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Abstract

We compute the vi-periodic homotopy of the sphere spectrum at an odd prime using a direct limit
of localized modified Adams spectral sequences. We show the Fs-page of our spectral sequence is
isomorphic, in a range, to that of the classical mod p Adams spectral sequence. As a consequence
we obtain a very good understanding of the classical Adams spectral sequence above a line of slope

1/(p*—p—1).
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Introduction

Throughout this thesis p will denote an odd prime, ¢ = 2(p — 1) and S™ will denote the n-fold
suspension of the sphere spectrum completed at p.

Chromatic homotopy theory was born when Adams [2), theorem 1.7] constructed a self map on
the mod p"™ Moore spectrum S/p" inducing an isomorphism on K-theory. S/p™ is defined as the
cofiber of the multiplication by p™ map on S° and the map Adams constructed takes the form

St s P g L (0.1)

Moreover, Crabb and Knapp [6 proposition 1.1] have shown that these maps can be chosen so that

n

P
S0 S/pn-H “1 S E—p"QS/pn+1 Sl-p"q

generates the p-component of the image of J in myn,—1(5°) and

pn
S/pn+1 Y1 Z_p"qs/pn—i-l

e

1

S/pt ——L =P /pn
pl ip
S/pnt vy > PG /pntl

commutes. The commutative diagram tells us that the naming convention is sensible. It also allows
us to form the third of the following telescopes.

n n

P P
v 1S/p" ! = hocolim(S/pn+? 0 »Phag/pntt S NG pntl )
S/p™ = hocolim(S/p P S/p? P S/p? )
vy LS /p> :hocolim(vfIS/pp4>vl_lS/p2—p>v1_15’/p3 )

The goal of this thesis is to compute the homotopy of v} ls /p>° using classical Adams spectral
sequence methods and to use the following zig-zag of maps to obtain information about the classical
mod p Adams spectral sequence for S°. This gives the odd prime analogue of Davis and Mahowald’s
work in [7), theorem 1.2].

S0~ 3718/p> — = Ly g p>e (0.2)
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Figure 1: A portion of Ey*(LASS-00) when p =7

1 Outline of the approach taken

Before stating some of our results we outline the approach taken.

The spectral sequence we use to compute the homotopy of v} s /p> has an involved construc-
tion. It is a direct limit of localized modified Adams spectral sequences. There are many spectral
sequences in our account and this spectral sequence is referred to as the localized Adams spectral
sequence for the vi-periodic sphere vflS/poo, LASS-o0 for short.

While setting up the spectral sequence, we identify its Fa-page algebraically. Our main tool for
computing this Ey-page is the ¢;° L_Bockstein spectral sequence (g1 1.BSS). Miller [16] had previously
made a conjecture about a family of differentials in this spectral sequence. We prove his conjecture
and then use the multiplicative structure of the spectral sequences to determine the entire spectral
sequence.

E1 (g '-BSS) == F5(LASS-00) == 7. (v; 1S/p™)

When we compute the LASS-co a miracle happens: the Fs-page is enormous (see figure |1| for
when p = 7), whereas the Fs3-page is modest in size. In fact, the Es-page is small enough that we
can deduce the rest of the spectral sequence using knowledge of the image of J E] Thus, once we
have determined the Es-page, the remainder of the work lies in computing the Es3-page. We use
two more spectral sequences. They are more straightforward to set up than the LASS-co, although
the existence of what we call the Mahowald spectral segence (MAHSS) relies on work of Miller in
[17].

LyTt8/p> is also known as M S, the first monochromatic component of S° (see |21}, 5.7, 5.11]) and . (M;S°) is
well-known (see, for example, the proof of theorem 8.10(b) in [21]).



E3(LASS-00) is given by the homology of (E2(LASS-00), d2) and E2(LASS-00) has the filtration
associated with the ¢, L.BSS. Since the differential dy respects this filtration we obtain the go-
filtration spectral sequence (qo-FILT); it has Ej-page given by H(Fao(q; '-BSS), da). We find that
E1(qo-FILT) is a good approximation to E3(LASS-00) and the bulk of the work is in computing
this object. For this we use the MAHSS which has as its F1-page, the F.-page of the ql_l—BSS. It
degenerates at the E-page and we compute this using our complete understanding of Eo(q; 1—BSS)
and the work of Miller in [17].

Ey(MAH) =—= E;(qo-FILT) =———= F3(LASS-)
= Foo(q; -BSS) == H(Ew(q; *-BSS), dy) == H(F3(LASS-00), d3)

Finally, we have the Adams spectral sequence for the sphere (ASS-S°), the modified Adams
spectral sequence for the Priifer sphere S/p> (MASS-00) and the zig-zag of maps gives rise
to a zig-zag of maps of spectral sequences. We identify these maps at the Es-pages algebraically
and show that they are isomorphisms in a range. In this way our computation gives us a very good
understanding of the classical Adams spectral sequence for S° above a line of slope 1/(p?> —p — 1).

E5(ASS-S%) < Fy(MASS-00) — Fy(LASS-00)

Algebraically these maps fit into the “chromatic spectral sequence” as set up in [I5, section 5] and
we note that we have performed the first part of the program set up there.

2 Main results

We state our main results.
As with all Bockstein spectral sequences the ¢; 1_BSS has an FE1-page which consists of multiple
copies of one algebraic object. In this case, it is an Fp-algebra which shows up in [I5]. We have

El(ql_l) = @ IFp [ql,qfl] & E[h@o > 0] ®Fp[bi’0 1> O] .

v<0

As is normal practice with Bockstein spectral sequences, we write d.x = y to denote a family of
differentials indexed by v. It is explained later (I1)3.3.1)), precisely what we mean by this.

Notation 2.1. Let pl% = 0 and pll = 7;%11 for i > 1. Write [k] for ¢F, h; for h; and b; for b; o. If
x is a nonzero scalar multiple of y write x = y.

Suppose given I = (i1,...,4), J = (j1,...,Js) and K = (k1,...,k,) such that ¢; > ... >4, > 1,
j1>...>js>1land k; >0 fora € {1,...,r}. Write

1. b¥h; for the monomial bfll x -bf:hjl - hyg;

2. Ny gk for Yo, ka(1 — plietl) — 37 plie=1l;

3. J—1for (ji,...,js-1) if s > 1;

4. K —1 for (k1,...,ky —1)ifr > 1 and k, > 1.

All the non-trivial differentials in the g, 1_BSS are described by the following theorem.
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Theorem 2.2. Suppose that we are given I = (iy,...,iy), J = (j1,...,7s) and K = (k1,..., k)
such that iy > ...>4, > 1,1 >...>js>1and kg > 1 fora e {1,...,r}.
Suppose s > 1, that either r =0 or r > 1 and i, > js, and that pt k € Z. We have

o [ Nl o] = 10— 1 1[Nl (2.3
Suppose r > 1, that either s =0 or s > 1 and i, < js and that k € Z. We have
TR [ O e 7 B A ] R X
From this, we obtain an explicit description of Ex(q; 1.BSS).
Corollary 2.5. Ey(q; *-BSS) has F,-basis

{(1)y : v < 0}

U{<[[k:pjs_1]] |:[[N[7J_1’K]]b§<h(]_1:|> . I, J, K, k satisfy the conditions in (2.3)), —plisl < v < 0}

v

U{<[[kp“]] |:|I_p[’lr]]]h“:| |:[[NI,J,K—1]]b§(—1hJ:| > : Ia J7 Kv k satisfy " 1 _pir <v < O}

Recall that E1(MAH) = E(q; *-BSS). The following theorem essentially computes E3(MASS-

Theorem 2.6. Ey(MAH) has F),-basis

{(1), :v<0}U{<[[k‘pj_1]]>v: ptkez, j>1, —pl §v<0}

U{<[[kp’]] {ﬂ—pm]]hz}>v s keZ,i>1, 1-p<v< O}.

As we explain in the bulk of the text the MAHSS degenerates at the Es-page for degree reasons.
Running the go-FILT gives a complete description of the E3(LASS-00).

Corollary 2.7. Eo(qo-FILT) has an Fy-basis given by

{{1)y v < 0}U{<[[k:pj_1]]> ptkeZ j>1, —pl 1 -1<v< 0}

u{<[[kpi+1]] [[[—p[i]]]hi]> ckeZ i>1, 1—p<uv< 0},
where we have abused notation and written the elements detecting the basis in the MAHSS.

10



3 Outline of thesis

This thesis is divided into three chapters.

The heart of the computation lies in the algebra, systematically identifying the Es-page of the
LASS-00. After proving Miller’s conjecture [16], writing down all the nontrivial differentials in the
q 1.BSS is a matter of combinatorics (theorem . Conceptually, the remaining theorems and
corollaries follow quickly although there are many details to address.

The first chapter deals with the algebraic part of the computation and highlights what makes
the computation work out. The second is devoted to setting up the topological spectral sequences
used and verifying various properties of them. This becomes a technical affair and to make the
exposition cleaner the most technical results are delayed until the third chapter.

Two very different methods are employed to obtain differentials in the ¢; L.BSS. There are two
classes of differentials in Miller’s conjecture. The first is tackled head on. We compute, almost
explicitly, the zig-zags that determine the differentials. The second class is obtained from the first
by a Kudo transgression formula after transferring to a related spectral sequence (the Q(0)-BSS).

Chapter I proceeds by introducing relevant notation, setting up a convenient language to talk
about spectral sequences and then setting up various Bockstein spectral sequences and examining
their structure. We investigate the localization map which is used in obtaining information about
the ASS-S° and three sections are devoted to the computation resulting in theorem In section
1[6] we make the observation that is crucial for proving theorem The final section makes note
of some differentials in the Q(0)-BSS which will be useful for future work on the ASS-S°.

The bulk of Chapter II consists of setting up, one by one, all the Adams spectral sequences that
we need and proving the properties that they have. Then we set up the ¢o-FILT and the MAHSS
and use them to complete the computation of the LASS-co. We also use this result to deduce some
information about the ASS-S?. Chapter III deals with the most technical results which are omitted
in chapter II.

Many of the spectral sequences appearing are known to experts in the field and some might not
blink an eye if the material of chapter III were omitted. However, there seem to be gaps in the
literature. Two examples stand out which give the motivation for chapter III and we explain them
briefly.

In chapter II we set up a modified Adams spectral sequence for S/p™ (MASS-n), its Es-page has
an algebraic description as Cotorp(Fp, Q(0)/q¢) and it converges to the homotopy of S/p™. There
is a permanent cycle in the MASS-(n + 1)

qﬁ’n € Cotorp(IF,, Q(O)/QELH)

which detects an element S© — $7P"95/p"*! such that the induced map S/p"*! — B7P"9G/pn+l
is a K-theory isomorphism. During the verfication of this result we realise that such a K-theory
isomorphism can only have (unmodified) Adams filtration at most p” — n. However, it is claimed
in [8, page 156] that it has Adams filtration p™. This suggests that the result above had not been
considered carefully in the literature before now.

In constructing the MASS-n we make use of the “smash product of resolutions” defined in [5],
chapter IV, definition 4.2]. We need some degree of functoriality of this construction to obtain the
multiplicative structure of the MASS-n. It seems that a similar result is required in [3], proposition
3.2] although this issue is not addressed there. It is resolved, to some extent, in section 3 of [23].
However, it is more satisfying to have a functorial smash product on the category of towers in the
stable homotopy category. This is what we construct.

11



We remark that our results are not necessarily presented in the order in which we prove them.
The reader is assured that there are no circular arguments. Referenced results in the same chapter
have their chapter number omitted; otherwise, we include the chapter number for clarity.
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Chapter 1

Algebra

This chapter contains the main ideas behind all of the results stated in the introduction. In chapter
II we construct the localized Adams spectral sequence for the vy -periodic sphere vl_lS/p"O (LASS-00)
and we find it has Fs-page given by

CotorP(Fp,q;lQ(O)/Q(o)o)‘

The main goal of this chapter is to understand a spectral sequence which computes this object.

1 Introducing notation

First, we must introduce the relevant notation.
Recall that throughout this thesis p is an odd prime. All Hopf algebra and comodules have I,
as their ground field.

Definition 1.1. Let P denote the polynomial algebra on generators {&, : n > 1} where |§,| =
(0,2(p™ —1)). P is a Hopf algebra when equipped with the Milnor diagonal

P—P®P, & +— Zﬁf_i®§z‘, (§o=1).
=0

Definition 1.2. Let Q(0) denote the polynomial algebra on generators {g, : n > 0} where |g,| =
(1,2(p™ —1)). Q(0) is an algebra in P-comodules when equipped with the coaction map

Q0) — P Q(0), gur— Y & ®q;.
=0

Note that the multiplication on Q(0) is commutative; it is graded commutative with respect to the
second grading. It is always understood that graded commutative ignores the first grading, which
Miller [I5] refers to as the “Cartan degree”.

Definition 1.3. gy € Q(0) is a comodule primitive and so we may define (1) via the following
short exact sequence of P-comodules. (1) is an algebra in P-comodules.

0— Q(0) —=Q(0) Q(1) 0

13



Definition 1.4. Define Q(0)/q5° by the following short exact sequence of P-comodules. Q(0)/¢5°
is a Q(0)-module in P-comodules.

0 Q(0) 5" Q(0) —=Q(0) /qg® —=0

We find that ¢; € Q(1) is a comodule primitive so we may define ¢; *Q(1) which is an algebra
in P-comodules. We may also define ¢, 1Q(0)/ 45°, a Q(0)-module in P-comodules but this requires
a more sophisticated construction, which we now outline.

Definition 1.5. For k > 1, M, is the sub-P-comodule of Q(0)/q5° defined by the following short
exact sequence of P-comodules. My, is a Q(0)-module in P-comodules.

0 Q(0) Q(0)(gy*) —— M;, —=0.

Lemma 1.6. q’fkil : My — My, is a homomorphism of Q(0)-modules in P-comodules.

Definition 1.7. For each | > 0 let My, (I) = My,. q7 ' M, is defined to be the colimit of the following
diagram.
k—1 k—1 k—1 k—1

a7 a7 a7
My(0) — 2 b (1) B 1 (2)

Definition 1.8. We have homomorphisms ¢, 1Mk — qq 1Mk+1 induced by the inclusions M, —
Miy1. g1 1Q(0)/ q° is defined to be the colimit of following diagram.

g ' My — g ' Mo — ¢ ' Mz ——¢; ' My — . ..

Notation 1.9. If @ is a P-comodule then we write Q(P; Q) for the cobar construction on P with
coefficients in (). In particular, we have

Q(P;Q) =P ®Q
where P = F,&P as F)-modules and we write [p1] . .. |ps]q for p1®. . .®@ps®q. We set QP = Q(P;Fp).

We recall (see [15, page 75]) that the differentials are given by an alternating sum making use of
the diagonal and coaction maps. We also recall that if @ is an algebra in P-comodules then Q(P; Q)
is a DG-F,-algebra and if Q' is a Q-module in P-comodules then Q(P; Q") is a DG-Q(P; Q)-module.

Definition 1.10. If Q) is a P-comodule then Cotorp(F,, Q) = H*(Q(P;Q)).

Notation 1.11. We abbreviate Cotorp(F,, Q) and write Cotorp(Q) instead. We use this notation
for the rest of the thesis.

We remark that in our setting Cotor has three gradings. P and Q(0) are bigraded and we write
(t,u) for the bigrading, which is preserved by the differentials in the cobar complex, Q(P;Q(0)).
Thus, Cotorp(F,, Q(0)) has the cohomological grading s as well as the gradings ¢t and u. The same

is true for Q(1), qle(l), Q(0)/q5° and qle(O)/qSO in place of Q(0).
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2 Spectral sequence terminology

Spectral sequences are used in abundance throughout this thesis. The purpose of this short section
is to fix some potentially unconventional terminology which is used in subsequent sections.

The reader is probably familiar with the notion of an exact couple which is one of the most
common ways in which a spectral sequence arises.

Definition 2.1. An ezact couple consists of abelian groups A and E together with homomorphisms
1,7 and k such that the following triangle is exact:

A : A
k
E

Given an exact couple one can form the associated derived exact couple; iterating this process
gives rise to a spectral sequence. An alternative approach, more useful for what we have in mind,
exploits correspondences. We find that the picture becomes clearer, especially once gradings are
introduced, when we ‘spread out’ the exact couple:

A A : : A

i/ lj
k

E E

Let m: Ex Ax Ax E— E x E be the projection map. Then we make the following definitions.

Definition 2.2. For each 7 > 1 let dp = {(2,%,5,y) € EXAXAXE :kx =& =i"'§ and j§ = y}

and d, = w(d,).
1y
T |
€ )

Since 1, j, k and 7w are homomorphisms of abelian groups d; and d, are subgroups of EX AX AXE
and E x E, respectively.

Notation 2.3. We write d,z =y if (z,y) € d,.

We see that d; is the function jk. We have the convention that dy is the zero function (so that
kerdy = E and imdy = 0). We also have the following useful observations.

Lemma 2.4. Forr > 1, d.x is defined if and only if d._1x = 0, i.e.
(,0) €dr_y <= Fy: (z,y) € d,.
Lemma 2.5. Forr > 1, d,0 =y if and only if there exists an x with d,_1x =y, i.e.

0,y) €dy <= Jx:(x,y) € dr_1.
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Corollary 2.6. Forr > 1, the following conditions are equivalent:
1. dyx =y and d,x = y/;
2. d,x =y and there exists an x’ with d._12' =y —y.
Lemma 2.7. Suppose r > 1 and that d,x = y. Then dgy =0 for any s > 1.

For all » > 1 we see that d, is a correspondence. We can define kernels and images of corre-
spondences. The preceding lemmas show that d,. defines a homomorphism

kerd, /| Jimd, — [)kerds/imd, ;.

Let E, = kerd,_1/imd,_;. Then precomposing by E, — kerd,_1/|J,imd, and postcomposing
by N, kerds/imd,_y — E, gives a homomorphism E, — E,.. This is usually how d, is defined.

In this chapter we use the correspondence perspective on d, most frequently. We use the more
common perspective that d, : E, — E, and F,11 = H(FE,,d,) more frequently in the other chapters.

Definition 2.8. Suppose d,x = y; then x is a said to support a d,. If, in addition, y ¢ imd,_1,
is said to support a nontrivial differential. Elements of (), ker d, are called permanent cycles.

Definition 2.9. We write F, for (), kerd,/J, imd;.

3 Bockstein spectral sequences

In this section we set up the ¢ L_Bockstein spectral sequence (definition . One of the main
goals of this chapter is to compute this spectral sequence completely. This computation makes use
of the multiplicative structure that this spectral sequence has and we transfer differentials between
it and other related spectral sequences. This section sets up all the Bockstein spectral sequences
which we use and proves the various properties that we require of them.

3.1 The Q(0)-Bockstein
Applying Cotorp(—) to the short exact sequence of P-comodules

0— Q(0) —=Q(0) Q(1) 0

gives a long exact sequence. We also have a trivial long exact sequence consisting of the zero group
every three terms and Cotorp(Q(0)) elsewhere. Intertwining these long exact sequences gives an
exact couple:

Cotor%s'™"™(Q(0)) =<—— Cotor’' ™"~ 1(Q(0)) =<—2— ... <—L— Cotors' """ (Q(0))
CO’DOI“?FU’U (Q(1))y Cotor;tivinu(Q(l))v-i-r'

Here O raises the degree of s by one relative to what is indicated and the subscripts on the copies
of Cotorp(Q(1)) are used to distinguish them from one another.
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Definition 3.1.1. The spectral sequence arising from this exact couple is called the Q(0)-Bockstein
spectral sequence (Q(0)-BSS). It has FE;-page

Ef’t’u’v(Q(O)) _ {Cotor}t YHQ)), ifv>0

0 ifv<O

and d, has degree (1,0,0,7). The spectral sequence converges to Cotorp(Q(0)) and the filtration
degree is given by v. In particular, we have an identification

B3 (Q(0)) = Cotorj;t “(Q(0))/FvH Cotorfﬁt’“(Q(O))

where FY Cotorp(Q(0)) = im(gj : Cotorp(Q(0)) — Cotorp(Q(0))) for v > 0. The identification is
given by lifting an element of F¥ Cotorp(Q(0)) to the v™ copy of Cotorp(Q(0)) and mapping this
lift down to Cotorp(Q(1)) to give a permanent cycle.

3.2 The ¢°-Bockstein

Applying Cotorp(—) to the short exact sequence of P-comodules

0 Q(1) Q(0)/g5° —= Q(0)/g5° —=0 (3.2.1)

gives a long exact sequence. We also have a trivial long exact sequence consisting of the zero group
every three terms and Cotorp(Q(0)/¢3°) elsewhere. Intertwining these long exact sequences gives
an exact couple:

Cotor " 1(Q(0) /¢°) L L Cotor’ ™""(Q(0)/qg°) =~—— Cotors ™ ""1™(Q(0) /¢°)
Cotors ™" "(Q(1))yr Cotor ™" (Q(1)),.

Here 0O raises the degree of s by one relative to what is indicated.

Definition 3.2.2. The spectral sequence arising from this exact couple is called the g5°-Bockstein
spectral sequence (¢5°-BSS). It has Ej-page

8,t,u,V 1 0o
Ey (40

- Cotor' ™""(Q(1))y ifv <0
0 ifv>0

and d, has degree (1,0, 0, 7). The spectral sequence converges to Cotorp(Q(0)/¢5°) and the filtration
degree is given by v. In particular, we have an identification

E0(q) = F Cotor™ (Q(0)/3°) "+ Cotor ™ (Q(0)/45°)
where F Cotorp(Q(0)/q5°) = ker (¢; " : Cotorp(Q(0)/q5°) — Cotorp(Q(0)/q5°)) for v < 0. The

identification is given by taking a permanent cycle in the v*! copy of Cotorp(Q(1)), mapping it up
to Cotorp(Q(0)/g5°) and pulling this element back to the (—1)* copy of Cotorp(Q(0)/q5°).
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3.3 Conventions and a relationship between the ((0)-BSS and the ¢°-BSS

The two Bockstein spectral sequences described so far and every other Bockstein spectral sequence
we use have the feature that infinite families of differentials are determined by one differential. This
feature allows us to omit the v grading in a systematic way. We illustrate this phenomenum with
the following definition.

Definition 3.3.1. Suppose z € Cotor""(Q(1)), y € Cotor‘;jl’t_r’“(Q(l)) and we say that d,x = y.
This statement has precise interpretations in the (0)-BSS and the ¢j°-BSS.

1. In the Q(0)-BSS this statement encodes the fact that for any w > 0 we may view
z € Cotor"™(Q(1))w, y € Cotors " "™(Q(1))utr
and in each case we have d,x = y.
2. In the ¢§°-BSS this statement encodes the fact that for any w < —1 we may view
z € Cotor3™(Q(1))w—r, y € Cotor’s " " (Q(1))
and in each case we have d,x = y.

It appears, a priori, that the truth of the statement d,x = y depends on which spectral sequence
we are working in. However, we have the following lemma.

Lemma 3.3.2. Suppose x € Cotorss"*(Q(1)) and y € Cotor’s " "“(Q(1)). Then d,x =y in the
Q(0)-BSS if and only if drx =y in the ¢§°-BSS.

Proof. There is a conceptual proof of this fact using Verdier’s axiom because the Q(0)-BSS and the
g8°-BSS are both truncations of a spectral sequence converging to g5 * Cotorp(Q(0)). We provide
a more direct proof.

Suppose that d,xz = y in the Q(0)-BSS. By definition there exist  and g fitting into the
following diagram.

Cotors M 1(Q(0)) <——2— ... <—L—— Cotors, ™" (Q(0))
o l
COtOI‘}gﬂt’u(Q(l)) COtOI‘}gjl’t_T’u(Q(l))

~ q0 q0

Q
LSL—

Let a € Q(P;Q(1)) be a representative for z and b € Q(P; Q(0)) be a representative . There exists
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an a € Q(P;Q(0)) representing Z, and an a” and « fitting into the following diagram.

Q(P; Q(0)) 2~ Q(P; Q(0)) — Q(P; Q(1))

| | |

Q(P; Q(0)) —2~ Q(P; Q(0)) — Q(P; Q(1))
L

There exists ¢ € Q(P; Q(0)) such that @ = ¢§ ‘b + de. Let o’ = a” — goc. Then

b

at [

o

a
qg_ll; -« — ggdc —— 0.

In particular, o’ € Q(P;Q(0)) gives a lift of a € Q(P;Q(1)) and da’ = ¢4b. Let b be the image of b
in Q(P;Q(1)). Then we have

QP; Q1)) —= Q(P; Q(0)/a3°) —— Q(P; Q(0)/¢5°)

| | |

Q(P; Q1)) —= Q(P; Q(0)/a3°) —— Q(P; Q(0)/¢5°)

ISH

a//q6+1 _ a//q6

| |

bi I;/qO f 0
and
Cotorss' ™ (Q(0)/gg°) ~—=— ... <2 — Cotor’ "(Q(0)/¢°)
T x
COtOI‘?;;t’u(Q(].)) CotorSP-‘rLt—?“,U(Q(l))
{d'/q0} © .. © {d' /q5}
I \
T Yy

so that d,x = y in the ¢§°-BSS.
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We prove the converse using induction on r. The following map of short exact sequences

0) —— Q(0) Q(1) 0

l/qo

0 Q( (1)
M
(0) 9 Q(0) ——=Q(0)/g5° —=0
? i

/90

o
O

l/qo

00— Q(1) L™= Q(0) /g —2> Q(0) /gg° — 0

gives a commuting square

Cotors"™(Q(1)) Cotors 1 1*(Q(0))

| |

Cotor’s ™ (Q(0)/¢5°) —2= Cotor**11=14(Q(1)),

which proves the result for r = 1. For r > 1 we have

dyx Y in the  ¢§°-BSS
= dy_1z = 0 in the  ¢g°-BSS (Lemma
= dr_ix = 0 in the Q(0)-BSS (Induction)
= dyx =y in the Q(0)-BSS for some ¥/ (Lemma
— dyx = 3 in the  ¢§°-BSS (15 half of proof)
— dy12’ = y —y inthe ¢§°-BSS for some 2’ (Corollary [2.
— dy12’ = y' —y inthe Q(0)-BSS (Inductlon
= dyx Yy in the Q(0)-BSS (Corollary .
which completes the proof. O

We extend definition 2.8

Definition 3.3.3. Suppose z € Cotor’""(Q(1)), y € Cotor, "' ""*(Q(1)) and that dyz = y. x is
a said to support a d,. If, in addition, y ¢ imd,_; (which we may check for any of the differentials
in the corresponding infinite families), x is said to support a nontrivial differential.

3.4 The ¢, '-Bockstein

We can mimic the construction of the ¢3°-BSS using the short exact sequence of P-comodules

00— 'Q(1) — ¢ ' Q(0) /g —> ¢ Q(0) /q§° — 0.

Definition 3.4.1. The spectral sequence arising from the corresponding exact couple is called the
ql_l—Bockstein spectral sequence (ql_l—BSS). It has Eq-page

B (g1 = {Cowr?t_”’“(q{ 1Q(1)), ifv<0
0 ifv>0
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and d, has degree (1,0,0,7). The spectral sequence converges to Cotorp(q; 'Q(0)/¢5°) and the
filtration degree is given by v. In particular, we have an identification

E5 0 (qp ') = F* Cotorp™ (g1 ' Q(0)/45%) /F** Cotorp™" (a1 ' Q(0)/a5°)

where, as in the ¢§°-BSS, F¥ = ker ¢, for v < 0. The identification is given by taking a permanent
cycle in the v copy of Cotorp(ql_lQ(l)), mapping it up to Cotorp(ql_lQ(O)/qgo) and pulling this
element back to the (—1) copy of Cotorp(q; *Q(0)/¢5°).

We have an evident map of spectral sequences Ei™™"(¢5°) — Ex™""(q¢y D).

3.5 Multiplicativity of the Bockstein spectral sequences
The Q(0)-BSS is multiplicative because Q(P;Q(0)) — Q(P;Q(1)) is a map of DG algebras.
Lemma 3.5.1. Suppose d,x =y and d,x’ =y in the Q(0)-BSS. Then

dp(z2') = ya' + (=1)12lzy’,

Here |z| and |y| denote the cohomological gradings of « and y, respectively, since every element
of P, Q(0) and Q(1) lies in even u grading.

Proof. Suppose d,x =y and d,.x’ = /.

We saw in the proof of Lemma that there exist a,a’,b,b" € Q(P;Q(0)) such that their im-
ages in Q(P; Q(1)) represent z, ', y,y/, respectively, and such that da = ¢(b, da’ = ¢fjb’. The image
of ad’ € Q(P;Q(0)) in Q(P;Q(1)) represents zz’ and the image of ba’ + (—1)!%ab’ € Q(P;Q(0)) in
Q(P;Q(1)) represents ya'+(—1)!*lay’. Since d(aa’) = gj(ba’+(—1)!%lab’), the proof is complete. [

Corollary 3.5.2. We have a multiplication
EPY(Q(0) @ BT T(Q(0) — BYTTITRITT(Q(0))

restricting to

kerd, ® imd, imd, N, kerdy @ |J, im d U, imds
kerd, ® kerd, ker d, N, ker ds ® (), ker d N ker d
imd, ® kerd, imd, U, imds ® (), ker d U, im ds

Thus we have induced maps
EP(Q(0) @ B4 (Q(O)) — B sl (o))
for 1 <r < oo. Moreover,
E(Q(0) ® EX(Q(0) — B (Q(0))
is the associated graded of the map

Cotor3"(Q(0)) ® Cotor’sy™ ™ (Q(0)) — Cotors ™ 4+ (Q(0)).
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Lemma [3:3.2] gives the following corollary to lemma [3.5.1}
Corollary 3.5.3. Suppose dyx =y and d,z’ =y’ in the ¢5°-BSS. Then
do(aa’) = gl + (~1)lzy.
The ¢g°-BSS is not multiplicative, in the sense that we do not have a strict analogue of Corol-
lary This is unsurprising because Cotorp(Q(0)/¢5°) does not have an obvious algebra struc-
ture. However, we do have a pairing between the Q(0)-BSS and the ¢j°-BSS converging to the

Cotorp(Q(0))-module structure map of Cotorp(Q(0)/q¢5°)-
An identical result to lemma holds for the ¢, 1BSS.

Lemma 3.5.4. Suppose d,x =y and d.x' =y in the ¢; *-BSS. Then
dy(a2') = ya' + (~1)zy.

Proof. Suppose that d,x = y and d,2’ = ' in the qfl—BSS. For large enough s we obtain differentials
in the ¢§°-BSS:

@ v=q'y, &gl ' =q)y.

[One sees this using the definition of ¢;'Q(0)/qs° and the fact that filtered colimits commute with
tensor products and homology.] By corollary we have

d (¢ 2) (¢ 7)) = (& y) (@ ') + (1)1 (" 2) (¢} )

i.e.
S

dr(gi" (za')) = " (y2' + (=1) ")

in the ¢g°-BSS. Inspecting the proof of lemma shows that this formula can be validated using
elements in Q(P; M,41) (see definition . Thus, we can divide through by q%p " to obtain

dy(za') = ya' + (=1)"zy’

(as long as we chose s > 7). O

4 The localization map
This section investigates the localization map
Cotorp (Q(0)/45°) — Cotorp(q"Q(0)/45°)-
The results that we record are useful for transferring differentials between the Q(0)-BSS and the
q 1BSS. They also allows us to obtain information about the Adams spectral sequence for the

sphere (ASS-S°) from the LASS-oco.
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4.1 The trigraded perspective

Firstly, we make use of all three of our gradings to obtain information about the localization map.
Throughout this section s > 0. Recall from [I5] the definition of U(s) (which will be given in
I1J6.1)) and the following proposition.

