Σ∞ΣΩ2S9
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The map ∂ : (ΣΩ2S9)V −→ Σ∞ΣΩ2S9 induces a map H̃∗(ΣΩ2S9) −→ H∗((ΣΩ2S9)V ) which is the
restriction of the Thom isomorphism

(−) ∪ U : H∗(ΣΩ2S9) −→ H∗((ΣΩ2S9)V ).

Here, U ∈ H0((ΣΩ2S9)V ) is the Thom class. Thus, in H∗(Cj) we have

Sq2je0 = Sq2j (l∗jU) = l∗j (Sq2jU) = l∗j∂
∗(w2j (V )) = l∗j∂

∗c∗(Ωe)∗w2j = ∂∗(Σιj)
∗c∗(Ωe)∗w2j

and in order to check Sq2je0 = e2j it is enough to show that (Ωe)∗w2j ∈ H2j (ΩS9) = Z2 is nonzero
and c∗(Σιj)∗ : H2j (ΣXj) −→ H2j (ΩS

9) is an isomorphism.
At this point in the proof we recall and emphasize that j ≥ 3.
Let’s first consider (Ωe)∗w2j ∈ H2j (ΩS9). We have a commuting diagram.

(S8)k(j) //

Dk(j)

))

(ΩS9)k(j) µ //

(Ωe)k(j)

��

(D)k(j)

��

ΩS9

Ωe

��
(BSO)k(j) µ // BSO

It is a result related to the Hopf invariant one problem that D∗w8 is a generator κ for H8(S8). Thus,
using the Whitney product formula together with the Künneth formula we see that (Dk(j))∗µ∗w2j =
κ1× . . .× κk(j) 6= 0. We deduce that (Ωe)∗w2j is nonzero and thus a generator for H2j (ΩS9) = Z2.

We have the fundamental class x ∈ H7(Ω2S9). In Mike’s talk, a few weeks back, he hinted at
the fact that Qj−3x ∈ H2j−1(Ω2S9) is equal to (ιj)∗(e2j−1). Assuming this, we have (Σιj)

∗(e2j ) =
ΣQj−3x and so we are left with showing that c∗(ΣQ

j−3x) is a generator for H2j (ΩS
9). Denote by y

the fundamental class in H8(ΩS9). yk(j) is transgressive in the homology Serre spectral sequence for
the fibration Ω2S9 −→ ∗ −→ ΩS9 and the Kudo transgression theorem tells us that it transgresses
to Qj−3x. The following commutative diagram explains the relationship between the map induced
by the counit c : ΣΩ2S9 −→ ΩS9 and the transgression. This completes the proof.

H2j−1(Ω2S9)
∼= //

����

H2j (ΣΩ2S9)

����
c∗

ww

H2j (ΩS
9)

τ //

id ..

E2j

0,2j−1
// H2j (ΣΩ2S9)/ker c∗

��
H2j (ΩS

9)

Qj−3x_

��

� // ΣQj−3x_

��
yk(j) � //

�

..

• � // •_

��
yk(j)

4 The cofibration sequences B(2n− 2) −→ B(2n) −→ ΣnB(n)

These cofibration sequences have driven me mad over the past week: I found myself awake at 5am
on Saturday morning with them plaguing me. Here, I will talk about some observations that I have
made about them. They are not deep but I hope that they will help consolidate and clarify some
of what we have learned in previous weeks.

6



4.1 Thom complex observations

Definition. Let C̃n(R2) be the space of n-ordered tuples of distinct points in R2 and let Fn be the
nth part in the May filtration of Ω2S3, i.e.

∐
k≤n C̃k(R2)×Σk

(S1)×k/ ∼. Let γ : Ω2S3 −→ BO be
the double loop map which extends the generator for π1(BO).

Mark Behrens used the following theorem last week.

Theorem. The Thom spectrum F γn is B(2n).

Thus the inclusions Fn−1 −→ Fn give us maps i : B(2n− 2) −→ B(2n) for each n ∈ N.

Definition. Let Dn(X) be the nth term in the Snaith splitting for Ω2Σ2X, i.e. Σ∞C̃n(R2)+ ∧Σn

X∧n. Of course, Dn(S1) = Σ∞Fn/Fn−1.

