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Abstract

We compute the v1-periodic homotopy of the sphere spectrum at an odd prime using a direct limit
of localized modified Adams spectral sequences. We show the E2-page of our spectral sequence is
isomorphic, in a range, to that of the classical mod p Adams spectral sequence. As a consequence
we obtain a very good understanding of the classical Adams spectral sequence above a line of slope
1/(p2 − p− 1).
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Introduction

Throughout this thesis p will denote an odd prime, q = 2(p − 1) and Sn will denote the n-fold
suspension of the sphere spectrum completed at p.

Chromatic homotopy theory was born when Adams [2, theorem 1.7] constructed a self map on
the mod pn Moore spectrum S/pn inducing an isomorphism on K-theory. S/pn is defined as the
cofiber of the multiplication by pn map on S0 and the map Adams constructed takes the form

vp
n

1 : S/pn+1 // Σ−p
nqS/pn+1. (0.1)

Moreover, Crabb and Knapp [6, proposition 1.1] have shown that these maps can be chosen so that

S0 // S/pn+1
vp
n

1 // Σ−p
nqS/pn+1 // S1−pnq

generates the p-component of the image of J in πpnq−1(S0) and

S/pn+1
vp
n

1 //

��

Σ−p
nqS/pn+1

��
S/pn

(
vp
n−1

1

)p
//

p

��

Σ−p
nqS/pn

p

��
S/pn+1

vp
n

1 // Σ−p
nqS/pn+1

commutes. The commutative diagram tells us that the naming convention is sensible. It also allows
us to form the third of the following telescopes.

v−1
1 S/pn+1 = hocolim(S/pn+1

vp
n

1 // Σ−p
nqS/pn+1

vp
n

1 // Σ−2pnqS/pn+1 // . . .)

S/p∞ = hocolim(S/p
p // S/p2 p // S/p3 // . . .)

v−1
1 S/p∞ = hocolim(v−1

1 S/p
p // v−1

1 S/p2 p // v−1
1 S/p3 // . . .)

The goal of this thesis is to compute the homotopy of v−1
1 S/p∞ using classical Adams spectral

sequence methods and to use the following zig-zag of maps to obtain information about the classical
mod p Adams spectral sequence for S0. This gives the odd prime analogue of Davis and Mahowald’s
work in [7, theorem 1.2].

S0 Σ−1S/p∞oo // Σ−1v−1
1 S/p∞ (0.2)
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Figure 1: A portion of Es,t2 (LASS-∞) when p = 7

1 Outline of the approach taken

Before stating some of our results we outline the approach taken.

The spectral sequence we use to compute the homotopy of v−1
1 S/p∞ has an involved construc-

tion. It is a direct limit of localized modified Adams spectral sequences. There are many spectral
sequences in our account and this spectral sequence is referred to as the localized Adams spectral
sequence for the v1-periodic sphere v−1

1 S/p∞, LASS-∞ for short.

While setting up the spectral sequence, we identify its E2-page algebraically. Our main tool for
computing this E2-page is the q−1

1 -Bockstein spectral sequence (q−1
1 -BSS). Miller [16] had previously

made a conjecture about a family of differentials in this spectral sequence. We prove his conjecture
and then use the multiplicative structure of the spectral sequences to determine the entire spectral
sequence.

E1(q−1
1 -BSS) +3 E2(LASS-∞) +3 π∗(v

−1
1 S/p∞)

When we compute the LASS-∞ a miracle happens: the E2-page is enormous (see figure 1 for
when p = 7), whereas the E3-page is modest in size. In fact, the E3-page is small enough that we
can deduce the rest of the spectral sequence using knowledge of the image of J .1 Thus, once we
have determined the E2-page, the remainder of the work lies in computing the E3-page. We use
two more spectral sequences. They are more straightforward to set up than the LASS-∞, although
the existence of what we call the Mahowald spectral seqence (MAHSS) relies on work of Miller in
[17].

1v−1
1 S/p∞ is also known as M1S

0, the first monochromatic component of S0 (see [21, 5.7, 5.11]) and π∗(M1S
0) is

well-known (see, for example, the proof of theorem 8.10(b) in [21]).
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E3(LASS-∞) is given by the homology of (E2(LASS-∞), d2) and E2(LASS-∞) has the filtration
associated with the q−1

1 -BSS. Since the differential d2 respects this filtration we obtain the q0-
filtration spectral sequence (q0-FILT); it has E1-page given by H(E∞(q−1

1 -BSS), d2). We find that
E1(q0-FILT) is a good approximation to E3(LASS-∞) and the bulk of the work is in computing
this object. For this we use the MAHSS which has as its E1-page, the E∞-page of the q−1

1 -BSS. It
degenerates at the E2-page and we compute this using our complete understanding of E∞(q−1

1 -BSS)
and the work of Miller in [17].

E1(MAH) +3 E1(q0-FILT) +3 E3(LASS-∞)

= E∞(q−1
1 -BSS) +3 H(E∞(q−1

1 -BSS), d2) +3 H(E2(LASS-∞), d2)

Finally, we have the Adams spectral sequence for the sphere (ASS-S0), the modified Adams
spectral sequence for the Prüfer sphere S/p∞ (MASS-∞) and the zig-zag of maps (0.2) gives rise
to a zig-zag of maps of spectral sequences. We identify these maps at the E2-pages algebraically
and show that they are isomorphisms in a range. In this way our computation gives us a very good
understanding of the classical Adams spectral sequence for S0 above a line of slope 1/(p2 − p− 1).

E2(ASS-S0) E2(MASS-∞)oo // E2(LASS-∞)

Algebraically these maps fit into the “chromatic spectral sequence” as set up in [15, section 5] and
we note that we have performed the first part of the program set up there.

2 Main results

We state our main results.
As with all Bockstein spectral sequences the q−1

1 -BSS has an E1-page which consists of multiple
copies of one algebraic object. In this case, it is an Fp-algebra which shows up in [15]. We have

E1(q−1
1 ) =

⊕
v<0

[
Fp [q1, q

−1
1 ]⊗ E[hi,0 : i > 0]⊗ Fp[bi,0 : i > 0]

]
.

As is normal practice with Bockstein spectral sequences, we write drx = y to denote a family of
differentials indexed by v. It is explained later (I.3.3.1), precisely what we mean by this.

Notation 2.1. Let p[0] = 0 and p[i] = pi−1
p−1 for i ≥ 1. Write JkK for qk1 , hi for hi,0 and bi for bi,0. If

x is a nonzero scalar multiple of y write x
.

= y.
Suppose given I = (i1, . . . , ir), J = (j1, . . . , js) and K = (k1, . . . , kr) such that i1 > . . . > ir ≥ 1,

j1 > . . . > js ≥ 1 and ka ≥ 0 for a ∈ {1, . . . , r}. Write

1. bKI hJ for the monomial bk1i1 · · · b
kr
ir
hj1 · · ·hjs ;

2. NI,J,K for
∑

a ka(1− p[ia+1])−
∑

c p
[jc−1];

3. J − 1 for (j1, . . . , js−1) if s ≥ 1;

4. K − 1 for (k1, . . . , kr − 1) if r ≥ 1 and kr ≥ 1.

All the non-trivial differentials in the q−1
1 -BSS are described by the following theorem.
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Theorem 2.2. Suppose that we are given I = (i1, . . . , ir), J = (j1, . . . , js) and K = (k1, . . . , kr)
such that i1 > . . . > ir ≥ 1, j1 > . . . > js ≥ 1 and ka ≥ 1 for a ∈ {1, . . . , r}.

Suppose s ≥ 1, that either r = 0 or r ≥ 1 and ir ≥ js, and that p - k ∈ Z. We have

dp[js]Jkp
js−1K

[
JNI,J−1,KKbKI hJ−1

]
.

= J(k − 1)pjs−1K
[
JNI,J,KKbKI hJ

]
. (2.3)

Suppose r ≥ 1, that either s = 0 or s ≥ 1 and ir < js and that k ∈ Z. We have

dpir−1Jkp
irK
[
J−p[ir]Khir

][
JNI,J,K−1KbK−1

I hJ

]
.

= JkpirK
[
JNI,J,KKbKI hJ

]
. (2.4)

From this, we obtain an explicit description of E∞(q−1
1 -BSS).

Corollary 2.5. E∞(q−1
1 -BSS) has Fp-basis

{〈1〉v : v < 0}

∪

{〈
Jkpjs−1K

[
JNI,J−1,KKbKI hJ−1

]〉
v

: I, J,K, k satisfy the conditions in (2.3), −p[js] ≤ v < 0}

∪

{〈
JkpirK

[
J−p[ir]Khir

][
JNI,J,K−1KbK−1

I hJ

]〉
v

: I, J,K, k satisfy (2.4), 1− pir ≤ v < 0}.

Recall that E1(MAH) = E∞(q−1
1 -BSS). The following theorem essentially computes E3(MASS-

∞).

Theorem 2.6. E2(MAH) has Fp-basis

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j] ≤ v < 0

}
∪
{〈

JkpiK
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
.

As we explain in the bulk of the text the MAHSS degenerates at the E2-page for degree reasons.
Running the q0-FILT gives a complete description of the E3(LASS-∞).

Corollary 2.7. E∞(q0-FILT) has an Fp-basis given by

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j−1] − 1 ≤ v < 0

}
∪
{〈

Jkpi+1K
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
,

where we have abused notation and written the elements detecting the basis in the MAHSS.
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3 Outline of thesis

This thesis is divided into three chapters.
The heart of the computation lies in the algebra, systematically identifying the E2-page of the

LASS-∞. After proving Miller’s conjecture [16], writing down all the nontrivial differentials in the
q−1

1 -BSS is a matter of combinatorics (theorem 2.2). Conceptually, the remaining theorems and
corollaries follow quickly although there are many details to address.

The first chapter deals with the algebraic part of the computation and highlights what makes
the computation work out. The second is devoted to setting up the topological spectral sequences
used and verifying various properties of them. This becomes a technical affair and to make the
exposition cleaner the most technical results are delayed until the third chapter.