Proposition 4.1.1 ([15, page 81]). The localization map Cotors’t’u(Q(l)) — Cotorsm(qle(l))
1. is injective if u < U(s — 1) +2(p> = 1)(t +1) — 2(p — 1);
2. is surjective if u < U(s) +2(p?> — 1)(t+1) — 2(p — 1).

This allows us to prove the following lemma which explains how we can transfer differentials
between the ¢5°-BSS and the ql_l—BSS.

Lemma 4.1.2. Suppose u < U(s) + 2(p?> — 1)(t +2) — 2(p — 1) so that proposition gives a

surjection B (¢3°) — EPM* (q7Y) and an injection ESTIV* (g00) — ESTLUF (7T,
Suppose S ESt“ “(g§°) maps to T € ES’t’u (Y, y € ESH’t’u *(¢;1) and that d,T =y in the
1_BSS. Then y lies in E5+17t’u *(¢5°) and d,x =y in the q5°-BSS.

Proof. We proceed by induction on r. The result is true in the case r = 1 where d,. is a function.
Suppose 7 > 1. Then

d,T = vy in the qfl—BSS
= dr—17 = 0 in the ¢; '-BSS (Lemma
= dy_1x = 0 in the ¢g°-BSS (Induction)
= dx = vy in the ¢5°-BSS for some y'  (Lemma
— T =y in the ¢, '-BSS (Map of sss)
— d,17 = y —y inthe ¢ '-BSS for some 2’ (Corollary 2.
= d,12' = y —y inthe ¢j°-BSS (Inductlon
= dyx =y in the ¢g°-BSS (Corollary .

We remark that the map Es+1’t’u () — Es+1’t’“ *(gy") is an isomorphism since s > 0 implies

U(s) < U(s+1). This means the statement about y lying in E} s+Ltu, "(g§°) is actually trivial. [

We obtain the following corollary, which can also be proved using lemma [1.5.2] of chapter III.
Our main proposition of the section follows quickly.

Corollary 4.1.3. EZP""(¢5°) — ES" (g 1) is
1. injective if u < U(s — 1) +2(p? = 1)(t +2) — 2(p — 1);
2. surjective if u < U(s) +2(p? —1)(t+2) — 2(p — 1).
Proposition 4.1.4. The localization map Cotors’t’u(Q(O)/qo ) — Cotorjj’t’"(q1 Q(0)/qg°) is
1. injective if u < U(s — 1) +2(p?> = 1)(t +2) — 2(p — 1);
2. surjective if u < U(s) +2(p?> — 1)(t+2) — 2(p — 1).

Proof. We have Cotorp(N) = |, F” Cotorp(N) and F° Cotorp(N) = 0 when N = Q(0)/¢5° and
N = ¢;'Q(0)/qg° and so the result follows from corollary 4.1.3 O
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4.2 The bigraded perspective

When we use the LASS-00 to obtain information about the ASS-S the three gradings are combined
into two gradings. We prove analogous results to that of the previous section in a bigraded setting.

Definition 4.2.1. We have spectral sequences called the bigraded ¢3°-Bockstein spectral sequence
(bi-g5°-BSS) and the bigraded ql_l—Bockstem spectral sequence (bi—ql_l—BSS). They are reindexed
versions of the ¢5°-BSS and ¢, LBSS, respectively. They have E;-pages

A 3 syt 7>\7 M - (g hadl -
Ef ’U(bl‘q(o)o) = EB Eftuv(qgo)y E(f U(bl'fh 1) = @ Eftuv((h 1)
st+t=o s+t=0
u+t=X utt=X\

and d, has degree (1,0,7) in both spectral sequences.

They converge to Cotorp(Q(0)/¢5°) and Cotorp(q; *Q(0)/qS®), respectively, which are given
bigradings (o, \) by summing over the (s,t,u) with s +¢ = o and u + ¢t = . The filtration degree
is given by 11 in both spectral sequences and we have a map of spectral sequences E;"" (bi-¢5°) —
EZ5 (birg ).

We note that the bigrading (o, \) reappears later on in II The bigraded version of propo-
sition is also given in [15].

Proposition 4.2.2 ([I5, 4.7(a)]). The localization map Cotor3 (Q(1)) — CotorZ* (¢ *Q(1)) is
1. a surjection if c >0 and A< U(oc+1) —2p+ 1;
2. an isomorphism if o > 0 and A < U(c) —2p+ 1.
Corollary 4.2.3. The localization map Cotorj;’)‘(Q(l)) — Cotor‘;”\(qle(l)) is
1. a surjection if A <p(p—1)o —1;
2. an isomorphism if A <p(p —1)(c — 1) — 1.

Proof. Consider g(o) = p(p — 1)o — U(o) for 0 > 0. We have g(1) = p(p —3) +2 > 0 = ¢(0) and
g(c+2)=g(o). Thus p(p —1)o — U(o) < p(p — 3) + 2 and so

plp—1)(e—1)-1<[U(o)+plp—3)+2 —plp—1)-1=U(o) —2p+1.

Together with proposition this proves the claim for o > 0. When o < 0, Cotor}';A(Q(l)) =0
and so the localization map is injective. We just need to prove that Cotor‘;’A (¢;'Q(1)) = 0 whenever
o <0and A < p(p—1)o—1. We can only have [A—0)+1]/(p* —p—1) <o <0if (A—0)+1 < 0.
But then [(A—0)+1]/(2p—2) < ¢ < 0 and the vanishing line of corollary I1[6.4] gives the result. [

This allows us to prove bigraded versions of all the results of the previous subsection.

Lemma 4.2.4. Suppose A+ 1 < p(p —1)(c + 1) — 1 so that proposition gives a surjection
Ef’)"*(bi—qgo) — Ef”\’*(bi-qfl) and an isomorphism Ef“’)"*(bi-qgo) — E‘fﬂ’)"*(bi-qfl).
Suppose x € Ela”\’*(bi—qgo) maps to T € Ef”\’*(bz'—ql_l), Y € Ef“’/\’*(qgo) = ElaH”\’*(ql_l) and

that d,x =y in the qfl—BSS. Then drx =y in the q5°-BSS.

Corollary 4.2.5. EZ* (bi-3°) — B (bi-gi ') is
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1. a surjection if N\ <p(p—1)(c +1)—2;
2. an isomorphism if A < p(p — 1)o — 2.

Proposition 4.2.6. The localization map Cotor;’/\(Q(O)/qgo) — Cotor;”\(ql_lQ(O)/qgo) is
1. a surjection if N\ <p(p—1)(c +1) —2;

2. an isomorphism if A < p(p — 1)o — 2.

5 Calculating Eoo(Qf1>

In this section we compute Eo(q; 1) explicitly and thus we understand Cotor prlay 1Q(0)/ q5°)- The
four subsections proceed linearly through the argument although some of the more involved proofs
are omitted. Two sections are devoted to filling in the gaps: sections [7] and

Let’s outline the argument we use.

1. We give an explicit description of Cotorp(g; 1Q(1)) (corollary [5.1.4)).
2. We compute two classes of differentials in the ¢; 1_BSS (theorem [5.2.10)):

(a) We compute the first class of differentials by direct computation at the level of cochains

(proposition section [7));
(b) We prove a Kudo transgression theorem for the (0)-BSS (proposition section [8));

(c) We transfer differentials between the ¢; '-BSS and the Q(0)-BSS (lemma [5.2.8) so that
the first class of differentials together with the Kudo transgression theorem determine
the second class of differentials (proposition [5.2.9)).

3. By using the multiplicative properties of the ql_l—BSS we find an Fp-basis {1} U {zq}aeca U
{Ya}aca of Cotorp(ql_lQ(l)) such that for each o € A, x,, supports a differential d, xo = Yo
in the ¢, '-BSS (corollary lemma [5.3.6)).

4. We prove lemma which shows how the result of (3] gives rise to an Fp-basis of Fo(q; b,

5.1 An explicit description of Cotorp(q;'Q(1))

We address the first item of our list in the form of corollary We need to make a definition
and recall a result of Miller (theorem [5.1.2]).

Definition 5.1.1. Let I be the ideal generated by the image of p**-power map P — P, x — aP.
P(1) is the quotient Hopf algebra P/I.

We can make Fp[g;] into an algebra in P(1)-comodules by defining ¢; to be a comodule primitive.
The algebra map Q(1) — Q(1)/(q2, g3, - ..) = Fplq1] makes the following diagram commute

a;'Q(1) P®q Q1)

| |

Fplar,q; '] —=P(1) @ Fylqr, q7 ']

and so we have an induced map Q(P; ¢; Q1)) — Q(P(1);Fplq1, ¢, ']). The following is a theorem
of Miller (see [15, corollary 4.4)).
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Theorem 5.1.2. The map Cotorp(g; *Q(1)) — Cotorp(1)(Fplq1, qi']) is an isomorphism.

[€;] and E?;% %[@ﬂg_]] are cocycles in Q(P(1)) and so they define elements h; o and b; o
in Cotorp(1)(F,). The cohomology of a primitively generated Hopf algebra is well understood and
the following lemma is a consequence.

Lemma 5.1.3. Cotorp(1)(F,) = Elhio:i> 0] @ Fplbio : i > 0].
Thus, we have the following corollary to theorem [5.1.

Corollary 5.1.4. Cotorp(q; 'Q(1)) = Fylq1,q; 1@ Elhio : i > 0| ®@F,[bo : i > 0]. The trigradings
are as follows:

a1l = (0,1,2(p = 1)), |hiol = (1,0,2(p" = 1)), il = (2,0, 2p(p" — 1)).

5.2 Miller’s conjecture [16]

We turn to the second item on our list, proving theorem[5.2.10] Firstly, we introduce some notation.

Notation 5.2.1. Let pl% = 0 and plil = 7;:%11 for i > 1. Note that pll = pi=1 4 pli—ll = p.pli-11 41
for 7 > 1.

Notation 5.2.2. Write [k] for ¢}, h; for h; o and b; for b; .
Notation 5.2.3. If x is a nonzero scalar multiple of y write x = y.
The first class of differentials is described by the following proposition.
Proposition 5.2.4. In the ql_l—BSS we have, for j > 1, dp[j][[pj_l]] = [[—p[j_”]]hj.
Proof. Postponed until section [7} O

Using the multiplicative structure of the ¢; L.BSS (lemma we obtain the following corollary
to propostion [5.2.4]
Corollary 5.2.5.
1. Whenever j > 1 we have dp[j][pj +p 7 = —p[j_l]]]hj in the ql_l—BSS;
2. The following are equivalent:
(a) whenever i > 1 we have dpi,l[[—p[i]]]hi = [1 — pl*+U]b; in the ¢;'-BSS,
(b) whenever i > 1 we have clpi_l[[pi+1 +p' — pldh; = [p- [p* — pt=U]]b; in the ql_l—BSS.
We now introduce the Kudo transgression result together with a useful lemma.

0,%,% 1,%,%

Proposition 5.2.6 (Kudo transgression). Suppose x € Cotorg " (Q(1)), y € Cotorg™ (Q(1)) and
that d,x = y in the Q(0)-BSS. Then we have d(p,l)Txp_ly = (y)P. (y)P will be defined in the course
of the proof.

Proof. Postponed until section ]

Lemma 5.2.7. ([p' — pl=H]h)? = [p- [p* — pli~U]]b; in Cotorp(Q(1)).
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Proof. Postponed until section |8 (see subsection . O

We now introduce the lemma, which allows us to transfer differentials between the ¢, L. BSS and
the Q(0)-BSS.

Lemma 5.2.8. Fori,j > 1, [p/ +p/'], [p/ —pi~"U]ny, [p"" +p' — pl]hi and [p- [p" —pl=1]]b;,
elements of Cotorp(q;*Q(1)), have unique lifts to Cotorp(Q(1)). In addition,

1. whenever j > 1 we have d,,; [p/ +p7 1 = [p’ —p[jfl]]]hj in the Q(0)-BSS;
2. the following are equivalent:
(a) whenever i > 1 we have dpi_l[[—p[i]]]hi = [1 — pl*tU)b; in the q;*-BSS;
(b) whenever i > 1 we have dyi_[p"*! + p' — plh; = [p- [p* — pli=Y]Jb; in the Q(0)-BSS.
Proof. We have
) o i -1 i—10,2 1y ol 1,
R o o N (]
. a i1 0pi 1 (p2—1)—1, _
[ = pP iy € By DT g,
[[pi-i-l + pi o p[i]]]hi c Ell,pi“—p[”72pi(p2—1)7—pi ((h_l);

i - it ] opi(n2 1) —1,
il ”]]]bieEf’p pl2pt (p?—1), )

[p-[p 1)

and so by proposition corollary lemma and lemma |3.3.2]it is enough to show that
20/ (p* = 1) <U(0) + 200" = ) —p" M+ 1) —2(p - 1)
and  2p7(p* — 1) <U(0) + 20> = (' = pl +2) —2(p - 1)

These inequalities are equivalent to p/~ '+ (p+1)pV—Y < p/*H1 4 p and p/ + (p+1)pl! < p/+242p+1,
respectively, so we are done. O

The second class of differentials is described by the following proposition.
Proposition 5.2.9. In the ¢; '-BSS we have, fori > 1, dpi_lﬂ—pm]]h,- = [1 — plt]e;
Proof. By lemma [5.2.8| part [2] it is equivalent to show that whenever i > 1, we have

dyi 1 [P+ p' = ]k = [p- [p" — )]s

in the Q(0)-BSS. By lemma part we have d, i [p° + p~1] = [p* — p"~Y]h; in the Q(0)-BSS
whenever 7 > 1.

Let z = [p' + p'~ '] and y = [p* — pli=U]h; then 2P~1y = [p*! + p* — pld]h,;. Applying the Kudo
transgression (proposition and using lemma finishes the proof. ]

Together, proposition and proposition [5.2.9] give the following theorem, a conjecture of
Miller’s (see [16]).

Theorem 5.2.10. In the qfl-BSS we have, fori,j > 1, the following differentials:
1. dy [P 1] = [=pV ] hy;

2. dyi 1 [-plh; = [1 — plit]o,.

27



5.3 Generating all the nontrivial differentials in the ¢, '-BSS

In this subsection we use theorem together with the multiplicative structure of the ¢, L. BSS
(lemma to obtain all the nontrivial differentials in the g, LBss.

The main result is simple to prove as long as one has the correct picture in mind; otherwise,
the proof may seem rather opaque. Figure [[.Ion page [29] displays some of Christian Nassau’s chart

[19] for F2(ASS-S°) when p = 3. His chart tells us about the object we are trying to calculate in a
range by proposition and the facts that Eo(ASS-S°) = Cotorp(Q(0)) and

S, Cotorp(Q(0)/¢5°)/ Fp (gl : t < 0) = Cotorp(Q(0))/ F, [qo]- (5.3.1)

A go-tower corresponds to a differential in the Q(0)-BSS. Labels at the top of towers are the sources
of the corresponding Bockstein differentials; labels at the bottom of towers are the targets of the
corresponding Bockstein differentials. We note that the part of figure in grey is not displayed
in Nassau’s charts and is deduced from the results of this section.

Recall from corollary that Cotorp(q; 'Q(1)) is a polynomial algebra tensored with an
exterior algebra. Thus, we have a convenient F)-basis for it, given by monomials in ¢, the h;’s and
the b;’s. We need some notation to clarify matters.

Notation 5.3.2. Suppose given I = (i1,...,%), J = (j1,...,7s) and K = (ki,...,k,) such that
i1>...>0,>1,j1>...>js>1and k, >0 for a € {1,...,7}. We write

1. b%h; for the monomial bfll X -bf:hjl by
2. Ny for 3, ka(1 — pliatily — 5= plie=1l,

3. J—1for (ji,...,7s—1) if s > 1;

4. K —1 for (k1,...,k, —1)ifr > 1 and k, > 1.

Notice that the indexing of a monomial in the h;’s and b;’s by I, J and K is unique once we
impose the conditions 47 > ... >4, > 1, j1 > ... > js > 1land k, > 1 for a € {1,...,r}. Moreover,
{[M]b¥hy} gives a basis for Cotorp(q; 'Q(1)).

Here ils the corollary to theorem which completely describes all the nontrivial differentials
in the ¢; "-BSS.

Corollary 5.3.3. Suppose given I = (i1,... i), J = (j1,...,7s) and K = (k1,...,k,) such that
iW>...>,>21,10>...>js>1and ke > 1 forac{l,...,r}.
Suppose s > 1, that either r =0 orr > 1 and i, > js, and that pt k € Z. We have

TN e | T Y B CR (5.34)
Suppose r > 1, that either s =0 or s > 1 and i, < js and that k € Z. We have

dyir 1 [kp'"] [[[—p[“]]]hir] [[[N,, JE_JbE R J} = [kp'] [[[NL LKA J] . (5.3.5)
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Proof. By theorem [5.2.10| and lemma [N7.k]bXhy is a permanent cycle. The first class of
differentials is verified by observing that du.[kp”~'] = [(k — D)p?s ) [—pls=1]h;,. The second
class of differentials is verified by observing that

dyir 1 [kp™] = 0 and dyip _y[—pl I, = [1 = plr 0,
O

The content of the next lemma is that corollary describes all of the nontrivial differentials
in the ql_l—BSS.

Lemma 5.3.6. The union

{1}U{x : = is a source of one of the differentials in corollary[5.53.3}
U{y : y is a target of one of the differentials in corollary [5.5.3}

is a basis for Cotorp(ql_lQ(l)). Moreover, the sources and targets of the differentials in corollary
are distinct and never equal to 1.

Proof. We note that for any M # 0, [M] is the source of a differential like the one in (5.3.4).
Take I, J and K as in (5.3.4). We wish to show that [M]bXh; is the source or target of one of
the differentials in corollary There are three cases (the second case is empty if j; = 1):

1. M = (k—1)p’s~! + Ny j i for some k € Z with p{ k.
2. M = kplst1—1 4 Ni.5k for some k € Z with p{ k and some js1q1 > 1 with js > jsi1.
3. M = (kp—1)p’*~! 4+ Ny sk for some k € Z.

In the first case [M]bfh; is the target of the differential (5.3.4). In the second case, [M]bh,
is the source of a differential like the one in (5.3.4)). In the third case, [M] b hy is the source of a
differential like the one in .

These cases are highlighted in figure when p = 3, J = (3), and I and K are empty. This
means that N; ;g = —4 and the three cases are

1. M =9(k —1) — 4 for some k € Z with 31 k.
2. M =371k — 4 for some k € Z with 31k and some j with 1 < j < 3.
3. M =9(3k — 1) — 4 for some k € Z.

The first case is highlighted in blue when k£ = 5; the second case is highlighted in orange and we
see both the cases j = 1 and j = 2 occurring; the last case is highlighted in red when k£ = 2.

Take I, J and K as in (5.3.F]). We wish to show that [M 6% hy is the source or target of one of
the differentials in corollary There are two cases:

1. M = kp™ + Ny, 5k for some k € Z.

2. M = kplst1~1 4 Ni gk for some k € Z with p{ k and some js1 > 1 with i, > joy1.
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In the first case [M]blh; is the target of the differential (5.3.5). In the second case, [M]b¥h; is
the source of a differential like the one in (5.3.4)).

These cases are highlighted in figure [I.1) when p = 3, I = (2), K = (1) and J is empty. This
means that N; j g = —12 and the two cases are

1. M =9k — 12 for some k € Z with 3 { k.

2. M =371k — 12 for some k € Z with 31k and some j with 1 < j < 2.

The first case is highlighted in blue when k = 5 and k& = 6; the second case is highlighted in orange
and we see both the cases j = 1 and j = 2 occurring; the last case is highlighted in red when k = 2.
Since the empty sequences I, J and K together with those satisfying the conditions in or
make up all choices of I, J and K, and since {[M]b¥h;} gives a basis for Cotorp(q; Q(1))
(corollary , we have proved the first claim.
Careful inspection of the previous argument shows that this also proves the second claim. [J

5.4 Interpretting the ¢; '-BSS

Finally, we address the fourth item of of our list and explain how our understanding of the ¢; L.BSS

differentials allows us to determine an F,-basis of E3"™" (¢, 1_BSS). We use the following lemma.

Lemma 5.4.1. Suppose we have an indexing set A and an Fp-basis

{1} U{Za}taea U{Yataca

of Cotorp(ql_lQ(l)) such that each x, supports a differential d,,xo = yo. Then we have an IF,-basis
of E;g*’*’*(ql_l-BSS) given by

{{1)y v <0} U{{(za)y:a €A —rq <v <0}

In the above statement we intend for 1, the xo’s and the y,’s to be distinct as in lemma[5.5.6, The
notation (—), is used to denote the v-grading of an element.

Proof. Let v < 0. We see make some observations.
1. E7™ " N U, imd has basis {yo 1 € A, ro <7}
2. {ya : @ € A, 1o =} is independent in BT/ (BT N, ., imd;).
3. BP0 Ny
4. B = (EP" NN, kerds) / (B N, imds) has basis {1} U {zq : @ € 4, 14 > —v}.

We see that 1 is a basis element for Ex™" for all v < 0 and that z, is a basis element for Ex"""

as long as —r, < v < 0. This completes the proof. O

ker ds has basis {1} U{zq:a € A, rq > min{r, —v}} U {y, : a € A}.

Corollary 5.4.2. Ex"""(q¢;*-BSS) has basis
{(1)y : v < 0}

U{<[[k:pjs_1]] [[[NLJLK]]bf(th]> . 1,J,K, k satisfy the conditions in (5.3.4), —plsl <v <0}

u{ <[[k:p“]] [ﬂpwuhir] [[[NI,J,Klﬂbfth] > D 1,0 Kk satisfy (5:3), 1—p" <v <0},
Of course, this allows us to find a basis of Cotorp(g; *Q(0)/¢5°) if we wish.
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6 The combinatorics for computing F3(LASS-c0)

Although setting up the localized Adams spectral sequence for the vi-periodic sphere v, lg /p™ is
delayed until section II[5| the computation of its E3-page can essentially be completed here. It is in
this sense that the algebra lies at the heart of our computation.

We return to figure which highlights other patterns too. In particular, after removing some
of the towers we obtain figure [[.2] and we see that the remaining towers come in pairs, arranged
perfectly, so that there is a chance that they form an ayclic complex with respect to ds. Moreover,
the labelling at the top of the towers obeys a nice pattern with respect to this arrangement. If the
differentials do what we hope then we have

@i hs — qi%ba, qi°hs — q77ba, q1°ha — ¢i%b1, ¢i®ho — qi7b1, ¢ihahy — ¢ b1k,

and in each case this comes from replacing an h;y1 by ¢q1b;. This resembles the following result of
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Miller concerning the localized Adams spectral sequence for vl_1S/p (LASS-1).
Theorem 6.1 ([I7, 4.8]). We will see (11)5.2.4) that

E3N(LASS1) = @ Cotory™(q;'Q(1))

s+t=0o
u+t=XA

and so Ey*(LASS-1) has a filtration given by
FSEFNLASS1) = P  Cotory™(q;'Q(1)).
s+t=0, s>3§
utt=X\

In the LASS-1 we have dohi11 = q1b; for i > 0, up to higher filtration.

This is precisely the result that we will use to compute Fo(MAH). Although we delay setting up
this spectral sequence until section I1[9 we will essentially perform the computation of its Fs-page
now. The next proposition shows that the towers lining up as they do in figure is not a fluke.

Definition 6.2. Define an operator D on Cotorp(g; *Q(1)) by D(q1) = 0 = D(hy), D(hit1) = q1b;
for i > 0, D(b;) = 0 for i > 0 and the property that it is a derivation (recall that the h;’s are odd
dimensional classes and the b;’s are even dimensional classes). We have D? = 0.

Proposition 6.3. D induces an operation on E3"""(q 1_1). Fiz, 1,5 > 1. Then D restricts to an
operation on the subspaces with basis
{(1)y : v < 0},

{<[{kp7'51]] [[[NI,J_l,Kﬂb?hJ_l]> . 1,J, K, k satisfy (5:34), js = j, —pY §v<o}
and

{<[[kp“]1 [ A e e >

respectively. Moreover, the homology of D on each of these subcomplexes has basis

{(1)y 10 <0},

v

. I, J, K, k satisfy (5.3.9), i, =1, l—pi§v<0},

v

{<[[kpj1]]>v Cptkez, b <v< 0} and {<[[kpi]] [[[—p[ﬂ]]hibv L keZ 1-pi<u< 0},
respectively.

Proof. The fact that we can set up the Mahowald spectral sequence ( H is the conceptual reason
for why D induces an operation on E3"" (¢ ). Presently, we need to show that D : |J,imd, —
U, imdg and that the basis elements above are mapped to linear combinations of each other in an
appropriate way.

We leave it to the reader to check that D : | J,imds — |J, im ds because this requires a similar
argument to the one discussed in detail below. The reader will find that if we apply D to the inner
expressions of we obtain a valid formula. The same is true for if jo = 1; when js > 1
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replacing hj, by q1b;,—1 creates a term which is the boundary of a differential like that in
(with the same k).

We concentrate on the basis elements listed above.

D(1) = 0 and so the claims concerning {(1), : v < 0} are evident.

First fix j > 1 and consider

T = <[[k:pj51]] [[[NI,J—LK]]bchA] >

v

where I, J, K and k satisfy js = 7, and —pl/l < v < 0. If s = 1 then D(x) = 0 so suppose
that s > 1 and let ¢ € {1,...,s — 1}. We wish to show that replacing h;, by ¢i1b;,—1 in z gives an
element z’ of the same form as z. Let I’, J', K’ be obtained from I, J, K by imposing

1. bﬁ/hjr_l is obtained from bf(hJ_l by replacing h;j, by b;.—1;
2.9 >...>10, > 1,

3./ =s—Tland ji >...>j, =j;

4. kg >1forallac{1,...,7"}.

Notice that j. > j > 1. Moreover, v’ > 1, i/, > j!, and if we let k' =k + p/e~J then pt k' € Z. We
have just observed that I, J’, K’, and k' satisfy Finally,
Kpe ™+ Np oy = (k+p7*7)p ™ + [Ny + (1= pUel) + pbe=]
=(kp’ '+ P + [Nr g +1—p ]
= [kp™ ™'+ Npj_1,x] + 1

so that replacing hj;, by g1bj,—1 in = gives

o' = <[[k/pj;/_1]] |:|INI/,J/17K/]]b§/hJ/1:| >

v

an element of the same form as x. Since D is a derivation, this shows that D induces an operation
on the second subspace of the proposition. The claim about the homology is true because

(E[hl T > ]] ®Fp[bi 11> j] : dhi+1 = bl)

has homology ).
Secondly, consider

y= <[[kpi’“ﬂ [[[p[”]]]hir] [[[NI,J,Kl]]bﬁ(th}>

v

where I, J, K and k satisfy ir=1,and 1 —p' < v <O0.
Firstly, we wish to show the term obtained from applying D to h;, is trivial. If ¢, = 1 then
D(h;.) = 0 so suppose that i, > 1. Let I’ J', K’ be obtained from I, J, K by imposing

L b8 hy = by, 105 hy;
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2 > >, =i — 1
3. J =,
4. kg >1forallae{1,...,7"}.

Let k' = kp. Then I, J', K’ and k’ satisfy and replacing h;,. by ¢1b;,—1 in y gives

y = <[[kpiT]] {[[1 —p["]]]bu—l] [[[NI,J,K—ﬂ]bf_th]> = <[[k'pi;"’]] [[[NI/,J/,K/]]bgth/]> =0,

(2 v

where the last eqality comes from We deduce that when applying D the only terms of interest
come from applying D to the bf_lhj part of y.

If s = 0 then D(y) = 0 so suppose that s > 0 and let ¢ € {1,...,s}. We wish to show that
replacing h;, by ¢ib;.—1 in y gives an element y' of the same form as y. Let I’, J', K’ be obtained
from I, J, K by imposing

1. b?*lh{p is obtained from bfflhk] by replacing h;. by bj,—1 for some c € {1,...,s};

3.8 =s—1land j{ >...> jl;
4. kg >1forallac{1,...,7"}.
Notice that j. > i > 1 so that k' = k4 ple=""t € Z. I’ J', K’ and k’ satisfy Moreover,

i

Kp' —pli o Ny g = (ke pPe ™ Y)pt = pll 4 [Ny i1 + (1 — plel) 4 plie=1]]
= (kp' + PV = pl 4 [Ny jg 1 + 1 — pPe ]
= [kp" — pl"l + Ny 1] +1

so that replacing h;, by q1bj.—1 in y gives

y/ = <[[k/pllr/]] |:[[_p[7'lr/]]]hz/rl:| |:|:[N[/7J/7K/_1]]b§/_1ht]/:| > ,

v

an element of the same form as y. Since D is a derivation, this shows that D induces an operation
on the third subspace of the proposition. The claim about the homology is true because

(E[hj 1] > Z] ®Fp[bj 1] > Z] cdhj = bj)
has homology IF),. O
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7 Proof of proposition |5.2.4], the first class of differentials

7.1 The strategy

We prove that there exist cocyles 2; € Q(P;q; 'Q(0)/q5°) and y; € Q(P;¢; 'Q(1)) such that in the
diagram

Sl 1
Q(P; 7' Q(0)/g) = Q(P; 47" Q(0)/a)
T .....,QQ_(%(.._”(‘QO)

Q(P; 471 Q(1)) QP QM)

Q(P(1);Fplar, 1)) Q(P(1);Fylar, q7'])
we have
- o1
a0'd & ;5
I q0d(—/qo)
& Yj
& (~17 gl ™

Here (—/qo) denotes the function on Q(P;q;*Q(0)/¢5°) with the following two properties:
1. z/qo is mapped to x under multiplication by qo;
2. the denominators of the terms in x/qy have gy raised to a power greater than or equal to 2.

The author hopes it is clear that god(—/qo) denotes the function on cocycles of Q(P; gy 1Q(0)/ °),
which appears when applying the snake lemma to the short exact sequence

_ - q -
0 ——q; 'Q(1) —=q; 'Q(0) /g5 —>4; "Q(0) /3> —0.
We note that z; determines y; and that once we pass to homology the first diagram above becomes

7] _
a7

Cotorp(q; ' Q(0)/g5°) <—————— Cotorp(q; 'Q(0)/q5°)

| T

Cotorp(q; 1 Q(1)) Cotorp(q; 1 Q(1))
Cotorp(1) (Fplg1, ') Cotor p(1)(Fy[q1, ')

so that what we prove does, in fact, prove propostion
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72 j=1land j=2

We proceed by induction. The j =1 and j = 2 cases are

T = qo_lm
y1 = [&1]

q1

I [511]

q1

and
—1.p %@ | _ —p—-1p -1 -1
90 T 12 = q 9 —4qy 491 92
I 20d(—/q0)
D _ T —1 —2
q; Y2 = {52](]1 =+ [gl]ch q2
ar —[&]a

7.3 The inductive step

Suppose we have proved the case j = n, where n > 1. So we have cocycles x,, and ¥, such that

1 qp["]_l
_ = 0
@ 4 E
1 q0d(—/q0)
n—1
@ Yn
n—1 _ _pln—1]
@ (D" Ml P

,, for the cochains in which we have raised every symbol to the p'"' power.

Write Poxn and P° 1 I
We prove in lemma that Pz, is a cocycle. One can see directly that Py, is a cocycle.
Since the map Q(P; ¢, 'Q(1)) — Q(P(1); Fplqi, gy ']) is a homology isomorphism (theorem|5.1.2)

and &5 = 0 in P(1), we can write Py, = dw,, for some w, € Q(P;q;'Q(1)).
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Lemmas and [7.5.2] of subsection [7.5] imply that in the diagram

[n+1] _o
_ ad _
QP ;' Q0)/g5%) =—— Q(P; ;' Q(0)/5°)
T e qod(=/40)

Q(P;q;'Q(1)) Q(P;q;'Q(1))

QP(1);Fplqr, 417']) QP(1); Fplar, 417'])
we have
n qp[n-’_lli2 ~
a@'d ° | Pz,
I W\
qzljn poyn = dwn
n —r.pln—1]
% (1" ela ™ =0

We summarise some of the information in the following diagram.