Mike Hopkins mentioned the following theorem.

Theorem. Dn(S1) = ΣnB(n). In fact, for odd k we have Dn(Sk) = ΣknB(n).

I found it very strange that the Brown-Gitler spectra have descriptions in terms of Thom spectra
over the Fn and simultaneously as the quotients Σ∞Fn/Fn−1. I think I was trying to seek out which
was the most ‘useful’ description. In the end I made a rather trivial observation but a nice enough
one that I thought I’d tell you. Without supposing any of the theorems above we can prove the
following lemma. Thank you to Søren Galatius for pointing out how to fix my original proof.

Lemma. The cofiber of the map F γn−1 −→ F γn is Σ∞Fn/Fn−1.

Proof. Fn − Fn−1 = C̃n(R2)×Σn (S1 − {1})×n, where we are thinking of S1 as a subset of C, and
so we have a deformation retraction

Fn − Fn−1 −→ C̃n(R2)×Σn {−1}×n.

Thus, the inclusion Fn − Fn−1 −→ C̃n(R2) ×Σn (S1)×n is homotopic to a map factoring through
C̃n(R2)×Σn {1}×n. We deduce that the inclusion Fn−Fn−1 ⊂ Fn is nullhomotopic and so γ|Fn−Fn−1

is trivial. This allows one to identify the cofiber of F γn−1 → F γn : it is the “one point compactification”
of Σ∞(Fn − Fn−1)+ which is Σ∞Fn/Fn−1.

Corollary. Supposing only that F γn = B(2n), the following statements are equivalent:

1. Dn(S1) = ΣnB(n) for each n ∈ N;

2. There is a cofibration sequence B(2n− 2)
i−→ B(2n)

p−→ ΣnB(n) for each n ∈ N.

Of course, we already know that each of these statements is true but it shows the connection
between the two.
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4.2 A Goodwillie perspective on p : B(2n) −→ ΣnB(n)

We have another construction of the map p : B(2n) −→ ΣnB(n) using Goodwillie calculus.

Theorem (Arone-Goodwillie). The functor Σ∞Ω2 has nth-layer X 7−→ Dn(Σ−2X), i.e.

Dn(Σ∞Ω2)(X) = Dn(Σ−2X).

Proposition (Arone-Mahowald, Behrens). The natural transformation of functors

Σ∞ΩH : Σ∞Ω2Σ −→ Σ∞Ω2ΣSq

induces a map of Goodwillie towers. Evaluating the map on the (2n)th layer at S2 and desuspending
n times gives p : B(2n) −→ ΣnB(n).

Proof. A result of Arone-Mahowald, used explicitly by Behrens in his EHP/Goowillie paper, implies
that

Pn(Σ∞Ω2ΣSq) ' Pbn
2
c(Σ
∞Ω2Σ)Sq.

Thus the natural transformation induced by Σ∞ΩH on the (2n)th layer takes the form

D2n(Σ∞Ω2)Σ −→ Dn(Σ∞Ω2)ΣSq.

Evaluating on X gives D2n(Σ−1X) −→ Dn(Σ−1X∧2). Setting X = S2 gives D2n(S1) −→ Dn(S3),
which is Σ2nB(2n) −→ Σ3nB(n). Desuspending n times gives a mapB(2n) −→ ΣnB(n). Inspecting
Mahowald’s construction of the map p : B(2n) −→ ΣnB(n) will convince you that this is the same
map.

Let’s push this direction further. Setting X = S2 above meant that we were really studying the
map Σ∞ΩH : Σ∞Ω2S3 −→ Σ∞Ω2S5. The Goodwillie tower gives the Snaith splitting and so the
result above shows that we can write this map as the wedge of the maps on the right below. We
have filled in what the fibers are supposed to be.