Two very different methods are employed to obtain differentials in the q−1
1 -BSS. There are two

classes of differentials in Miller’s conjecture. The first is tackled head on. We compute, almost
explicitly, the zig-zags that determine the differentials. The second class is obtained from the first
by a Kudo transgression formula after transferring to a related spectral sequence (the Q(0)-BSS).

Chapter I proceeds by introducing relevant notation, setting up a convenient language to talk
about spectral sequences and then setting up various Bockstein spectral sequences and examining
their structure. We investigate the localization map which is used in obtaining information about
the ASS-S0 and three sections are devoted to the computation resulting in theorem 2.2. In section
I.6, we make the observation that is crucial for proving theorem 2.6. The final section makes note
of some differentials in the Q(0)-BSS which will be useful for future work on the ASS-S0.

The bulk of Chapter II consists of setting up, one by one, all the Adams spectral sequences that
we need and proving the properties that they have. Then we set up the q0-FILT and the MAHSS
and use them to complete the computation of the LASS-∞. We also use this result to deduce some
information about the ASS-S0. Chapter III deals with the most technical results which are omitted
in chapter II.

Many of the spectral sequences appearing are known to experts in the field and some might not
blink an eye if the material of chapter III were omitted. However, there seem to be gaps in the
literature. Two examples stand out which give the motivation for chapter III and we explain them
briefly.

In chapter II we set up a modified Adams spectral sequence for S/pn (MASS-n), its E2-page has
an algebraic description as CotorP (Fp, Q(0)/qn0 ) and it converges to the homotopy of S/pn. There
is a permanent cycle in the MASS-(n+ 1)

qp
n

1 ∈ CotorP (Fp, Q(0)/qn+1
0 )

which detects an element S0 −→ Σ−p
nqS/pn+1 such that the induced map S/pn+1 −→ Σ−p

nqS/pn+1

is a K-theory isomorphism. During the verfication of this result we realise that such a K-theory
isomorphism can only have (unmodified) Adams filtration at most pn − n. However, it is claimed
in [8, page 156] that it has Adams filtration pn. This suggests that the result above had not been
considered carefully in the literature before now.

In constructing the MASS-n we make use of the “smash product of resolutions” defined in [5,
chapter IV, definition 4.2]. We need some degree of functoriality of this construction to obtain the
multiplicative structure of the MASS-n. It seems that a similar result is required in [3, proposition
3.2] although this issue is not addressed there. It is resolved, to some extent, in section 3 of [23].
However, it is more satisfying to have a functorial smash product on the category of towers in the
stable homotopy category. This is what we construct.
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We remark that our results are not necessarily presented in the order in which we prove them.
The reader is assured that there are no circular arguments. Referenced results in the same chapter
have their chapter number omitted; otherwise, we include the chapter number for clarity.
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Chapter I

Algebra

This chapter contains the main ideas behind all of the results stated in the introduction. In chapter
II we construct the localized Adams spectral sequence for the v1-periodic sphere v−1

1 S/p∞ (LASS-∞)
and we find it has E2-page given by

CotorP (Fp, q−1
1 Q(0)/q∞0 ).

The main goal of this chapter is to understand a spectral sequence which computes this object.

1 Introducing notation

First, we must introduce the relevant notation.
Recall that throughout this thesis p is an odd prime. All Hopf algebra and comodules have Fp

as their ground field.

Definition 1.1. Let P denote the polynomial algebra on generators {ξn : n ≥ 1} where |ξn| =
(0, 2(pn − 1)). P is a Hopf algebra when equipped with the Milnor diagonal

P −→ P ⊗ P, ξn 7−→
n∑
i=0

ξp
i

n−i ⊗ ξi, (ξ0 = 1).

Definition 1.2. Let Q(0) denote the polynomial algebra on generators {qn : n ≥ 0} where |qn| =
(1, 2(pn − 1)). Q(0) is an algebra in P -comodules when equipped with the coaction map

Q(0) −→ P ⊗Q(0), qn 7−→
n∑
i=0

ξp
i

n−i ⊗ qi.

Note that the multiplication on Q(0) is commutative; it is graded commutative with respect to the
second grading. It is always understood that graded commutative ignores the first grading, which
Miller [15] refers to as the “Cartan degree”.

Definition 1.3. q0 ∈ Q(0) is a comodule primitive and so we may define Q(1) via the following
short exact sequence of P -comodules. Q(1) is an algebra in P -comodules.

0 // Q(0)
q0 // Q(0) // Q(1) // 0

13



Definition 1.4. Define Q(0)/q∞0 by the following short exact sequence of P -comodules. Q(0)/q∞0
is a Q(0)-module in P -comodules.

0 // Q(0) // q−1
0 Q(0) // Q(0)/q∞0

// 0

We find that q1 ∈ Q(1) is a comodule primitive so we may define q−1
1 Q(1) which is an algebra

in P -comodules. We may also define q−1
1 Q(0)/q∞0 , a Q(0)-module in P -comodules but this requires

a more sophisticated construction, which we now outline.

Definition 1.5. For k ≥ 1, Mk is the sub-P -comodule of Q(0)/q∞0 defined by the following short
exact sequence of P -comodules. Mk is a Q(0)-module in P -comodules.

0 // Q(0) // Q(0)〈q−k0 〉 //Mk
// 0.

Lemma 1.6. qp
k−1

1 : Mk −→Mk is a homomorphism of Q(0)-modules in P -comodules.

Definition 1.7. For each l ≥ 0 let Mk(l) = Mk. q
−1
1 Mk is defined to be the colimit of the following

diagram.

Mk(0)
qp
k−1

1 //Mk(1)
qp
k−1

1 //Mk(2)
qp
k−1

1 //Mk(3)
qp
k−1

1 // . . .

Definition 1.8. We have homomorphisms q−1
1 Mk −→ q−1

1 Mk+1 induced by the inclusions Mk −→
Mk+1. q−1

1 Q(0)/q∞0 is defined to be the colimit of following diagram.

q−1
1 M1

// q−1
1 M2

// q−1
1 M3

// q−1
1 M4

// . . .

Notation 1.9. If Q is a P -comodule then we write Ω(P ;Q) for the cobar construction on P with
coefficients in Q. In particular, we have

Ωs(P ;Q) = P
⊗s ⊗Q

where P = Fp⊕P as Fp-modules and we write [p1| . . . |ps]q for p1⊗. . .⊗ps⊗q. We set ΩP = Ω(P ;Fp).

We recall (see [15, page 75]) that the differentials are given by an alternating sum making use of
the diagonal and coaction maps. We also recall that if Q is an algebra in P -comodules then Ω(P ;Q)
is a DG-Fp-algebra and if Q′ is a Q-module in P -comodules then Ω(P ;Q′) is a DG-Ω(P ;Q)-module.

Definition 1.10. If Q is a P -comodule then CotorP (Fp, Q) = H∗(Ω(P ;Q)).

Notation 1.11. We abbreviate CotorP (Fp, Q) and write CotorP (Q) instead. We use this notation
for the rest of the thesis.

We remark that in our setting Cotor has three gradings. P and Q(0) are bigraded and we write
(t, u) for the bigrading, which is preserved by the differentials in the cobar complex, Ω(P ;Q(0)).
Thus, CotorP (Fp, Q(0)) has the cohomological grading s as well as the gradings t and u. The same
is true for Q(1), q−1

1 Q(1), Q(0)/q∞0 and q−1
1 Q(0)/q∞0 in place of Q(0).
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2 Spectral sequence terminology

Spectral sequences are used in abundance throughout this thesis. The purpose of this short section
is to fix some potentially unconventional terminology which is used in subsequent sections.

The reader is probably familiar with the notion of an exact couple which is one of the most
common ways in which a spectral sequence arises.

Definition 2.1. An exact couple consists of abelian groups A and E together with homomorphisms
i, j and k such that the following triangle is exact:

A

j

��

A
ioo

E
k

66

Given an exact couple one can form the associated derived exact couple; iterating this process
gives rise to a spectral sequence. An alternative approach, more useful for what we have in mind,
exploits correspondences. We find that the picture becomes clearer, especially once gradings are
introduced, when we ‘spread out’ the exact couple:

. . . Aoo

��

Aoo . . .
ioo A

ioo

j

��

. . .oo

E
k

66

E

Let π : E ×A×A×E −→ E ×E be the projection map. Then we make the following definitions.

Definition 2.2. For each r ≥ 1 let d̃r = {(x, x̃, ỹ, y) ∈ E×A×A×E : kx = x̃ = ir−1ỹ and jỹ = y}
and dr = π(d̃r).

x̃ . . .�ioo ỹ�ioo
_

j

��
x

.
k

66

y

Since i, j, k and π are homomorphisms of abelian groups d̃r and dr are subgroups of E×A×A×E
and E × E, respectively.

Notation 2.3. We write drx = y if (x, y) ∈ dr.

We see that d1 is the function jk. We have the convention that d0 is the zero function (so that
ker d0 = E and im d0 = 0). We also have the following useful observations.

Lemma 2.4. For r > 1, drx is defined if and only if dr−1x = 0, i.e.

(x, 0) ∈ dr−1 ⇐⇒ ∃y : (x, y) ∈ dr.

Lemma 2.5. For r > 1, dr0 = y if and only if there exists an x with dr−1x = y, i.e.

(0, y) ∈ dr ⇐⇒ ∃x : (x, y) ∈ dr−1.
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Corollary 2.6. For r > 1, the following conditions are equivalent:

1. drx = y and drx = y′;

2. drx = y and there exists an x′ with dr−1x
′ = y′ − y.

Lemma 2.7. Suppose r ≥ 1 and that drx = y. Then dsy = 0 for any s ≥ 1.

For all r ≥ 1 we see that dr is a correspondence. We can define kernels and images of corre-
spondences. The preceding lemmas show that dr defines a homomorphism

ker dr−1/
⋃
s

im ds −→
⋂
s

ker ds/ im dr−1.

Let Er = ker dr−1/ im dr−1. Then precomposing by Er −→ ker dr−1/
⋃
s im ds and postcomposing

by
⋂
s ker ds/ im dr−1 −→ Er gives a homomorphism Er −→ Er. This is usually how dr is defined.

In this chapter we use the correspondence perspective on dr most frequently. We use the more
common perspective that dr : Er → Er and Er+1 = H(Er, dr) more frequently in the other chapters.