QP; 7' Q(1)) —= QP3¢ ' Q(0) /g8®) —= QP ¢1 ' Q(0)/q5°)

W, qalPOxn } PO,

I §

POy by POyn

Let x,,11 = qo_lpoxn - qo_lwn, a cocycle in Q(P; ql_lQ(())/qgo) and Yn+1 = qod(xn+1/q0), a cocycle
in Q(P;q;'Q(1)). Then

p[”JFl]_l
—1 _p" o
9o 91 1 Tn41
1 90d(—/q0)
Qf Yn+1
7 _pln]
@ (=D)"[€ns1la,” 7

and we are left with showing that y,,+1 is mapped to (—1)"[&,41]q; ¥
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7.4 The image of y, 1 in Q(P(1);F,[q1,¢;']): completing the inductive step

Q(P;q7'Q(1)) Q(P;q7'Q(0) /) Q(P;¢7'Q(0)/48)

-1 _ .—2p0 —2
Qo Tn+1 = qy P'xy — qy Wy —————>Tp41

|

-1
Ynt1't 4y Yn+1

We wish to show that the image of y,41 in Q(P( )i Folar, qp t) is (—1)”[§n+1]ql_p[n]. We note that
we can 1gn0re all contributions from d(q0 PO%,), for they involve &;’s raised to the p (to see this

one can use (7.5.3)). Let
—pln] —
w), = wn+ (=1)"q, " gni1 € QAP; ¢ 'Q(1))
so that (n]
—go *wn = (=1)"q5°a; 7 ane1 — 45 "wl, € UP; 7' Q(0)/5°).

We consider the contributions from the two terms in this expression separately.

[n]

741 (=1)"d(gy °a" dnt1)

Firstly, we consider the contribution from (—1)"d(q, 2q; Pl Gn+1). Recall definitions and
We have a P-comodule map

(n]

_ _ _ _9 p—1 9 _
Mo U 1) — ¢7 ' Mo € ¢7'Q0) /8%, 4028 "1 — 4520”1

Under Q(0) — P ® Q(0)

Z17 — Z f1®qu1 and  gpy1 — Z fp ® qs.
i+j=p—1 r+s=n+1

Under ¢;'Q(0) — P © ¢;Q(0)

%0 g Y Y (1) @ qf algs

i+j=p—1 r+s=n+1

so that g; 'Q(0)/q5° — P ® q; 'Q(0)/¢5° takes

—_ pln] [n—1 41
(_1)nq0 26]1 Qi1 — Z Z H—nglgp ®q(z) 2 { p(p )qS.
i+j=p—1 r+s=n+1
1=0,1

We know that terms involving g, 2 must eventually cancel in some way so we ignore these. Because
we are concerned with an image in Q(P(1);F,[q1,q;']) we ignore terms involving &;’s raised to a
power greater than or equal to p and terms involving ¢;’s other than ¢; and ¢, L Since n > 1, we
are left with the term corresponding to s =0, r=n+1,i=0and j=p—1: it is

_pln]
(_1)n£n+1 ®q0 1p .
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7.4.2  d(qyw))

We have almost shown that the image of y,41 in Q(P(1);Fplq1,q;"]) is (—1)”[§n+1]q1_p[n]; we just
need to show that d(g, 2w!,) contributes nothing to the image of y,,+1 in Q(P(1); Fplq1, ¢ )
First, we make a critical observation. Recall that

_plnl _
wy, = wn + (=1)"q; " gni1 € UP; g 1Q(1))
and that dw,, = Poyn.
Lemma 7.4.2.1. The terms of

3 . _pln] _
dwly = POy, + (~1)" D [€]ar" gy € AP;ar QD)
it+j=n+1
4,j>1

involve a qj other than q1 or a &; raised to a power greater than or equal to 2.

Proof. By the induction hypothesis

_pln—1]
yn:( 1)n 1[§n] b +...
where the terms we have omitted involve a g; other than ¢; or a &; raised to a power greater than
or equal to p. So

~ _ _plnlq
POy, = (—1)" Mg P 4L
where the terms we have omitted involve a g; other than ¢; or a {; raised to a power greater than

or equal to p?. The term we have indicated cancels with the j = 1 term of the summation in the
lemma statement and this completes the proof. O

We are now in a position to start work.
Suppose no power of ¢; worse (more negative) than ¢, tp appears in w),. Making use of the map

(see definitions and
Q(P; Ma(1)) — QP g7 Ma) € QP q7Q(0)/a8%), a5 2q 7wl — g *w

it is sufficient to analyze d(q, 2q1p "): viewing qip wh, as lying in Q(P;Q(0)), we care about terms

of d(q1 w)) involving a single power of gy. We have the following corollary to lemma |7.4.2.1

Corollary 7.4.2.2. The terms of dqll[J I = quw € Q(P;Q(1)) involve a gj other than q1 or a §;
raised to a power greater than or equal to 2.

For k1,...,kr € {1,2,...,p—1} and 1 <ny < ... < n, we have

Q) — PRQA), ¢t g e g @

where the terms we have omitted involve g;’s other than ¢;. This is the only way that the indicated
term can arise; there is no way to cancel it. Thus our critical observation (corollary implies
that any monomial apppearing in qllp w), must contain some g (k > 1) raised to a power greater
than or equal to p. We conclude that the contribution from d(gy *w/,) is zero in Q(P(1); Fplq1, q;'])-

This completes the inductive step and the proof of the proposition modulo the lemmas of
the next subsection.
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7.5 Two lemmas

We are just left two prove the two lemmas used in subsection [7.3

Lemma 7.5.1. Suppose that x € Q(P;q; *Q(0)/q5°) is a cocycle. Then PPz € Q(P;q;'Q(0)/¢°)
is a cocyle. Moreover,

plnl—1 n—1 [n+1] _9

@ r=aqd =daq Pr=gq.

Proof. Suppose that =z and PY% involve negative powers of gg at worst g, ¥ and that z involves

negative powers of ¢; at worst ¢, !, Then we have a sequence of injections

Q(P; My(Ip)) — Q(P; My (1)) — Q(P; ¢7 ' My) — Q(P; 4, ' Q(0)/¢5°)

k—1
@7z T x

k ~ ~ ~
qllp POz POz POg.

Since z is a cocycle in Q(P; qle(O)/qSO)z qipkilx is a cocycle in Q(P; My(l)). Thus qllpk]s% is a
cocycle in Q(P; My(Ip)) and we see that PPz is a cocycle in Q(P;¢; 'Q(0)/¢5°). Also,

n]_ n—1

(n]_q _ plnl —p ~ —p pm plnl 1 ~ _1 p"
@ r=qd =" TPr=q’d = " Pr=q'q
and since p - p™ — 1 = pl**t1 — 2 we're done. ]

Lemma 7.5.2. Suppose z € Q(P; 47 1Q(0)/¢3°) is a cocycle and qod(x/q0) =y € QUP; ¢, Q(1)).
Then qod(P°z/q0) = Py € Q(P; ¢ Q(1)).

Proof. Suppose that x/qy and Poaz/ gh involve negative powers of gp at worst ¢ k¥ and that x/qo
involves negative powers of ¢; at worst q; !, Then we have a sequence of injections

Q(P; My (lp)) — Q(P; My (1)) — Q(P; ¢y ' My,) — Q(P; ¢, Q(0)/g8°)

@ a /a0 /g0 z/q0
qllpklsox/qgl POx/qh ——————> P2 /qf.
We have
d(q? POz /) = PYd(¢"" " 2 /q0) € QUP; Mi(1)) (7.5.3)
and so

~ k ~ k ~ k—1 k—1 ~
d(P°z/qh) = d(¢ P°x/q)/q?" = P°ld(d? x/a0)/ay | = P d(x/q0) € QP;q; ' Q(0)/g5%).
We obtain

qod(P°x/q0) = qod(qh " (P°x/qh)) = qhd(P z/qh) = P°(qod(z/q0)) = Py

where the penultimate equality comes from the preceding observation and this completes the proof.
O
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7.6 An illustration of the method

To illustrate the method notice that we have

r1 = q; " q, y1 = &), wy = q; g, w) =0,
and
—p—1 1 _ -1 — _
o =q," ) — o ta e, ye =[Syt + (€] 2ae
—2p—1 ptl  —p—1 —2p—1 p+1
wy =q; P — g g, why =q; T gy

8 Proof of proposition [5.2.6, the Kudo trangression

8.1 Notation

The reader should refer to [15, pages 75-76] for notation regarding twisting morphisms and twisted
tensor products. We write 7 for the universal twisting morphism instead of [ ].

8.2 The strategy

Suppose given a connected commutative Hopf algebra P and a commutative algebra ) over P and
suppose that all nontrivial elements of P and @) have even degree. We will mimic theorem 3.1 of
[14] to define a natural operation

BPY: Q°(P;Q) — Q'(P;Q).
Once this operation has been defined and we have observed its basic properties the proof of propo-
sition follows quickly.
8.3 Homotopy commutativity of Q(P; Q) and ¢

The first step towards proving the existence of the operation 8PV is to describe a map
W e UP;Q)P — QP;Q),

which acts as the € in [14, theorem 3.1]. This can be obtained by dualizing the construction in [14]
lemma 11.3]. Conveniently, this has been written up in [5, lemma 2.3].

Let P be a commutative connected Hopf algebra and ) be a commutative algebra over P, i.e.
a commutative algebra, which is also a P-comodule, whose structure map is multiplicative.

0 Q 0 0

leig lil liz
0—=PRQ-—21-PP2Q—2-PPoP2Q —2=...
0 Q 0 0

Consider the diagram above. The top and bottom row are equal to the chain complex consisting of
@ concentrated in cohomological degree zero and the middle row is the chain complex P®,Q(P; Q).
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We have the counit € : P — [F,, and the coaction 9g : Q — P ® (). The definition of a P-comodule
gives 1 —r¢ = 0. We also have 1 —ir = dS + Sd where S is the contraction defined by

S(po[p1] - |pslg) = e(po)p1lp2| - - - Ipslq-

Let Cj, denote the cyclic group of order p and let W be the standard IF,,[Cy]-free resolution of F, (see
[5, definition 2.2]). Following Briiner’s account in [5, lemma 2.3|, we can extend the multiplication
map displayed at the top of the following diagram and construct ®, a Cp-equivariant map of DG
P-comodules (with ®(W; @ (P ®, Q(P; Q))?p) =0if pi > (p—1)j).

Q%P Q

eo®i®p l i i

W ® (P e, QP;Q)* —= P ®, QP;Q)
Precisely, we make the following definition.

Definition 8.3.1.
d:W® (P, QP;Q)* — P, QP;Q)

is the map obtained by applying [5, lemma 2.3] to the following set up:
L.r=p,p=(12---p)) =Cpand V = W;
2. (R,A)=(Fp,P),M=N=Qand K =L=P®, QUP;Q);
3. f: M® — N is the iterated multiplication Q®? — Q.
Let’s recall the construction. Briiner defines
iy Wi (P@- QUP;Q);" — (P er AP Q))ji

inductively. Other than a connectedness assumption we have not mentioned anything about the
gradings on P and @ in this subsection; the gradings here are all (co)homological gradings.
As documented in [20, page 325, A1.2.15] there is a natural associative multiplication

(P&, QP;Q)) @ (P @, QP;Q)) — P @, UP;Q)

plpal -+ Ipsla - p'Ih] -+ pild = ooy papiyy| - IpsblglaPil - lawpilagsnd - (8:3.2)

Here, Zp’(o) ®- - -®p’(8) e PP+ is the s-fold diagonal of p’ € P and 3 41 ®- - Qqus1) € P'RQ
is the t-fold diagonal of ¢ € ). The sign is the usual one introduced when moving graded elements
past one another. Also, ® denotes the internal tensor product in the category of P-comodules as
in [I5, page 74]; one checks directly that the multiplication above is a P-comodule map.

Iterating this multiplication gives a map

(P @, QP;Q))*? — P @, QP;Q)

which determines ®g ..
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Suppose we have defined ®; ; for i’ < 4. Since ®; ; = 0 for j < ¢ we may suppose that we have
defined ®; j for j' < j. We define ®; ; using Cp-equivariance, the adjunction

P-comodules === [F,-modules f—1f

and the contracting homotopy
P

T=> (ir'esSe1"
=1

In particular, we define ;}Tfj on ¢; ® x by

0 = ([dPij1]” — [Pim1j-1(d@D]T)A @ T).

Our choice of @ is natural in P and () because we specified the multiplication determining ®q .
and the contracting homotopy T in a natural way.
Applying F,00p(—) shows that ® restricts to a natural Cp-equivariant DG homomorphism

O:WeQP;Q)%P — Q(P;Q).

8.4 & and primitives in @)

Assume P and () are as in subsection [8.3

Definition 8.4.1. Suppose that z € P ®, Q(P; Q) and that ¢ € @ is a P-comodule primitive. We
write gz for = - 1[|q.

Lemma 8.4.2. Suppose that g € Q is P-comodule primitive with even degree. Then
D(e; ®q" 21 @ qPay) = ¢ (e @ ® Tp)-
Proof. A special case of formula (8.3.2)) gives
p'phl - 1pild - 1la = p'Ipil - [pild'a.
Since ¢ € @ is a P-comodule primitive with even degree we also obtain
g - p'[pi] - -pild = p'Pi] - Ipild as

left and right multiplication by 1[]q agree. This observation proves the i = 0 case of the result since
g (g ®—®...®—) is is equal to the map (P ® Q(P;Q))®? — P @ Q(P;Q). We can now make
use of the inductive formula

®;; = ([dP;j—1]" — [®i—1j-1(d@ 1)) A T).

S, e®1 and g commute with multiplication by ¢ and so 1 ® T' commutes with multiplication by
1®¢"®...®q". By an inductive hypothesis we can suppose ®; ;1 and ®;_1 j_1 have the required
property. It follows that d®; ;1 and ®;_1 ;—1(d ® 1) have the required property. The same is true
of their adjoints and so the result holds for the adjoint of ®; ; and thus for ®; ; itself. O
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8.5 The operation SP°: Q°(P; Q) — QY(P;Q)

In this subsection we define 3P° : QO(P; Q) — Q'(P; Q) and note a couple of its properties. One
should refer to the proof of [14, theorem 3.1]; this definition mimics that of SPy : Ko — K_1. In
particular, we take ¢ = s = 0 and the reader will note that we omit a v(—1) in our definition.

Definition 8.5.1. Suppose that P is a connected commutative Hopf algebra, that Q is a commu-
tative algebra over P and suppose that all nontrivial elements of P and () have even degree.

[The assumption on degree is to ensure that no panic about signs ensues as a result of reading
the discussion preceding [14, theorem 11.8].]

1. Let a € Q°(P; Q) and let b = da € Q' (P; Q).

2. We define t, € Q(P;Q)®P for 0 < k < p; in the following two formulae juxtaposition denotes
tensor product. Write p = 2m + 1 and define for 0 < &k < m

tor = (k= 1)1 _ba’b2a’ - - b*a?
I
summed over all k-tuples I = (i1, ...,i) such that Zj ij = p — 2k. Define for 0 <k <m

tok1 = k1Y ba’ - b*a’b g
I

summed over all (k + 1)-tuples I = (i1,...,4k+1) such that } . i; = p— 2k — 1.

3. Define c € W @ Q(P; Q)®? by

m
c= Z(—l)k lep—2k—1 @ tog — €p—2k @ tog—1].

k=1
4. BPY is defined to be Pe.
The sum defining ¢ involves t1, . .., ton,. ton, is given by (m —1)! Z?;_ol a®'ba?m=2 and the terms
in the sums defining t1, ..., t2,_1 all involve at least two b’s.

We note that naturality of SP° follows from the naturality of ®.
Lemma 8.5.2 ([14, 3.1(8)]). With b and c as in definition we have dc = —e,_o @ bP.
Corollary 8.5.3. With a and b as in definition we have dBP% = —®(e,_o @ bP).

8.6 The proof

We turn to the proof of the proposition. First, we make the requisite definition.

Definition 8.6.1. Assume P and @) are as in definition Given b € QY(P;Q), we define (b)?
to be (e, @bP). If y € Cotorp(Q) is represented by b, (y)? is defined to be the class represented
by (b)".

(y)P is well-defined in the previous definition; this fact is used in [14, definition 2.2]. We are
now ready to prove the proposition.
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Proof of proposition[5.2.6. Looking back to the proof of lemma [3.3.2] we see that we can choose
a,b € Q(P;Q(1)) together with lifts o/, b € Q(P; Q(0)) such that a, b, b are cocycles, da’ = gjb, and
a, b represent the x,y in the proposition statement.

By the remarks after deﬁnitionand the fact that da’ = ¢ b, BP 4’ is obtained by evaluating
® on a sum in which the symbol ¢;b appears many times: one collection of terms contains precisely
one arb in each term and the others collections contain more than one g, b in each term. By lemma
@ BPOa’ is divisible by ¢§ and the image of (8P%/)/q} in Q(P;Q(1)) is a unit multiple of the
image of ®(eg ® tom)/qp in Q(P;Q(1)). This latter image is equal to

m—1
v=(m-—-1)! Z a?'ba®*m %
i=0

which represents a unit multiple of 2P~1y. [In the formula above juxtaposition denotes multiplica—

tion.] Moreover, by corollary and lemma dBP is divisible by gh" and (dBP°%) /gt g is

equal to a unit multiple of ®(e,_» ® b?) = (b)P. The image of this element in Q(P;Q(1)) is (b)P.
We have shown that a unit multiple of (3P%’)/ qp lifts v. Moreover,

(6P iar) =y (tasPay /ety ) = o~y

and (b)P lifts (b)P. Since v represents a unit multiple of z#~ 'y and (b)? respresents (y)? we are done
by definition [2:2] and definition [3.1.1} O

8.7 An auxilary calculation

We still need to prove lemma We proceed by using the following lemma.

Lemma 8.7.1. Let P be the primitively generated Hopf algebra IF,[€]/(€P) where |€| is even. Let h
and b be classes in Cotorp(IF,) which are represented in QP by [£] and

p—1

>

J=1

53 gp J]

respectively. Then (h)P = b.

Proof. This follows from remarks 6.9 and 11.1 of [I4]. Beware of the different use of notation: our
(y)? is May’s BP% and May defines (y)? using the Uj-product associated to QP. O

The author thinks that the lemma above is true at the level of cochains. It is simple to check
for p = 3 but for p > 3 the calculation become tedious.

Proof of lemma|5.2.7. Lemma shows that (h;)P = b; in Cotoer[éiV(gp)(IE‘p). Since ¢ is primi-
tive, definition and lemma [8.4.2] show that

([p" = p" "hi)? = [p- [p" — p]bs

in Cotorg ¢ /(¢?) (Fplar, a1 7). We have homomorphisms
Cotorp(Q(1)) —= Cotorp(g; *Q(1)) —= Cotorp)(Fyla1, qi ']) =— Cotorg, ¢, er) (Folar, a1 '])-
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The third is induced by the inclusion Fp[&;]/(€7) — P(1). Theorem tells us that the second
is an isomorphism. Proposition tells us the first is an isomorphism in a range; in lemma
we see that [p' — pli=Uh;] and [p - [p* — pl"~V]]b; lie in this range and so have unique lifts to
Cotorp(Q(1)). We are done by naturality of (—)P. O

9 Some differentials in the Q(0)-BSS

In this section we make note of some differentials in the QQ(0)-BSS and observe that they give
nontrivial go-towers in Cotorp(@Q(0)). These are of interest if we wish to analyze the differentials
in the ASS-S° relevant to the image of .J. This is not important for the main goal of the thesis but
it may be useful for future work on the ASS-S°.

Theorem 9.1. Fori,j > 1,k > 1, [kp'~! —p[j]]]hj, [kp® — pl]hs, and [kp* 4+ 1 — pl+U]b;, elements
of Cotorp(q; *Q(1)), have unique lifts to Cotorp(Q(1)). In addition, in the Q(0)-BSS we have, for
i,7>1 and k > 1, the following differentials:

1. dy [kp? 7] = [kp? =t = pU]hy if p 1 k;
2. dyi_[kp' — pl]h; = [kp® + 1 — plt1i]p;.

Proof. The differentials hold in the ¢, 1_BSS by theorem [5.2.10 and lemma It is enough by
lemma to prove that the differentials hold in the ¢5°-BSS. As in the proof of lemma we
refer to proposition and lemma We note that

[kp' ] GE?,kpj’l—pm—172kpj*1(p—1)7—pm—1(q1—1);
[k~ =Py ey 7D g,
[k’ — pllJhs e B A0 gy,
[kp + 1 — pltU]o, €E12,kpi—p““],2kpi(p—1)7—1(q1—1);

and so it is enough to show 2kp’ " (p —1) < U(0) +2(p? — 1) (kp’~* —pll +-1) —2(p —1). The worst
case is when k = 2 and in this case the inequality is equivalent to (p + 1)pl! < 2p7 + p. O

We rewrite the theorem using the more cumbersome notation hj; o and b; o since we have cause
to use the second grading in the proposition which follows.

Theorem 9.2. In the Q(0)-BSS we have, fori,j > 1 and k > 1, the following differentials:
1. dy [kp? ] = [kp? = — pU ko if pt &
2. dyi_y[kp' — pUhig = [kp' + 1 — plH]b 0.
The following proposition takes care of the k = 1 case.

Proposition 9.3. Fori > 1, [p’ — p[i]]]hi,g has a unique lift to Cotorp(Q(1)). Moreover, in the
Q(0)-BSS we have, fori,j > 1, the following differentials:

1. dpj71 [[pj_lﬂ = hljjfl;
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2. dyi_ya[p" = phio = bri1.

Proof. [p* —pli]h; € Cotor};pl_p[lmpz(p_l)(ql_lQ(l)). Moreover, p* + (p+ 1)pl +1 < (p+1)(p* +1)
which implies 2p'(p — 1) < U(0) 4 2(p*> — 1)(p* — pld +1) — 2(p — 1) and so proposition gives
the first claim.

The first class of differentials follows from the following formulae in the cobar complex Q(P; Q(0)).

gy ) = (&b

We turn to the second class of differentials. The proof is by an induction. Some of the ideas used
are similar in flavour to those in section [7l Because this result will not be used in the remainder of
the thesis we will not go through all the details.

The i = 1 case is verified by checking the following formula in Q(P;Q(0)).

1

p—1 1) p—1 p
| gt S egierig
=1 7 = P

Suppose that for some n > 1 we have £ and g such that

- n_plnl _ -

Q(P;Q(0)) gy ]
1 (F L n—1 _Apn—1
AP; Q1)) : y— ot Q= o)
n__[n]
Q(P(1); Fpq1]) (=D)"&lay "
We can raise all expressions to the p'® power to get
(P Q 2 P_?jj '—d> qgnJrl_p‘p[n] ]50:& Pog]
Q(P;Q l dz = P’z POy =3P} @[5@"\5@—”?”]
) _ j=1 p 51 1

QPQ);Fplq]) 0= (_1)n[§£]q117n+1_p'p[n]

We see that P% — d maps to zero in Q(P;Q(1)) and so it is divisible by go. Let @ = Poﬁgdz.
Then
n+1_p[n+l]

P%.
The induction is completed by showing that the image of @ in Q(P(1);F,[q1]) is

~ ~ ~0 ~ n+l_pplnl ~q o -
qod = dgow = dP°% = qf) ey P = dw =g}

n+1 7p[n+1]

(=)™ sl ;
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for then we have the following diagram.

Q(P;Q(0)) n |—d> qgn+17p[n+1] =0

<

e}

Q(P:Q(1)) " oy =yt Wi o=

n+1 [n+1]

QP Fpla]) ()" Hnaala? "

P°% will not contribute to the image of @ in Q(P(1); Fp[g1]). We see that z must have a term equal
to

n+1l_,[n+1]

(—1)n6_111j P dn+1

Thus —dZ has a term equal to (—1 )”“[§n+1]q0q1n+1_p[n+ . With care, one can complete the proof
by mimicking the methods of 1[7.4] O
Corollary 9.4. We have nonzero elements in Ex"""(q5")

{(1), : v < 0}

{<[[p7 1]]> 1<v<0} {<[k:p71]]>v ptk>1, —pm §v<0,}
U{<[[Pi—]?[i]]]hi,o>v: p[i]—pi§v<0}u{<[[k‘pi—p[i]]]hi7g>v: k>1, 1—pi§v<0},

where the i and j indices range over all positive integers.

Proof. The previous results together with lemma[3:3.2]show that the elements are permanent cycles.
Corollary [5.4.2] tells us that all the elements are nonzero in Ex™"* (¢ 1). O

This result can be interpretted as saying that certain elements in Cotorp(g; 1Q(0)/ q5°) are
permanent cycles in the “chromatic spectral sequence” for Cotorp(Q(0)) (see [15, section 5]). The
only boundaries on the 1-line are of the form ¢}, for ¢ < 0. Thus, the subgroup of permanent cycles
in Cotorp(q; 1 Q(0)/q5°)/ Fp (gb : t < 0) determines elements in Cotorp(Q(0)). In particular, by
using the identification of we obtain go-towers in Cotorp(Q(0)).

Corollary 9.5. We have nonzero elements in Ex;"""(Q(0))

{(1)v: v =0}

U{<h1,j—1>U5 0<U<pj_1}u{<[[kpj_1—p[j]]]hj70>v: ptk>1, ()<v<p[j],}
U{<b“1>v: 0§U<pi—p[i]}u{<[[kpi+1—p[i+1]]]bi,0>vi k> 1, 0§v<p"'—1},

where the i and j indices range over all positive integers.
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For the elements in Cotorp(q; 'Q(0)/qg°) corresponding to
{<[[pj_1]]> D —pll <w < —pj‘l} U {<[[pi —phig) o 1—pf <w<pl] —p’} C B (ar )

we can ask about what differentials they support in the chromatic spectral sequence of [15]. We do
not say anything more about this problem.
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Chapter 11

Adams spectral sequences

1 Main results and outline of chapter

Recall that the goal of this thesis is to compute the homotopy of the vi-periodic sphere v ls /P>
using classical Adams spectral sequence methods and to use this computation to obtain information
about the classical mod p Adams spectral sequence for S°. Our main result of this chapter is the
following theorem.

Theorem 1.1. There is a spectral sequence with Eo-page Cotorp(ql_lQ(O)/qgo) which converges to
Ty (UflS/poo). We call this the localized Adams spectral sequence for the vi-periodic sphere vflS/pOO
(LASS-00).

In order to obtain information about the classical mod p Adams spectral sequence for S° we
need two propositions.

Proposition 1.2. There is a spectral sequence with Eo-page Cotorp(Q(0)/q5°) which converges to
T (S/p>°), called the modified Adams spectral sequence for the Prifer sphere S/p™ (MASS-c).
By construction there is a map of spectral sequences Ey"(MASS-00) — E;*(LASS-00).

Proposition 1.3. Associated to the map X~18/p™ — SO is a map of spectral sequences
EX*(MASS-00) — E*(ASS-S).
At Es-pages this map can be identified with the connecting homomorphism

Cotorp(Q(0)/q5°) — Cotorp(Q(0))

arising from the short exact sequences of P-comodules 0 — Q(0) — qalQ(O) — Q(0)/¢5° — 0

(see definition I[1.4)]).

The LASS-oco has an involved construction and there are many intermediate spectral sequences
to set up because the LASS-00 is a direct limit of localized modified Adams spectral sequences. We
note that this spectral sequence is set up in [13] but we choose to give a self-contained exposition.

We begin the chapter by recalling the construction of the classical Adams spectral sequence
(ASS) for a p-complete spectrum. We proceed to show how this construction is altered to give a
modified Adams spectral sequence for S/p" (MASS-n). The work of Miller in [I5] allows us to give
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convenient descriptions of Eo(ASS-S) and E2(MASS-n). By taking a direct limit of the MASS-n’s
we obtain a modified Adams spectral sequence for the Priifer sphere S/p> (MASS-00). We then
repeat the story, localizing throughout, to construct the LASS-n and the LASS-co.

There are four technical issues which we have to battle against. We wish to give the MASS-n a
multiplicative structure. In order to set up the LASS-n we need to show that a particular element
in the MASS-n is a permanent cycle. We must show that our spectral sequences converge. We
must construct various maps between our spectral sequences.

Giving the MASS-n a multiplicative structure leads us to consider pointset level constructions
and these are addressed in chapter 111, section 2} Section [1] of chapter III addresses the permanent
cycle issue.

The convergence problems associated to a localized Adams spectral sequence are considered in
[12, theorem 2.13]. The convergence problems associated to a modified Adams spectral sequence
are considered in [23], theorem 3.6]. Since we localize modified Adams spectral sequences the result
of [12] does not apply. We make explicit use of [23, 3.6] but we address all other convergence issues
in a self-contained manner in section[7] For this we need some results on vanishing lines which are
proved in section [6]

The hardest map of spectral sequences we need to construct would be given to us immediately
by a general geometric boundary. The cobar construction was useful for us in chapter I and we
imitate the algebra by using canonical resolutions for our Adams spectral sequences. This leads
to a pretty way of constructing the requisite map and we do not try and prove the most general
result.

In the final part of the chapter we set up two more spectral sequences which are needed to
calculate F3(LASS-00) and we tie up all the loose ends in the main computation.

2 The classical Adams spectral sequence

In this section we recall the construction of the classical Adams spectral sequences along with some
of its properties. This section may be omitted as it contains nothing new for the expert.

2.1 The main result

Before stating the main result of the section we recall some notation.
Recall that P is the polynomial algebra on generators {, : n > 1} where [¢,| = (0,2(p" — 1))
and that P is a Hopf algebra when equipped with the Milnor diagonal

P—PoP &Y & 06 (G=1).
=0

Definition 2.1.1. Let E be the exterior Hopf algebra on primitive generators {7, : n > 0} where
|Tn| = (0,2p™ — 1). E'is a Hopf algebra over P, i.e. we have a multiplicative map

n .
E—PQE, mr—Y & 0
=0

which makes E a coalgebra over P.
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Since p > 2 the semi-tensor product Hopf algebra A = E®P is the dual of Steenrod algebra
and A-comodules are the same as E-comodules over P [I5] pages 78, 75]. The reader should refer
to [15, pages 75-76] for notation regarding twisting morphisms and twisted tensor products. We
have a twisting morphism 6 : E — @Q(0) which takes 1 — 0, 7, — ¢y, and 7y, - - - 7, — 0 when
r > 1. We write 7 for the universal twisting morphism instead of [ ].

The next proposition contains all the properties that we wish to recall about the classical Adams
spectral sequence.

Proposition 2.1.2. Let Y be a p-complete bounded below spectrum. There is a spectral sequence,
the Adams spectral sequence for'Y, with E1-page Q(A; H.(Y)) and E2-page Cotorp(Q(0)®¢H(Y)).
Moreover, it converges to m.(Y') and is functorial in Y .

Suppose Y' is another p-complete bounded below spectrum. Then there is a pairing

E**(ASSY) @ E*(ASS-Y') —s EX*(ASS-(Y AY"))

converging to the smash product m.(Y) @ m(Y') — (Y AY") which, at the Ey-page, agrees with
the multiplication

Q(A; Ho(Y)) @ QA Ho(Y')) — QA HL(Y) @ Ho(Y')) = Q(A; Ho(Y AYT))
and at the Eo-page agrees with the multiplication
Cotorp(Q(0) ®g H.(Y)) ® Cotorp(Q(0) ®y Hy(Y")) — Cotorp(Q(0) ®¢ Hi(Y AY")).

This result is well-known and, of course, the spectral sequence is originally due to Adams. We
take convergence for granted but we recall how the other properties are verified. In this section we
address all the claims of the propostion except those concerning the Ea-page; they will be verified
in section [4] We hope that recalling these arguments will help illuminate our later arguments.