ΣB(1) // ΣB(1) // ∗
Σ2B(0) // Σ2B(2) // Σ3B(1)

Σ3B(3) // Σ3B(3) // ∗
Σ4B(2) // Σ4B(4) // Σ6B(2)

Σ5B(5) // Σ5B(5) // ∗
Σ6B(4) // Σ6B(6) // Σ9B(3)

Σ7B(7) // Σ7B(7) // ∗
Σ8B(6) // Σ8B(8) // Σ12B(4)

Σ9B(9) // Σ9B(9) // ∗
Σ10B(8) // Σ10B(10) // Σ15B(5)

. . .
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On the other hand we can analyze the map on homology. We know H∗(Ω
2S3) = F2[y,Qy,Q2y, . . .]

and H∗(Ω
2S5) = F2[y′, Qy′, Q2y′, . . . ] where |y| = 1 and |y′| = 3 and the map induced by ΩH is

given as follows. [The ∼ appearing here means “up to decomposables”.]

F2[y,Qy,Q2y, . . .] // F2[y′, Qy′, Q2y′, . . . ]

y � // 0

Qny � ∼ // Qn−1y′ for n ∈ N.

Thus the homology of the fiber of Σ∞ΩH is the ideal in F2[y,Qy,Q2y, . . .] generated by y. A few
weeks ago Mike drew out the homology of the B(n)’s in a line to demonstrate that they build up
the homology of Ω2S3. If one takes the ideal generated by y then this has the effect of picking out
H∗(Σ

2nB(2n− 2)) ⊂ H∗(Σ2nB(2n)).

4.3 Some homology remarks

[I omitted this material form the talk.]
We have a map B(n) −→ HF2 which induces an inclusion on homology

H∗(B(n)) �
� // H∗(HF2) = A∗ = F2[ζ1, ζ2, ζ3, . . .], |ζj | = 2j − 1 .

If we let wt(ζj) = 2j−1 then the image of this inclusion can be described as {ζ ∈ A∗ : wt(ζ) ≤ bn2 c}.
We have a map Fn −→ Ω2S3 which induces an inclusion on homology

H∗(Fn) �
� // H∗(Ω

2S3) = F2[y,Qy,Q2y,Q3y, . . .], |Qjy| = 2j+1 − 1 .

If we let wt(Qjy) = 2j then the image of this map can be described as {z ∈ H∗(Ω2S3) : wt(z) ≤ n}.
Mark Behrens stated, last week, that (Ω2S3)γ is HF2 and so the Thom isomorphism gives an

identification of A∗ and H∗(Ω
2S3). Up to decomposables, the Thom isomorphism is given by

ζj // Qj−1y.oo

Mark also described the maps induced on homology by B(2n − 2) → B(2n) → ΣnB(n). We have
an equivalence ΣnB(n) ' Σ∞Fn/Fn−1 which gives an isomorphism ΣnH∗(B(n)) ∼= H̃∗(Fn/Fn−1).
Using the description of the Thom isomorphism just given and Mark’s description of the maps
induced by the Mahowald cofibration sequence, we can see that under the identifications above this
isomorphism takes the following form up to decomposables.

Σn

{
ζ ∈ A∗ : wt(ζ) ≤

⌊
n

2

⌋}
∼=
{
z ∈ H∗(Ω2S3) : wt(z) = n

}

Σnζj11 ζ
j2
2 · · · ζ

jk
k

// yn−
∑

i 2iji(Qy)j1(Q2y)j2 · · · (Qky)jkoo

5 The “h1-part”

We’d like to prove the following result.
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Proposition. There exists a homotopy class gj : S2j −→ Xj such that composing with the collapse

map Xj −→ S2j−1 gives η : S2j −→ S2j−1.

The property stated in the proposition justifies calling gj the “h1-part” of ηj . Since 2j = 8k(j)
and Xj = Σ7k(j)B(k(j)) it is sufficient to find a map Sk(j) −→ B(k(j)) with the required property.
Desuspending further, we look for a map S1 → Σ1−k(j)B(k(j)). We note that when j = 3, k(j) = 1
and we can take η : S1 −→ S0. We rewrite the proposition for clarity.

Proposition. For each j ≥ 0, there exists a homotopy class S1 −→ Σ1−2jB(2j) such that compos-
ing with the collapse map Σ1−2jB(2j) −→ S0 gives η : S1 −→ S0.

5.1 The Adams spectral sequence argument

We can consider all j’s simultaneously by using the maps which we previously called p.