Definition 2.8. Suppose drx = y; then x is a said to support a dr. If, in addition, y /∈ im dr−1, x
is said to support a nontrivial differential. Elements of

⋂
s ker ds are called permanent cycles.

Definition 2.9. We write E∞ for
⋂
s ker ds/

⋃
s im ds.

3 Bockstein spectral sequences

In this section we set up the q−1
1 -Bockstein spectral sequence (definition 3.4.1). One of the main

goals of this chapter is to compute this spectral sequence completely. This computation makes use
of the multiplicative structure that this spectral sequence has and we transfer differentials between
it and other related spectral sequences. This section sets up all the Bockstein spectral sequences
which we use and proves the various properties that we require of them.

3.1 The Q(0)-Bockstein

Applying CotorP (−) to the short exact sequence of P -comodules

0 // Q(0)
q0 // Q(0) // Q(1) // 0

gives a long exact sequence. We also have a trivial long exact sequence consisting of the zero group
every three terms and CotorP (Q(0)) elsewhere. Intertwining these long exact sequences gives an
exact couple:

Cotors,t−v,uP (Q(0))

��

Cotors,t−v−1,u
P (Q(0))oo . . .

q0oo Cotors,t−v−r,uP (Q(0))
q0oo

��
Cotors,t−v,uP (Q(1))v

∂

44

Cotors,t−v−r,uP (Q(1))v+r.

Here ∂ raises the degree of s by one relative to what is indicated and the subscripts on the copies
of CotorP (Q(1)) are used to distinguish them from one another.
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Definition 3.1.1. The spectral sequence arising from this exact couple is called the Q(0)-Bockstein
spectral sequence (Q(0)-BSS). It has E1-page

Es,t,u,v1 (Q(0)) =

{
Cotors,t−v,uP (Q(1))v if v ≥ 0

0 if v < 0

and dr has degree (1, 0, 0, r). The spectral sequence converges to CotorP (Q(0)) and the filtration
degree is given by v. In particular, we have an identification

Es,t,u,v∞ (Q(0)) = F v Cotors,t,uP (Q(0))/F v+1 Cotors,t,uP (Q(0))

where F v CotorP (Q(0)) = im(qv0 : CotorP (Q(0)) −→ CotorP (Q(0))) for v ≥ 0. The identification is
given by lifting an element of F v CotorP (Q(0)) to the vth copy of CotorP (Q(0)) and mapping this
lift down to CotorP (Q(1)) to give a permanent cycle.

3.2 The q∞0 -Bockstein

Applying CotorP (−) to the short exact sequence of P -comodules

0 // Q(1) // Q(0)/q∞0
q0 // Q(0)/q∞0

// 0 (3.2.1)

gives a long exact sequence. We also have a trivial long exact sequence consisting of the zero group
every three terms and CotorP (Q(0)/q∞0 ) elsewhere. Intertwining these long exact sequences gives
an exact couple:

Cotors,t−v+r−1,u
P (Q(0)/q∞0 ) . . .

q0oo Cotors,t−v,uP (Q(0)/q∞0 )
q0oo

∂ **

Cotors,t−v−1,u
P (Q(0)/q∞0 )oo

Cotors,t−v+r,u
P (Q(1))v−r

OO

Cotors,t−v,uP (Q(1))v.

OO

Here ∂ raises the degree of s by one relative to what is indicated.

Definition 3.2.2. The spectral sequence arising from this exact couple is called the q∞0 -Bockstein
spectral sequence (q∞0 -BSS). It has E1-page

Es,t,u,v1 (q∞0 ) =

{
Cotors,t−v,uP (Q(1))v if v < 0

0 if v ≥ 0

and dr has degree (1, 0, 0, r). The spectral sequence converges to CotorP (Q(0)/q∞0 ) and the filtration
degree is given by v. In particular, we have an identification

Es,t,u,v∞ (q∞0 ) = F v Cotors,t,uP (Q(0)/q∞0 )/F v+1 Cotors,t,uP (Q(0)/q∞0 )

where F v CotorP (Q(0)/q∞0 ) = ker (q−v0 : CotorP (Q(0)/q∞0 ) −→ CotorP (Q(0)/q∞0 )) for v ≤ 0. The
identification is given by taking a permanent cycle in the vth copy of CotorP (Q(1)), mapping it up
to CotorP (Q(0)/q∞0 ) and pulling this element back to the (−1)th copy of CotorP (Q(0)/q∞0 ).
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3.3 Conventions and a relationship between the Q(0)-BSS and the q∞0 -BSS

The two Bockstein spectral sequences described so far and every other Bockstein spectral sequence
we use have the feature that infinite families of differentials are determined by one differential. This
feature allows us to omit the v grading in a systematic way. We illustrate this phenomenum with
the following definition.

Definition 3.3.1. Suppose x ∈ Cotors,t,uP (Q(1)), y ∈ Cotors+1,t−r,u
P (Q(1)) and we say that drx = y.

This statement has precise interpretations in the Q(0)-BSS and the q∞0 -BSS.

1. In the Q(0)-BSS this statement encodes the fact that for any w ≥ 0 we may view

x ∈ Cotors,t,uP (Q(1))w, y ∈ Cotors+1,t−r,u
P (Q(1))w+r

and in each case we have drx = y.

2. In the q∞0 -BSS this statement encodes the fact that for any w ≤ −1 we may view

x ∈ Cotors,t,uP (Q(1))w−r, y ∈ Cotors+1,t−r,u
P (Q(1))w

and in each case we have drx = y.

It appears, a priori, that the truth of the statement drx = y depends on which spectral sequence
we are working in. However, we have the following lemma.

Lemma 3.3.2. Suppose x ∈ Cotors,t,uP (Q(1)) and y ∈ Cotors+1,t−r,u
P (Q(1)). Then drx = y in the

Q(0)-BSS if and only if drx = y in the q∞0 -BSS.

Proof. There is a conceptual proof of this fact using Verdier’s axiom because the Q(0)-BSS and the
q∞0 -BSS are both truncations of a spectral sequence converging to q−1

0 CotorP (Q(0)). We provide
a more direct proof.

Suppose that drx = y in the Q(0)-BSS. By definition 2.2 there exist x̃ and ỹ fitting into the
following diagram.

Cotors+1,t−1,u
P (Q(0)) . . .

q0oo Cotors+1,t−r,u
P (Q(0))

q0oo

��
Cotors,t,uP (Q(1))

∂

44

Cotors+1,t−r,u
P (Q(1))

x̃ . . .�q0oo ỹ�q0oo
_

��
x

(
∂

44

y

Let a ∈ Ω(P ;Q(1)) be a representative for x and b̃ ∈ Ω(P ;Q(0)) be a representative ỹ. There exists
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an ã ∈ Ω(P ;Q(0)) representing x̃, and an a′′ and α fitting into the following diagram.

Ω(P ;Q(0))
q0 //

��

Ω(P ;Q(0)) //

d

��

Ω(P ;Q(1))

��
Ω(P ;Q(0))

q0 // Ω(P ;Q(0)) // Ω(P ;Q(1))

a′′ � //
_

��

a_

��
ã � // α � // 0

There exists c ∈ Ω(P ;Q(0)) such that ã = qr−1
0 b̃+ dc. Let a′ = a′′ − q0c. Then

a′ � //
_

��

a_

��
qr−1

0 b̃ � // α− q0dc
� // 0.

In particular, a′ ∈ Ω(P ;Q(0)) gives a lift of a ∈ Ω(P ;Q(1)) and da′ = qr0 b̃. Let b be the image of b̃
in Ω(P ;Q(1)). Then we have

Ω(P ;Q(1)) //

��

Ω(P ;Q(0)/q∞0 )
q0 //

d

��

Ω(P ;Q(0)/q∞0 )

��
Ω(P ;Q(1)) // Ω(P ;Q(0)/q∞0 )

q0 // Ω(P ;Q(0)/q∞0 )

a′/qr+1
0

� //
_

��

a′/qr0_

��
b � // b̃/q0

� // 0

and

Cotors,t−1,u
P (Q(0)/q∞0 ) . . .

q0oo Cotors,t−r,uP (Q(0)/q∞0 )
q0oo

∂ **
Cotors,t,uP (Q(1))

OO

Cotors+1,t−r,u
P (Q(1))

{a′/q0} . . .�q0oo {a′/qr0}
�q0oo

�

∂
**x

_

OO

y

so that drx = y in the q∞0 -BSS.
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We prove the converse using induction on r. The following map of short exact sequences

0 // Q(0)
q0 //

=

��

Q(0) //

/q0
��

Q(1) //

/q0
��

0

0 // Q(0) //

��

q−1
0 Q(0) //

/q0
��

Q(0)/q∞0
//

=

��

0

0 // Q(1)
/q0 // Q(0)/q∞0

q0 // Q(0)/q∞0
// 0

gives a commuting square

Cotors,t,uP (Q(1))
∂ //

��

Cotors+1,t−1,u
P (Q(0))

��
Cotors,t−1,u

P (Q(0)/q∞0 )
∂ // Cotors+1,t−1,u(Q(1)),

which proves the result for r = 1. For r > 1 we have

drx = y in the q∞0 -BSS
=⇒ dr−1x = 0 in the q∞0 -BSS (Lemma 2.4)
=⇒ dr−1x = 0 in the Q(0)-BSS (Induction)
=⇒ drx = y′ in the Q(0)-BSS for some y′ (Lemma 2.4)
=⇒ drx = y′ in the q∞0 -BSS (1st half of proof)
=⇒ dr−1x

′ = y′ − y in the q∞0 -BSS for some x′ (Corollary 2.6)
=⇒ dr−1x

′ = y′ − y in the Q(0)-BSS (Induction)
=⇒ drx = y in the Q(0)-BSS (Corollary 2.6)

which completes the proof.

We extend definition 2.8.

Definition 3.3.3. Suppose x ∈ Cotors,t,uP (Q(1)), y ∈ Cotors+1,t−r,u
P (Q(1)) and that drx = y. x is

a said to support a dr. If, in addition, y /∈ im dr−1 (which we may check for any of the differentials
in the corresponding infinite families), x is said to support a nontrivial differential.