2.2 Setting up the ASS-Y

Notation 2.2.1. Recall that S° denotes the sphere spectrum completed at p. We write S for the
sphere spectrum, H for the Eilenberg-MacLane spectrum of type F,, (a ring spectrum), n : § — H
for the unit, H for the homotopy fiber of n and pu: H A H — H for the multiplication.

Let Y be the p-completion of a bounded below spectrum. Applying m.(—) to the H-canonical
tower for Y

Y HAY HAY 7 Ay
HAY HATAY HANH AY HAE ™ Ay

gives an exact couple.

Definition 2.2.2. The spectral sequence arising from this exact couple is called the classical Adams
spectral sequence for Y (ASS-Y). It has Ej-page

JHANHYAY) =m(HA(SHAY) ifs>
0 if s <0
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and d, has degree (r,r — 1). The spectral sequence converges to m.(Y) and the filtration degree is
given by s. In particular, we have an identification

ESHASS-Y) = Fomy_(Y)/F*m_(Y)
where F*m, (Y') = im(m, (HAS ANY) — m(Y)). The identification is given by lifting an element of
Fér (YY) to m, (ﬁ/\s AY') and mapping this lift down to W*(H/\FAS AY) to give a permanent cycle.
2.3 Relation of E;(ASS-Y) to the cobar construction

Throughout this subsection Y will denote a spectrum; one can set up the ASS for any spectrum Y
but it may not converge. Our goal is to identify E}™(ASS-Y) with Q(A; H.(Y)). Firstly, we need
to fix notation and some identifications.

Notation 2.3.1. In this subsection and the beginning of the next we will write H for the homotopy
cofiber of 7 so that we have a cofibration sequence

s 1-g-L.H
and a split cofibration sequence

0

m

HANH
\/

[Because H*(H) = 0 for s < 0, the u and s are actually determined uniquely by the properties that
pwo(HAn)=1and (HAp)os=1]

H

Lemma 2.3.2. Write A, A, 1: A — A and H.(Y) for mi(HAH), 7 (HAH), 74(8) and m.(HAY).
We have isomorphisms

asi: A® A% @ A% @ H(Y) — H(HAHN) AHY AY)

for all s and i with 0 < i < s. They can be chosen so that the following diagrams commute.

As 5

A® A®G—) A% @ H,(Y) H.(H AN HMN=) AT AY)

ARASC-) @A Ve H, (Y)i lH*(HA<Si)AsAHA(i1)AY)

As i—1

A® A=) o 2% @ B (v) H.(H A HMs=#) ATND Ay

In particular, as; can be described as the composite

AQA®(—) @ @@ H, (Y)

A® A=) @ A% @ H,(Y) A® A% ® H,(Y)

as.0

H.(HANH"AY) H.(HAH\) AT AY).

H.(HAHMNs=DApNAY)
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Proof. We define the maps by induction on . Let aso: A® A% @ H(Y) — H.(HANH" AY)
be defined by

fo@fi®w.. . @fs@gr— HouAp* ANY)(fo NN A fs Ng).

It is a familiar result that this is an isomorphism. For the inductive step we note that the cofibration
sequence

HAH —SsgnH-"-H

gives the short exact sequences in the following diagram (we have written j for m.(u)).

0 0
A A%C-) @ A A% @ H,(Y) - HA(HN) A (HAH) AT Y AY)
1912:®101 H.(1AsALAL)
Aw A g A0 A" o H.(Y) H(HND A (HAH) AT AY)
1®1®je1e1 H. (IAuA1AT)
A® A @F, @ A7) @ Hu(Y) H(HNO A H AT Ay
0 0

One checks that the bottom square commutes so we can take as; to be the induced dashed arrow.
O

It is well-known that A is the dual of the Steenrod algebra (and so the notation of the lemma
is consistent with the notation used earlier). ago : A® H.(Y) — H.(H AY') and the A-comodule
structure map of H,(Y') is given by ag 50 H.(nA1). as; is an isomorphism of A-comodules as long
as we give the domain the extended comodule structure.

Notation 2.3.3. Write . for the stable homotopy category.

Now we go about defining three cochain complexes in .. The second complex’s relationship
with BT (ASS-Y) is clear and the third complex is constructed so that it realises A®, Q(A; H.(Y)).
The first complex is used as an intermediate object and the letters N and D are chosen with the
terminology ‘normalized’ and ‘degenerate’ in mind. The reader may need to recall the definition of
H-injective from [17].

Definition 2.3.4. Let C'* be the cochain complex in . with C* = HASTDAY and d : C5~1 — O

given by
S
(Z(—l)" [H“ A A HA(H)} ) AY.
i=0
Using the isomorphisms, a0, we can identify H,(C*®) with C(A, A, H.(Y))®, the unreduced two-
sided cobar construction. This cochain complex has s* term A ® A®* ® H,(Y) and a differential
given by an alternating sum of coaction maps.

95



Definition 2.3.5. Let N°® be the cochain complex in . with N® = HAH™AY andd : N5t —
N? given by
A (s—1)

A(s—1) pAH 7 nANH

<H/\H HAHAS>/\Y.

Let r : C* — N*® be the map H Ap"* AY. We have E}"(ASS-Y) = m.(N*®).

Definition 2.3.6. Let D= HAH °AY. Using the isomorphisms, as s, we can identify H,(D?)
with (A ®; Q(A4; H.(Y)))s. Since each D* is H-injective we can define a map d : D=1 — D* by
requiring that it induce the coboundary map d : (A ®; Q(A; H.(Y)))s—1 — (A®; Q(A; H (Y)))s.
Similarly, we can define a map i : D®* — C*® by requiring that it induce the inclusion

A A @ H (Y) — A® A% @ H,(Y)
at the s* level. By lemma we can describe this map explcitly as

((HA(S_l)/\S)O(H/\(S_2)/\s/\H)o. o (HN=D asa Y

)o.. .o(H/\s/\HA(S_2))o(s/\HA(S_l))> AY.

We wish to identify N® and D*® since the first arises in our construction of the ASS-Y, whereas
the second gives rise to the cobar construction (A; H.(Y')). By the explicit descriptions above we
have the following result.

Lemma 2.3.7. The composite D*® — Lo C* "> N* s the identity.

Corollary 2.3.8. Using the isomorphisms, ass, we can identify H,(N®) with A ®; Q(A; H.(Y).
Thus we can identify E7"(ASS-Y) = m (N®) = F,04H.(N®) with Q(A; H.(Y)).

Q(A; H.(Y)) is bigraded since we have a cohomological grading s and a ‘total’ grading ¢ coming
from the gradings on A and H,(Y). In the indentification above E}"'(ASS-Y) = Q**(A; H.(Y)).

We note that the differentials in C'* and N°® and the maps ¢ and r are all obtained by smashing
various maps with Y.

2.4 Multiplicativity of the ASS-S°

7.(S°) and (A) are rings and the ASS-S° is multiplicative. In this subsection we recall why the
ASS-SY is multiplicative and how we can identify E}*(ASS-SY) = E}*(ASS-S) with Q(A) as rings.
In short, the spectral sequence is given a multiplicative structure using the argument in theorem
IV.4.4 of [5] which makes use of a map of towers. To make sure we obtain the desired structure on
the F1-page we take care when constructing the underlying map on augmented chain complexes.
For an explanation of the terminology just used see 111]2]
First, we adapt some of the notation from the last subsection to this subsection.

Notation 2.4.1. Let C* be the augmented cochain complex in . with C* = H s+ and d -
C*~! — C* given by

s

Z(_l)z |:H/\Z /\nAH/\(s—i) ]
=0
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Let N°® be the augmented cochain complex in . with N=! = S and N®* = H A H" for s >0,
d:N"' — NOgiven by : S — H and d : N*~! — N* given by

HA F/\(S_l) p/\ﬁ/\(s_l) F/\s 17/\?

NS

HAH

for s > 0. Let ¢ : N®* — C* be the unique map of chain complexes with the property that it induces

the inclusion
A A% 5 A A®

at the s level. Let r : C* — N* be the map of chain complexes H A p**. Note that both maps
respect the augmentations and recall that the composite ri is the identity.

We wish to define multiplications my : N* AN® — N*® and m¢ : C* A C®* — C* so that the
multiplication on the cobar complex QA is realised by my and the following diagram commutes.

mn

N*AN® N® (2.4.2)
cenCe "9 L

Definition 2.4.3. Using the Kiinneth isomorphism together with the isomorphisms above we can
identify H,(N® A N*) with (A ®, QA) ®* (A ®, QA). Analogous to that which is defined in [I5],
there is a multiplication (A ®, QA) @ (A ®, QA) — A ®, QA. Since everything in sight is
H-injective this defines a map my : N* A N®* — N°.

Definition 2.4.4. m¢ : C* AC® — C*® is given by H" Au AN HN : C3 A CH — O5T,

On homology m¢ induces a map extending the multiplication (A ®, QA) @ (A ®, QA) —
A®; QA and so (2.4.2) commutes. Thus, we can describe my as the composite

mc

N*AN® DN e pCe c* —" - N°.

This map is compatible with the multiplication S A S — S (the map on the augmentations) and
we claim that it extends to a map on the level of towers to which we can apply the argument of [5].

Notation 2.4.5. We resort back to writing H for the homotopy fiber of 7.
Definition 2.4.6. Let (X, I) be the H-canonical tower for S

S H L " 7 L
H  HAH HAT AT

so that X € .7 is the sequence given by

where X117 — X is

A+ (H—S)AH* T

for s > 0 and the identity on S otherwise.
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In II1]2] we will discuss precisely what we mean by the augmented chain complex associated to
a tower and what we mean by extending a map of augmented chain complexes to a map of towers.
We will also discuss in depth the smash product of two towers.

By an obstruction theory argument utilizing the technology of [17] the map my can be extended
to a map of towers (X, I)A(X,I) — (X, I) and the argument in theorem IV.4.4 of [5] gives us what
we need to obtain a multiplicative structure on the ASS-S. One sees directly from the definition
that we have E}™(ASS-S) = 7. (N*®) = F,04H.(N®) = QA as rings.

Smashing with Y A Y’, where Y and Y’ are any two spectra, and applying the same argument
gives a pairing Ex"(ASS-Y) ® Ex"(ASS-Y') — E"(ASS-(Y AY')) which converges to the smash
product m (V) @ m(Y') — m.(Y AY’). At the Fj-page this agrees with the multiplication

QA Ho(Y)) @ Q(A; Ho (Y')) — QA Ho (Y AYY)) = Q(A; Ho(Y) @2 H.(Y7)). (2.4.7)

Miller claims this at the bottom of page 76 in [15].

3 A modified Adams spectral sequence for S/p"

3.1 The main result

Recall that S/p™ denotes the mod p™ Moore spectrum. The first step towards computing Fo(ASS-
S/p) is to understand the A-comodule H,(S/p). This is straightforward. It is given by E[rp] which
has a nontrivial action under the Bockstein 8. However, for n > 1 the A-comodule structure of
H,.(S/p™) is trivial; when calculating the Fs-page for S/p™ we obtain two copies of the Es-page
for the sphere. In [I5] Miller identifies the Fs-pages for the sphere and the Moore spectrum as
Cotorp(Q(0)) and Cotorp(Q(1)), respectively. We would like a spectral sequence converging to
7« (S/p"), with Es-page Cotorp(Q(0)/qf). This is a more convenient Es-page because multiplica-
tion by ¢y is zero. It is also clearer, based on our algebraic work, how to obtain a localized spectral
sequence from this one. We need a modified Adams spectral sequence for S/p™.

The next proposition is the main result of this section. Before stating it, we need to introduce
some notation, which is explained more thoroughly in definition [3.3.1

We have a DG algebra over A called M(n). As an F,-vector space M(n) = @~ Elr,]; M(n)
has differential defined by d1; = 0, drp; = 1;41 (with the convention that 1; = 0 = 79, for i > n).

Proposition 3.1.1. There is a spectral sequence called the modified Adams spectral sequence for

S/p" with Ey-page Q(A; M(n)) and Es-page Cotorp(Q(0)/qi). Moreover, it converges to m,(S/p™)
and there is a pairing

E*(MASS-n) @ Ef*(MASS-n) — EF*(MASS-n)

converging to the multiplication 7, (S/p™) @7 (S/p"™) — m(S/p™) which, at the E1-page, agrees with
the multiplication on Q(A; M (n)) and, at the Ea-page, with the multiplication on Cotorp(Q(0)/qy).

This result is probably well-known to the experts. However, the multiplicative structure does
not appear to be well-documented in the literature. In this section we address all the claims of the
proposition except those concerning the Fs-page; they will be verified in section [
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3.2 Setting up the MASS-n
Definition 3.2.1. Let (Y (n),J(n)) be the tower

S/ < Sl < S
S/p S/p S/p *

so that Y'(n) € .#7 is the sequence given by

S/p™ if s<0
Y(n)s=<S/p"* if0<s<n

* if s >n,

where Y (n)n_s11 — Y (n)p_s is p: S/ps1

otherwise.

— S/p® for 0 < s < n and the identity on S/p™ or *

Recall definition Applying 7. (=) to the tower (Z(n), K(n)) = (X, I) A (Y (n), J(n)) gives
an exact couple.

Definition 3.2.2. The spectral sequence arising from this exact couple is called the modified Adams
spectral sequence for S/p™ (MASS-n). It has Ej-page

Ef’t(MASS—n) =m—s(K(n)s) = m(X°K(n)s)

and d, has degree (r,r — 1). The spectral sequence converges to m,(S/p™) and the filtration degree
is given by s. In particular, we have an identification

ESHMASS-n) = Fém_o(S/p™) ) F* i _o(S/p™)

where F*m,(S/p") = im(m(Z(n)s) — 7«(S/p™)). The identification is given by lifting an element
of F*m(S/p") to m«(Z(n)s) and mapping this lift down to 7. (K (n)s) to give a permanent cycle.

The reader might be unfamiliar with modified Adams spectral sequences and have doubts about
the convergence of the MASS-n. In fact, convergence is proved in [23, theorem 3.6]. We give more
details in subsection [7.3]

3.3 Relation of E;(MASS-n) to the cobar construction

Our goal is to identify E}™*(MASS-n) with Q(A4; M(n)) as DG vector spaces, where M (n) is defined
below.

Definition 3.3.1. We describe a DG algebra over A which we call M(n). As an Fy-vector space
we have



We grade M(n) by |1;| = (¢,i) and |794| = (¢,% 4+ 1). We have the convention that 1; =0 = 79, for
i > n. We equip M (n) with a with differential d1; = 0, drp; = 1;41 and a multiplication

Li®ly— Ly,  70i® 1 — Tigjo,  Li®705 — Tiyjo, 704 @ 70,5 — 0.

We make it into an A-comodule via the following structure map. We note that A only has a single
grading and the structure map is a graded map using the second grading on M (n).

1, —1®1;, Toi—— 1® 10 + 70 ® 1;.

We note that as a cochain complex in A-comodules M (n) is obtained by applying Hy(—) to X°J(n)s:
the first grading is the cohomological grading, the second is the grading from H.,.(—).

Notice that we can consider M (co). This object will only be important momentarily and it will
not be used to construct the MASS-co. To avoid any potential confusion we will call this object
M. Notice that M(n) is a quotient of M.

All the work in identifying E7*(MASS-n) was done in corollary As Fp-vector spaces we
have

EPY(MASS-n) = m(2°K (n)s) = m( \/ SLAY J(n)j>
i+j=s

= P m(E LAY I(n);) = @ QA H(T(n))) = D (A M(n);.).

i+j=s i+Jj=s i+j=s

Because the isomorphism a,, of lemma is natural in Y, proposition III together with
the definition of Q(A; M(n)) tells us that this is, in fact, an identification of cochain complexes
E}*(MASS-n) = Q(4; M (n)).

3.4 Multiplicativity of the M ASS-n

m(S/p™) and Q(A; M (n)) are rings. In this subsection we show that the MASS-n is multiplicative
and identify E}™(MASS-n) with Q(4; M (n)) as rings. Our strategy is as follows.

First, we note that M (n) has the structure of an algebra. We show that the topology follows
suit and that we can give the augmented cochain complex ¥°.J(n)es a multiplication by using the
multiplication on S/p. By a technical pointset level construction we extend this multiplication to
towers. Finally, we smash together the multiplications on the towers (X, I) and (Y (n),J(n)). Here
are most of the details.

Notation 3.4.1. Let 5: S/p — ¥5/p denote the Bockstein map.
Lemma 3.4.2. [S/p, S/p] = Z/p(1) and [S/p,XS/p| = Z/p(B).

Proof. This comes down to computing 7y and 7_; of the endomorphism spectrum End(S/p). Using
Spanier-Whitehead duality we have End(S/p) = £71S/p A S/p = £71S/p Vv S/p and so the result
follows from the fact that mo(S/p) = Z/p, 7_1(S/p) = m1(S/p) = 0 and that 1 and 3 are nontrivial.

O
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Lemma 3.4.3. The following diagram commutes

(BAS/p, S/pAB)

S/pAS/p (XS/pAS/p)V (S/pAES/p)
#J/ J{E(u,u)
S/p ’ ES/p.

where p: S/p AN S/p — S/p is the multiplication on the ring spectrum S/p.

Proof. Since S/pAS/p = S/pVvES/p it is enough to restrict to each factor. We are then comparing
maps in [S/p, £S/p| and [3S/p, £S/p| = [S/p,S/p]. Since 1 and S are homologically nontrivial, it
is enough, by the previous lemma, to check that the diagram commutes after applying homology:

((TQ’—)l)@E[To], E[T(ﬂ@(Tol—)l))

BElro] ®* Elro] (XE[m] @ Eln]) @ (Eln] @ XE[m])

E[r] it SE[n)].

Here E[r] is the sub-Hopf algebra of A generated by 7p; it is a subalgebra in A-comodules. O

Corollary 3.4.4. We obtain a map m, : 2°J(n)e ANX*J(n)e — X°J(n)e by using the multiplication
of S/p or the zero map on each factor. Applying H,(—) returns the multiplication M (n)®@ M (n) —

Recall that the map my of definition [2.4.3]extends to a map of towers (X, I) A (X,I) — (X, 1)
and this enabled us to make the ASS-S multiplicative. We’d like to extend the map m, to a map
of towers. The obstruction theory seems hard if one attacks it directly. Instead, we apply the
obstruction theory to the S/p-canonical tower for S.

Definition 3.4.5. Let (Y, J) be the S/p-canonical tower for S

S T S —
S/p S/p S/ sy

so that Y € .#% is the sequence given by Y, = S, where Y, ; — Y, is multiplication by p for s > 0
and the identity otherwise.

Using Miller’s technology [17] we have another corollary to lemma

Corollary 3.4.6. We obtain a map mg : X°J4 N3 Je — X°Je by using the multiplication of S/p on
each factor. It is compatible with the multiplication S NS — S (i.e. it respects the augmentation)
and we can extend it to a map of towers (Y,J) AN (Y,J) — (Y, J). Moreover, H,(mg) gives the
multiplication M @ M — M (see definition .

Just like we can quotient M to give M (n) we wish to ‘quotient’ the map (Y, J)A(Y,J) — (Y, J)
by the part of the tower from the n'® position onwards to obtain a map of towers (Y (n),.J(n)) A
(Y(n),J(n)) = (Y(n),J(n)). This requires the pointset model for ., Spec which is discussed in
2.2
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Lemma 3.4.7. m,, extends to a map of towers (Y (n), J(n)) A (Y (n),J(n)) — (Y(n), J(n)).

Proof. The idea of the proof is straightforward: we strictify the map of towers in corollary [3.4.6| up
to the (2n — l)th position and collapse from the n'" position onwards. However, the proof is messy.
In order to avoid having to delve into any true pointset level discussion of spectra we use a Quillen
adjunction with spaces and work there. The reader who wishes to understand all the details should
look ahead to subsections II1[2.2] and II1[2.3] for all the relevant notation. The proof is completed
in subsection IT1T1[2.5l O

We now have a map of towers (Z(n), K(n)) A (Z(n), K(n)) — (Z(n), K(n)) given by

[(XJ)/\(Y(”),J(H))] A [(XJ)A(Y(H)J(H))} — [(XJ)/\(XJ)] A {(Y(H)J(n))/\(Y(n)J(n)) — (X,DA(Y(n),J (n)).

Proposition III is devoted to the construction of a map in this way and Bruner’s argument ([5,
IV.4.4]) gives us a multiplicative structure on the MASS-n. Using the definition of the multiplication
on Q(A; M(n)), the observation of and the property verified in III one can see directly
from Bruner’s definition that we have E7}"(MASS-n) = Q(A; M(n)) as rings.

4 FE,-pages

In this section we complete the proofs of proposition [2.1.2] and proposition by recalling the
homological algebra needed to identify the Fo-pages.

4.1 F5(ASS-5%) = Cotorp(Q(0))

In [15] Miller identified the E3(ASS-S°) as Cotorp(Q(0)). We begin this section by recalling how
this identification is obtained.

The twisting homomorphism 6 : E — Q(0) defined before propostion m gives a map of DG
P-comodules QF — Q(0). Miller defines a map QA — Q(P; QF) ([15, proposition 1.2]) and he
proves the following theorem.

Theorem 4.1.1. The composite QA — Q(P; QFE) — Q(P;Q(0)) is a homology isomorphism.
Let’s be precise about gradings.
1. QA has a cohomological grading ¢ and a ‘total’ grading A coming from the grading on A.

2. Q(P;QF) has an external cohomological grading w, an internal cohomological grading =
coming from the cohomological grading on QF, a ‘total’ grading z coming from the second
gradings on F and P, and one checks that these are respected by the multiplication.

3. Q(P;Q(0)) has a cohomological grading s and gradings ¢ and u coming from the fact that P
and Q(0) are bigraded.

We see directly from the formula in [I5] page 77] that

(QA)1 ) — QPIQE) 10 @ QAP QE)o1n = (QA)ep — P QUPIE)wa.

w+r=0o
z=A
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We also see that Q(P;QE)y 5. — Q(P;Q(0))s ¢4, where s = w, t = z, and © = z — x; the minus
x comes from the fact that |g,|, = |7n|u — 1. Thus

(Q4)on — P AUP;Q(0))s tu-

st+t=o
u+t=XA

These gradings persist to Cotor and so we have the following result.

Proposition 4.1.2.

B (ASS-8°) = Cotor 3 (F,) = P Cotor™(Q(0)).
s+t=0o
u+t=A\

Note the bigrading (o, A) that we have introduced for the ASS-S? above. We will continue to
use this bigrading for all of our Adams spectral sequences. This will help avoid confusion with the
s,t and u of our Bockstein spectral sequences.

4.2  FE5(MASS-n) = Cotorp(Q(0)/q%)

We wish to perform an analogous calculation for the MASS-n. The starting point is the observation
that Miller proves a stronger result than that of theorem [4.1.1

Theorem 4.2.1 ([I5 page 80]). For any A-comodule M which is bounded below the composite
QA;M) — QP;QE @, M) — Q(P; Q(0) ®p M)
s a homology isomorphism.
Thus, to identify the Es-page of the MASS-n we need to identify Cotorp(Q(0) ®¢ M(n)).

Lemma 4.2.2. We have a homology isomorphism Q(P; Q(0) ®g M(n)) — Q(P;Q(0)/qy). Mor-
ever, this is a map of DG algebras.

Proof. A short calculation in Q(0) ®¢ M (n) shows that
dlg®1;) =0 and d(¢g®710,:) =q¢®@1; —q® Li41.
[A sign might be wrong here but the end result will still be the same.] Define a map
Q(0) ®p M(n) — Q(0)/qq

by ¢®1; — qéq and g ® 19; — 0. This is a map of DG algebras over P, where the target has a
trivial differential. In addition, it is a homology isomorphism and so the Eilenberg-Moore spectral
sequence completes the proof. ]

We keep track of the gradings in the composite

Q(A; M(n)) — QUP;QE @ M(n)) — QP;Q(0)/qq)-
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1. Q(A; M(n)) has an external cohomological grading i, an internal ‘cohomological’ grading j,
which comes from the first grading on M (n) and a ‘total’ grading A\ coming from the grading
on A and the second grading on M (n). These are preserved by the multiplication.

2. Q(P;QF ®; M(n)) has an external cohomological grading w, a middle cohomological grading
x coming from the cohomological grading on QF, an internal ‘cohomological’ grading y coming
from the first grading on M (n), a ‘total’ grading z coming from the second gradings on F, P
and M (n), and one checks that these are respected by the multiplication.

3. Q(P;Q(0)/qg) has a cohomological grading s and gradings ¢ and u coming from the fact that
P and Q(0)/q¢ are bigraded.

As before, we see directly from the formula in [I5, page 77] that
Q(A, M(n))l’j)\ — Q(P, QOF ®, M(n))LO’j’,\ D Q(P, OF ®, M(n))o,Lj’)\

= QAMM)ijn— P UPE @ M(n))way,
w+r=1
y=J, 2=A

We also see that Q(P; QFE ®r M(n))w,zy,. — QUP;Q(0)/q3)s,t,u, where

s=w, t=z+y and u=2z—(x+y);

the minus (z + y) comes from the fact that |gn|y = |7]u — 1 and that |g}|, = [1;], — i. Thus
YA M) — P AUP;Q0)/68)s
s+t=i+j
u+t=\

and we obtain the following result.

Proposition 4.2.3. We have a homology isomorphism

E7M(MASS-n) = @ Q4 M(n))ijn — P QP Q0)/d)su
itj=o s+t=o
u+t=X

and the gradings o, \, s,t and u persist to homology so that

EJN(MASS-n) = P Cotory"™(k,Q(0)/qf).

s+t=0o
ut+t=X\

We have now completed the proof of proposition and proposition

5 The journey towards setting up the LASS-co

5.1 The reindexed MASS-n and setting up the M ASS-oc0

This subsection begins the work required to prove the following proposition.
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Proposition 5.1.1. There is a spectral sequence called the modified Adams spectral seqence for the
Priifer sphere S/p>™ (MASS-00). It has E2-page Cotorp(Q(0)/q5°) and converges to m,(S/p>).

Our first step in the construction of this spectral sequence is a reindexing procedure.
Definition 5.1.2. Let (Y (n)’,J(n)’) be a shifted version of (Y(n),J(n)) so that Y (n) € .#% is
the sequence given by

S/p" ifs<—n
Y(n),=<S/p~ if —n<s<0
* if s > 0.
Applying 7.(—) to the tower (Z(n)', K(n)") = (X,I) A (Y(n)', J(n)") gives an exact couple.

Definition 5.1.3. The spectral sequence arising from this exact couple is called the reindezred
modified Adams spectral sequence for S/p™ (MASS-n’). It has Fi-page

ETMNMASS-1) = T (87K (n))) = Tasn (ST K (n)gqn) = EST M (MASS-n)
and hence, by proposition Es-page

EJN(MASS-n') = @ Cotor"(Q(0)/qf) = € Cotory™ (k, M,)
s+ t n =0 s+t=oc
ut(t—n)=X u+t=X

(see definition [1.5|in chapter I). d, has degree (r,r —1), the spectral sequence converges to m,(S/p™)
and the filtration degree is given by ¢. In particular, we have an identification

EZNMASS-n') = Fmy_o(S/p")/F  my_o(S/p")
where Fm,(S/p") = im(m«(Z(n).) — m(S/p™)). The identification is given by lifting an element
of Fom,(S/p") to m(Z(n)!) and mapping this lift down to m.(K(n),) to give a permanent cycle.

We have a map of towers (Y (n)', J(n)) — (Y(n+ 1), J(n+1)"). Here, Y(n), — Y (n + 1),
is the identity for s > —n and p : S/p" — S/p"*! for s < —n. This map of towers gives rise to
an induced map of spectral sequences E; " (MASS-n') — E"(MASS-(n +1)'). One checks using
the map in the proof of lemma that the map on Fs-pages, Cotorp(M,,) — Cotorp(M,11) is
induced by the inclusion M,, — My11.

Since taking filtered colimits is exact, we can take the colimit of the diagram

E:’*(MASS—ll) — E:’*(MASS-QI) —_— . — EI’*(MASS—TL') — EI’*(MASS—(n +1))—
to obtain a spectral sequence.

Definition 5.1.4. The spectral sequence constructed above is called the modified Adams spectral
sequence for the Prifer sphere S/p> (MASS-o00). It has Fs-page

EJ™M(MASS-00) @ Cotorp™ (k, Q(0)/45°)

s+t=0o
u+t=X\

and d, has degree (r,r — 1).
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It is nonobvious that the spectral sequence above converges to m,(S/p>). In fact, it is not even
clear what we should mean by E.,(MASS-00) since it is not obtained by the procedure in section
of chapter I.

We explain, in a little more detail, the construction of the MASS-co. We have natural identifica-
tions E,11(MASS-n') = H(E,(MASS-n),d,). We define E,(MASS-c0) to be colim,, E,(MASS-n’)

and then we have natural identifications

E,11(MASS-00) = colim, E, 1 1(MASS-n)
= colim, H (E,(MASS-n’),d,)
= H(colim, E,(MASS-n’),d,)
= H(E,(MASS-0),d,).

This justifies us calling the MASS-co a spectral sequence.
The vanishing lines for the MASS-n’ (lemma provide us with maps Ey ’A(MASS—n’ ) —
E;Tl (MASS-n) for large r; how large r is required to be depends on (o, A) but not on n. By corollary

n is allowed to be co. Thus we may define EZ(MASS-00) to be colim,s-oE2 (MASS-00) and
we obtain

EZMNMASS-00) = colim, <o E2* (MASS-00)
= colim,~ sgcolim, EZ*(MASS-n/)
= colim,,colim,~ o EZ*(MASS-n)

= colim,, EZ(MASS-n).

We leave the issue of convergence until subsection [7.3

5.2 The localized Adams spectral sequence for v;'S/p"

We now proceed to localize the MASS-n. Our main result is the following proposition.

Proposition 5.2.1. There is a spectral sequence, which we call the localized Adams spectral se-
quence for vl_lS/p” with Es-page Cotorp(ql_lQ(O)/q{f). It converges to W*(vfIS/p”) and there is a
pairing

EYY(LASS-n) @ B (LASS-n) — EP*(LASSn)

converging to the multiplication 7, (v 1 S/p™) @ (v 1S/p™) — mu(vy 1S/p™) which, at the Ea-page,
agrees with the multiplication on Cotorp(qy *Q(0)/q}).

This section sets up the spectral sequence. Convergence is left until subsection [7.4] We do not
need the full multiplicative structure, only the fact that ds is a derivation. This follows quickly from
the construction and the fact that the MASS-n is multiplicative. We omit other details concerning
the multiplicative structure although they are not hard to verify.

In order to localize the MASS-(n + 1), we would like to find a permanent cycle detecting the
map

v}f” . S/pn+1 N Efp"qs/pn+1

constructed by Crabb and Knapp in [6, proposition 1.1]. We could not achieve this “on the nose”
and so we make use of the periodicity theorem of [10] to prove the following lemma.
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Lemma 5.2.2. Suppose that a map f : S/p"Tt — L£7P"98/p"*+1 induces an isomorphism on K-
theory. Then there exists an i € N such that f' = (v} )°.

Proof. By [10, corollary 3.7] it is enough to show that f is a v1-self map (see [10] definition 8]). Since
K(0).(S/p™*!) = 0 and K (1).(f) is an isomorphism we are just left with showing that K (m).(f) is
nilpotent for m > 1. This occurs for degree reasons: for m > 1, K (m).(S/p"*!) = K(m).®3XK (m).
and K (m)« = Fplvm, v, while p"q/|vy,| € Z if and only if m = 1. O

The following theorem is our main technical result.

Theorem 5.2.3. The element qfn € Cotorp(Q(0)/qy™") is a permanent cycle in the MASS-(n+1)
detecting an element apn : SP"4 — S/pntl such that

apn /\S/pn""l

Zp”qs/pn-‘rl S/pn-l—l A S/pn—i-l 4’“> S/pn—i-l

induces an isomorphism on K-theory.