. . . // Σ1−2j+1
B(2j+1) // Σ1−2jB(2j) // . . . // Σ−7B(8) // Σ−3B(4) // Σ−1B(2) // B(1).

We’ll take an Adams spectral sequence approach to this computation and so a first step is to find
compatible elements of

Cotor1,2
A∗

(F2, H∗(Σ
1−2jB(2j))).

The first few elements are easy to construct by hand using the cobar construction. The first term
of each cocycle is [ξ2

1 ]ζj which will project to [ξ2
1 ] when one collapses to the top cell; these cocycles

were constructed by trying to extend this cochain to a cocycle.

j = 0 [ξ2
1 ]1

j = 1 [ξ2
1 ]ζ1 + [ξ2]1

j = 2 [ξ2
1 ]ζ2 + [ξ2]ζ2

1 + [ξ4
1 ]ζ1 + [ξ2ξ

2
1 ]1

j = 3 . . .

Since one understands the map induced on homology by Σ1−2j+1
B(2j+1) −→ Σ1−2jB(2j), the jth

cocycle determines a large chunk of the (j+1)st cocycle. However, more terms are always necessary
and the process becomes tiresome (unless I’m failing to spot a pattern that is emerging). Mahowald
uses the Λ-algebra, which is far more efficient than the cobar construction. The relevant result is
the following.

Proposition. CotorA∗(F2, H∗(B(2n))) is the homology of a complex Λ(n) = Λ/Λn.

Here, Λ is the Λ-algebra, a DG-algebra with an F2-vector space basis given by

{λi1λi2 · · ·λis : 2ir ≥ ir+1},

and Λn is the sub-DG-space with basis

{λi1λi2 · · ·λis : 2ir ≥ ir+1, is < n}.

[There was a mistake in the talk at this point, which Haynes pointed out afterwards.]
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I think one should be able to construct a map Ω(A;H∗(B(2n)))→ Λ(n). It would be described
by picking out the terms which looks like [a]1 and evaluating the the relevant Sqj on χ(a). If one
follows this procedure then we see that our cocycles above correspond to various λ’s.

j = 0 [ξ2
1 ]1 λ1

j = 1 [ξ2
1 ]ζ1 + [ξ2]1 λ2

j = 2 [ξ2
1 ]ζ2 + [ξ2]ζ2

1 + [ξ4
1 ]ζ1 + [ξ2ξ

2
1 ]1 λ4

j = 3 ??? λ8

. . .

j = k ??? λ2k

Notice that a disadvantage of this operation is that it forgets about the [ξ2
1 ]ζj terms. It is not so

clear, in general, that a class represented by λ2j will project to h1.
Mahowald uses the lambda algebra to his advantage. In particular, he credits Ed Brown with

a lemma concerning the λ-algebra, which is crucial for proving the following results.

Proposition.

1. We have compatible nonzero elements {λ2j} ∈ Cotor1,2
A∗

(F2, H∗(Σ
1−2jB(2j))).

2. p : Es,s2 (Σ1−2j+1
B(2j+1)) −→ Es,s2 (Σ1−2jB(2j)) is zero for all s > 0.

Corollary. The elements {λ2j} are permanent cycles in the Adams spectral sequence.

Proof. Let rj be the first r for which dr{λ2j} 6= 0; if no such r exists let rj =∞. We wish for the
set {r1, r2, r3 . . .} to be {∞}. Suppose for contradiction it is not and pick the minimum value, say
rj . Then rj+1 ≥ rj so that drj{λ2j+1} is defined. Moreover,

drj{λ2j} = drjp{λ2j+1} = pdrj{λ2j+1}.

But drj{λ2j+1} ∈ Erj+1,rj+1
2 (Σ1−2j+1

B(2j+1)) and so we deduce that drj{λ2j} is zero, which gives
the required contradiction.

We obtain maps gj : S2j −→ Xj detected by {λ2j−3}. From our cobar construction argument
it is plausible that on the level of Adams E2-pages they map to h1 and thus, our claim concerning
η is true. As remarked above, this is less clear if one works with the λ-algebra entirely and so
Mahowald has to do more to prove that this is the case. His method of doing this closely follows
the argument he would have made if he had have known that the spectra he was working with were
Brown-Gitler spectra. In particular, as long as we suppose the surjectivity property discussed in
previous lectures (which will appear below shortly) there is a simpler argument. We turn to this
presently.