3.4 The q−1
1 -Bockstein

We can mimic the construction of the q∞0 -BSS using the short exact sequence of P -comodules

0 // q−1
1 Q(1) // q−1

1 Q(0)/q∞0
q0 // q−1

1 Q(0)/q∞0
// 0.

Definition 3.4.1. The spectral sequence arising from the corresponding exact couple is called the
q−1

1 -Bockstein spectral sequence (q−1
1 -BSS). It has E1-page

Es,t,u,v1 (q−1
1 ) =

{
Cotors,t−v,uP (q−1

1 Q(1))v if v < 0

0 if v ≥ 0
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and dr has degree (1, 0, 0, r). The spectral sequence converges to CotorP (q−1
1 Q(0)/q∞0 ) and the

filtration degree is given by v. In particular, we have an identification

Es,t,u,v∞ (q−1
1 ) = F v Cotors,t,uP (q−1

1 Q(0)/q∞0 )/F v+1 Cotors,t,uP (q−1
1 Q(0)/q∞0 )

where, as in the q∞0 -BSS, F v = ker q−v0 for v ≤ 0. The identification is given by taking a permanent
cycle in the vth copy of CotorP (q−1

1 Q(1)), mapping it up to CotorP (q−1
1 Q(0)/q∞0 ) and pulling this

element back to the (−1)th copy of CotorP (q−1
1 Q(0)/q∞0 ).

We have an evident map of spectral sequences E∗,∗,∗,∗∗ (q∞0 ) −→ E∗,∗,∗,∗∗ (q−1
1 ).

3.5 Multiplicativity of the Bockstein spectral sequences

The Q(0)-BSS is multiplicative because Ω(P ;Q(0)) −→ Ω(P ;Q(1)) is a map of DG algebras.

Lemma 3.5.1. Suppose drx = y and drx
′ = y′ in the Q(0)-BSS. Then

dr(xx
′) = yx′ + (−1)|x|xy′.

Here |x| and |y| denote the cohomological gradings of x and y, respectively, since every element
of P , Q(0) and Q(1) lies in even u grading.

Proof. Suppose drx = y and drx
′ = y′.

We saw in the proof of Lemma 3.3.2 that there exist a, a′, b, b′ ∈ Ω(P ;Q(0)) such that their im-
ages in Ω(P ;Q(1)) represent x, x′, y, y′, respectively, and such that da = qr0b, da

′ = qr0b
′. The image

of aa′ ∈ Ω(P ;Q(0)) in Ω(P ;Q(1)) represents xx′ and the image of ba′ + (−1)|a|ab′ ∈ Ω(P ;Q(0)) in
Ω(P ;Q(1)) represents yx′+(−1)|x|xy′. Since d(aa′) = qr0(ba′+(−1)|a|ab′), the proof is complete.

Corollary 3.5.2. We have a multiplication

Es,t,u,v1 (Q(0))⊗ Es
′,t′,u′,v′

1 (Q(0)) −→ Es+s
′,t+t′,u+u′,v+v′

1 (Q(0))

restricting to

ker dr ⊗ im dr //

��

im dr

��

⋂
s ker ds ⊗

⋃
s im ds //

��

⋃
s im ds

��
ker dr ⊗ ker dr // ker dr

⋂
s ker ds ⊗

⋂
s ker ds //

⋂
s ker ds

im dr ⊗ ker dr //

OO

im dr

OO

⋃
s im ds ⊗

⋂
s ker ds //

OO

⋃
s im ds

OO

Thus we have induced maps

Es,t,u,vr (Q(0))⊗ Es′,t′,u′,v′r (Q(0)) −→ Es+s
′,t+t′,u+u′,v+v′

r (Q(0))

for 1 ≤ r ≤ ∞. Moreover,

Es,t,u,∗∞ (Q(0))⊗ Es′,t′,u′,∗∞ (Q(0)) −→ Es+s
′,t+t′,u+u′,∗

∞ (Q(0))

is the associated graded of the map

Cotors,t,uP (Q(0))⊗ Cotors
′,t′,u′

P (Q(0)) −→ Cotors+s
′,t+t′,u+u′

P (Q(0)).

21



Lemma 3.3.2 gives the following corollary to lemma 3.5.1.

Corollary 3.5.3. Suppose drx = y and drx
′ = y′ in the q∞0 -BSS. Then

dr(xx
′) = yx′ + (−1)|x|xy′.

The q∞0 -BSS is not multiplicative, in the sense that we do not have a strict analogue of Corol-
lary 3.5.2. This is unsurprising because CotorP (Q(0)/q∞0 ) does not have an obvious algebra struc-
ture. However, we do have a pairing between the Q(0)-BSS and the q∞0 -BSS converging to the
CotorP (Q(0))-module structure map of CotorP (Q(0)/q∞0 ).

An identical result to lemma 3.5.1 holds for the q−1
1 -BSS.

Lemma 3.5.4. Suppose drx = y and drx
′ = y′ in the q−1

1 -BSS. Then

dr(xx
′) = yx′ + (−1)|x|xy′.

Proof. Suppose that drx = y and drx
′ = y′ in the q−1

1 -BSS. For large enough s we obtain differentials
in the q∞0 -BSS:

drq
ps

1 x = qp
s

1 y, drq
ps

1 x
′ = qp

s

1 y
′.

[One sees this using the definition of q−1
1 Q(0)/q∞0 and the fact that filtered colimits commute with

tensor products and homology.] By corollary 3.5.3 we have

dr((q
ps

1 x)(qp
s

1 x
′)) = (qp

s

1 y)(qp
s

1 x
′) + (−1)|x|(qp

s

1 x)(qp
s

1 y
′)

i.e.

dr(q
2ps

1 (xx′)) = q2ps

1 (yx′ + (−1)|x|xy′)

in the q∞0 -BSS. Inspecting the proof of lemma 3.3.2 shows that this formula can be validated using

elements in Ω(P ;Mr+1) (see definition 1.5). Thus, we can divide through by q2ps

1 to obtain

dr(xx
′) = yx′ + (−1)|x|xy′

(as long as we chose s ≥ r).

4 The localization map

This section investigates the localization map

CotorP (Q(0)/q∞0 ) −→ CotorP (q−1
1 Q(0)/q∞0 ).

The results that we record are useful for transferring differentials between the Q(0)-BSS and the
q−1

1 -BSS. They also allows us to obtain information about the Adams spectral sequence for the
sphere (ASS-S0) from the LASS-∞.
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4.1 The trigraded perspective

Firstly, we make use of all three of our gradings to obtain information about the localization map.
Throughout this section s ≥ 0. Recall from [15] the definition of U(s) (which will be given in

II.6.1) and the following proposition.

Proposition 4.1.1 ([15, page 81]). The localization map Cotors,t,uP (Q(1)) −→ Cotors,t,uP (q−1
1 Q(1))

1. is injective if u < U(s− 1) + 2(p2 − 1)(t+ 1)− 2(p− 1);

2. is surjective if u < U(s) + 2(p2 − 1)(t+ 1)− 2(p− 1).

This allows us to prove the following lemma which explains how we can transfer differentials
between the q∞0 -BSS and the q−1

1 -BSS.

Lemma 4.1.2. Suppose u < U(s) + 2(p2 − 1)(t + 2) − 2(p − 1) so that proposition 4.1.1 gives a
surjection Es,t,u,∗1 (q∞0 ) −→ Es,t,u,∗1 (q−1

1 ) and an injection Es+1,t,u,∗
1 (q∞0 ) −→ Es+1,t,u,∗

1 (q−1
1 ).

Suppose x ∈ Es,t,u,∗1 (q∞0 ) maps to x ∈ Es,t,u,∗1 (q−1
1 ), y ∈ Es+1,t,u,∗

1 (q−1
1 ) and that drx = y in the

q−1
1 -BSS. Then y lies in Es+1,t,u,∗

1 (q∞0 ) and drx = y in the q∞0 -BSS.

Proof. We proceed by induction on r. The result is true in the case r = 1 where dr is a function.
Suppose r > 1. Then

drx = y in the q−1
1 -BSS

=⇒ dr−1x = 0 in the q−1
1 -BSS (Lemma 2.4)

=⇒ dr−1x = 0 in the q∞0 -BSS (Induction)
=⇒ drx = y′ in the q∞0 -BSS for some y′ (Lemma 2.4)

=⇒ drx = y′ in the q−1
1 -BSS (Map of SSs)

=⇒ dr−1x
′ = y′ − y in the q−1

1 -BSS for some x′ (Corollary 2.6)
=⇒ dr−1x

′ = y′ − y in the q∞0 -BSS (Induction)
=⇒ drx = y in the q∞0 -BSS (Corollary 2.6)

We remark that the map Es+1,t,u,∗
1 (q∞0 ) −→ Es+1,t,u,∗

1 (q−1
1 ) is an isomorphism since s ≥ 0 implies

U(s) < U(s+ 1). This means the statement about y lying in Es+1,t,u,∗
1 (q∞0 ) is actually trivial.

We obtain the following corollary, which can also be proved using lemma 1.5.2 of chapter III.
Our main proposition of the section follows quickly.

Corollary 4.1.3. Es,t,u,∗∞ (q∞0 ) −→ Es,t,u,∗∞ (q−1
1 ) is

1. injective if u < U(s− 1) + 2(p2 − 1)(t+ 2)− 2(p− 1);

2. surjective if u < U(s) + 2(p2 − 1)(t+ 2)− 2(p− 1).

Proposition 4.1.4. The localization map Cotors,t,uP (Q(0)/q∞0 ) −→ Cotors,t,uP (q−1
1 Q(0)/q∞0 ) is

1. injective if u < U(s− 1) + 2(p2 − 1)(t+ 2)− 2(p− 1);

2. surjective if u < U(s) + 2(p2 − 1)(t+ 2)− 2(p− 1).

Proof. We have CotorP (N) =
⋃
v F

v CotorP (N) and F 0 CotorP (N) = 0 when N = Q(0)/q∞0 and
N = q−1

1 Q(0)/q∞0 and so the result follows from corollary 4.1.3.
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4.2 The bigraded perspective

When we use the LASS-∞ to obtain information about the ASS-S0 the three gradings are combined
into two gradings. We prove analogous results to that of the previous section in a bigraded setting.