Proof. The proof is long and carried out in III[T} O

n—1
Multiplication by ¢} defines a map of spectral sequences. Since taking filtered colimits is
exact, we can take the colimit of the diagram

n—1 n—1 n—1

EX* (MASS-n) E:*(MASS-n) EX*(MASS-n)

to obtain a spectral sequence. [In the above diagram we are not precise about gradings.]

Definition 5.2.4. The spectral sequence constructed above is called the localized Adams spectral
sequence for vfls/p” (LASS-n). It has Fs-page

EJNLASS-n) = €D Cotory™ (k, ¢7'Q(0)/q})
s+t=o

u+t=A\
and d, has degree (r,r — 1).

It is nonobvious that the spectral sequence above converges to (v ls /p") and we leave this
verification until subsection [7.4, An identical discussion to the one following the construction of
the MASS-co explains what we mean by Fo(LASS-n).

5.3 The reindexed LASS-n and the LASS-0c0

We are finally ready to set up the LASS-co and we begin the work required to prove the following
theorem.

Theorem 5.3.1. There is a spectral sequence with Eo-page Cotorp(qle(O)/qgo) which converges
to W*(vl_1S/p°°). We call this the localized Adams spectral sequence for the wvi-periodic sphere
v 1S /p>® (LASS-00).
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As with the MASS-0o, the first step in the construction is a reindexing procedure. We can take
the colimit of the diagram

B (MASS-n') —2 Er* (MASS-n') — 2 EX* (MASS-1)

to obtain a spectral sequence.

Definition 5.3.2. The spectral sequence constructed above is called the reindezxed localized Adams
spectral sequence for vl_ls/p” (LASS-n’). It has Es-page

EJMLASS-n') @ Cotors"" (k, ¢ M,,)

s+t=0
u+tt=X\

and d, has degree (r,r — 1).

The following diagram commutes at the level of Fo-pages, where the vertical maps are those
used in the construction of the MASS-co. By induction on the page, repeatedly taking homology,
we see that this square is a commutative diagram of spectral sequences.

B (MASS-n') —— B (MASS-n)

e ]

EX*(MASS-(n + 1)) —2 > E*(MASS-(n + 1))

Thus the maps of spectral sequences

E;"(MASS-1') — E;"(MASS-2') — ... —= E7"(MASS-n') — E;" (MASS-(n + 1)) —
induce maps of spectral sequences

E7*(LASS-1") — E;*(LASS-2') — ... —= E;"(LASS-n') —= E;* (LASS-(n + 1)) — ...
Taking the colimit of the last diagram gives a spectral sequence.

Definition 5.3.3. The spectral sequence just constructed is called the localized Adams spectral
sequence for the vi-periodic sphere vl_lS/pOO (LASS-00). It has Es-page

EgMNLASS-00) = @ Cotors™ (k, ¢ Q(0)/¢5°)
st+t=c

utt=X\
and d, has degree (r,r — 1).

It is nonobvious that the spectral sequence above converges to (v ls /p>°) and we leave this
verification until subsection An identical discussion to the one following the construction of
the MASS-0o explains what we mean by Eo(LASS-00).
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6 Vanishing Lines

Some results on vanishing lines are essential for proving convergence of our spectral sequences and
the technical theorem [5.2.3

Definition 6.1. For s € NU {0} let U(2s) = pgs and U(2s + 1) = pgs + q and write U(—1) = oc.
In [I5] Miller uses the following result of Adams.

Lemma 6.2. Cotors""(k,Q(1)) = 0 when u < U(s) + 2(p — 1)t.

Corollary 6.3. ES(MASS-1) =0 when A < (2p—1)o — 1.

Proof. By the n = 1 case of proposition it is enough to observe that (2p—1)s—1 < U(s). O

Since ¢ has (o, \) bigrading (1,2p — 1) we obtain the following corollary.
Corollary 6.4. EJ*(LASS-1) =0 when A < (2p—1)o — 1.

The main results on vanishing lines which we need are given by the following lemma and its
corollaries.

Lemma 6.5. Eg’/\(MASS—n’) =0 when A < (2p—1)o + (2p —3).
Proof. We proceed by induction on n.

Corollary@gives EJ*MASS-1) = 0 when A < (2p—1)o — 1 and so ES*(MASS-1') = 0 when
A+1<(2p—1)(c+1)—1 giving the base case.

The short exact sequence of P-comodules 0 — M; — Mj,11 L M, —0 gives a long exact
sequence some of which is displayed below.

Cotor}qg’t’"(k,Ml) — Cotor}(’;’t’“(k, M) 25 Cotor;’tﬂ’“(k’, M,)
By taking direct sums over appropriate indexings we obtain a long exact sequence
... — BINMASS-1') — EJM(MASS-(n + 1)) — BT M MASS-n/) — ...

We conclude that ES™(MASS-(n+ 1)) is zero provided that ES*(MASS-1') and EZ T (MASS-

n') are zero. Since A < (2p—1)o + (2p—3) implies A\+1 < (2p —1)(0 + 1) + (2p — 3) the inductive
step is complete. 0

Corollary 6.6. Eg’)‘(MASS—oo) =0 when A < (2p—1)o + (2p — 3).
Corollary 6.7. Eg’)‘(LASS—n’) =0 when A < (2p—1)o + (2p — 3).
Corollary 6.8. E;’)\(LASS-OO) =0 when A < (2p—1)o + (2p — 3).
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7 Convergence Issues

7.1 What is convergence?

In this section we prove that all of the spectral sequences we use converge.

A spectral sequence converges if we can recover the graded abelian group we are trying to calcu-
late from the E.-page of the spectral sequence. The author is aware that the most recommended
account addressing these type of issues is [4]. However, the previously undocumented convergence
problems arising in this thesis are easily tackled without such a reference.

In each of the spectral sequences of this thesis we have a graded abelian group A which we are
trying to calculate and the recovery procedure can be viewed as having three steps.

1. Define a filtration of A
AD .. DF A FASF*™AS ... D0, seZ
together with an idenfication of the associated graded object ES = F*A/Fst1A.

2. Resolve extension problems. Depending on circumstance this will give either F¥ A for each s
or A/F*A for each s.

3. Recover A. Depending on circumstance this will either be via an isomorphism colimgF*A —
A or an isomorphism A — limgA/F*A.

There are three cases which arise for us. We highlight how each affects the procedure above.
1. Each case is determined by the way in which the filtration behaves.

(a) FPA= A and F*A = 0.
(b) FPA=0and |JF*A = A.

(c) UF*A = A; if we keep track of the grading of A we have E3 = FsA; ¢/Fst1 A, and
for each u there exists an s such that F¥A, = 0.

2. The way in which we would go about resolving extension problems varies according to which
case we are in.

(a) A/F°A = 0. Suppose that we know A/F*A where s > 0. gives us F*A/F*t1 A and
so resolving an extension problem gives A/F**1A. By induction we know A/F*A for all
s.

(b) F°A = 0. Suppose that we know F**'A where s < 0. gives us F*A/F**t1A and so
resolving an extension problem gives F*A. By induction we know F*A for all s.

(¢) This is similar to (2b)). Fix u. Then there exists an sy with F*°A, = 0. Suppose that we
know F*t1A, where s < sq. gives us F*A,/F*T1A, and so resolving an extension
problem gives F¥A,. By induction we know F*A,, for all s. We can now vary u.

3. In case (a) we need an isomorphism A — lim;A/F*A. In cases (b) and (¢) we have an
isomorphism colimgF*A — A.
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When we say that our spectral sequences converge we ignore whether or not we can resolve the
extension problems to carry out stage . This is paralleled by the fact that, when making such
a statement, we ignore whether or not we can calculate the differentials in the spectral sequence.
The point is that theoretically, both of these computations are possible even if they are extremely
difficult in practice. Thus, the important statements in convergence, for us, are given in stage
and of our recovery procedure.

Definition 7.1.1. Suppose given a graded abelian group A and a spectral sequence E}. Suppose
that A is filtered, that we have an identification E3, = F*A/F*T'A and that one of the following
conditions holds.

1. F°A= A, N F*A =0 and the natural map A — limA/F*®A is an isomorphism.
2. FPA=0and | F*A4 = A.

3. UF*A = A; if we keep track of the grading of A we have E3 = F3A;_s/F*t1 A, and for
each u there exists an s such that F¥A4, = 0.

Then the spectral sequence is said to converge.

The ASS-Y converges in the sense of case [1] and this shows why one should expect to need a
completeness condition.
We now go about proving that each of our spectral sequences converges.

7.2 Algebraic spectral sequences

In section I we set up the Q(0)-BSS (I, the ¢5°-BSS (I and the ¢; '-BSS (I. We

made claims about the convergence of these spectral sequences and it is only now that we address
them. The reason for the delay is that it is actually a rather easy fact that these spectral sequences
converge and we did not wish to clutter the exposition in chapter IL.

Proposition 7.2.1. The Q(0)-BSS, the ¢5°-BSS and the ql_l-BSS converge in the sense of defini-
tion [7.11).
Proof. The relevant filtrations are given in 1/3.1.1] 1)3.2.2] and 1{3.4.1] as are the identifications
EY = F/FtL

For the Q(0)-BSS we are in case [IlI We have

FY Cotorp(Q(0)) = Cotorp(Q(0)) and F'*! Cotor"(Q(0)) = 0

and so the requisite conditions hold.

For the ¢3°-BSS and the ¢; '-BSS we are in case [2 Let N(t,u) = max {0, [u/q — t]}, which is
the maximum possible power of ¢ in the denominator of element with bigrading (¢,u). We note,
although it is not required, that we have

F-NE Cotor™(Q(0)/g5°) = Cotor 3™ (Q(0)/46)

and
PN Cotor ™ (4771 Q(0)/g5°) = Cotory™ (¢ Q(0)/45°).

71



7.3 The MASS-n and MASS-oc0

In this subsection we recall why the MASS-n converges and then prove that the MASS-co converges.
Proposition 7.3.1. The MASS-n (deﬁm'tz'on converges.
Proof. We are in case [1] of definition We need to check the following conditions.

1. The map F*m.(S/p")/F*m.(S/p") — E3 (MASS-n) constructed in is an isomor-
phism.

2. N, F°m(S/p") = 0 and the natural map m,(S/p") — limg 7, (S/p")/F*m(S/p") is an iso-
morphism.

Dualizing the tower (Y (n), J(n)) of definition gives (up to a desuspension) the following tower.

S/p" — S/p"! e S/p pch
S/p S/p S/p *

We appeal to theorem 3.6 of [23]; with the notation of that paper we have S/p™ = F(DS/p", S) and
the MASS-n is obtained by using the tower D(Y (n), J(n)) in the source and the tower (X, I) ([2.4.6]
in the target. The result is applicable because each S/p® has such good properties: S/p® is finite
and because p® : S/p® — S/p® is zero, proposition 1.2(a) of [23] tells us S/p® is p-adically complete
and p-adically cocomplete. The connectivity hypothesis is not strictly satisfied but this is not a
problem; it is satisfied once we suspend the source variable and this does not affect convergence.
This result certainly gives[l]and the first part of[2] The vanishing line of lemma/[6.5]implies a van-
ishing line for the MASS-n. Combining these facts we see that for each u there exists an s such that
Fém,(S/p™) = 0 and so we conclude that the natural map 7.(S/p"™) — lim, 7. (S/p"™)/F*m.(S/p")
is an isomorphism. O

Corollary 7.3.2. The MASS-n/ (deﬁmtion converges.
Proof. We are in case [3] of definition The previous argument completes the proof. O
Proposition 7.3.3. The MASS-oco (definition converges to m.(S/p™).

Proof. We draw the following diagram in which each row and column is exact and where the last
nontrivial map in the short exact sequence is described in definition Notice that we are using
the filtration associated to the MASS-n/, not the MASS-n.

0 0

| |

0—— Fotlm,_,(S/p") —= Fomy_o(S/p") —= EZ(MASS-n/) —=0

| |

Ta—o (S/p") ———— ma_o(S/D")
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Recall from the discussion after definition that B2 (MASS-00) = colim, EZ(MASS-n’) and
so taking filtered colimits gives the following diagram in which the rows and columns remain exact.

0 0

| |

0 — colim, F7my_,(S/p") — colim, Foms_o(S/p™) —= EZ(MASS-00) — 0
Ta—o(S/P™) = Ta—o (S/P™)

Defining F7m,(S/p>) = im(colim, F7m,(S/p") — m.(S/p*>°)) the short exact sequence above gives
an identification

EZNMASS-00) = Fory_o(S/p™)/F  my_o(S/p™)
and we see that

U F77m.(S/p™) = im(colimycolim, F7m.(S/p") — m.(S/p>))

(
im(colimy,colim, F°m,(S/p") — m:(S/p™))
(

= im(colim,, m,(S/p") — 7 (S/p>))
= m(S/p™).
Lemma together with convergence of the MASS-n" shows that Fomy_,(S/p") = 0 for 0 > K
when we let
A—0)-(2p-3)
2(p = 1)

K is indepenedent of n and so F7my\_,(S/p>°) = 0 for 0 > K. All of this gives convergence as in
case B of definition [7.1.1] 0

K =

7.4 The LASS-n and LASS-0c0

An almost identical argument to that for the MASS-co shows that the LASS-n converges. However,
some preliminary observations are in order and they justify why we took so much care when verifying
the multiplicative structure of the MASS-n.

Proposition 7.4.1. The LASS-(n + 1) (definition converges.

Proof. We start with some preliminary observations. Recall from theorem that we have an
element a,n : SP"7 — S/p"*1 detected by ¢ in the MASS-(n + 1). Moreover,

Qapn /\S/p’”'l

fo: Ep”qs/pn—f—l S/pn-i-l A S/pn—H H S/pn—I—l

induces an isomorphism on K-theory and the periodicity theorem tells us, via lemma that
there exists an i € N such that (f,,)" = (v} )®. We deduce the following identity.

n n

P D
v 1S /p" ! = hocolim(S/pm+? — U yrtag et T e wtag el )
f’ﬂ fn

— hocolim(S/p"*+! — 1" L mrragpnrl I swrag et
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By construction the induced homomorphism (f,)« : 7 (S/p" 1) — m.(S/p™*!) is multiplication
by apn € m.(S/p" 1) so that

(fn) (fn)

(v LS/pH) = colim (., (S/p" ) . (S/p") T (S/p ) )
= colim(m, (S/p") — s 1 (S/p"H) — s (S/p ) )

The point in this observation is that it allows us to use the multiplicative structure of the MASS-n
to localize the spectral sequence as opposed to constructing maps of towers. Maps of towers are
constructed in [12], section 2.3] but the situation there is easier: to construct a map of Adams
resolutions only requires one map; to construct a map of ‘modified Adams resolutions’ appears to
be much harder.

For each k let [0, k] = 0 + p"k and [\, k] = A+ p™(q + 1)k; we draw the following diagram in
which each row and column is exact and where the last nontrivial map in the short exact sequence is
described in definition[3.2.2] Notice that we are using the filtration associated to the MASS-(n+1),
not the MASS-(n + 1)".

0 0
0 —= FIHHLrs iy (S/p™HY) = FOMm 4 (S/p+Y) — ELHPH(MASS-(n 4+ 1)) —0

| |

Tk~ o) (S/P" ) ———— T k)=o) (S/P" )

Multiplication by c,» defines maps between the F’ ["’k]ﬂ'*(s /p"t1) as k varies. Since multiplication

by oy is seen as multiplication by qfn on the F.-page we may take filtered colimits over k to give
the following diagram in which the rows and columns remain exact and the middle row is part of
a short exact sequence.

0 0

| |

ColimkF[U’k]+17r[)\7k]_[U,k] (S/pn+1) —_— COlimkF[U’k}ﬂ[/\,k}_[mk] (S/pn+1) —_— E&A<LASS—(H + 1))

| |

Ta—o(vy 1 S/p"H) — Ta—o(vy 1 S/p" )

Defining Fomr.(v; 1S/p"t1) = im(colimy FIok 7, (S/p" 1) — m.(v;1S/p™*1)) the short exact se-
quence above gives an identification

E’go”\(LASS—(n +1)) = FUWA_U(vflS/p”H)/FUHW)\_U(vflS/p”H)
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and we see that
U, Fom(or's/p" ) = im(colimgcolimy F7 . (8/p") — m (071 S/p" 1))
= im(colimkcolimgF[U’k]w*(S/p"“) — W*(Ufls/pn+1))
= im(colimkﬂ*(S/p"H) — W*(Ul_ls/PnH))

= m(op 'S /P,

To verify case [3] of definition [7.1.1] we just need to check that for each u we can find a o so that
Fom,(vy ls /p"*1) vanishes. The vanishing line of lemma implies a vanishing line for the MASS-
(n+1) and so convergence of the MASS-(n + 1) shows that for each u we can systematically find a
o with Fom,(S/p"™!) = 0. Since multiplication by q’fn acts parallel to the vanishing line we have
For, (v tS/pnth) = 0, too. O

Corollary 7.4.2. The LASS-n (deﬁm'tz'on converges.
Finally, we are in a position to complete the proof of theorem [5.3.1
Proposition 7.4.3. The LASS-co (deﬁm'tz’onm converges.

Proof. The proof is almost identical to that for the MASS-co although there is an extra subtlety.
First, we indicate the changes to the proof for the MASS-0o. The two diagrams are replaced by

| |

0 — Fotlmy_ (v7'S/p") — Fomy_o (v ' S/p") — EZ(LASS-n/) —= 0

| |

77)\70(7)1_15/]9”) — WA*G(”fls/pn)
and

0 0

l |

0 — colim, F7 7y, (07 18/p™) — colim, F7m_,(v; 1S/p") — B (LASS-00) —= 0

| : |

Tr—o (07 S/p™) Ta—o(v1 ' S/p>)

and we define Fr,(v; *S/p™®) = im(colim, F,(v; 1S/p") — m.(v;1S/p>)). We use corollary
instead of lemma and convergence of the LASS-n’ instead of convergence of the MASS-n/.
We use exactly the same inequality.

The remaining issue is to show how we can pass from the first diagram to the second diagram.
This comes down to constructing a map of diagrams as we let n vary in the first.
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Lemma [5.2.2] tells us that there exists an 4 such that the top and bottom rectangles in the
following diagram commute; the v;-maps are chosen as in [0, 1.1] so that each square commutes.

(fnfl)p

n (fnfl)p _pn n 7(1-71) n n —ipn n
S/pt —————=¥"P1S/p by P aS/p XTaS/p
) (vzfn_l)p ) (v’fn_l)p . B
S/pt ————= PG /pn »-@=Dptag/pn ~——~ o »-iteg/pn
P lp ip p
S/prt L »-rhag/pn E—(i—l)p”qg/pn+1 L nowtag/prtl
S/pn-H fn Z—p”qs/pn E—(i—l)p”qs/pn-i-l fn Z—ip”qs/pn—i-l

The diagram above implies commutativity of the following diagram and so we deduce from a cofinal-
ity argument that the maps p : FOm,(S/p") — Fom.(S/p"*!) induce maps p : FOm,(v; 1S/p") —
For (vt S/pmth).

-(a n_l)ip

Fom (S/p") : Fotv . (S/p")
lp I
FUW*(S/pn+1) “(apn) F0+ipn7T*(S/pn+1)

We saw in the construction of the LASS-oco that the maps of spectral sequences

Ey"(MASS-1) — E"(MASS-2') — ... — Ey"(MASS-n') — E" (MASS-(n + 1)) — . ..
induce maps of spectral sequences

E;"(LASS-1) — Ey"(LASS-2') — ... —= E;"(LASS-n/) — E;"(LASS-(n + 1)) — ...

These constructions are compatible and so this completes the proof. ]

8 Maps of spectral sequences

We have set up a number of spectral sequences now and have seen some maps between them. For
instance, we have the maps Ey"(MASS-n’) — E;*(MASS-(n + 1)’) used in the construction of
the MASS-oco. Inspecting the construction of the LASS-n and LASS-co we find maps of spectral
sequences E; " (MASS-n) — E;*(LASS-n) and E;" (MASS-00) — E; " (LASS-00).

In order to obtain information about the ASS-S° we need a map of spectral sequences

Yo EX* (MASS-00) — EF*(ASS-SY).

This is also crucial for proving theorem

In order to calculate the LASS-co we use the filtration of the E»-page given by the ¢ L. BSS
(I)3.4.1). We need to know that the maps used to construct the ¢§°-BSS (those given by applying
Cotorp(—) to I and q; L.BSS come from maps of topological spectral sequences.

This section sets up all the maps of spectral sequences that we need and identifies their effect
algebraically at the Fs-page.
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8.1 Xl1§/p® — S°

The hardest map of spectral sequences to identify at the level of Fs-pages is given by the following
proposition.

Proposition 8.1.1. Associated to the map X~1S/p" — S is a map of spectral sequences
Yo EF*(MASS-n') — E*(ASS-SY).
At Es-pages this map can be identified, up to a sign, with the connecting homomorphism
0 : Cotorp(M,,) — Cotorp(Q(0))

arising from the short exact sequences of P-comodules 0 — Q(0) — Q(0){qy ") — My — 0

(see definition 1[1.5)).

From the construction, which we address shortly, we immediately obtain the following corollary.

Corollary 8.1.2. Associated to the map ©~1S/p>® — S° is a map of spectral sequences
Yo EX* (MASS-00) — EF*(ASS-S°).
At Eo-pages this map can be identified, up to a sign, with the connecting homomorphism

0 : Cotorp(Q(0)/q5°) — Cotorp(Q(0))

arising from the short exact sequences of P-comodules 0 — Q(0) — qalQ(O) — Q(0)/¢5° — 0

(see definition 1[1.]).

The connecting homomorphism of the previous corollary is an isomorphism in a large range and
the MASS-o0 is isomorphic to the ASS-S? in this range. More precisely, because Cotorp(qo_lQ(O)) =
Fplq0, g0 !l we have

Y5 Cotorp(Q(0) /%) / Fp (g : t < 0) = Cotorp(Q(0))/ Fp [qo] (8.1.3)

and the spectral sequences are isomorphic in the range A — ¢ > 0. This corresponds to the fact,
obtained using the cofibration sequence S,y — HQ — S/p*°, that

ST (S/p%) /mo(S/p™) = m (%) /mo(S°).

Using these observations together with proposition we find that the LASS-co tells us a lot
about the ASS-S%. We can be more precise once we compute the LASS-oo.

We turn to the proof of proposition [8.1.1] First we need to construct the map of towers which
gives rise to the map of spectral sequences. We introduce the relevant notation.

Definition 8.1.4. Write (C, L) for the tower in which the sequence C' € .7 is given by

. = S ifs<0
x ifs>0

and all nontrivial structure maps are the identity.
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We have a map of towers (Y(n)’, J(n)") — (C, L) of nonzero degree. More precisely, we have
compatible maps XY (n),_; — Cs and X71J(n)._; — Ls: the map X15/p* — S is given by
composing ¥~ 15/p® — ¥ 718/p> with the connecting map obtained from the cofibration sequence

S p LS S/p>.

Smashing with (X, I) (2.4.6) induces map of spectral sequences ¥, Fy"*(MASS-n’) — E;*(ASS-S?).
Moreover, these maps are compatible as we vary n and so we obtain a map

Yo E5*(MASS-00) — E*(ASS-59).
Definition 8.1.5. The maps of spectral sequences
Y, Ep*(MASS-n') — E:’*(ASS—SO), Yo B (MASS-00) — E:’*(ASS—SO)

just constructed are the maps of spectral sequences associated to the maps £715/p® — S° and
¥71S/p> — SO respectively.

Proof of proposition[8.1.1 Consider the following diagram of cochain complexes.

—n—1 -n -n+1 -1 0 1
* * * ... * * S *
8 3
* S/p S/p S/p S/p S *
B 3
* S/p S/p S/p S/p * *

We have omitted suspensions: each spectrum lying in ‘cohomological’ grading s should be suspended
s times. The map ¥ ~15/p — S is the same one that we used before. We note that the first row of
the diagram is 3¥°*Le and the last row of the diagram is X*.J(n),. We call the middle row X*L(n),.
Applying H,(—) gives the following diagram.

0 0 0 S 0 0 F, 0
0 Elno) — 2 Efr) . Elr) —2 > Eln] F, 0
0 Elro) —— Eln] Elro) —— Elno] 0 0
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This diagram is a short exact sequence of DG A-comodules and we can apply the snake lemma to
the short exact sequence

0 — Q(A; H (2 L)) — Q(A; H (X L(n),)) — Q(A; Ho(X*J(n),)) — 0

to give a connecting homomorphism. In fact, we can perform the ‘lift, apply coboundary, pullback’
procedure of the snake lemma geometrically:

[(Z'I.)/\(Z'J(n)’,)] — |:(E'I.)/\(Z'L(n)’,)] —s l:(Z'I.)/\(Z'L(n)’.)]

o o

—— |:(E'I.)/\(E'L.):|

o+1 o+1

The first and last map are ‘inclusion’ and ‘collapse’ maps, respectively. Of course, these are not
maps of cochain complexes but they correspond to the ‘extend by zero’ and ‘project’ maps at the
level of the cobar construction.

The map (Z(n)', K(n)') = (X, I)A(Y(n),J(n)) = (X,I)A(C,L) = (X, I), which induces the
map of spectral sequences has an associated map of cochain complexes. This is precisely the map
above and so we deduce that at the level of Es-pages the map of spectral sequences is given by

0 : Cotora(H.(X*J(n),)) — Cotora(H.(X*Ls)).

We have a commutative diagram in which the vertical maps are homology isomorphisms. The maps
are constructed in the same way as in lemma

0 ——Q(0) ®g Hx(3°Le) — Q(0) ®g Ho(E°Lq) — Q(0) ®p Hi(E°J (n)e) —0

l l l

Q(0) Q0) (g5 ™) M, 0

0

Thus, using the map in theorem we obtain a commuting diagram in which the vertical maps
are homology isomorphisms

0 Q(A; Ho(S°La)) Q(A; Ho(S°L)) Q(A; Ho (3% (n),)) —=0
0 Q(P;Q(0)) QP; Q(0) (g ™)) Q(P; My,) 0

and the connecting homomorphism above is isomorphic to the connecting homomorphism in the
proposition statement, completing the proof.

Note that in the preceding argument we omitted some details regarding signs. More signs than
usual appear because (Y (n)’, J(n)") — (C, L) has nonzero degree. O

8.2 S/p— S/p>® — S/p>

Next, we need to identify the maps of spectral sequences induced by the maps in the cofibration
sequence S/p — S/p> — S/p™ and show that at the Fs-pages they give the maps used to construct
the ¢3°-BSS.

First, we use corollary to identify the map induced by the connecting homomorphism.
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Corollary 8.2.1. Associated to the map X~1S/p> — S/p is a map of spectral sequences
Yo B (MASS-00) — E*(MASS-1).
At Es-pages this map can be identified with the connecting homomorphism

0 : Cotorp(Q(0)/q5°) — Cotorp(Q(1))

arising from the short exact sequences of P-comodules 0 — Q(1) — Q(0)/¢5° = Q(0)/qg° — 0

(see I}3.2.1)).

Proof. We have the following map of cofibration sequences.

S —>p S —>5/p™

L

S/p——=S/p>® ——= S/p>

We have an analogous map between short exact sequences of P-comodules.

0 Q(0) 5 Q(0) —= Q(0) /g® —=0

e T

0 Q(1) Q(0)/q3 —=Q(0)/gg° —=0

This shows that X~15/p> — S/p factors as X~15/p>® — S® — S/p. Similarly, the connecting
homomorphism 0 : Cotorp(Q(0)/¢5°) — Cotorp(Q(1)) factors as

Cotorp(Q(0)/q5°) —2= Cotor p(Q(0)) —+ Cotorp(Q(1)).

The result follows by composing the map in corollary with the map induced by S — S/p,
which can be identified at Es-pages with Cotorp(Q(0)) — Cotorp(Q(1)). O

The other maps are identified by the following proposition.

Proposition 8.2.2. Associated to the maps in the cofibration sequence S/p — S/p™> LN S/p>
are maps of spectral sequences

EP"(MASS-1) — X, \E7" (MASS-00) — E;*(MASS-00).
At Eo-pages these maps can be identified with the maps
Cotorp(Q(1)) — Cotorp(Q(0)/¢5°) — Cotorp(Q(0)/q5°)

arising from the short exact sequences of P-comodules 0 — Q(1) — Q(0)/¢5° - Q(0)/qg® — 0

(see 1)3.2.1)).
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Proof. The first map is the composite ¥} Ef*(MASS-1) = E*(MASS-1') — EP*(MASS-00). We
turn to the second map. 7

The maps S/p*T!t — S/p* for s > 0 give maps (Y (n +1),J(n + 1)) — (Y (n), J(n)). Rein-
dexing, we obtain maps (Y (n + 1), J(n+1)") — (Y(n)’, J(n)’) of nonzero degree. These induce
maps of spectral sequences

S B (MASS-(n + 1)) — E**(MASS-n')

The second map is given by taking a colimit of these maps. The Fa-page identifications are obtained
using the same arguments as in lemma [4.2.2] O

We summarizing the previous two results in the following proposition.

Proposition 8.2.3. Associated to the cofibration sequence S/p — S/p™ 2, S/p™ we have maps
of spectral sequences. At FEo-pages these maps can be identified with the long exact sequence used

to construct the ¢i°-BSS (definition I.

We also have the requisite localized version of this result.

Proposition 8.2.4. Associated to the cofibration sequence vl_lS/p — 111_15/pOo LN 1)1_15/]3OO

we have maps of spectral sequences. At Es-pages these maps can be identified with the long exact
sequence used to construct the q; '-BSS (definition 1)3.4.1)).

Proof. The first map is the composite ¥\ EX™"(LASS-1) = EX"(LASS-1') — EI"(LASS-00).

For the second map we note that the maps X, ,Ey" (MASS-(n+1)) — EO"(MASS-n') induce
maps X, \ B (LASS-(n + 1)) — E;"(LASS-n’) and we take colimits.

For the connecting homomorphism we note that the map X, FE;*(MASS-00) — E{"(MASS-1)
can be constructed in one shot. We have a map of towers (Y (n)’, J(n)") — (Y (1), J(1)) of nonzero
degree. More precisely, we have compatible maps X1V (n),_; — Y(1)s and St J(n),_; — J(1)s:
the map ©~15/p® — S/p is given by composing X~15/p* — ©~18/p> with the connecting map
obtained from the cofibration sequence S/p — S/p> — S/p>°. These induce maps of spectral
sequences Y, By (MASS-n') — Er"(MASS-1); these maps are compatible as we vary n and so
we obtain a map ¥, FEy"(MASS-00) — E;(MASS-1). Moreover, the maps ¥, Ey " (MASS-n) —
E;"(MASS-1) induce maps of spectral sequences ¥, Ey"(LASS-n') — Er*(LASS-1); these maps
are compatible as we vary n and so we obtain a map ¥, E;"(LASS-00) — E;*(LASS-1).

That the maps are as claimed on Ea-pages follows from the construction and proposition [8.2.3]

O

9 Finishing up the computation

In this section we compute the LASS-co. We have already addressed the necessary combinatorics
for the calculation in I[§] We need to introduce two more spectral sequences so that we can see the
value in proposition [6.3]

9.1 Setting up the ¢y-filtration spectral sequence

The heart of the calculation is computing E3(LASS-00) = H(E2(LASS-00),d3). FE2(LASS-00) has
the filtration arising from the ¢; 1_BSS and this is respected by dy. There is an associated spectral
sequence, which we proceed to set up.
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Definition 9.1.1. For v <0 let FRE; " (LASS-00) = ker (¢ ¥ : By (LASS-00) — E5*(LASS-00)).
For v > 0 let F},E;™(LASS-00) = 0.

qo € Cotorp(ql_lQ(O)/qg) is a permanent cycle in the LASS-n. Because ds is a derivation we
see that multiplication by ¢o commutes with dy. Thus, the same is true in the LASS-n’ and the
LASS-00. We summarize in the following lemma.