5.2 The simpler argument

Proposition. For each j ≥ 0, there exists a homotopy class S2j −→ B(2j) factoring through
D(Σ−2jP 2j

1 ) such that composing with the collapse map B(2j) −→ S2j−1 gives η : S2j −→ S2j−1.

11



Proof. We construct maps t : S2j −→ D(Σ−2jP 2j
1 ) and e : D(Σ−2jP 2j

1 ) −→ B(2j) and then check
that their composite has the requisite property.

1. We look for Σ2jDt : P 2j
1 −→ S0: we can take the composite of the inclusion P 2j

1 −→ P∞1
with the transfer map P∞1 −→ S0.

2. Let e2j : S0 −→ Σ−2jP 2j
1 ∧ H be a generator for H2j (P

2j
1 ). The “surjectivity property of

Brown-Gitler spectra” that Jacob Lurie stated at the start of his first lecture on Dieudonné
theory tells us that there is a lift of e2j to an element ẽ2j ∈ B(2j)2j (P

2j
1 ). Let e be the

composite

D(Σ−2jP 2j
1 )

id∧ẽ
2j // D(Σ−2jP 2j

1 ) ∧ (Σ−2jP 2j
1 ) ∧B(2j)

(duality pairing)∧id // B(2j).

The following commuting diagram shows that e∗(e0) = e0 and so e∗(Sq2j−1e0) = Sq2j−1e0.

D(Σ−2jP 2j
1 )

id∧ẽ
2j //

id∧e
2j ++

e

**
D(Σ−2jP 2j

1 ) ∧ (Σ−2jP 2j
1 ) ∧B(2j) //

��

B(2j)

��
S0

bottom cell

66

unit

33
(bottom cell)∧(top cell) // D(Σ−2jP 2j

1 ) ∧ (Σ−2jP 2j
1 ) ∧H

(duality pairing)∧id // H

[Sq2j−1 = χ(Sq2j−1
Sq2j−2 · · · Sq2Sq1) and so Sq2j−1e0 is nonzero in H2j−1(B(2j)), although this is

implied by what we are about to observe.] We have

D(Σ−2jP 2j

1 ) = Σ2j+1P−2
−2j−1

= ΣP 2j−2
−1 .

The total Steifel-Whitney class of the tautological line bundle ξ on RP∞ is (1 + x). Thus the total
Steifel-Whitney class of −ξ is (1 + x)−1 = 1 + x+ x2 + x3 + . . . Since the Thom complex of −ξ is

ΣP∞−1 this shows that Sq2j−1e0 is nonzero in H2j−1(ΣP 2j−2
−1 ) = H2j−1(D(Σ−2jP 2j

1 )). We conclude
that the top cell is preserved by e, and this gives the following commuting diagram (in which maps
are labelled correctly up to multiplication by a unit in Z(2)).

S2j t // D(Σ−2jP 2j
1 )

e //

collapse
��

B(2j)

collapsexx
S2j−1

Applying Σ2jD(−) to the composite S2j t // D(Σ−2jP 2j
1 )

collapse // S2j−1 gives

S1 bottom cell // P 2j
1

inclusion // P∞1
transfer // S0.

This composite is η because the transfer map is surjective in homotopy (the Kahn-Priddy theorem)
above dimension zero. This completes the proof.
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6 Completing the proof of the main theorem

[This was omitted from the talk.]
For each j ≥ 3 we have constructed maps gj : S2j −→ Xj and fj : Xj −→ S0. We have also

proved the following properties:

1. The composite of gj with collapse map Xj −→ S2j−1 is η : S2j −→ S2j−1.

2. We have Sq2j (e0) = e2j in H∗(Cj) where Cj is the cofiber of fj .

Geometrically one would have liked to construct maps detected by h1 and hj and taken their
composite. The Hopf invariant one problem prevented us from doing this. We have shown gj to be
a suitable replacement for η and we have shown that fj : Xj −→ S0 is a suitable replacement for
a Hopf invaraint one map. However, we have not completely justified it being the “hj part” of the
map ηj .