Definition 4.2.1. We have spectral sequences called the bigraded q∞0 -Bockstein spectral sequence
(bi-q∞0 -BSS) and the bigraded q−1

1 -Bockstein spectral sequence (bi-q−1
1 -BSS). They are reindexed

versions of the q∞0 -BSS and q−1
1 -BSS, respectively. They have E1-pages

Eσ,λ,v1 (bi-q∞0 ) =
⊕
s+t=σ
u+t=λ

Es,t,u,v1 (q∞0 ), Eσ,λ,v1 (bi-q−1
1 ) =

⊕
s+t=σ
u+t=λ

Es,t,u,v1 (q−1
1 )

and dr has degree (1, 0, r) in both spectral sequences.
They converge to CotorP (Q(0)/q∞0 ) and CotorP (q−1

1 Q(0)/q∞0 ), respectively, which are given
bigradings (σ, λ) by summing over the (s, t, u) with s+ t = σ and u+ t = λ. The filtration degree
is given by v in both spectral sequences and we have a map of spectral sequences E∗,∗,∗∗ (bi-q∞0 ) −→
E∗,∗,∗∗ (bi-q−1

1 ).

We note that the bigrading (σ, λ) reappears later on in II.4.1.2. The bigraded version of propo-
sition 4.1.1 is also given in [15].

Proposition 4.2.2 ([15, 4.7(a)]). The localization map Cotorσ,λP (Q(1)) −→ Cotorσ,λP (q−1
1 Q(1)) is

1. a surjection if σ ≥ 0 and λ < U(σ + 1)− 2p+ 1;

2. an isomorphism if σ ≥ 0 and λ < U(σ)− 2p+ 1.

Corollary 4.2.3. The localization map Cotorσ,λP (Q(1)) −→ Cotorσ,λP (q−1
1 Q(1)) is

1. a surjection if λ < p(p− 1)σ − 1;

2. an isomorphism if λ < p(p− 1)(σ − 1)− 1.

Proof. Consider g(σ) = p(p − 1)σ − U(σ) for σ ≥ 0. We have g(1) = p(p − 3) + 2 > 0 = g(0) and
g(σ + 2) = g(σ). Thus p(p− 1)σ − U(σ) ≤ p(p− 3) + 2 and so

p(p− 1)(σ − 1)− 1 ≤ [U(σ) + p(p− 3) + 2]− p(p− 1)− 1 = U(σ)− 2p+ 1.

Together with proposition 4.2.2 this proves the claim for σ ≥ 0. When σ < 0, Cotorσ,λP (Q(1)) = 0

and so the localization map is injective. We just need to prove that Cotorσ,λP (q−1
1 Q(1)) = 0 whenever

σ < 0 and λ < p(p−1)σ−1. We can only have [(λ−σ) + 1]/(p2−p−1) < σ < 0 if (λ−σ) + 1 < 0.
But then [(λ−σ)+1]/(2p−2) < σ < 0 and the vanishing line of corollary II.6.4 gives the result.

This allows us to prove bigraded versions of all the results of the previous subsection.

Lemma 4.2.4. Suppose λ + 1 < p(p − 1)(σ + 1) − 1 so that proposition 4.2.2 gives a surjection

Eσ,λ,∗1 (bi-q∞0 ) −→ Eσ,λ,∗1 (bi-q−1
1 ) and an isomorphism Eσ+1,λ,∗

1 (bi-q∞0 ) −→ Eσ+1,λ,∗
1 (bi-q−1

1 ).

Suppose x ∈ Eσ,λ,∗1 (bi-q∞0 ) maps to x ∈ Eσ,λ,∗1 (bi-q−1
1 ), y ∈ Eσ+1,λ,∗

1 (q∞0 ) = Eσ+1,λ,∗
1 (q−1

1 ) and
that drx = y in the q−1

1 -BSS. Then drx = y in the q∞0 -BSS.

Corollary 4.2.5. Eσ,λ,∗∞ (bi-q∞0 ) −→ Eσ,λ,∗∞ (bi-q−1
1 ) is
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1. a surjection if λ < p(p− 1)(σ + 1)− 2;

2. an isomorphism if λ < p(p− 1)σ − 2.

Proposition 4.2.6. The localization map Cotorσ,λP (Q(0)/q∞0 ) −→ Cotorσ,λP (q−1
1 Q(0)/q∞0 ) is

1. a surjection if λ < p(p− 1)(σ + 1)− 2;

2. an isomorphism if λ < p(p− 1)σ − 2.

5 Calculating E∞(q−1
1 )

In this section we compute E∞(q−1
1 ) explicitly and thus we understand CotorP (q−1

1 Q(0)/q∞0 ). The
four subsections proceed linearly through the argument although some of the more involved proofs
are omitted. Two sections are devoted to filling in the gaps: sections 7 and 8.

Let’s outline the argument we use.

1. We give an explicit description of CotorP (q−1
1 Q(1)) (corollary 5.1.4).

2. We compute two classes of differentials in the q−1
1 -BSS (theorem 5.2.10):

(a) We compute the first class of differentials by direct computation at the level of cochains
(proposition 5.2.4, section 7);

(b) We prove a Kudo transgression theorem for the Q(0)-BSS (proposition 5.2.6, section 8);

(c) We transfer differentials between the q−1
1 -BSS and the Q(0)-BSS (lemma 5.2.8) so that

the first class of differentials together with the Kudo transgression theorem determine
the second class of differentials (proposition 5.2.9).

3. By using the multiplicative properties of the q−1
1 -BSS we find an Fp-basis {1} ∪ {xα}α∈A ∪

{yα}α∈A of CotorP (q−1
1 Q(1)) such that for each α ∈ A, xα supports a differential drαxα = yα

in the q−1
1 -BSS (corollary 5.3.3, lemma 5.3.6).

4. We prove lemma 5.4.1 which shows how the result of (3) gives rise to an Fp-basis of E∞(q−1
1 ).

5.1 An explicit description of CotorP (q−1
1 Q(1))

We address the first item of our list in the form of corollary 5.1.4. We need to make a definition
and recall a result of Miller (theorem 5.1.2).

Definition 5.1.1. Let I be the ideal generated by the image of pth-power map P −→ P , x 7−→ xp.
P (1) is the quotient Hopf algebra P/I.

We can make Fp[q1] into an algebra in P (1)-comodules by defining q1 to be a comodule primitive.
The algebra map Q(1) −→ Q(1)/(q2, q3, . . .) = Fp[q1] makes the following diagram commute

q−1
1 Q(1) //

��

P ⊗ q−1
1 Q(1)

��
Fp[q1, q

−1
1 ] // P (1)⊗ Fp[q1, q

−1
1 ]

and so we have an induced map Ω(P ; q−1
1 Q(1)) −→ Ω(P (1);Fp[q1, q

−1
1 ]). The following is a theorem

of Miller (see [15, corollary 4.4]).
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Theorem 5.1.2. The map CotorP (q−1
1 Q(1)) −→ CotorP (1)(Fp[q1, q

−1
1 ]) is an isomorphism.

[ξi] and
∑p−1

j=1
(−1)j−1

j [ξ
j
i |ξ

p−j
i ] are cocycles in Ω(P (1)) and so they define elements hi,0 and bi,0

in CotorP (1)(Fp). The cohomology of a primitively generated Hopf algebra is well understood and
the following lemma is a consequence.

Lemma 5.1.3. CotorP (1)(Fp) = E[hi,0 : i > 0]⊗ Fp[bi,0 : i > 0].

Thus, we have the following corollary to theorem 5.1.2.

Corollary 5.1.4. CotorP (q−1
1 Q(1)) = Fp[q1, q

−1
1 ]⊗E[hi,0 : i > 0]⊗Fp[bi,0 : i > 0]. The trigradings

are as follows:

|q1| = (0, 1, 2(p− 1)), |hi,0| = (1, 0, 2(pi − 1)), |bi,0| = (2, 0, 2p(pi − 1)).

5.2 Miller’s conjecture [16]

We turn to the second item on our list, proving theorem 5.2.10. Firstly, we introduce some notation.

Notation 5.2.1. Let p[0] = 0 and p[i] = pi−1
p−1 for i ≥ 1. Note that p[i] = pi−1 + p[i−1] = p · p[i−1] + 1

for i ≥ 1.

Notation 5.2.2. Write JkK for qk1 , hi for hi,0 and bi for bi,0.

Notation 5.2.3. If x is a nonzero scalar multiple of y write x
.

= y.

The first class of differentials is described by the following proposition.

Proposition 5.2.4. In the q−1
1 -BSS we have, for j ≥ 1, dp[j]Jp

j−1K .
= J−p[j−1]Khj.

Proof. Postponed until section 7.

Using the multiplicative structure of the q−1
1 -BSS (lemma 3.5.4) we obtain the following corollary

to propostion 5.2.4.

Corollary 5.2.5.

1. Whenever j ≥ 1 we have dp[j]Jp
j + pj−1K .

= Jpj − p[j−1]Khj in the q−1
1 -BSS;

2. The following are equivalent:

(a) whenever i ≥ 1 we have dpi−1J−p[i]Khi
.

= J1− p[i+1]Kbi in the q−1
1 -BSS,

(b) whenever i ≥ 1 we have dpi−1Jpi+1 + pi − p[i]Khi
.

= Jp · [pi − p[i−1]]Kbi in the q−1
1 -BSS.

We now introduce the Kudo transgression result together with a useful lemma.

Proposition 5.2.6 (Kudo transgression). Suppose x ∈ Cotor0,∗,∗
P (Q(1)), y ∈ Cotor1,∗,∗

P (Q(1)) and
that drx = y in the Q(0)-BSS. Then we have d(p−1)rx

p−1y
.

= 〈y〉p. 〈y〉p will be defined in the course
of the proof.

Proof. Postponed until section 8.

Lemma 5.2.7. 〈Jpi − p[i−1]Khi〉p = Jp · [pi − p[i−1]]Kbi in CotorP (Q(1)).
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Proof. Postponed until section 8 (see subsection 8.7).

We now introduce the lemma, which allows us to transfer differentials between the q−1
1 -BSS and

the Q(0)-BSS.