Lemma 9.1.2. dy : E;*(LASS-00) — Ey"(LASS-00) respects the filtration of definition [9.1.1]

In particular, we have an induced map
dy : FREy" (LASS-00)/Fly  Ey* (LASS-00) — FREy " (LASS-00)/Fi Ey* (LASS-00).
Applying H**(—) to the short exact sequence
0 — Fyt Ey* (LASS-00) —= FSEy " (LASS-00) — F4Ey ™ (LASS-00) /F4H By (LASS-00) — 0
gives a long exact sequence and intertwining all of these long exact sequences gives an exact couple.

Definition 9.1.3. The spectral sequence arising from this exact couple is called the qo-filtration
spectral sequence (qo-FILT). It has Ej-page

E7M(go-FILT) = HON(F4E; ™ (LASS-00)/ F5 ™ E3* (LASS-00), dg)
and d, has degree (2,1,r). As a notational device we define the Ey-page (recall I and 1/4.2.1)).

g™ (q0-FILT) = FRES (LASS-00)/ i By M(LASS-00) = EZM (biegi) = @) B(q7)

st+t=0o
ut+t=X\

The spectral sequence converges to E3*(LASS-00); the filtration degree is given by v. In particular,
we have an identification

EZM(qo-FILT) = FYEJ (LASS-00) /F*! B (LASS-00)

where FYE"(LASS-00) = im(H**(F{Ey " (LASS-00),d2) — H**(Ey"(LASS-00),d2)). The iden-
tification is given by lifting an element of FYE;"(LASS-00) to H**(FEEy " (LASS-00),ds) and

*,%,U

mapping this down to £} (go-FILT) to give a permanent cycle.

We note that convergence is given by case of definition using convergence of the ¢; LBSS.

9.2 The Mahowald Filtration

To make the next subsection clearer we recap, in this subsection, some of the work of Miller. In [17]
he computes the vi-periodic homotopy of the Moore spectrum S/p using the LASS-1 (notice that
the MASS-1 is simply the ASS-S/p which is why there is no mention of modified Adams spectral
sequences). In propositionwe saw that the Fo-page of the MASS-1 can be given three gradings;
we can filter it using the s grading. Miller observes that, by constructing this filtration geometrically,
we can show that the da’s in the MASS-1 interact nicely with this additional structure. We explain
in a little more detail.
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Definition 9.2.1. All of the spectral sequences of sections [2] through [5] have Es-pages of the form

oA s,tu
EJ" = @ Cotorp "™ (N)
s+t=o
u+t=M\

for some bigraded P-comodule N. In each case, the Mahowald filtration is given by
FyE = P B

s+t=0o, s>§
u+t=XA

Our nomenclature follows Miller in [I7] who named this filtration in honour of Mahowald who
made use of a related filtration in [I1]. Miller constructed this filtration geometrically in the case
of the ASS-Y for a “(BP, H)-primary” spectrum Y, in particular, when Y is SY or S/p.

Definition 9.2.2. Let (W, G) be the BP-canonical tower for S

S BP L BP’ BP T
BP  BPABP BP ABP° BPABP

so that W € .77 is the sequence given by
S ifs<0
Ws=<__ -
° {BPAS if s >0,

where Wy, — W is
s+1) (BP—S)ABP"®

BP\

for s > 0 and the identity on S otherwise.

Recall the definition of (X, I), The Mahowald filtration is constructed geometrically using
the observation that (W, G) A (X, 1) is an H-Adams towers for S and truncating (W, G) to a tower
for BP® gives a filtration of (W, G)A (X, I). On Adams Ex-pages this gives the Mahowald filtration
(see remark 5.3, (5.5), (5.10) and remark 8.15 of [I7]). We could surely apply the same reasoning
to the MASS-n since [23] lemma 3.5] tells us that we do not have to use the canonical resolution
(X, ) in its construction; we'’re free to use (W, G) A (X, I) instead.

The key result, which Miller proves, is the following theorem (a restated version of I.

Theorem 9.2.3 ([I7, 4.8]). In the LASS-1 we have dy : F§ Ey*(LASS-1) — Fi/'E;*(LASS-1)
and dahi+1 = q1b; for i > 0, up to higher filtration.

The proof proceeds in two stages. Firstly, Miller checks the claim concerning the filtration and
that, up to higher filtration, differentials in the LASS-1 are determined by differentials in another
spectral sequence. Then he computes the relevant differentials in the other spectral sequence. We
believe that the first part of the argument holds for the LASS-n and the LASS-oco, in particular
that dy increases Mahowald filtration by one. In fact, we have a different proof of [17, theorem 6.1]
that is easily generalized. We do not give it here since it is not necessary. However, it does put the
mind at rest, knowing that underpinning the algebra is geometry.
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9.3 Setting up the Mahowald spectal sequence

The bulk of the work in computing the go-FILT spectral sequence is determining the Fq-page. For
this we introduce our final spectral sequence. Its set up uses the fact that the maps in the exact
couple giving rise to the the ¢, L.BSS come from maps of topological spectral sequences and that
Ey(qo-FILT) has a Mahowald filtration.

Lemma 9.3.1. We know from definition I and proposition that E&*’*(bi—ql_l) S a
subquotient of @,y Ey ™ (LASS-1),.

dy : Ey*(LASS-1) — Ey*(LASS-1) induces a map dy : Ex"" (bi-g7 ") — E3 (bi-g7 ) such that
the identification

(B (bigr ), d2) = (FRE; ™ (LASS-00) | Fi ™ Eg ) (LASS-00), da)
is an idenfication of complezes (recall lemma .
Proof. This follows immediately from the fact that the bi-g; L BSS is set up using the exact couple

By IATT I LASS 00) < L < B YTV (LASS-00) <—— By VTV TH(LASS-00)
ngerT,)\fiH*T (LASS—].)Ufr Egiv)\iv(LASS—].)y
and each of the maps comes from a map of spectral sequences (8.2.4)). O

Corollary 9.3.2. E7™(qo-FILT) = Ho(E " (bi-g; 1), da).

Since the bi—qfl—BSS is obtained from the qfl—BSS by collapsing one of the gradings, Eoo(bi—qfl)
has a Mahowald filtration.

Definition 9.3.3. The Mahowald filtration on Ex"*(bi-¢;'!) is induced from the Mahowald filtra-
tion on B} (bi-q; ') = @, Es(LASS-1),:

FRER (g = P BE(ar)

s+t=0o, s>3§
u+t=M\

= &P <Ef’t’“’” N () ker dr> / (Ef’t’“’” n|Jim dr> :

s+t=0o, s>3§
u+t=A

Theorem [9.2.3| and the proof of lemma [9.3.1] give the following result.
Proposition 9.3.4. dy : B3 (bi-q; ') — ExX""(bi-g; ') induces a map
dy : Fy E (biegr ') — Fyf B (bimgy ).
Applying H**(—) to the short exact sequence
0—= Fi ES Y (bi-gy t) — F§, B3 (bi-qp b)) —= Fy E5 (biegy V) /Fi P ESY (bi-gy ') —= 0

gives a long exact sequence and intertwining all of these long exact sequences gives an exact couple.
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Definition 9.3.5. The spectral sequence arising from this exact couple is called the Mahowald
spectral sequence (MAHSS). It has Fq-page

Ep7M(MAH) = Fiy EZM (biegy )y EZM (bigr 1) = B 0077500 (g )

and d, has degree (r,2,1,0). The spectral sequence converges to Fj(qo-FILT) and the filtration
degree is given by s. In particular, we have an identification

ESSM (MAH) = FEP™ (go-FILT) /F BP™ (g0 FILT)
where
FSEY™ (qo-FILT) = im(H*** (Fy 3" (bi-g 1), d2) — H™** (B (bi-qy '), da)).

The identification is given by lifting an element of F** E}™** (qo-FILT) to H***(F§,Ex""(bi-g; 1), d2)
and mapping this down to E;"™*(MAH) to give a permanent cycle.

Convergence of this spectral sequence is given by case [I] of definition [7.1.1] although we need
the corollary of the following lemma.

Lemma 9.3.6. For each (0, \) there are only finitely many s such that Cotorft;a_s’()‘_g)+s(ql_lQ(l))
1S Monzero.

Proof. Recall from I that Cotorp(q; 'Q(1)) = Fylq1,q7 '] ® Elh; i > 0] @ Fy[b; : i > 0], using
the notation of 1[5.2.2] Certainly s needs to be non-negative so assume s > 0 throughout.

Working in the (A — 0, 0) grading in which we plot our Adams spectral sequences, we find that
the line from the origin to any of the h;’s or b;’s except h; has slope strictly less than 1/(2p — 2),
in particular, slope less than or equal to 1/(p? — p — 1). Also, with the exception of hi, each has
(A — o) grading greater than or equal to 2(p? — p — 1). Since

20’ —p-1) 20’ -p-1) _plp=3)+1 1
2p — 2 pPP—p—1 p—1 p

Y

all except h; have vertical distance greater than 1/p to the vanishing line of corollary

If an element in Cotorp(g; *Q(1)) has grading (s, ¢, u), its monomials contain precisely s symbols
in the set {h;,b; : i > 0}. Since h? = 0, and multiplication by ¢; acts parallel to the vanishing line,
we see that if a nonzero element has grading (s+ 1,¢,u) then it has vertical distance is greater than
s/p to the vanishing line. The proof follows quickly. O
Corollary 9.3.7. For each (o, \,v) there are only finitely many s such that Eg’oa_s’()‘_U)Jrs’v(qfl)
18 nonzero.

9.4 The MAHSS, the ¢,-FILT and the LASS-c0

We are finally ready to compute the LASS-o0o ((5.3.3)).
Miller’s theorem (9.2.3)) tells us that (E7™™"(MAH), d;) is determined by definition I and
propostion 1[6.3] We obtain the following results.
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Theorem 9.4.1. E;*"*(MAH) has Fy-basis
()0 < O}U{<[[kpj_1]]>v CptkeZ, j>1, —pl <v< 0}
u{<[[kpi]] [[[—p[i]]]hl} >v CkeZ i>1, 1—p<uv< o}.
Degree considerations give the following corollary.

Corollary 9.4.2. EX"""(MAH) = E;""(MAH).

Proof. [n] € Cotor%n’%(p _1)(qf 1Q(1)) and so for the appropriate n and v (given by theorem [9.4.1))
we have

<[[n]]>v c Eg,n+v,(2p71)n+v,v(MAH)‘

[ (p—
[n]h; € Cotor};ng[nﬂ) v 1)(qf 'Q(1)) and so for the appropriate n and v (given by theorem [9.4.1
we have

<[[n]] hi>v c Ezl,(n+v)+1,2[n+p[i]}(p71)+(n+'u),v(MAH).

Write ¢ for 2(p — 1) as usual, and consider the topological dimension A — o of these classes. In the
first case we have A — o = ng; in the second case we have A —o = [n+pm}q — 1. Using just this data
we know that there can only be differentials from elements in the first class and there can only be
differentials to elements in the second class.
We have
dr<[[n]]> e E;’,n+v+2,(2p71)n+v+1,v (MAH)
v

and the vanishing line of corollary [6.§] tells us that
Fg+2E721+v+2,(2p71)n+v+1(LASS_OO) _ E;+v+2,(2p71)n+v+1(LASS_OO)‘

Thus Ego+v+2’(2p_l)n+v+l’v(bi—ql_l) = 0 and so E:’n+v+2’(2p_l)n+v+l’v(MAH) = 0. We deduce that
there cannot be any more nontrivial differentials, which completes the proof. O

Corollary 9.4.3. E{"""(qo-FILT) has an F,-basis, which we write abusively as
{{1)y:v < O}U{<[[kp]1]]> cptkeZ, j>1, —pll<ov< 0}
u{<[[kpi]] [[[—p[i]]]hi}> L keZ i>1l, 1-p<u< 0}.

This gives an almost perfect upper bound on the size of E;*(LASS-00) and because (v, *S/p™)
is already known (see [21]), we can deduce the rest of the spectral sequence. For completeness we
note the following results.

Corollary 9.4.4. With the notation of corollary EX" (qo-FILT) has an Fy-basis given by
{(1)y:v < O}U{<[[kpj_1]]> CptkeZ, j>1, piU_1<v< 0}

U{<[[k:pi+1]] [[[—p[i]]]hi] >v ckeZ, i>1, 1-p'<v< 0}.
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Corollary 9.4.5. E;"(LASS-00) has an Fy-basis, which we write abusively as
()0 < O}U{<[[kpj1]]>v CptkeZ, j>1, pi 1 _1<o< 0}
U{<[[kpi+1]] [[[—p[i]]]hi] >U CkeZ i>1, 1—p<uv< 0}.
Corollary 9.4.6. With the notation of corollary[9.4.3, and the convention that for r > j,

_p[j*T] —r=—j

E;(LASS-00) has an Fy-basis given by
{{1)y:v < O}U{<[[k:pj_1]]> cptkeZ, j>1, i —r <o < 0}
U{<[[kpi+r]] [[[—p[ﬂ]]h,-]> ckeZ i>1, 1—p<v< 0}
v

whenever r > 1.

Corollary 9.4.7. With the notation of corollary EX(LASS-00) has an Fy-basis given by

{<1)U:U<O}U{<[[kpj_1]]> ptkeZ, j>1, —j§v<0}

u{<[[—p[ﬂ]]hi>v: i>1, l—pi§v<0}.

These results are hard to digest if one has not been staring at Christian Nassau’s charts [19]
for three months. Recall, figure which displays some of his chart for Fy(ASS-S°) when p = 3.
This tells us about Eo(LASS-00) in a range by and proposition We obtained figure
by removing some of the towers in figure and the complement of figure in figure gives
E3(MAH) = E;(qo-FILT) in the plotted range (up to the regrading coming from the ¥, in corollary
. Figure displays the plot of Fj(qo-FILT) with the gradings fixed. It also highlights the
differentials which occur in the LASS-co. The dy’s occur as differentials in the qo-FILT: at what
point they show up in the spectral sequence depends on the difference in the size of the towers they
map between. ds’s and d4’s are also displayed in the picture. They are all forced from knowledge
of 7. (v; 1S/p™). We highlight the permanent cycles in blue.

9.5 The LASS-co and the ASS-S°

We finally address the information that the LASS-co gives us about the ASS-S°. Proposition
together with lemma ITI give the following result.

Corollary 9.5.1. The localization map Eg’)‘(MASS—oo) — Eg’)‘(LASS’—oo) is
1. a surjection if A <p(p—1)(c +1) —2;
2. an isomorphism if \—1 <p(p—1)(c — 1) — 2.

Using (8.1.3) we obtain the following.
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Figure IL1: A portion of EZ*(LASS-00) when p = 3
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Figure I1.2: A portion of Ef’A(ASS—SO) when p =3

Corollary 9.5.2. Eg’A(ASS—SO) = Eg_l’/\(LASS—oo) ifA<plp—1)(c—2)—1and \—o > 0.

Writing down exactly what else can be deduced from these corollaries is tricky. Rather than
writing opaque looking statements we draw the picture and discuss what we can say about it.

Corollary tells us that figure displays F3(ASS-S°) faithfully above the green line.
First, we identify the permanent cycles.

Theoremtells us that qfn € Cotorp(Q(0)/gy™") is a permanent cycle in the MASS-(n+1).
Since the MASS-(n + 1) is multiplicative the same is true for powers of this element. Using the
maps of spectral sequences E;"(MASS-(n + 1)) — E;"(MASS-00) — E;™(ASS-S%) we obtain
permanent cycles in the ASS-S?. Their go-multiples are displayed as the blue dots in figure

Now we discuss differentials in figure The elements directly below the blue dots cannot be
permanent cycles since otherwise, the corresponding elements in the LASS-oo would be permanent
cycles, too. Similarly, the elements to the left of the towers containing the blue dots cannot be hit
before they are hit in the LASS-co. This allows us to conclude that the towers containing the blue
dots support differentials which obey exactly the same pattern as in the LASS-co.

By the surjectivity statement of corollary we can deduce the existence of a few more dif-
ferentials such as those in figure [[T1.2] whose sources are not drawn. However, we cannot see an easy
argument for why the circled element is the target of a differential. As we move further out in
the (A — o)-direction our green line will intersect towers supporting longer differentials and we will
have towers of questionable elements like this one. We believe that these questionable elements are
always hit by a differential like that in the LASS-co and we have already proved a useful result in
this direction (I[9.5). Rather than writing down the weaker statements that we can deduce from
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the results above, we make the following conjecture and postpone its proof for future work.
Conjecture: For all r > 2, EZ*(AS85-5°) = BEZ "M LASS-00) if 0 < A < p(p —1)(o — 2) — 1.

In the case of the circled element in the figure, our result in this direction together with Nassau’s
charts give an argument for why it s the target of a differential. But in a less specific case, there is
still the possibility that a questionable element like this is a permanent cycle detecting a nontrivial
homotopy class. Although the following example does not give a counterexample to our conjecture
(the elements used lie below the green line and we are considering ds’s) it does illustrate how this
sort of phenomenon might occur.

1. Let z € E;l’Qp(p_l)_l(LASS—oo) be an element corresponding to

(q))-1-p € Egé—lﬂp(p—l),—l—p(qﬁ).

2. Let y € E;’2p(p_l)(LASS—oo) be an element corresponding to
<Q§)71h1>17p c E;éoﬂp(p—l%l—p(q;l).
3. By WP (MASS-00) = ES#PPUT(ASS-50) = 0.
4. We can take y to be the image of the element in E21’2p(p_1)(MASS—oo) mapping to by o.

E220(=1) (Agg.g0 ELPE=D \ASS-00) — = ELZPE=D (1 ASS 0
2 = I 2

b1,0 1o y
5. We find that dyx = y in the LASS-0o whereas by o is a permanent cycle detecting a nonzero

homotopy class 81 € w2p(p_1)_2(50), the first non-trivial element in the cokernel of the J-
homomorphism.

This example reminds us of Ravenel’s work in [22].
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Chapter 111

Appendix

1 A permanent cycle in the MASS-n

1.1 Strategy

This section is devoted to a proof of theorem I1/5.2.3]

Firstly, we wish to show that the element ¢ € Cotorp(Q(0)/g5 1) = E2(MASS-(n + 1)) is a
permanent cycle. The idea of the proof follows from the observation that if this is true, then there
is a related permanent cycle in the MASS-co and thus, in the ASS-S?. This is because we have
a map of spectral sequences from the MASS-(n + 1)’ to the MASS-co and because in subsection
II we construct a map of spectral sequences from the MASS-oco to the ASS-S°. We prove that
the corresponding element is a permanent cycle in the ASS-S? (theorem , deduce the same
for the MASS-00, and then use an injectivity argument (lemma to prove the result for the
MASS-(n + 1).

In order to prove the statement for the ASS-SY we construct a corresponding homotopy class. To
do this requires a thorough analysis of stunted projective spaces and this is performed in subsections
and Once we have proven the permanent cycle statement we need to verify the K-theory
statement and this is done in subsection [L.6l

1.2 Some classes in the (co)homology of stunted projective spaces

We make extensive use of stunted projective spaces. Firstly, let’s recall the cohomology of BY,,.

Proposition 1.2.1 ([I, 2.1]). Leti: Cp, — X, be the inclusion of a Sylow subgroup. H*(BC)) =
Elx]®Fply] where |x| = 1, |y| = 2 and fx =y and H*(BY,) = E[zq—1]|®F,[y,] where (Bi)*(zq—1) =
zyP~2 and (Bi)*(y,) = yP~ L.

Proposition 2.7 of [5], first proved by Adams in [1], says that there is a CW spectrum L with
one cell in each nonnegative dimension congruent to 0 or —1 modulo ¢, such that L >~ (¥*°BX,) .
Denote the skeletal fitration by a superscript in parentheses. Then we make the following definition.

Definition 1.2.2. Write B for the spectrum of [5, 2.7]. Forn > 0let B™ = B4 andfor1 <n <m
let B™ = B™/B"!. For n > m let B" = .

Notation 1.2.3. For j > 0 write ¢/ for mq_lyg_l € fqu_l(BZp) = H/97Y(B) and write e; for the
class in Hjq_1(B) dual to €.
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To construct the relevant permanent cycle in the ASS-S° we make use of a homotopy class in
Tpng—1 (Bg,_n). Firstly, we analyze the algebraic picture and identify the corresponding A-comodule
primitive.

Proposition 1.2.4. For each n >0, epn € Hpng—1(B) is an A-comodule primitive.

Proof. The result is obvious when n = 0 so assume from now on that n > 0.

Since the (co)homology of B is concentrated in dimensions which are 0 or —1 congruent to g,
the dual result is that P’e/ = 0 whenever i,j > 0 and i + j = p".

Let i : C, — X, be the inclusion of a Sylow subgroup. Since (B%)* is injective it is enough to
show that the equation is true after applying (Bi7)*. Writing this out explicitly, we must show that

P (zy®1771) = 0 whenever i,j > 0 and i + j = p".

Write P for the total reduced p-th power. Then we have P(z) = z and P(y) = y+3? = y(1+yP~1).
Suppose that 7,7 > 0 and that ¢ + j = p™. Then

' ' ' - (i1 (p—1)j—1
P(ay®=Di=1y = gy(P=1i=1( 4 yp=1)(p=Di=1 — gy (p=1)5—1 ( kj )y(p—l)k
=0

which gives

. A 1)1 .
PZ(ZL'y(p_l)]_l) _ ((p Z)] )my(p—l)p -1

as long as i < (p —1)j — 1 and Pi(xy®=17~1) = 0 otherwise. We just need to show that

p‘ <(p— D" 1) ~ 1)

7

whenever 0 < i < (p—1)(p™ —i) —1. The largest value of i for which we have i < (p—1)(p" —1)—1
is (p— 1)p"~ 1 — 1 so write i = sp¥ for 0 <k <n and s Z 0 (mod p). Let m = (p— 1)(p" —i) — 1
so that we are interested in (”Z) m —i= —1 (mod p**1) and so when we add m — i to i in base p
there is a carry. An elementary fact about binomial coefficients completes the proof. O

The relevant topological result is given by the following proposition.

(o

Proposition 1.2.5. For each n > 0, epn € Hpnq_l(Bgn_n) is in the image of the Hurewicz homo-
morphism.
Proof. Settinge=0,i=n+1,j=p" —n—1and k =ig—1in [5, V.2.9(v)] shows that

7 = a1/ gl(p"—n=1)g—1)

has reductive top cell and we have an ‘include-collapse’ map Z — Bg: ]

-_n-*

In constructing the relevant permanent cycle in the ASS-SY we make use of the transfer. First,
we analyze it algebraically.

Definition 1.2.6. Write t : B — S for the transfer map of [, 2.3(7)] and let C be the cofiber of
Iy
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Notation 1.2.7. We have a cofibration sequence S~! — C' — B. Abuse notation and write e’
and e; for the elements in H*(C') and H,(C') which correspond to the elements of the same name
in H*(B) and H.(B). Write U and u for the dual classes in H*(C) and H,(C) corresponding to
generators of H~1(S™1) and H_{(S~1).

Proposition 1.2.8. Let n > 0. Then ey € Hyng—1(C) is mapped to 1 @ epn + 511’” ® u under the
A-coaction map.

Proof. First, let’s introduce some notation which will be useful for the proof. Write Sq];;'q and Sq’;‘ﬁ'1
for P* and SP¥, respectively. Recall that the Steenrod algebra A* has a [Fp-vector space basis given
by admissable monomials

B = {Sq;'} "‘Sq;'; 45 > pijy1, 45 =0or 1 (mod p)}.

We claim that ngan = eP" | and that bU = 0 for any b € B of length greater than 1. Here, length
greater than one means that » > 1 and 4, > 0.

By proposition we know that e,n is mapped, under the coaction map, to 1 ® eyn +a @ u
for some a € A. If we can prove the claim above then we will deduce that a = §Ifn.

Take an element b = Sqj! - - - Sqly € B of length greater than one and let k = [ir_1/q|. We have

ip—1 > Piy = Gp_1/p >0y — k>1, = 2k >, — 1.

Since \Sq;,TU | =i,—1and Sq;jU comes from the cohomology of a space we deduce that P* Sq;jU =0.
Now either i,_1 = kq or kg + 1 so that Sqy " = P¥ or BPF. Thus ng’IngU =0 and bU =0 as
required for the second part of the claim.

To prove that PP"U = eP" it is enough to show that 3PP"U = BeP". Notice that |3e'| = ¢ and
SO

n—1

prla/2 .pPQ/QP‘I/Qﬁel = (ﬁel)f’" = BeP".

The Kahn-Priddy theorem ([T, 2.3]) tells us that the map ¢ : B — SY is surjective in homotopy.
The ASS shows that there is a unique nontrivial class m,_1(SY) (up to unit) detected by hy o and
by cellular approximation this is the composite

ge-l_t._p_t. g0

We conclude that P'U = e! and so it is enough to prove that

n—1

prila/2 . pra/2pa/23 Pl = PP

We induct on n, the result being trivial for n = 0. Suppose it is proven for some n > 0. Then we
have

Ppnq/QPpnflq/Q . qu/qu/zﬂPlU - Pp"q/QIBPan
= (BPP"TP"9/2 1 clements of B of length greater than 1)U
_ ﬁppn—Q—l U?

which completes the inductive step and the proof of the proposition. ]
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1.3 Maps between stunted projective spaces

We now proceed to construct maps between stunted projective spaces whilst analyzing their Adams
filtration. For our purposes the following spectra are more convenient than those in the H-canonical
Adams tower.

Definition 1.3.1. For 1 < n < m < oo define B]*(1) by the following cofibration sequence.

By (1) By T sty
The following diagram commutes
Bn—l i B™ J B™

n

| |

VIS S s P ST e\ S
and so we obtain cofibration sequences
_ i J
B H1) —— B"™(1) —— B(1).

The following proposition might appear long and technical but the proofis, in fact, very straight-
forward.

Proposition 1.3.2. For each n € N there exists a unique map f : B® — B"! such that the left
diagram commutes. Moreover, the centre diagram commutes so that the right diagram commutes.

B" B" i Bn+1 B" [ Bn+1
p
| N S (R
anl ? B" B" Bn—l ? B™

For 1 <n < m the filler for the diagram

B" *Z> Bm+1 *J> Bz”irll
fi fl
anl ( B™ J va
n

1s unique and we call it f. For 1 < n <m the filler for the diagram

gt t-pmt.pn

|

Bt —t-pm 1. pn
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18 unique and so equal to p. Thus, the following diagrams commute for the appropriate vaules of m
and n.

1 1 P 1 f
B;”fl Bn’"ﬁ By — B B\ —— By
+1 f p
B;n-:_ll B’I’T—i—l N B,T BTanJrl B7n11+1

For each n € N there exists a unique map g : B™ — B"1(1) such that the left diagram commutes.
Moreover, the right diagram commutes.

B" B" Bt
2 T
B" (1) —— Bn~! B (1) —= B"(1)

For 1 <n < m the filler for the diagram

n m+1 m~+1
B B Bn—H

N

B"H(1) —— B™(1) —— B'(1)

n

is unique and we call it g. For 1 <n < m the following diagram commutes.

m+1
Bn+1

.
B (1) —— B]"
Before the proving the proposition we make a preliminary calculation.
Lemma 1.3.3. For m,n > 1 [¥B"" !, B™] =0, [¥B", B™| =0, [¥B", B™(1)] = 0.

Proof. The results are all obvious if m < n so suppose that m > n.

The first follows from cellular approximation; the third does too, although we will give a different
proof.

Cellular approximation gives [¥B", B]"| = [¥ B}, B)'] = [£5/p, S/p]. We have an exact sequence

m2(S/p) — [XS5/p, S/p] — m1(S/p)

and 1 (S/p) = m2(S/p) = 0, which gives the second identification. Since [EB",\/I* S ~2H] = 0,
[EB", B)"(1)] — [XB", B]"] is injective and this completes the proof. O

Proof of proposition[I.3.3. f exists because the composite B® - B" —s B! = %™~18/p is null.
f is unique because [B", X1 B"] = 0.

95



Since [B", £~1B/'"T]] = 0 the map i, : [B", B"] — [B", B"*!] is injective and so commutativity

of the following diagram gives commutativity of the second diagram of the proposition.

B" i Bn+1

|

p p B"™

|

B" i Bn+1

Uniqueness of the first and second fillers of the proposition is given by the facts [¥B", B]'| =0
and [YB""! B™] = 0, respectively. The deductions that each of the four diagrams commute are
similar. We’'ll need the fourth diagram so we show this in detail. We have a commuting diagram.

B 1 Bm+1 Bgz—i-l

i = J
B" Bm+1 le_i:i-ll

f ! f

anl B™ B™

B"— 1 Bm+1 B;'Ln—l—l

The vertical composites in the first two columns are p and so the third is too.

We turn to the existence of g. We have [B", %"4~2H] = 0 and so the map [B", \/I"! ¥~ H] —
[B", /I, $¥~1H] is injective. Thus, the following diagram proves the existence of g.

B’n

:

Bn-1 <1> Br-1 \/?:_11 sig—1fr

B" ——\/ Yy

Uniqueness of g is given by the fact that [B", \/?;11 Yia-2[] = 0.
Since [B™, \/I_; £¥~2H] = 0 the map [B", B"(1)] — [B", B"] is injective and so commutativity
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of the following diagram gives commutativity of the second diagram involving g in the proposition.

\
! Bn+1 9 Bn<1>
n— 1 o Bn-— 1
\X Bn

The final filler is unique because [¥B™, B]"*(1)] = 0. The final diagram commutes because we
have the following commutative diagram and a uniqueness condition on f as a filler.

B’n

g

B

B™ Bm+1

O]

The B;'(1) are useful because they simultaneously appear in an H-Adams resolution for B
and allow the statement and proof of the previous proposition to be so simple.

Lemma 1.3.4. A map to B)" can be factored through B, (1) if and only if it can be factored through
HAB™

Proof. H*(B)';F),) is free over E[f3] with basis €”,...,e™. This basis allowed us to construct the
top map in the following diagram.

(en7 '7em)

B - Vo sty

n

lVZL B (1,B)

H A B? Vo <Eiq_1H \% Equ>

We have a map (1,3) : H — H A X H which is used to construct the map on the right. Since the
target of this map is an H-module we obtain the bottom map and one can check that this is an
equivalence. Thus we obtain the map of cofibration sequences displayed at the top of the following
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diagram.

(€n7"'7em)

By (1) By Vo S H
= ~o [v;” Ei“(m)]
HAB” B H A B
= [\/g Eiql(l,*)] o~
(em,....e™)

Vst H

The bottom right square is checked to commute and so we obtain the map of cofibration sequences
displayed at the bottom. This diagrams shows that a map to B]* can be factored through B)"(1)
if and only if it can be factoring through H A B™; this is clear if one uses the more general theory
of Adams resolutions disussed in [17].

[One sees that (ep,...,en) is an H,(—;Fp)-isomorphism in dimensions which are strictly less
than (n+1)g — 1 so B]*(1) is ((n 4 1)g — 3)-connected and hence ng-connected.] O

The purpose of proposition [1.3.2] now comes to light. It allow us to prove the following lemma.

Lemma 1.3.5. The maps f : Bgfll — B]" are compatible and have Adams filtration one.

Proof. The last diagram of proposition together with lemma tells us that they have
Adams filtration one. Proposition also gives us the following commutative diagram.