What must we verify? The picture below demonstrates the geometry we are trying to perform.

S2j
gj //

η
%%

Xj
fj //

c
��

S0

S2j−1

“hj”

99

Algebraically the dashed map exists and we must verify that the right triangle commutes.

E2(S2j )
(gj)∗ //

h1 ''

E2(Xj)
(fj)∗ //

c∗
��

E2(S0)

E2(S2j−1)

hj

77

hj is in filtration one and we have a concrete description of Ext1 in terms of extensions, so we just
need to check that there is a map of short exact sequences.

0 // H∗(ΣS2j−1) //

(Σc)∗

��

F2〈e0, e2j : Sq2je0 = e2j 〉

��

// H∗(S0) //

=

��

0

0 // H∗(ΣXj)
∂ // H∗(Cj) // H∗(S0) // 0

The map is obvious on the level of F2-vector spaces. We just need to check that Sqi(e0) = 0 in
H∗(Cj) unless i = 0 or 2j . This is because the only indecomposables in the Steenrod algebra are of

the form Sq2i and if 2j − 2j−3 < 2i ≤ 2j , the range in which H∗(ΣXj) is concentrated, then i = j.
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7 Comparing the Adams SS approach with a Dieudonné module
approach

Recall that in section 5.1 we tried to construct a map from S1 into the system

. . . // Σ1−2j+1
B(2j+1) // Σ1−2jB(2j) // . . . // Σ−7B(8) // Σ−3B(4) // Σ−1B(2) // B(1).

This is the same as asking for an element in the limit of the system

. . . −→ B(2j+1)2j+1(S0) −→ B(2j)2j (S
0) −→ . . . −→ B(2)2(S0) −→ B(1)1(S0).

Recalling the Dieudonné construction of the Brown-Gitler spectra that Jacob spoke about, this is
the same as looking for an element in the limit of the system

DM(H∗(QS
0))2j+1

V−→ DM(H∗(QS
0))2j −→ . . . −→ DM(H∗(QS

0))2 −→ DM(H∗(QS
0))1.

We might even refine our search and look for an element in the limit of the system

DM(H∗(QS
0))j+1

2j
V−→ DM(H∗(QS

0))j
2j−1 −→ . . . −→ DM(H∗(QS

0))2
2 −→ DM(H∗(QS

0))1
1.

Proposition. Let [n] ∈ H0(QS0) be “the nth connected component of QS0”. Then

1. Q2j [1] · [−2] ∈ DM(H∗(QS
0))j+1

2j
;

2. V (Q2j [1] · [−2]) = Q2j−1
[1] · [−2].

Proof. ∆(Q2j [1] · [−2]) =
∑

m+n=2j (Q
m[1] · [−2])⊗(Qn[1] · [−2]). By definition of V we immediately

obtain V (Q2j [1] · [−2]) = Q2j−1
[1] · [−2], proving the second claim.

We prove the first case for j = 0 and j = 1. Firstly, we wish to show that Q1[1]·[−2] is contained
in DM(H∗(QS

0))1
1, i.e. that Q1[1] · [−2] is primitive. This is clear from the formula above since

Q0[1] · [−2] = [0] = 1. Secondly, we wish to show that Q2[1] · [−2] ∈ DM(H∗(QS
0))2

2. This comes
down to the formula

∆(Q2[1] · [−2]) = (Q2[1] · [−2])⊗ 1 + 1⊗ (Q2[1] · [−2]) + V (Q2[1] · [−2])⊗ V (Q2[1] · [−2])

which is precisely the formula above.

Jacob only claimed the equality B(n)n(X) = DM(H∗(Ω
∞X))n for even n, so we should check

the end of the sequence directly. The map B(2)2(S0) −→ B(1)1(S0) is the map π2(S/2) −→ π2(S1),
which can be identified with the surjection Z/4 −→ Z/2. We should check that Q2[1] · [−2] has
order 4 in DM(H∗(QS

0))2. We see directly from the law for addition that

2 · (Q2[1] · [−2]) = (Q1[1] · [−2])2 = (Q1[1])2 · [−4] 6= 0

and so we’re done.
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