Lemma 5.2.8. For i, j ≥ 1, Jpj + pj−1K, Jpj − p[j−1]Khj, Jpi+1 + pi− p[i]Khi and Jp · [pi− p[i−1]]Kbi,
elements of CotorP (q−1

1 Q(1)), have unique lifts to CotorP (Q(1)). In addition,

1. whenever j ≥ 1 we have dp[j]Jp
j + pj−1K .

= Jpj − p[j−1]Khj in the Q(0)-BSS;

2. the following are equivalent:

(a) whenever i ≥ 1 we have dpi−1J−p[i]Khi
.

= J1− p[i+1]Kbi in the q−1
1 -BSS;

(b) whenever i ≥ 1 we have dpi−1Jpi+1 + pi − p[i]Khi
.

= Jp · [pi − p[i−1]]Kbi in the Q(0)-BSS.

Proof. We have

Jpj + pj−1K ∈ E0,pj−p[j−1]−1,2pj−1(p2−1),−p[j]−1
1 (q−1

1 );

Jpj − p[j−1]Khj ∈ E1,pj−p[j−1]−1,2pj−1(p2−1),−1
1 (q−1

1 );

Jpi+1 + pi − p[i]Khi ∈ E1,pi+1−p[i],2pi(p2−1),−pi
1 (q−1

1 );

Jp · [pi − p[i−1]]Kbi ∈ E2,pi+1−p[i],2pi(p2−1),−1
1 (q−1

1 );

and so by proposition 4.1.1, corollary 5.2.5, lemma 4.1.2 and lemma 3.3.2 it is enough to show that

2pj−1(p2 − 1) < U(0) + 2(p2 − 1)(pj − p[j−1] + 1)− 2(p− 1)

and 2pj(p2 − 1) < U(0) + 2(p2 − 1)(pj+1 − p[j] + 2)− 2(p− 1)

These inequalities are equivalent to pj−1 +(p+1)p[j−1] < pj+1 +p and pj+(p+1)p[j] < pj+2 +2p+1,
respectively, so we are done.

The second class of differentials is described by the following proposition.

Proposition 5.2.9. In the q−1
1 -BSS we have, for i ≥ 1, dpi−1J−p[i]Khi

.
= J1− p[i+1]Kbi

Proof. By lemma 5.2.8 part 2 it is equivalent to show that whenever i ≥ 1, we have

dpi−1Jp
i+1 + pi − p[i]Khi

.
= Jp · [pi − p[i−1]]Kbi

in the Q(0)-BSS. By lemma 5.2.8 part 1 we have dp[i]Jp
i + pi−1K .

= Jpi − p[i−1]Khi in the Q(0)-BSS
whenever i ≥ 1.

Let x = Jpi + pi−1K and y = Jpi− p[i−1]Khi then xp−1y = Jpi+1 + pi− p[i]Khi. Applying the Kudo
transgression (proposition 5.2.6) and using lemma 5.2.7 finishes the proof.

Together, proposition 5.2.4 and proposition 5.2.9 give the following theorem, a conjecture of
Miller’s (see [16]).

Theorem 5.2.10. In the q−1
1 -BSS we have, for i, j ≥ 1, the following differentials:

1. dp[j]Jp
j−1K .

= J−p[j−1]Khj;

2. dpi−1J−p[i]Khi
.

= J1− p[i+1]Kbi.
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5.3 Generating all the nontrivial differentials in the q−1
1 -BSS

In this subsection we use theorem 5.2.10 together with the multiplicative structure of the q−1
1 -BSS

(lemma 3.5.4) to obtain all the nontrivial differentials in the q−1
1 -BSS.

The main result is simple to prove as long as one has the correct picture in mind; otherwise,
the proof may seem rather opaque. Figure I.1 on page 29 displays some of Christian Nassau’s chart
[19] for E2(ASS-S0) when p = 3. His chart tells us about the object we are trying to calculate in a
range by proposition 4.1.4 and the facts that E2(ASS-S0) = CotorP (Q(0)) and

Σs CotorP (Q(0)/q∞0 )/ Fp 〈qt0 : t < 0〉 = CotorP (Q(0))/ Fp [q0]. (5.3.1)

A q0-tower corresponds to a differential in the Q(0)-BSS. Labels at the top of towers are the sources
of the corresponding Bockstein differentials; labels at the bottom of towers are the targets of the
corresponding Bockstein differentials. We note that the part of figure I.1 in grey is not displayed
in Nassau’s charts and is deduced from the results of this section.

Recall from corollary 5.1.4 that CotorP (q−1
1 Q(1)) is a polynomial algebra tensored with an

exterior algebra. Thus, we have a convenient Fp-basis for it, given by monomials in q1, the hi’s and
the bi’s. We need some notation to clarify matters.

Notation 5.3.2. Suppose given I = (i1, . . . , ir), J = (j1, . . . , js) and K = (k1, . . . , kr) such that
i1 > . . . > ir ≥ 1, j1 > . . . > js ≥ 1 and ka ≥ 0 for a ∈ {1, . . . , r}. We write

1. bKI hJ for the monomial bk1i1 · · · b
kr
ir
hj1 · · ·hjs ;

2. NI,J,K for
∑

a ka(1− p[ia+1])−
∑

c p
[jc−1];

3. J − 1 for (j1, . . . , js−1) if s ≥ 1;

4. K − 1 for (k1, . . . , kr − 1) if r ≥ 1 and kr ≥ 1.

Notice that the indexing of a monomial in the hi’s and bi’s by I, J and K is unique once we
impose the conditions i1 > . . . > ir ≥ 1, j1 > . . . > js ≥ 1 and ka ≥ 1 for a ∈ {1, . . . , r}. Moreover,
{JMKbKI hJ} gives a basis for CotorP (q−1

1 Q(1)).

Here is the corollary to theorem 5.2.10 which completely describes all the nontrivial differentials
in the q−1

1 -BSS.

Corollary 5.3.3. Suppose given I = (i1, . . . , ir), J = (j1, . . . , js) and K = (k1, . . . , kr) such that
i1 > . . . > ir ≥ 1, j1 > . . . > js ≥ 1 and ka ≥ 1 for a ∈ {1, . . . , r}.

Suppose s ≥ 1, that either r = 0 or r ≥ 1 and ir ≥ js, and that p - k ∈ Z. We have

dp[js]Jkp
js−1K

[
JNI,J−1,KKbKI hJ−1

]
.

= J(k − 1)pjs−1K
[
JNI,J,KKbKI hJ

]
. (5.3.4)

Suppose r ≥ 1, that either s = 0 or s ≥ 1 and ir < js and that k ∈ Z. We have

dpir−1Jkp
irK
[
J−p[ir]Khir

][
JNI,J,K−1KbK−1

I hJ

]
.

= JkpirK
[
JNI,J,KKbKI hJ

]
. (5.3.5)
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Figure I.1: A portion of Eσ,λ2 (ASS-S0) when p = 3
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Proof. By theorem 5.2.10 and lemma 2.7 JNI,J,KKbKI hJ is a permanent cycle. The first class of
differentials is verified by observing that dp[js]Jkp

js−1K .
= J(k − 1)pjs−1KJ−p[js−1]Khjs . The second

class of differentials is verified by observing that

dpir−1Jkp
irK = 0 and dpir−1J−p[ir]Khir

.
= J1− p[ir+1]Kbir .

The content of the next lemma is that corollary 5.3.3 describes all of the nontrivial differentials
in the q−1

1 -BSS.

Lemma 5.3.6. The union

{1}∪{x : x is a source of one of the differentials in corollary 5.3.3}
∪{y : y is a target of one of the differentials in corollary 5.3.3}

is a basis for CotorP (q−1
1 Q(1)). Moreover, the sources and targets of the differentials in corollary

5.3.3 are distinct and never equal to 1.

Proof. We note that for any M 6= 0, JMK is the source of a differential like the one in (5.3.4).

Take I, J and K as in (5.3.4). We wish to show that JMKbKI hJ is the source or target of one of
the differentials in corollary 5.3.3. There are three cases (the second case is empty if js = 1):

1. M = (k − 1)pjs−1 +NI,J,K for some k ∈ Z with p - k.

2. M = kpjs+1−1 +NI,J,K for some k ∈ Z with p - k and some js+1 ≥ 1 with js > js+1.

3. M = (kp− 1)pjs−1 +NI,J,K for some k ∈ Z.

In the first case JMKbKI hJ is the target of the differential (5.3.4). In the second case, JMKbKI hJ
is the source of a differential like the one in (5.3.4). In the third case, JMKbKI hJ is the source of a
differential like the one in (5.3.5).

These cases are highlighted in figure I.1 when p = 3, J = (3), and I and K are empty. This
means that NI,J,K = −4 and the three cases are

1. M = 9(k − 1)− 4 for some k ∈ Z with 3 - k.

2. M = 3j−1k − 4 for some k ∈ Z with 3 - k and some j with 1 ≤ j < 3.

3. M = 9(3k − 1)− 4 for some k ∈ Z.

The first case is highlighted in blue when k = 5; the second case is highlighted in orange and we
see both the cases j = 1 and j = 2 occurring; the last case is highlighted in red when k = 2.

Take I, J and K as in (5.3.5). We wish to show that JMKbKI hJ is the source or target of one of
the differentials in corollary 5.3.3. There are two cases:

1. M = kpir +NI,J,K for some k ∈ Z.

2. M = kpjs+1−1 +NI,J,K for some k ∈ Z with p - k and some js+1 ≥ 1 with ir ≥ js+1.
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In the first case JMKbKI hJ is the target of the differential (5.3.5). In the second case, JMKbKI hJ is
the source of a differential like the one in (5.3.4).

These cases are highlighted in figure I.1 when p = 3, I = (2), K = (1) and J is empty. This
means that NI,J,K = −12 and the two cases are

1. M = 9k − 12 for some k ∈ Z with 3 - k.

2. M = 3j−1k − 12 for some k ∈ Z with 3 - k and some j with 1 ≤ j ≤ 2.

The first case is highlighted in blue when k = 5 and k = 6; the second case is highlighted in orange
and we see both the cases j = 1 and j = 2 occurring; the last case is highlighted in red when k = 2.