B! B2 Br—t.pntl o
fl fi if lf
* B! Br-l_t . pn

This is commutative in the homotopy category. For concreteness suppose that we a have pointset
level model for this diagram in which each i : B"™! — B" is a cofibration between cofibrant
spectra (see for details). The ‘homotopy extension property’ says that we can make any of the
squares strictly commute at the cost of changing the right map to a homotopic one. By proceeding
inductively, starting with the left most square, we can assume that the f’s are chosen so that each
square strictly commutes.

Each f : B:l”_:rll — B can be obtained by taking strict cofibers of the appropriate diagram.

It is now clear that the f : B,T_fll — B™ are compatible. O

1.4 A permanent cycle in the ASS-S°

We are now ready to construct the relevant homotopy class in the ASS-S°.

Theorem 1.4.1. The element ¢& " ‘hy, = {[ro]?”" " '[""]} € Egnfn’pn(qﬂ)*n*l(ASS—SO) is a
permanent cycle.
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Proof. Firstly, we’ll construct the homotopy class that qgn_"_lhl,n detects. By propositon m
we have a map i : SP"¢71 — Bg:_n which is nontrivial homology. We take @, to be to fP" " loj
as displayed in the diagram below.

Sptg—1

We look at the maps induced on Fs-pages.

te : Bo(B) — F5(S) is described by the geometric boundary theorem. The cofibration sequence
S~1 — C — B induces a short exact sequence of A-comodules. The boundary map obtained by
applying Cotor4(—) is the map induced by ¢.

00— Q(A; Ho(S71)) —— Q(4; Ho(O))

Q(A; H.(B)) —0

[To]pn_"_ 1 epn —= [To]pn —n—1 epn

|

[ro]?" e | [ro]P" T[] Tu

Using propostion and propostion we see that t*(qgn_”_1 cepn) = qgn_”_lhlvn.
The maps labelled by ¢ and j are all nontrivial on homology and so are easily described on
FEs-pages. The following diagram almost completes the proof.

S f n_n—1
epn | 21 - 21 71 @& " T ha,
7
ppn7n71 pt—n—1
epn T qO M ep’n \
Z‘I
pt—n—1
qo * epn

There is a subtlety, however. A map of filtration degree k only gives a well-defined map on Fj4
pages. This means means that, as we have drawn the diagram above, it is not completely obvious
that the rectangle commutes. This is easily resolved. We can break the rectangle up into (p”—n—1)?2
squares. We have demonstrated this for the case when p = 5 and n = 1 below. Each square involves
two maps of Adams filtration zero in the vertical direction and two maps of Adams filtration one
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in the horizontal direction. Each square commutes by proposition and lemma [1.3.5] and the
maps induced on Fs-pages are well-defined. This completes the proof.

Bl L.pt t.opy T p es ?) 7 ?

J J J A

Bi-—L.py- Loy 5. p és 7 7 ?

J J [ 7

B} - B} >~ B} >~ B! Y ?
J % % i

B? 5 B? 5 B? 5 B? é_5}—>q0-e5|—>q8-e5+—>q8-e5

This gives a permanent cylce in the MASS-oco.

Corollary 1.4.2. The element qlfn/qé1+1 € Cotor(;)’pn_n_l’pnq(Q(O)/qgo) is a permanent cycle in
the MASS-oo.

Proof. The map ¥~15/p> — S induces a map of spectral sequences Eo(MASS-00) — F2(ASS-
SY). Corollary II tells us that the map on FEs-pages can be identified, up to a sign, with the
map

0 : Cotorp(Q(0)/q5°) — Cotorp(Q(0))

induced by the short exact sequence 0 — Q(0) — g5 *Q(0) — Q(0)/qg® — 0.
Since a(qfn/ qSH) = qgnfnflhlm and the map of spectral sequences is an isomorphism in the
region of interest theorem gives the result. ]

1.5 A permanent cycle in the MASS-n

In this subsection we perform an injectivity argument to prove that q‘fn is a permanent cycle in the
MASS-(n + 1). The next three lemmas are the required technical lemmas.

Lemma 1.5.1. Write (&, \) for the bigrading of qfnil/qg € Ey(MASS-n') and consider the map
Ey(MASS-n") — E2(MASS-00)
induced by S/p" — S/p>. It is
1. injective in bigrading (T +r, X+ 1 — 1) for r > 2.
2. surjective in bigrading (T + s, \ + s) for s > 1.

Proof. We have a short exact sequence of P-comodules
qn
0 ——= M, —=Q(0)/¢5° —= Q(0)/¢5° —=0
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which induces the long exact sequence

gm0 (MASS-00) —2- B (MASS-n') —— E§™ (MASS-00) — B (MASS-00).

The map S/p™ — S/p™ induces a map of spectral sequences. On Fs-pages this is precisely the
middle map above. [The other maps are induced from maps of spectra, though we shall not need
this.|

Recall corollary H which says that Eg’)‘(MASS—oo) =0 when A\ < (2p —1)o + (2p — 3) and
thus when A < (2p — 1)o — (2p — 3). We deduce that ES*(MASS-n') — EJ*(MASS-00) is

1. injective when A+n < (2p—1)(c +n—1) — (2p — 3);
2. surjective when A\ +n < (2p — 1)(c +n) — (2p — 3).

Thus, we need to check that
LA+r=D4+n<2p-1)(@F+7r)+n—-1)—(2p—3) for r > 2;
2. A+s)+n<2p—1)((T+s)+n)—(2p—3) for s > 1.

We see that these statements are equivalent by setting s = r — 1. We also see that it is enough to
check the s = 1 case:
A+n+1<@p-1)a+n+1)—(2p—3).

q‘fnil/q()‘ lies in bigrading (7, ) = (p"~! —n, (2p — 1)p" ! — n) and so the result follows.

[One might wonder why we made the inequality tighter and our lives harder. Originally I made
a sign error and so this was the bound I had to go on. Luckily it didn’t make a difference, otherwise
I might have rejected this idea erroneously.] O

Lemma 1.5.2. Suppose we have a commutative diagram of abelian groups in which the rows are
exact.

0 X X’

A N

Y Y’ 0

Then the induced maps coker f — coker f' and ker f — ker f' are injective and surjective, respec-
tively.

Proof. An elementary diagram chase. O
Lemma 1.5.3. Write (G, \) for the bigrading of qlfn_l/qg € Ey(MASS-n'") and consider the map
E.(MASS-n") — E,(MASS-00)
induced by S/p™ — S/p>°. Let r > 2. Then on the r-th page the map is

1. injective in bigrading (G +7, X\ +7 — 1) for 7 >r.

2. surjective in bigrading (T + s, A + s) for s > 1.

101



Proof. Lemma is the base case for an induction on the page number starting at the second
page. Using the following diagram together with lemma we obtain the inductive step [taking
subgroups does not affect injectivity and quotienting does not affect surjectivity].

0— > E§+r+s,X+r+s—1 (MASS-n/) —~ EE+T+S’X+T+S_1(MASS—OO)

o] Ja

BT (MASS-) EZTA S (MASS-00) — > 0

O

We are finally ready to show that q{’n is a permanent cycle. We work in the reindexed spectral
sequence.

Theorem 1.5.4. The element ¢} /qi € Cotory? " "'7"9(M,1) is a permanent cycle in the
MASS-(n + 1)'.

Proof. Write (7, \) for the bigrading of qifn/qu”l € E>y(MASS-(n +1)). Lemma tells us that
ETH AT L(MASS-(n + 1)) — EZT A 1(MASS-00)
induced by S/p"t! — S§/p™ is injective for > 2. This completes the proof by corollary O
Since the MASS-(n + 1)’ is just the reindexed MASS-(n + 1) we obtain the following corollary.
Corollary 1.5.5. The element qlfn € Cotor(l)g’pn’pnq(Q(O)/ng) is a permanent cycle in the MASS-
(n+1).
1.6 K-theory

Finally, we need to address the claim concerning K-theory. First, we look at the maps between the
stunted projective spaces.

Berl

Lemma 1.6.1. The maps f : B,y

— B induce an isomorphism on K-theory.

Proof. Applying K_1 to the diagram on the left gives the diagram on the right and we deduce that
K_1(f : B® — B"1) is surjective because the image of p : Z/p"™ — Z/p" has size p" L.

Bn Z/p"
fl \ l X
Bn—l i B" Z/pn—l Z/pn

Applying K_; to the diagram

B b Bmtl *J>BZI_:11




gives

m+1 m—n+1

—=0

0 ——Z/p" ——=ZL/p"" ——=1Z/p

b |

0 Z/pn—l Z/pm Z/pm—n—I—l

—0.

We deduce that K_q(f : Bg"fll — B)") is surjective and so it is an isomorphism. Ko(B)') = 0

and so by duality each K*(f) is an isomorphism. O
The following result of Miller and Snaith gives us the information we need about the transfer.
Theorem 1.6.2 ([I8]). The transfer t : B — S° induces an isomorphism on K -theory.
The following proposition almost completes the proof of theorem [5.2.3

Proposition 1.6.3. The composite apn used in theorem induces a map apn : ypPhag/pntt —
S/p" 1 with the property that its desuspension fits into the following commutative diagram. More-
over, this map induces an isomorphism on K -theory.

Spa—1 apn S0

S
i p f 1 ‘ B§‘+2

spta-1 B N Bt L =40

l pr—n — Pprn_n—1 T
/ 1am \

Proof. Multiplication by p"*! is zero on Bg:_n and B{‘H since they are built up from (n + 1)
Moore spectra S/p on which multiplication by p is zero. Thus we obtain the two angled maps. We
take the map d,n : ¥P"95/p"*+!t — S/p"*+1 to be the suspension of the obvious composite.
By lemmal|l.6.1| we are just left to show that the angled maps induce isomorphisms on K-theory.
For the first angled map, the Atiyah-Hirzebruch SS gives us a commutative diagram

0 0 K_(2P"718/pm ) s Hyny q (XP"971S/p" 1 Z) —— 0
0—— K_1(Bb. ) K_{(B%_,) Hyrg1(Bb_ s Z) ———0
which takes the following form.
0 0 Z/anrl - Z/anrl — =0
0 Z/p" Z/p"t! Z/p 0

Since the map on the right is surjective we deduce that the middle map is an isomorphism. Again,
Ko(xP"1=1S/p" 1) and Ko(Bh._,,) are zero and so we have an isomorphism on K*. For the other
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map we apply K° to the left diagram to obtain the right diagram. The top map is surjective and
the right map is an isomorphism. Thus the left map is surjective and hence an isomorphism. Since
KB and K—1(271S/p"+1) are zero, we're done.

Bt B Z/p" <17,
L ]
Efls/anrl SO Z/pn+1 Zp

O]

However, the proof is still not complete. If qfn detects an element apn : SP"9 — S/p"FL we
do not know that p o (ape A S/p™*1) = Gyn. To address this problem we use the following lemma
together with the vanishing line of the MASS-oo (corollary II.

Lemma 1.6.4. Suppose that v : XP"9S/p"tt — S/p"*t1 induces an isomorphism on K -theory.
Then the composite

Spnq o Ep"qs/pn—l-l L> S/pn+1 . Sl
has order p™*I.

Proof. First, recall that Cotor%ﬁ%P(BP*, BP,) is zero and that Cotorgﬁ%P(BP*, BP,)is Z/p"t,
so the boundary map associated to the short exact sequence 0 — BP, — BP, — BP,/p"T! —
0 of BP,BP-comodules

8 : Cotoryh 4 p(BP,/p"+!, BP,) — Cotorgh, % ,(BP., BP,)

P p" 1
o] doy /p"t

is an isomorphism. Moreover, v¥" generates Cotor%’ﬁ & p(BP./p" T, BP,).

BP,(v) is multiplication by an element P(vy,vs,...) € BP,/p™™! and the hypothesis on + tells
us that the coefficient of vffn is a unit e in Z/p"*!. Since this element is primitive we conclude that
P = ev?". Because the composite of interest is detected by 9(P) in the Adams-Novikov spectral
sequence we know that it has order at least p"*!. Since the class factors through S/p"*! it has
order precisely p™t!. O

We are finally ready to prove the theorem.

Proof of theorem |5.2.5. Proposition [1.6.3| gives us the following commuting diagram and tells us
that &, induces an isomorphism on K-theory.

N Sa,n

SPa z St

L

Ep"qs/pn—i-l pn S/pn—H
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Corollary tells us that qfn is a permanent cycle so it detects some ayn : SP"9 — S/p"*t! and
upon mapping to S* we obtain Xa,» up to elements of higher Adams filtration. Summarizing, we
have the commuting diagram below.

S;Dnl] Yap,n +elements of higher Adams filtration Sl

po(apn AS/p™ 1)

Ep"qsr/pn-‘rl S/pn—H

Corollary I16.6] together with the fact that

53, Cotorp (Q(0)/45°)/ Fy (df : t < 0) = Cotorp(Q(0))/ Fy [ao]

and convergence of the ASS-SY tell us that elements of higher Adams filtration have order strictly
less than p™*!. Using the fact that the stable homotopy category is additive we obtain the following
diagram by taking the difference of the previous diagrams.

n elements of order strictly less than p™+1

SPa Sl

po(opn AS/p ) —dyn

yrtag/pntt S/pntl

If po (apn A S/p™ 1) — @pn induced an isomorphism on K-theory then the composite along the top
would have order p"*! (lemma and so, by the contrapositive, y1 o (apn A S/p" 1) — @n does
not induce an isomorphism on K-theory; it must induce multiplication by some number divisible
by p. An isomorphism of Z/p"*! plus a homomorphism divisible by p is an isomorphism. Since
apr induces an isomorphism on K-theory so does

J7Re) (Oépn A S/pn+1) = (Sépn + (lLL o (Oépn A\ S/pn+1) — &pn).

2 Pointset level constructions

In the proof of lemma I1[3.4.7 we require working at the pointset level. The final stage in making the
MASS-n (definition H a multiplicative spectral sequence requires smashing maps of towers
together. This section deals with some of the technicalities that arise and we discuss some of the
questions that they lead one to ask.

2.1 Motivation

To aid the following discussion we immediately introduce some terminology.

Notation 2.1.1. Let . denote the stable homotopy category and write Z for the category with
the integers as objects and hom-sets determined by |Z(n,m)| = 1 if n > m and |Z(n,m)| = 0
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otherwise. Write Z>q for the full subcategory of Z with the non-negative integers as objects and
write Ch() for the category of non-negative cochain complexes in .%; an object of this category
is a diagram

oo 4. cs 4o ostl o
in . with d? = 0.

Definition 2.1.2. An object of the diagram category .#%>0 will be called a sequence in .. A
system of interlocking cofibration sequences

e X~ Xg~—— X1 ~—— ...

Is—l Is Is—‘rl

in . will be called a tower and we will use the notation (X, I) for it. A map of towers (X,I) —
(Y,J) is a compatible collection of maps {X; — Ys} U{ls — Js}. An augmentation X — C*®
of a cochain complex C* € Ch(.¥) is a map of cochain complexes from

X * * *
to C*°.

Many of the spectral sequences in chapter II are obtained by applying 7.(—) to a tower (see,
for example, II; a map of towers induces a map of spectral sequences. A tower (X, I) gives
a sequence X, € .7%20 and an augmented cochain complex Xo — 3°I,. A map of towers gives a
map of sequences and a map of augmented cochain complexes and applying 7,(—) to the map of
cochain complexes describes the corresponding map of spectral sequences at the F-page.

Often we have a spectral sequence associated to a tower (X, I), the Fj-page has the structure
of an algebra and we have a map XoA Xg — Xo. The argument of Bruner in theorem IV.4.4 of [5]
shows that we can make our spectral sequence multiplicative in a way compatible with the Ei-page
multiplication and the 7, (Xo) multiplication by realizing this structure geometrically. From towers
(X,I) and (Y, J) he constructs a third tower (Z, K):

e (Z,K)=(X,I)N(Y,J)is given by Z; = XiNYj; Kg =V I N Jj;

i+j=s i+j=s
e the augmented cochain complex Zy — ¥* K, is the ‘tensor product’ of the augmented cochain

complexes Xg — X*I, and Yy — X°*J,.

The definition of (Z, K') makes sense when one uses Adams’ CW-spectra and takes X1 and Y
to be subcomplexes of X, and Y, respectively, but with other more sophisticated models of spectra
around this seems like a slightly unsatifying definition. This gives our first motivation for a pointset
level discussion even if it is a purely aesthetic one.

We return to the problem of putting a multiplicative structure on a spectral sequence. Given
the property of the construction above, which is listed in the second bullet point, our approach is to
realize the algebra structure on the F1-page as a map of cochain complexes >*Io A X[y — X°1,.
Taking into consideration the map Xg A Xg — X, this should be a map of augmented cochain
complexes; we then attempt to extend this to a map of towers (X, 1) A (X,I) — (X, I). Provided
that all this is possible, the result referred to above ([5, IV.4.4]) gives the required structure.
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In one instance (I1]3.2.2)) our tower is decomposable as (X, 1) A (Y, J) (in fact, it is defined this
way). In order to define a multiplication (X, I) A (Y, J) A (X, ) A (Y, J) — (X, I) A (Y, J) we wish
to smash together two multiplications (X, I) A (X,I) — (X, I) and (Y, J)A(Y,J) = (Y, J). Ideally
we would like to make the construction above functorial although we need less than this. Suppose
we have maps of augmented cochain complexes

(Xo — X°1,) — (X, — Z°10), (Yo — X°Ja) — (Yg — X°J0)

and that these can be extended to maps of towers (X,I) — (X', I') and (Y,J) — (Y',J'). We
wish to be able to construct a map of towers

(X, D)AY,J)— (X, IYNY',T),

which agrees with the map
(Xo — X°L,) — (X[ — Z’Iﬁ)} A [(YD = X%,) — (Yg — X°J0)

at the level of the associated augmented cochain complexes; this is the real motivation for our foray
into the pointset world.

Finally, as mentioned above, lemma I1[3.4.7 gives us motivation for addressing these issues.

The section begins by recalling the properties of the category of spectra Spec that we use. We
introduce a symmetric monoidal product on the category of sequences in any pointed simplicial
monoidal model category and show how we can deform it to be homotopical using a telescope
construction. This allows us to recover the classical construction documented by Bruner in [5]. It
also allows us to identify why one should not expect a ‘smashing together sequences in the homotopy
category’ functor. We prove a lemma which shows how we can sensibly smash together two maps
of sequences in the homotopy category. Then we address the additional structure a tower gives us.
We check that the cofibers of a tower behave as expected under the construction of [5] and show
that maps of towers can be smashed together in a way that respects the underlying augmented
chain complexes. Finally, we give the proof of lemma I1[3.4.7]

2.2 S-modules

We use S-modules as our model for spectra. The main reason we find them convenient is that all
objects are fibrant in the standard model structure.

Notation 2.2.1. We write sSet and Top for the categories of simplicial sets and compactly
generated spaces, respectively. We write sSet, and Top, for their based analogues.

We recall that sSet, Top, sSet, and Top, are symmetric monoidal categories with respect to
x, X, A\ and A, respectively and that we have strong monoidal Quillen adjunctions

— )+
sSet ——1 ——sSet,

Sing, |- || Sing, |- |—|

Top T Top,
U
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Notation 2.2.2. Let Spec be the category of S-modules of [9]. We refer to an object of Spec as
a spectrum rather than an S-module.

We recall that Spec has the following properties:

e Spec is a closed symmetric monoidal category with respect to the smash product Ag, which
we write as A. The unit for the smash product is the sphere spectrum S.

e Spec is enriched, tensored and cotensored over the category Top,. For X € Spec, Y € Top,
we write X A'Y for the tensor object in Spec.

e Spec is a Top,-model category. From the strong monoidal Quillen adjunctions above it has
the structure of a V-model category where V is any one of sSet, Top, sSet, and Top,. In
particular, there is a cofibrantly generated pointed proper simplicial monoidal model structure
on Spec. Every object of Spec is fibrant in this model structure.

e The sphere spectrum S is not cofibrant and so we fix a cofibrant replacement S, — S. The
functor S. A (=) : Top, — Spec is a left Quillen functor modelling 3°° : Ho(Top,) — ..

2.3 The telescope construction and smashing sequences together

This subsection looks at the homotopical properties of sequences (see definition . We do not
discuss towers or the associated cochain complexes; that discussion is left for the next subsection.
For the necessary homotopical language we refer the reader to [24], a lovely reference, which is
where the author learned this material.
We start off by introducing some notation which is used for the remainder of this section.

Notation 2.3.1. We write M for any pointed simplicial monoidal model category in which every
object is fibrant and which comes equipped with a cofibrant replacement functor. We write

:Q =1
for the natural weak equivalence from the cofibrant replacement functor to the identity and Mg
for the full subcategory of cofibrant objects. If X € M, K € sSet, and L € sSet we write X A K
for the tensor object with respect to the tensoring over sSet, and X ® L for the tensor object with
respect to the tensoring over sSet. These tensorings are related by the formula X @ L = X A L.
Given X,Y € M, we write M(X,Y’) for the simplicial set of maps from X to Y, M(X,Y) for the

underlying set of maps sSet(A% M(X,Y)), and X AY for the symmetric monoidal product of X
and Y.

For example M could denote either Top, or Spec; the cofibrant replacement functors can be
constructed using the small object argument, or in Top, we could take it to be |Sing,(—)].

Notation 2.3.2. Write N for the category Z>o. [This goes against my own personal convention
that 0 ¢ N but makes the notation less cumbersome.]

Definition 2.3.3. As usual, M denotes the diagram category, the category of sequences in M. It
is a homotopical category when given levelwise weak equivalences. It is symmetric monoidal with

(X & Y)s = Colimi+j25 X A ij
0<i,j<s

[The indexing category in this colimit is a full subcategory of Z x Z and the notation only indicates
the objects.]
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Notation 2.3.4.

o We write /\/lg for (Mg)Y, the full subcategory of M™ whose objects are levelwise cofibrant.

e Write (MN)Q for the full subcategory of Mg whose objects have cofibrations as structure
maps (i.e. each map X, «— X, is a cofibration).

Mg and (MY)g are homotopical categories ([24] definition 2.1.1]) with levelwise weak equivalences.

Now we wish to show that (MN )@ is symmetric monoidal with respect to ®, as defined above,
and that ® : (MY)g x (MN)g — (M) is homotopical ([24, page 15]).

Lemma 2.3.5. Suppose X and Y are objects of (MN)Q; then so is X ® Y. Suppose, in addition,
that X — X" and Y — Y are weak equivalences; then X @ Y — X' @Y’ is a weak equivalence.

Proof. Write &, for the indexing category in the colimit defining (X ® Y)s, i.e. the full subcategory
of Z x 7 with objects

{(i,7) ri+j =5 0<14,j <s}.

Es is a directed Reedy category (we can take 2s —i — j as the degree function). Giving the diagram
category M& the Reedy model structure (which, by directedness, is equal to the projective model
structure), the colimit and constant diagram functors form a Quillen adjunction. The pushout-
product axiom for M allows one to check that the latching maps for the diagram F : £ — M,
(,7) — X; NYj are cofibrations. Thus F' is Reedy cofibrant implying that (X ® Y), is cofibrant.
The pushout-product axiom also implies that the map of diagrams I = F’, where F'(i,j) =
X]AY] is alevelwise weak equivalence. Thus (X®Y) — (X'®Y”) is a (levelwise) weak equivalence.
It remains to show (X @ Y)s11 — (X ® V) is a cofibration. We let £/ be the full subcategory of
7 x 7 with objects

{(i,5):i+j>s, 0<i,j<s+1}.

The inclusion Ez41 EEAN ! gives rise to an adjunction sk : M+ =——= ME: : j*. Write F for
the functor £, — M with F(i,j) = X; AY}, an extension of the F' above. The map (X ®Y)s41 —
(X ®Y)s can be described as colimg,,, j*F — colimg/ F. Using the adjunction above we see this is
the same as colimg/ (skoj*)F — colimg/ F'. Now (skoj*)F = F is a Reedy cofibration, because
the relative latching maps are either the identity or latching maps or F', completing the proof. [

(Q,q) is a left deformation M — Mg ([24, definition 2.2.1]) and it induces (QV,¢"), a left
deformation MY — Mg. We wish to define (Tel, t), a left deformation Mg — (Mg, which
we call the telescope functor.

Definition 2.3.6. Suppose given X € M. Label the structure maps fs : Xs41 — X,. We define
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Tel(X) € MY levelwise: Tel(X); is the colimit of the following diagram

X 0
Xs ® AO Fs®@A° Xs+1 ® AO #el)

Xs+1 o2y Al

Xer1®[1

Xs42Q[0]

Xs+1 ® AO Xs+2 ® AO

Xs+2 & Al

fs+1®A0

We define a natural transformation ¢ : Tel = 1 levelwise: the map ts : Tel(X)s —> X is induced
by the maps A — A% and f, - foyr : Xoprp1 — X, 7> 0.

Lemma 2.3.7. The functor Tel : MY — MY restricts to a functor Tel : ./\/lg — (MN)g. The

natural transformation t : Tel = 1, restricts to a natural weak equivalence on Mg.

Proof. This makes use of the fact that ® is a left Quillen bifunctor, that (acyclic) cofibrations are
stable under cobase change and transfinite composition, and the 2-of-3 property.

Let X € Mg. One should be able to prove that Tel(X)s is levelwise cofibrant by staring at the
following diagrams the second of which suggests an inductive argument. That each structure map
is a cofibration follows from the fact that Tel(X)s41 — Tel(X)s is obtained from Xsi1 — Cyl(fs)
by cobase change. The diagrams below also show that X, — Tel(X)s is a weak equivalence.
Postcomposition with ts gives the identity so we are done by the 2-of-3 property.

~

Xs+1®([0]U[1])

X1 ® AV 1 factor Xop1® (APU A Xop1 ® Al
fS®AO\L \L(fs@AO)U(Xstl@AO) \L
Xs+r+1
Xspr© = Cyl(fs-i-r)

)(5(4> Cyl(fs) U---u Cyl(fs—l—r—l)(;) Cyl(fs) U---u Cyl(fs—l—r)(;) Tel(X)s

O]
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TTT

MY MmN ©

N N
M M 2 TP (M) x (M) —2—= (MY)q

MN

ng/\/lg

Ho(M") x Ho(MY) —=>Ho(M}) x Ho(M) —=>Ho((M")q) x Ho((MN)g) —> Ho((MY)g) —=> Ho(ML}) —=> Ho(M")

Ho(M)N x Ho(M)N —=>Ho(M)N x HoM)N = = = = === == = = = = - - = - - = = — = — — -

Figure II1.1: Deriving the monoidal structure on M.
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We are now in a position to derive the monoidal structure on MY. To summarize what we
have achieved so far and to aid the following discussion we draw the large diagram, figure on
page This diagram needs some explanation. Along the second row, we have the deformations
just constructed, the monoidal product and the inclusions of the various full subcategories we have
defined. This composite admits a natural transformation to the monoidal product displayed on
the top row; it is given by ¢"(tgn) ® ¢"(tgn). Because Ho(N x N) = Ho(N) x Ho(N) and each
functor in the second row is homotopical, we obtain the third row; the deformations and inclusions
of subcategories induce equivalences on the homotopy categories. The information described so far
gives a natural transformation

@ : MN x MmN MY

Ho(MN) x Ho(MN) Ho(MN)

which shows that the third row is the left derived functor for ® ([24], theorem 2.2.8]). The functor
MY — Ho(M)N induces a functor Ho(MY) — Ho(M)N. Because every object of M is fibrant,
Mg — Ho(Mg) is full ([24, theorem 10.5.1]). Thus ./\/lg — Ho(Mg)Y, and hence the induced
functor Ho(./\/lg) — Ho(Mg)YN, is surjective on objects.

One might hope to find a functor where the dashed arrow appears making the diagram commute.
Provided one did this successfully the composite along the bottom would be the ‘smashing together
sequences in the homotopy category’ functor. However, the author thinks that such a functor does
not exist. On the other hand, it is clear what such a functor should do on objects:

e suppose X,Y are objects in Ho(Mg)N;

e lift them to objects X,Y € Ho(Mg);

e mapping to the right and down into Ho(/\/lQ)N recovers, in modern language, the construction
discussed in the motivating subsection, documented by Bruner in [5].

The issue here is that two different choices for a lift of X might not be isomorphic; the construction
here depends on the choices of X and Y. The situation is even worse once one considers morphisms
since the functor HO(Mg) — Ho(Mg)Y is not obviously full. Regardless of this state of affairs we
will call the object constructed above X AY. Of course, using QV, we can also define X A'Y for
sequences, X and Y, in Ho(M).

In summary, the diagram below shows that we should expect to have to get our hands a little
dirty and so we get to work.

The following lemma is stated imprecisely although the construction used in the proof is useful.
We see its value in the next subsection (proposition [2.4.7)), once we consider towers ([2.1.2]) as well
as sequences.

Lemma 2.3.8. Suppose X, X', Y, Y' € (MN)g and that we have morphisms X — X' and Y — Y’
in Ho(M)N. Then we can construct a morphism X @Y — X' ®@Y" in Ho(M)N in a sensible way.
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Proof. Since all objects of M are fibrant we may use theorem 10.5.1 of [24] to view the morphisms
X — X' and Y — Y’ as homotopy commutative diagrams

Xo=—Xj = oo Xy~ X1~ ... Vo= Vie— ...~ Yy~ Yoy
| b Lo o
X)X e X e X~ .. V<Y~ <Y<Y/,

Recall the full subcategories of Z x Z used in the proof of lemma Es and &! have objects
{(,4):i+5=s, 0<i,j<s}and {(i,j) :i+j=s 0<i,j<s+1},

respectively. We make note of the inclusions & —— & &1 Let FF': El — M be defined
by F'(i,j) = X; ANYj and F'(i,j) = X; AY]. To construct the requisite morphism we construct the
following commuting diagram in M; we note that the top line is (X®Y)s = (X®Y)s +— (XY )s1+1
and the bottom line is the same with X and Y replaced by X’ and Y”.

colimg, F'i colimg/ F’ colimg, , F'j
B(x,E&s, Fi) = B(x,ELF) B(x,Es+1, Fj)
colim™ (/%) Fi —=» colim™ (/) F —— colim™¥ (/%) F < colim™ /) F <= colim™ (-/&+1) Fj

colimg, F'i

colimg: F” colimg,,, F'j

We refer to [24] for notation: 4.2.3 explains the objects in the second row; 7.4.1 explains the objects
in the third row.

The point is that the middle two rows are standard models for the homotopy colimit, which is
studied at length in Riehl’s book, [24]. The description in the second row is useful for us later. The
description in the third row is useful because of a universal property we employ shortly.

In proving lemma[2.3.5 we showed that the colimits in the top line actually compute a homotopy
colimit. Thus we obtain the weak equivalences from the second row to the top row. The equalities
in the third row come from 8.1.5 (as used in 8.1.8) of [24]. The weak equivalence in the second row
comes from the 2-of-3 property or by 8.5.6 of [24].

We are left with the problem of constructing the map from the third row to the final row. We
construct colim™(~/&)F —s colimg; F' first. Applying the underlying sets functor to the formula
in definition 7.4.1 of [24] gives

M (colim™ /&) F, colimg F') = sSetN” (N (—/&0), M(F—, colimg, F')).
So we go about inductively constructing a natural transformation N(—/€,) = M(F—, colimg, F').
For elements e = (i, ) € £, withi+j = s we have N(e/&.) = A so defining a map N(e/EL) —
M(Fe,colimg; F')) is the same as specifying a morphism Fe — colimg/ F'. We take Fe — F'e —

COlimgé F.
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To proceed further we need to fix choices of homotopies for our original diagram. Let
ht Al — M(Xi41, X}) and b : A — M(Yj41, YY)
be homotopies from the I' composite to the I composite. Whenever (¢, j') € £, we have maps A
M(X3, X[, )X M(Y5,Y) *A>M(Xi/\yj7xg,/\yj’,) ———= M(F(i,j),F'(i',j")) ——= M(F(i,j) colimg, F')

and these give maps

FExhY. =
A0 x Al L M(Xs X]) x M(Y;, Y] ) M(F (i, ), colimg, F),
Al x A0 redy X, X! v, v) —2 F(i, ), colimg, F’
X M( s i—1)XM( 7 ]) M( (17‘7)7001m5§ )7
1 1 hia X / / A .. . ,
At x A M(X;, X)) x M(Yj,ijl) M(F(z,j),cohmgéF)

for (i,j—1) €&, (i—1,j) € & and (i — 1,75 — 1) € &, respectively.

Suppose e = (i,7) € &, with i + j > s. We wish to define the bottom map in the following
diagram and if ¢/ = (¢/,5") € £, with i’ + j' =i+ j — 1, we must define the map in such a way that
the whole diagram commutes.

N('/EL) M(Fé, colimg: F)
N(e/&L) M(Fe, colimg; F)

Generically, we have two distinct choices of €’ and we call them e’ and e”. In this case N(e/E)) is
the colimit of a diagram

0 x Al 1 x A0

)/A %A yA \ (

N(e'/€! Ly Al N(e" /€.

In general, there might only be one choice of ¢’ but in either case we only have to define a map on
one of A% x A1, Al x A® or Al x Al in a way compatible with what is already defined. The maps
above achieve this.

Our map colim” (=/£9)

F — colimg I determines maps

N(—/E&s) N(

colim Fi — colimg, F'i, colim™N(~/&+1) p Jj — colimg/ F.

We check that the second map factors through the map colimg,, F'j — colimg, F' " to give

N(—/€

colim SHURG — colimg,,, F'j.

Moreover, one can see that we could construct these maps directly, using the procedure above and
so the following morphisms in the homotopy category define a map X @Y — X’ ®Y” in Ho(M)N.

(X ®Y)s = colimg, Fi <~— B(x, &, Fi) = colim™ (~/&) F colimg F'i = (X' @ V'),
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2.4 Smashing towers together

In this subsection M continues to denote a pointed simplicial monoidal model category in which
every object is fibrant and which comes equipped with a cofibrant replacement functor; N continues
to denote Z>q.

In the last section we constructed an object X AY € Ho(M)N from elements X,Y € Ho(M)N.
The first objective of this section is to show that the induced construction on the homotopy cofibers
of our sequences is the expected one. There are two results that we wish to prove:

e if [ and J denote the sequences consisting of homotopy cofibers of X and Y, respectively, then
the sequence K consisting of homotopy cofibers of X AY is given by K, =/, s i N 5

e the augmented cochain complex (X AY )y — X°K, is the ‘tensor product’ of the augmented
cochain complexes Xg — X*I, and Yy — X°*J,.

We use a formal argument to analyze what happens to strict cofibers under the monoidal product
®; we begin by observing that we have an adjunction

i MN=——=MZ

i(X)s = Xsfor s > 0and i(X)s = X for s < 0, i.e. i extends a sequence to be constant in negative
degrees. r(X)s = X, for s > 0, i.e. r truncates a sequence at 0. Because i is the identity functor
we may view M as a full subcategory of MZ%. Since the category Z is symmetric monoidal and
M is closed symmetric monoidal, we obtain a closed symmetric monoidal structure on M?%, the
Day convolution, which we denote by ® because it extends the monoidal structure on MY,

We have a functor (4+1) : Z — Z and a unique natural tansformation « : (+1) = id. Thus,
for any X € M? we obtain a morphism Xa : X(+1) — X in M%. Since M is pointed, M? is
pointed and we can form the pushout diagram on the left.

X(+1) —= =« Xop1 —
X— o7 Xy — 1

Pushouts in a functor category are calculated pointwise and so I is determined by the pushout
diagram on the right. One can check that the morphism I(+1) — I is 0, i.e. it factors through .

Definition 2.4.1. I is said to be the sequence consisting of strict cofibers of X.
The following proposition contains the formal argument referred to above.

Proposition 2.4.2. Let X,Y € M?% and let I,J be the corresponding sequences consisting of strict
cofibers. Then the sequence of strict cofibers of X @ Y is given by I ® J and

IeJ)s=\/ LnJj.
i+j=s

Proof. Since the symmetric monoidal product is closed, ® preserves colimits in each variable. We
also note the canonical identifications X (+1)®Y = (X ®Y)(+1) = X®Y (+1). These observations
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allow us to draw the following commuting diagram in which each of the asterisked squares is a
pushout.

I XH) Q@Y =—=—(X®Y)(+]) —=X oY (+1) I
I®Y XQY ———XQRY ———XRY X®J
Iy = ——=1IRY I®J XQJ——7—=X®J

o | < lo

I(+1) @Y =——=1® Y (+1) * X(+1) ® J =—— X ® J(+1)

The zero morphisms imply that the morphisms I®Y — I ®J +— X ® J are isomorphisms and so
the top left and top right pushout squares are in fact isomorphic to the following pushout square.

(X®Y)(+1) I
X®Y I1®J
Direct computation yields (I ® J)s =V, ;s i A J; and so we are done. O

Since the monoidal structure on M% extends that on MY we immediately obtain the following
corollary.

Corollary 2.4.3. Let X, Y € MY and let I,J be corresponding sequences consisting of strict
cofibers. Then the sequence of strict cofibers of X ® Y is given by I ® J and

IeJ)s=\/ LnJ.
i+j=s
The following corollary addresses the first bullet point above.

Corollary 2.4.4. Let X,Y € Ho(M)Y and estend them to towers (X,I) and (Y,J) by taking
homotopy cofibers. Extending Z = X NY to a tower (Z,K) we have

K= \/ LAJ.
i+j=s
Proof. Let X,Y € Ho(./\/lg) lift QN X, QVY € Ho(Mg)N.

Models for I and J are given by the strict cofibers of Tel(X') and Tel(Y') and X AY = Tel(X) ®
Tel(Y) € (MY)g, whose strict cofibers give models for the homotopy cofibers. The result follows

from corollary 0

For the second bullet point to make sense we need Ho(M) to be additive and so we take M to
be Spec.
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Proposition 2.4.5. Let X,Y € .#N and extend them to towers (X,I) and (Y,J) by taking homo-
topy cofibers. Extend Z = X AY to a tower (Z,K). The augmented cochain complex Zy — 3°K,
1s the ‘tensor product’ of the augmented cochain complexes Xg — X*Is and Yo — X% J,.

In the course of the proof we need the following definition.

Definition 2.4.6. Given a sequence X € MY, write X for the sequence

X»(S): X, ifi>s
X, ifi<s.

If s < t define X () by the pushout square

X(t+l) ok

l l

xG) L x(st)

Proof of proposition[2.7.5. As in corollary after making various replacements we can work
on the level of strict cofibers so suppose that X,Y € (SpecN)Q and let I, J be the corresponding
sequences consisting of strict cofibers. We consider the following diagram

XY

T

X(S’S+1) ® Y(t,t) - X(s) ® Y(t) 4>X(8’5) ® Y(t,tJrl)

The maps induced on the corresponding sequences consisting of strict cofibers can be described at
the s +t and s + ¢ 4 1 levels as follows.

\/i+j:s+t Ii N Jj

|

Is/\Jt—: >Is/\Jt

I N Jy

\/i+j:s+t+1 Ii N Jj

|

Isi1 N Jy<=— (Is+1 A Jt) V (IS VAN Jt+1) — I, A Jiq

We have a natural construction of the connecting map in the stable homotopy category which is
given on the poinset level by the analogue of the space construction W/A <~ W U CA — SW.
The natural map U VV — U x V induces an isomorphism in the stable homotopy category
and accounting for signs introduced by swapping suspension coordinates, we see that the following
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diagram commutes in the stable homotopy category, completing the proof.

s+t
dK

ZSHKS—H

Es+t+l Ks+t+1

ST I A Jy) ystitl ((IS+1 AJy)V (Is A Jt+1))

1R

o)

ds (= s dt
(551) A (1) AN )

(1 naa ) v (©n)aE )

O]

The reader might be concerned by the signs appearing in the proof above and so we attempt to
clarrify matters. Suppose that we have a cofibration sequence A — B — (' in spaces. We can
model this sequence as a map f : A — B together with the inclusion map to the cone on f and in
this model the connecting map C — ¥ A is constructed by ‘collapsing out’ B. We note that the
cone coordinate corresponds to the suspension coordinate and we use this observation to make a
convention: the cone coordinate should always correspond to the outermost suspension coordinate
(when other suspensions are lurking around). To summarise these ideas in the context of . we
use the language of triagulated categories and distinguished triangles. If

A—iop Jd. o k. owa

is a distinguished triangle then so are

-3 —Xj -3k

A B $C 24 and SA-Z.yp-

>k v 4.

C

The sign in front of Xk appears because otherwise the cone coordinate would correspond to the
inner suspension coordinate. In the proof above dj A 1 uses the outer suspension coordinate (by
convention) but 1 AdY, uses a suspension coordinate s places in and so we have to introduce a (—1)*.

We can make lemma of the previous subsection, which concerned sequences, more precise
once we consider towers.

Proposition 2.4.7. Suppose X, X', Y, Y’ € (SpecN)Q and that we extend their images in N
to towers (X, I), (X', 1), (Y,J), (Y',J") by taking homotopy cofibers. Suppose we have maps of
towers

(X, 1) — (X'.I))  and (Y,J) — (Y,J').

Extend the images of Z=X @Y and Z' = X' @ Y' in N to towers (Z,K) and (Z',K').
Then we can construct a map of towers (Z,K) — (Z',K'), such that the map on augmented
cochain complexes (Zy — X°K,) — (Z{ — X°K) is the tensor product

(Xo = X°L) — (X — E'Iﬁ)} A [(Yb = X%,) — (Yg = X))
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Proof. The maps of towers restrict to maps of sequences (morphisms in .#N). We are then free to
apply lemma to obtain a map Z — Z’ in .#N.

We need to be more precise. In the proof of lemma [2.3.8 a choice of homotopy had to be made
for each square; in the current scenario, the map on cofibers determines which homotopy we should
use. Making this choice allows one to check that we obtain a map of towers (Z, K) — (Z', K') by
defining the maps on cofibers

K, = \/ LN — \/ IZ(/\J]/':KQ
i+j=s i+j=s

to be the ones given by smashing together the maps /; — Ij and J; — JJ.

Regarding this last point we omit some details. However, we note that this is where the second
row in the diagram of lemma [2.3.8 becomes useful. An argument like the one in the proof of
5.2.1 in [24] shows that the map B(x,&s41, Fj) — B(x,E., F) is a cofibration between cofibrant
objects. Thus the diagram induced by taking the strict cofiber of the map from the right column
to the middle column has its top vertical map a weak equivalence; this diagram defines a map in
the homotopy category, the induced map on homotopy cofibers. The collection of all such maps
on cofibers gives a map of towers. One needs to check this coincides with the map described
above and this is where we leave some details to the reader. The key point is that the cofiber
of B(*,Es41, Fj) — B(x,E., F) receives a weak equivalence from a wedge of a smash product of

cones, a fattening of
\/ I A Jj.

1+j=s
O

By using QV, lifting, and applying the telescope functor Tel we may assume, in the statement
of propostion m that X, X', Y, Y’ € .#N. In fact, by fixing choices for lifts (using the axiom of
choice) we can obtain a functor A : TO x TO — T O, where T O denotes the category of towers
in .. As remarked in the motivational subsection this is more than we need; we don’t elaborate
further and we conclude our abstract pointset discussions.

We note that the results above can be applied to bounded below sequences and towers, sequences
and towers indexed by Z, which become constant below some S € Z.

Finally, we also note that the results of the discussion above are well-known to experts in the
field. For instance, these sort of issues are addressed in section 3 of [23].

2.5 Quotienting towers using a pointset model

Proof of lemma II{53.4.7. The idea is straightforward: we find a strict model for the map of towers
in corollary II to the (2n — 1) position and collapse from the n'" position onwards. In
order to avoid having to delve into any true pointset level discussion of spectra we use the Quillen
adjunction with spaces which we black-boxed in section (2.2

Firstly, we construct a pointset model for 3XY":

nS<? weg<l wng P

We recall that the material of subsection applies to Top, so that we have a symmetric monoidal
product ® on sequences in Top, (definition [2.3.3)) and a telescope functor (definition [2.3.6). View
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Stas {z€C:|z| =1}, let

i} _ (Sl 2—32P g1 2—2P g1 2—52P e TOI)%ZO

(note that this is levelwise cofibrant) and let ¥ = Tel(Y).
SeAY = 8. ATel(Y) = Tel(S. AY) € Spec?>0

is a model for XY. A model for (XY) A (2Y) is given by (Sc AY) ® (S. AY), which has s™ term
given by

colimyyj>s (Se AYi) A (Se AY;) = colimiyjss (Se ASe) A (YiAY;) = (SeAS) A (Y @Y),

0<i,j<s 0<i,j<s

and the weak equivalence S A.S. — S A S, = S, gives a weak equivalence (ScASe) A (17 ® 17) —
S.A (Y ®Y).

The map of towers (Y, J)A (Y, J) — (Y, J) restricts to a map of sequences and and suspending
twice gives us a map of sequences S. A (}7 ® 17) — S A (217) in the stable homotopy category.
Since everything in sight is bifibrant we have a diagram of maps which commutes up to homotopy.

S AY @Y)g=—S AV @Y )= ..«— S ANV @Y )y =—S A(Y @Y )gy1 <~ ...

l | l l

S. ATY) S, AZY; L Se ASY, Se ASYsi1

The ‘homotopy extension property’ says we can make any of the squares strictly commute at the
cost of changing the left map to a homotopic one. Thus, by starting at the (2n — 1)*® position, we
may suppose that we have a strictly commutative diagram consisting of the top two rows.

S AY @Y)g=—S. AY®Y), SeA(Y @Y )on_s SeA(Y @Y )on_1
S. A XY, S. A XY . Se A SYon_2 Se A XYan_1

| | |

Se ANE(Yo/Yn) =— Sc AR(Y1/Yn) <— ... =<— Se AS(Yan—2/Ymaxfnon_2y) < Se A D(x) = *

Applying Sc A E(:) to the map, which collapses out 17'” we obtain the map down to the bottom
row. Since (Yo AY,) U (Yo AYy) C (Y ®Y), we see that S. A (Yo AY,) U (Y, AYp)) is mapped
to *. Using the fact that S. A (—) preserves colimits, or by using the tensor adjunction, arguing in
spaces and using the tensor adjunction again, we obtain a map

Se A (Y(n) @Y (n)) — Se A (SY (n))
where Y(n) =Y /Y™ (see definition [2.4.6). Since S. A 'Y (n) gives a model for XY (n)

S/pt <—— xS/t <L T

¥S/p *
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and S, A (Y (n)®Y (n)) gives a model for Y (n) AXY (n) we obtain a map Y (n)AY (n) — Y (n) by
desuspending. One should check that the induced map on cofibers is what we want it to be. This
is the case because one way to construct an induced map on cofibers is by a strictification process
like the one used above (actually, we are going the opposite direction; the induced map tells us
which homotopy we should extend when strictifying) and because the multiplication in the cochain
complex 3°*J(n)e is induced by the multiplication on the cochain complex X*J, by collapsing. [J

2.6 A pointset level construction of S/p>

We use maps between Moore spectra extensively and in the bulk of the text we did not feel it was
necessary to mention how such maps are constructed; they are well known to the expert. Many
of the maps can be constructed using fillers for a distinguished triangle but this can cause concern
due to the nonuniquness of such fillers. Here, we note that our Priifer sphere has a good pointset
model and the construction should make it clear that we could be very precise about all of the
maps we use at the pointset level, if necessary.

Definition 2.6.1. Write p : S — S! for the map z — 2P. Then p~1S! € Top, is the colimit of
the following diagram

pRAL

Ste Al Ste A° St e Al

Sl®1]

S1®I0]

0
St Al o St A0 pes St A0

S1®[0]

Ste Al
We have a map S — p~1S! given by

Sl AD St®I0]

where the last map includes the first term in the colimit.

S1/p> € Top, is the strict cofiber of the map S' — p~1S'. We have a cofibration sequence
in Ho(Top,): S* — p~18t — S1/p>. Applying S. A (—) and desuspending gives a cofibration
sequence in .7

S —p 1S — S/p>™.

S/p> is called the Priifer sphere.

We see that we can obtain the cofibration sequence above by taking homotopy colimits of the
rows in the following diagram (the above definition explains how to obtain a good pointset model
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for such a diagram even though this is not strictly necessary).

S—5—— S — S —
i p ’ p \Lp p lp p
S S S S
I Y S
* S/p S/p? —= 8/p* —— ..
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Chapter IV

Miscellaneous results

This chapter contains results that will not appear in the thesis. This chapter is not proof-read and
is probably only readable by me!

1 Relations between Adams spectral sequences (Miller’s theorem)

In this section we give a different proof of [17, theorem 6.1].

We have a map a ring spectra BP — H and the canonical B P-resolution for the mod p Moore
spectrum X satisfies the hypothesis required for the May type SS. Thus we have a diagram of
spectral sequences

_ A
b Rl Tu(X) ——5—— Riymu(X)
MAYﬂt tﬂH-Ass
RSBPT‘-qusft(X) BP_SASS Tu—t(X)

Suppose given z € Fyja g Ryymu(X) detected in the Mahowald spectral sequence by a € R PRESWU(X );
then d3'*Ya € Ry Ry, * 41 (X).

Theorem 1.1 (Haynes Miller). d¥z € Fillh RE 2, 11(X) and is detected by +dy"Ya.

Proof. Let
Xo X X5 ... X, X1 .
be the canonical BP-resolution for X and let
Yo Y1 Yo e Y Yst1
Jo Ji Jy Jo Jor1
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be any H-resolution for S°. Then we have

Rbm, (Xo) <— RZSWU_S(XS) z <—j
Rgswu,s(ls) a’

and a = [d'] € Ry p Ry 1y (X).

Since Xsy1 — X is BP-null, it is H-null and we obtain

XoNAYp
XoNY1=—X1AY)

XoNYo=— X1 A1 =— X5 AY)

XoNYi=— X1 ANYi 1< XoAY o< =— Xs 1 ANY g1 =— X A Y s =— Xs1 A Y5

T T T

XoNYii=— X1 ANy =—XoANY 1< = Xs 1 AY 10 <X AY g1 =— Xs 1 AN Y

| | T

XoANYipo<=—Xi A1 =— XoANYi=— = Xs 1 AV 513 < Xs A Y g0 <= Xs1 A Y51

By picking a representative z’ € m,_+(XsAJ;—s) for Z we determine representatives 2’ € m,_+(XoAJ;)
and a” € m,_¢(Is A Ji—s) for z and o/, respectively: all are cycles relative to the differential on J
and Z’ is mapped to 2z’ under the maps induced by taking cofibers vertically in the above diagram.

Wu—t(XO/\Jt)%ﬂ-u—t(Xs/\Jt—s) Z/<—|T
ﬂu—t(IS VAN Jt—s) CL”

We now smash together the cofiber sequences Xg11 — X — [ and Yy — Ji—g — XY; o1
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to obtain a Verdier system.

X1 NYi 541 < Xsr1 NJi—s X1 ANYis
Xs ANYy 511 < Xs N Jp—s Xs NYi s
Is\NY 511 < Is N Jps Is\NY

O<—A8<—A
2
Q

Z' determines an element x and a” is mapped to 0 because
1. it is a cycle relative to the differential on J;
2. the H-ASS for I collapses at Es;
3. there is no convergence issue since all spectra in sight are p-complete.

Thus we can choose Z and the o’s compatibly (up to a sign which we will ignore from now on).
We redraw some of this information as follows where (d}"Ya)” represents an element representing
dX¥AYq € RSB}lesHWuH(X) and dsZ’ is just the element it has to be.

Xs A Jt—s

|

Is A Joes

Is NYis

\
Xs+1 NYp g <— Xs+1 A Y;f—s—l-l - Xs+1 A Jt—s—l—l

| | |

Is i NYy s=— I i ANY g1 ——Isp i ANJsia
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[ ]
8;|'
° 9 | Tt do?'
l I (dX1AY q)”
We also have the following commutative diagram.
Xs A Yt—s—i—l Xs A Y;f—8+2
Xo A Jis Xsr1 NYi s Xs N Jp—sq2

/

Xst1 NJi—st1

Thus & determines the lower parallelogram,

where (diZ) is a representative for d& Z in the H-ASS for X,. Using the map of SSs determined
by the first huge diagram we drew we see that

Tu—t—1(Xo A Jpy2) =—Ty—t—1(Xs A Jp—sq2) =— Ty—t—1 (X1 A Jp—s41)

|

Tyu—t—1 (Is—l—l A Jt—s+1)

(5 P — P a2

|

(dg/IAYa)//
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and so
Rgzﬂ'u+1(X0) -~ RZS+2WU73+1(XS) -~ st—i_lﬂ'u,s(Xerl)

|

Rtf;8+17ru—8(Is+1)

dil 2 1dil 7 fo
(@ ay
which says that diz € Fiil R m,1(X) and is detected by dy"“Ya = [(d}'AYa)']. O

2 p=2
In this section we examine whether our methods are applicable when p = 2.

2.1 v, € Cotory(H.(End(S/2 A S/n)))

Let A denote the dual of the Steenrod algebra at the prime 2, so as an algebra A = Fq[¢1,&o, .. .].
Recall H.(S/2AS/n) = Fa(1,£1,£2,£3) so that H.(End(S/2AS/n)) = End(H.(S/2AS/n)) consists
of 4 x4 matrices. The degree of the matrix E; ; is i —j and using the identification End(S/2AS/n) =
(S/2NS/n) ANE73(5/2 A S/n) together with the Kunneth formula E;; corresponds to i ® o3¢
where we index the matrix using {0, 1,2, 3}2. Consider the three matrices

1000 0 00O 0 0 01
0100 1 000 00 00
I= 0010 | 7= 0100 | K= 0000
0 0 01 0 010 00 00

We see that I and K are A-comodule primitives and that J +— & @ I +1® J + ¢ @ K. Let
x € Q(A; H (End(S/2 A S/n))) be the element

(Eal1] + [€71] + (€3] K]

x is a cocycle representing an element we call v1. We claim vy generates a polynomial algebra Fa[v1]
in Cotor4(H.(End(H.(S/2 A S/n)))). Thus Cotor(H.(S/2 A S/n)) is a module over Fa[vy].

2.2 v, 'Cotor,(H.(S/2 A S/n))
Let B=A/(&},€5,...) and C = B/(&1) = A/(&1,€5,€5 . ..). The map A — B induces a map
Cotor4(H«(S/2 N S/n)) — Cotorg(H.(S/2 A S/n)).

The square
H.(S/2NS/n)——= B® H.(S/2ANS/n)

| l

FQ C®F2
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induces a map

Cotorg(H.(S/2 N S/n)) — Cotorc(Fa),

(which is an isomorphism). Thus we obtain a map (which we call ¢)
Cotor4(H,(S/2 N S/n)) — Cotorc(Fa) = Fg[h]’p, hji:3> 2] — Fg[hg,o] ®F2[hj71 1j > 2]

mapping v; - 1 to hg. [In fact, one can see that vf - 1 is mapped to hj 0, broving that v; generates
a polynomial algebra.] We claim that after inverting v; we obtain an 1somorphism:

vy ' Cotor o (H.(S/2 A S/n)) = Falv1, vy ] @ Falhyq : 5 > 2].

2.3 The hl-BSS

Let X be H,.(S/2) = Fo(1,€) and Y be H.(S/2 A S/n) = Fa(1,€,€2,€3). Applying H.(—) to the
Puppe sequence

S/2ASt LGNS0 /28— §/2 A S?

gives the SES

0 X Y ¥2X 0
1751 1751

5%76%'—>17§

Applying Cotor 4(—) gives the h;-BSS. To check the connecting homomorphism is (—) - h; we draw

QA X) —= QA Y) — Q(A; X)

OoO<—8

where 7 is defined by multiplying elements in the comodule variable of = by £2. Notice that we are
using the right action of Q(A; k) on Q(A4; X) and Q(A4;Y).

2.4 Structure of the h;-BSS with respect to v{-mulitplication

We have v1 € Cotor4(H.(End(S/2AS/n)) and we have a map End(S/2) — End(S/2AS/n) given
by smashing with the identity S/n — S/n. Formally this is adjoint to the map

End(S/2,5/2) A (S/2 A S/n) = (End(S/2,5/2) A S/2) A S/n—2 s S/2 A S/

We claim that v{ lifts to Cotora(H.(End(S/2))) and that this is a permanent cycle in the ASS
detecting an element A € 7g(End(S/2)). Thus

Y8S/2 NS0 ——=385/2 A S/np—385/2 A S?

an Jan an

S/2NS0 —— s S/2N S/ —-5/2 N\ S?
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shows that v} - (=) commutes with the maps
Cotor 4(X) — Cotora(Y) — Cotor4(2?X).

Since

28572 A 81— 385/9 A SO

Jon P

S/2n 8t — g9 A 50

commutes v} - (—) commutes with (—)-hy. This is also evident since they are left and right actions,
respectively. We deduce that d,z =y = d,v} -z = v} - .

2.5 Some differentials in the h-BSS

We note that v1 -1 € Cotori’g(Y) is represented by [€2]1] + [€2]€,] and this element lifts to vy - 1 €
Cotorz’g(X). We compute v3:

([smm T eale) + [€2|§§’K]> T ([ﬁaszm el + [5%|5%52|K1)+

([sﬂs%m e + [gﬂsﬂm) T ([5%&@}(1 n [s%m%um) T ([gw«] n [5%|§%|KJ]).
i.e.
([mm n [5%15@\1]) n ([@M%m el + [5%|§%|J]) €
([&M%\K] T BlelK] + €l + a&%m) L 2IgIK + ([fflé?!KJ] T [E%I&%\KJ})-
Thus v} -1 € Cotori{6 (Y) is represented by

[21&211] + [€F161&211] + [1€7160] + [671&2161] + [E51€7161] + (€7 1€2163).

The image in Cotor?f(X) is 1-h?; we see that dgv? - 1= 1.

We compute v}, only recording terms involving the matrices

0000 0000
0000 0000
tooo0| ™ o000
0000 100 0

©I1E17) + ([é%\s%f%rﬂ n [s%\s%rf?rﬂ])+
([gﬂ@\sﬂﬁ] T Il + [fﬂ&%\s%rﬂ]) 2l
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Thus we see that the image of v3 - 1 € Cotor?;{g (Y) in Cotor?f(X ) is represented by

[mﬁﬁm+ﬁ@ﬁm+Q@@ém+ﬁ@&m)ﬂﬁﬁﬁm:

Qmm+ﬁmnﬁmm0+Qﬁ@ﬁm+ﬁ@ﬁm+ﬁﬁ@u)

—_——

The first term represents (v; - 1)-h$ and the second term lifts to an element € COtOI‘Z’?(Fg). x/hy
is represented by [¢7|¢5] + [€2]€3] + [€2|¢2). Adding d[€1€s] gives [€F|€1], which represents hohg. Thus
x = hghi1ho = 0 and the image of vi” -11in Cotor?j(X) is

(vy - 1) - hi.
We conclude that d(v§ - 1) = vy - 1.

We have an element in y € Cotor®®(Y) represented by [€2]1] 4 [¢}]¢7] and we see that py = ha 1.
We can describe v§ - y if we multiply. Anyway, by looking at the tables we see that we could prove

dgv?-y:vl-y and dgv%-y:v%-y.
In a localised hi-BSS, after inverting v}, this would give
3 _ 4 _ .2
d3U1h2,1 = Ulhg’l and d3U1h2,1 = U1h271.
2.6 Some formulae

For reference we note the coactions
P12 +8el+6 0 (JK +KJ),
JK— 1 JK+6K, KJ—1KJ4+& K.
and that vy - y is represented by

el + €617 - 18 + e =

[E21€311] + [G161167] + (6116 &5 11] + [67165161] + [611€01€8] + [€21€1163)-
In Q(A; H.(End(S/2))) we have

allat(} 0)]+ [l o)]| el

which shows algebraically that multpilication by 4 is zero on S/2.
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2.7 m(v;'S/2 A S/n)

We claim that v; € Cotora(H.(End(S/2 A S/n))) is a permanent cycle in the ASS detecting a
map vy : S/2 A S/n — £728/2 A S/n. We form the mapping telescope v; *S/2 A S/n. Because
Cotor4(Y") has a vanishing line of slope parallel to that given by v; we can calculate the homotopy
using a localised ASS:

vy ' Cotora(H.(S/2 A S/n)) = m(vytS/2 A S/n).

We saw that vl_lCotorA(H*(S/2 AS/n)) = Fg[vl,vfl] ® Fa[hjq : 7 > 2]. We claim that dyvq =
doha 1 = 0, that dohj1 = 1}1hJ2._171 for 7 > 2 and that the spectral sequence is multiplicative so that

T (v 1S/2 A S/n) = Falvr, v ] ® Elhg1].

To justify the multiplicativity maybe we can prove that v, lg /2 N S/n is a ring. Alternatively, we
might use the map which Mahowald and Davis talk of: Y AY — Y.

2.8 m(A1S/2)
We have a cofiber sequences

1An

S/2 A St S/2AN8% ——=S/2A8/n

AT1S/2 A SE T A-1g/9 A SO A1S/2 A S/n

and of course, A71S/2 A S/n = v;1S/2 A S/n. Thus we have Bockstein SSs

m(S/2A S/n) = m.(S/2),  m(v7'S/2AS/n) = m.(A71S/2).

—
—

Recall that we have classes 1,vq - 1,01 - y,v? -y € Cotora(X), which are nonzero under (—) - h2.
We immediately see from the charts that all the elements just considered are permanent cycles in
the ASS and are not boundaries; the non-hi-powers detect elements mapping to 1,v;,v1he 1 and
v2ha 1 in T (v7tS/2 A S/n). In m.(S?), 7° = 4v and so because multiplication by 4 is zero on S/2
we have (=) -7 = 0 on m.(S/2). Thus 1,v; - 1,01 - y,v? - y are targets of d3’s but not dy’s and
in the localised SS the 1,vy,v1hg1,v3he,1 are targets of d3’s. Looking at the charts we deduce the
first and fourth of the following differentials.
dgv%-lz 1, dgvi’-lzvl-l, dgvi)’-y:vl-y, dgvfy:v%-y.

Since (1?/1) - h? lies in highest possible filtration we deduce the second differential from the corre-
sponding differential in the algebraic setting; however, the third differential might be false. Mapping
into the localised SS gives the following differentials except, perhaps, the third.

dg’()% = 1, dgv? = 1, d3’l}%h271 = ’Ulhgjl, dgvilhg’l = U%hg@.
We know vihg 1 is the target of a d3 but perhaps d30 = vihs 1. We need to discount
d1vihgy = vihay, dav} = vihg].
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Well, dgvilhll = U%hll — d1U%h271 =0 and dgvi3 =V == dQUl =0 = ng? =0.

So, in fact, all the differentials above in the localised SS are true. These differentials are
nontrivial, since after multiplication by powers of v} the sources and targets run through a basis of
T(v; 1S/2 A S/n). We conclude that the associated graded of 7, (A~1S/2) with the 2-adic filtration
is:

Fa[A, A7 @ Fa[n]/(n*) @ Fa(1,v1,v1ho1, v7 ko).
We’d like to recover the fact that 2v; = 772 and 2U%h2,1 = v1hg,1. One checks directly that

(6r71) ho =113 [[szm n [s%\a]] (6al1] = [Eal6a]1) + (€216 6] + [E1€211) = digaléa] + [E21E2)1).

Similarly, we can check the other relation. Thus,

Z/AIA, AT @ Z/Al)/ () ® Z/4(1, v1, viha, viho 1)
(2 -1 = 0, 2’[)1 = 7]2, 2’01}1271 = 0, 20%}1271 = 1)17]2}1271, 27] = 0) '

T (AT15/2) =
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