Since the empty sequences I, J and K together with those satisfying the conditions in (5.3.4) or
(5.3.5) make up all choices of I, J and K, and since {JMKbKI hJ} gives a basis for CotorP (q−1

1 Q(1))
(corollary 5.1.4), we have proved the first claim.

Careful inspection of the previous argument shows that this also proves the second claim.

5.4 Interpretting the q−1
1 -BSS

Finally, we address the fourth item of of our list and explain how our understanding of the q−1
1 -BSS

differentials allows us to determine an Fp-basis of E∗,∗,∗,∗∞ (q−1
1 -BSS). We use the following lemma.

Lemma 5.4.1. Suppose we have an indexing set A and an Fp-basis

{1} ∪ {xα}α∈A ∪ {yα}α∈A
of CotorP (q−1

1 Q(1)) such that each xα supports a differential drαxα = yα. Then we have an Fp-basis
of E∗,∗,∗,∗∞ (q−1

1 -BSS) given by

{〈1〉v : v < 0} ∪ {〈xα〉v : α ∈ A, −rα ≤ v < 0}.

In the above statement we intend for 1, the xα’s and the yα’s to be distinct as in lemma 5.3.6. The
notation 〈−〉v is used to denote the v-grading of an element.

Proof. Let v < 0. We see make some observations.

1. E∗,∗,∗,v1 ∩
⋃
s<r im ds has basis {yα : α ∈ A, rα < r}.

2. {yα : α ∈ A, rα = r} is independent in E∗,∗,∗,v1 /
(
E∗,∗,∗,v1 ∩

⋃
s<r im ds

)
.

3. E∗,∗,∗,v1 ∩
⋂
s<r ker ds has basis {1} ∪ {xα : α ∈ A, rα ≥ min{r,−v}} ∪ {yα : α ∈ A}.

4. E∗,∗,∗,v∞ =
(
E∗,∗,∗,v1 ∩

⋂
s ker ds

)
/
(
E∗,∗,∗,v1 ∩

⋃
s im ds

)
has basis {1} ∪ {xα : α ∈ A, rα ≥ −v}.

We see that 1 is a basis element for E∗,∗,∗,v∞ for all v < 0 and that xα is a basis element for E∗,∗,∗,v∞
as long as −rα ≤ v < 0. This completes the proof.

Corollary 5.4.2. E∗,∗,∗,∗∞ (q−1
1 -BSS) has basis

{〈1〉v : v < 0}

∪

{〈
Jkpjs−1K

[
JNI,J−1,KKbKI hJ−1

]〉
v

: I, J,K, k satisfy the conditions in (5.3.4), −p[js] ≤ v < 0}

∪

{〈
JkpirK

[
J−p[ir]Khir

][
JNI,J,K−1KbK−1

I hJ

]〉
v

: I, J,K, k satisfy (5.3.5), 1− pir ≤ v < 0}.

Of course, this allows us to find a basis of CotorP (q−1
1 Q(0)/q∞0 ) if we wish.
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Figure I.2: A portion of Eσ,λ2 (ASS-S0) when p = 3

6 The combinatorics for computing E3(LASS-∞)

Although setting up the localized Adams spectral sequence for the v1-periodic sphere v−1
1 S/p∞ is

delayed until section II.5 the computation of its E3-page can essentially be completed here. It is in
this sense that the algebra lies at the heart of our computation.

We return to figure I.1 which highlights other patterns too. In particular, after removing some
of the towers we obtain figure I.2 and we see that the remaining towers come in pairs, arranged
perfectly, so that there is a chance that they form an ayclic complex with respect to d2. Moreover,
the labelling at the top of the towers obeys a nice pattern with respect to this arrangement. If the
differentials do what we hope then we have

q35
1 h3 7−→ q36

1 b2, q
38
1 h3 7−→ q39

1 b2, q
45
1 h2 7−→ q46

1 b1, q
46
1 h2 7−→ q47

1 b1, q
46
1 h2h1 7−→ q47

1 b1h1,

and in each case this comes from replacing an hi+1 by q1bi. This resembles the following result of
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Miller concerning the localized Adams spectral sequence for v−1
1 S/p (LASS-1).

Theorem 6.1 ([17, 4.8]). We will see (II.5.2.4) that

Eσ,λ2 (LASS-1) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (q−1
1 Q(1))

and so E∗,∗2 (LASS-1) has a filtration given by

F ŝEσ,λ2 (LASS-1) =
⊕

s+t=σ, s≥ŝ
u+t=λ

Cotors,t,uP (q−1
1 Q(1)).

In the LASS-1 we have d2hi+1
.

= q1bi for i > 0, up to higher filtration.

This is precisely the result that we will use to compute E2(MAH). Although we delay setting up
this spectral sequence until section II.9 we will essentially perform the computation of its E2-page
now. The next proposition shows that the towers lining up as they do in figure I.2 is not a fluke.

Definition 6.2. Define an operator D on CotorP (q−1
1 Q(1)) by D(q1) = 0 = D(h1), D(hi+1) = q1bi

for i > 0, D(bi) = 0 for i > 0 and the property that it is a derivation (recall that the hi’s are odd
dimensional classes and the bi’s are even dimensional classes). We have D2 = 0.

Proposition 6.3. D induces an operation on E∗,∗,∗,∗∞ (q−1
1 ). Fix, i, j ≥ 1. Then D restricts to an

operation on the subspaces with basis
{〈1〉v : v < 0},{〈

Jkpjs−1K
[
JNI,J−1,KKbKI hJ−1

]〉
v

: I, J,K, k satisfy (5.3.4), js = j, −p[j] ≤ v < 0

}
and{〈

JkpirK
[
J−p[ir]Khir

][
JNI,J,K−1KbK−1

I hJ

]〉
v

: I, J,K, k satisfy (5.3.5), ir = i, 1− pi ≤ v < 0

}
,

respectively. Moreover, the homology of D on each of these subcomplexes has basis

{〈1〉v : v < 0},{〈
Jkpj−1K

〉
v

: p - k ∈ Z, −p[j] ≤ v < 0

}
and

{〈
JkpiK

[
J−p[i]Khi

]〉
v

: k ∈ Z, 1− pi ≤ v < 0

}
,

respectively.

Proof. The fact that we can set up the Mahowald spectral sequence (II.9.3) is the conceptual reason
for why D induces an operation on E∗,∗,∗,∗∞ (q−1

1 ). Presently, we need to show that D :
⋃
s im ds −→⋃

s im ds and that the basis elements above are mapped to linear combinations of each other in an
appropriate way.

We leave it to the reader to check that D :
⋃
s im ds −→

⋃
s im ds because this requires a similar

argument to the one discussed in detail below. The reader will find that if we apply D to the inner
expressions of (5.3.5) we obtain a valid formula. The same is true for (5.3.4) if js = 1; when js > 1
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replacing hjs by q1bjs−1 creates a term which is the boundary of a differential like that in (5.3.5)
(with the same k).

We concentrate on the basis elements listed above.
D(1) = 0 and so the claims concerning {〈1〉v : v < 0} are evident.
First fix j ≥ 1 and consider

x =

〈
Jkpjs−1K

[
JNI,J−1,KKbKI hJ−1

]〉
v

where I, J,K and k satisfy 5.3.4, js = j, and −p[j] ≤ v < 0. If s = 1 then D(x) = 0 so suppose
that s > 1 and let c ∈ {1, . . . , s− 1}. We wish to show that replacing hjc by q1bjc−1 in x gives an
element x′ of the same form as x. Let I ′, J ′,K ′ be obtained from I, J,K by imposing

1. bK
′

I′ hJ ′−1 is obtained from bKI hJ−1 by replacing hjc by bjc−1;

2. i′1 > . . . > i′r′ ≥ 1;

3. s′ = s− 1 and j′1 > . . . > j′s′ = j;

4. ka ≥ 1 for all a ∈ {1, . . . , r′}.

Notice that jc > j ≥ 1. Moreover, r′ ≥ 1, i′r′ ≥ j′s′ and if we let k′ = k + pjc−j then p - k′ ∈ Z. We
have just observed that I ′, J ′,K ′, and k′ satisfy 5.3.4. Finally,

k′pj
′
s′−1 +NI′,J ′−1,K′ = (k + pjc−j)pj−1 + [NI,J−1,K + (1− p[jc]) + p[jc−1]]

= (kpj−1 + pjc−1) + [NI,J−1,K + 1− pjc−1]

= [kpjs−1 +NI,J−1,K ] + 1

so that replacing hjc by q1bjc−1 in x gives

x′ =

〈
Jk′pj

′
s′−1K

[
JNI′,J ′−1,K′KbK

′
I′ hJ ′−1

]〉
v

an element of the same form as x. Since D is a derivation, this shows that D induces an operation
on the second subspace of the proposition. The claim about the homology is true because

(E[hi : i > j]⊗ Fp[bi : i ≥ j] : dhi+1 = bi)

has homology Fp.
Secondly, consider

y =

〈
JkpirK

[
J−p[ir]Khir

][
JNI,J,K−1KbK−1

I hJ

]〉
v

where I, J,K and k satisfy 5.3.5, ir = i, and 1− pi ≤ v < 0.
Firstly, we wish to show the term obtained from applying D to hir is trivial. If ir = 1 then

D(hir) = 0 so suppose that ir > 1. Let I ′, J ′,K ′ be obtained from I, J,K by imposing

1. bK
′

I′ hJ ′ = bir−1b
K−1
I hJ ;
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2. i′1 > . . . > i′r′ = ir − 1;

3. J ′ = J ;

4. ka ≥ 1 for all a ∈ {1, . . . , r′}.

Let k′ = kp. Then I ′, J ′,K ′ and k′ satisfy 5.3.5 and replacing hir by q1bir−1 in y gives

y′ =

〈
JkpirK

[
J1− p[ir]Kbir−1

][
JNI,J,K−1KbK−1

I hJ

]〉
v

=

〈
Jk′pi

′
r′ K
[
JNI′,J ′,K′KbK

′
I′ hJ ′

]〉
v

= 0,

where the last eqality comes from 5.3.5. We deduce that when applying D the only terms of interest
come from applying D to the bK−1

I hJ part of y.

If s = 0 then D(y) = 0 so suppose that s > 0 and let c ∈ {1, . . . , s}. We wish to show that
replacing hjc by q1bjc−1 in y gives an element y′ of the same form as y. Let I ′, J ′,K ′ be obtained
from I, J,K by imposing

1. bK
′−1

I′ hJ ′ is obtained from bK−1
I hJ by replacing hjc by bjc−1 for some c ∈ {1, . . . , s};

2. i′1 > . . . > i′r′ = i;

3. s′ = s− 1 and j′1 > . . . > j′s′ ;

4. ka ≥ 1 for all a ∈ {1, . . . , r′}.

Notice that jc > i ≥ 1 so that k′ = k + pjc−i−1 ∈ Z. I ′, J ′,K ′ and k′ satisfy 5.3.5. Moreover,

k′pi
′
r′ − p[i′

r′ ] +NI′,J ′,K′−1 = (k + pjc−i−1)pi − p[i] + [NI,J,K−1 + (1− p[jc]) + p[jc−1]]

= (kpi + pjc−1)− p[i] + [NI,J,K−1 + 1− pjc−1]

= [kpir − p[ir] +NI,J,K−1] + 1

so that replacing hjc by q1bjc−1 in y gives

y′ =

〈
Jk′pi

′
r′ K
[
J−p[i′

r′ ]Khi′
r′

][
JNI′,J ′,K′−1KbK

′−1
I′ hJ ′

]〉
v

,

an element of the same form as y. Since D is a derivation, this shows that D induces an operation
on the third subspace of the proposition. The claim about the homology is true because

(E[hj : j > i]⊗ Fp[bj : j ≥ i] : dhj+1 = bj)

has homology Fp.

35



7 Proof of proposition 5.2.4, the first class of differentials

7.1 The strategy

We prove that there exist cocyles xj ∈ Ω(P ; q−1
1 Q(0)/q∞0 ) and yj ∈ Ω(P ; q−1

1 Q(1)) such that in the
diagram

Ω(P ; q−1
1 Q(0)/q∞0 ) Ω(P ; q−1

1 Q(0)/q∞0 )
qp

[j]−1
0oo

q0d(−/q0)

++
Ω(P ; q−1

1 Q(1))

��

OO

Ω(P ; q−1
1 Q(1))

��
Ω(P (1);Fp[q1, q

−1
1 ]) Ω(P (1);Fp[q1, q

−1
1 ])

we have

q−1
0 qp

j−1

1 xj
�qp

[j]−1
0oo �

q0d(−/q0)

++qp
j−1

1_

��

_

OO

yj_

��

qp
j−1

1 (−1)j−1[ξj ]q
−p[j−1]

1 .

Here (−/q0) denotes the function on Ω(P ; q−1
1 Q(0)/q∞0 ) with the following two properties:

1. x/q0 is mapped to x under multiplication by q0;

2. the denominators of the terms in x/q0 have q0 raised to a power greater than or equal to 2.

The author hopes it is clear that q0d(−/q0) denotes the function on cocycles of Ω(P ; q−1
1 Q(0)/q∞0 ),

which appears when applying the snake lemma to the short exact sequence

0 // q−1
1 Q(1) // q−1

1 Q(0)/q∞0
q0 // q−1

1 Q(0)/q∞0
// 0.

We note that xj determines yj and that once we pass to homology the first diagram above becomes

CotorP (q−1
1 Q(0)/q∞0 ) CotorP (q−1

1 Q(0)/q∞0 )
qp

[j]−1
0oo

∂

++
CotorP (q−1

1 Q(1))

∼=
��

OO

CotorP (q−1
1 Q(1))

∼=
��

CotorP (1)(Fp[q1, q
−1
1 ]) CotorP (1)(Fp[q1, q

−1
1 ])

so that what we prove does, in fact, prove propostion 5.2.4.
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7.2 j = 1 and j = 2

We proceed by induction. The j = 1 and j = 2 cases are

x1 = q−1
0 q1 �

q0d(−/q0)

,,
q1_

��

_

OO

y1 = [ξ1]
_

��
q1 [ξ1]

and

q−1
0 qp1 x2 = q−p−1

0 qp1 − q
−1
0 q−1

1 q2
�qp0oo

�
q0d(−/q0)

,,
qp1_

��

_

OO

y2 = [ξ2]q−1
1 + [ξ1]q−2

1 q2_

��
qp1 −[ξ2]q−1

1 .

7.3 The inductive step

Suppose we have proved the case j = n, where n ≥ 1. So we have cocycles xn and yn such that

q−1
0 qp

n−1

1 xn
�qp

[n]−1
0oo �

q0d(−/q0)

++qp
n−1

1 _

��

_

OO

yn_

��

qp
n−1

1 (−1)n−1[ξn]q−p
[n−1]

1 .

Write P̃ 0xn and P̃ 0yn for the cochains in which we have raised every symbol to the pth power.
We prove in lemma 7.5.1 that P̃ 0xn is a cocycle. One can see directly that P̃ 0yn is a cocycle.

Since the map Ω(P ; q−1
1 Q(1))→ Ω(P (1);Fp[q1, q

−1
1 ]) is a homology isomorphism (theorem 5.1.2)

and ξpn = 0 in P (1), we can write P̃ 0yn = dwn for some wn ∈ Ω(P ; q−1
1 Q(1)).
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Lemmas 7.5.1 and 7.5.2 of subsection 7.5 imply that in the diagram

Ω(P ; q−1
1 Q(0)/q∞0 ) Ω(P ; q−1

1 Q(0)/q∞0 )
qp

[n+1]−2
0oo

q0d(−/q0)

++
Ω(P ; q−1

1 Q(1))

��

OO

Ω(P ; q−1
1 Q(1))

��
Ω(P (1);Fp[q1, q

−1
1 ]) Ω(P (1);Fp[q1, q

−1
1 ])

we have

q−1
0 qp

n

1 P̃ 0xn
�qp

[n+1]−2
0oo

�
q0d(−/q0)

,,
qp
n

1_

��

_

OO

P̃ 0yn = dwn_

��

qp
n

1 (−1)n−1[ξpn]q−p·p
[n−1]

1 = 0.

We summarise some of the information in the following diagram.

Ω(P ; q−1
1 Q(1)) // Ω(P ; q−1

1 Q(0)/q∞0 ) // Ω(P ; q−1
1 Q(0)/q∞0 )

wn_

d
��

q−1
0 P̃ 0xn

� //
_

d
��

P̃ 0xn

P̃ 0yn
� // q−1

0 P̃ 0yn

Let xn+1 = q−1
0 P̃ 0xn − q−1

0 wn, a cocycle in Ω(P ; q−1
1 Q(0)/q∞0 ) and yn+1 = q0d(xn+1/q0), a cocycle

in Ω(P ; q−1
1 Q(1)). Then

q−1
0 qp

n

1 xn+1
�qp

[n+1]−1
0oo

�
q0d(−/q0)

,,
qp
n

1_

��

_

OO

yn+1_

��

qp
n

1 (−1)n[ξn+1]q−p
[n]

1 ?

and we are left with showing that yn+1 is mapped to (−1)n[ξn+1]q−p
[n]

1 .
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7.4 The image of yn+1 in Ω(P (1);Fp[q1, q
−1
1 ]): completing the inductive step

Ω(P ; q−1
1 Q(1)) // Ω(P ; q−1

1 Q(0)/q∞0 ) // Ω(P ; q−1
1 Q(0)/q∞0 )

q−1
0 xn+1 = q−2

0 P̃ 0xn − q−2
0 wn

� //
_

d
��

xn+1

yn+1
� // q−1

0 yn+1

We wish to show that the image of yn+1 in Ω(P (1);Fp[q1, q
−1
1 ]) is (−1)n[ξn+1]q−p

[n]

1 . We note that
we can ignore all contributions from d(q−2

0 P̃ 0xn), for they involve ξj ’s raised to the p (to see this
one can use (7.5.3)). Let

w′n = wn + (−1)nq−p
[n]

1 qn+1 ∈ Ω(P ; q−1
1 Q(1))

so that
−q−2

0 wn = (−1)nq−2
0 q−p

[n]

1 qn+1 − q−2
0 w′n ∈ Ω(P ; q−1

1 Q(0)/q∞0 ).

We consider the contributions from the two terms in this expression separately.

7.4.1 (−1)nd(q−2
0 q−p

[n]

1 qn+1)

Firstly, we consider the contribution from (−1)nd(q−2
0 q−p

[n]

1 qn+1). Recall definitions 1.5 and 1.7.
We have a P -comodule map

M2(p[n−1] + 1) −→ q−1
1 M2 ⊂ q−1

1 Q(0)/q∞0 , q−2
0 qp−1

1 qn+1 7−→ q−2
0 q−p

[n]

1 qn+1.

Under Q(0) −→ P ⊗Q(0)

qp−1
1 7−→

∑
i+j=p−1

(−1)iξi1 ⊗ qi0q
j
1 and qn+1 7−→

∑
r+s=n+1

ξp
s

r ⊗ qs.

Under q−1
0 Q(0) −→ P ⊗ q−1

0 Q(0)

q−2
0 qp−1

1 qn+1 7−→
∑

i+j=p−1

∑
r+s=n+1

(−1)iξi1ξ
ps

r ⊗ qi−2
0 qj1qs

so that q−1
1 Q(0)/q∞0 −→ P ⊗ q−1

1 Q(0)/q∞0 takes

(−1)nq−2
0 q−p

[n]

1 qn+1 7−→
∑

i+j=p−1
i=0,1

∑
r+s=n+1

(−1)i+nξi1ξ
ps

r ⊗ qi−2
0 q

j−p(p[n−1]+1)
1 qs.

We know that terms involving q−2
0 must eventually cancel in some way so we ignore these. Because

we are concerned with an image in Ω(P (1);Fp[q1, q
−1
1 ]) we ignore terms involving ξj ’s raised to a

power greater than or equal to p and terms involving qj ’s other than q1 and q−1
0 . Since n ≥ 1, we

are left with the term corresponding to s = 0, r = n+ 1, i = 0 and j = p− 1: it is

(−1)nξn+1 ⊗ q−1
0 q−p

[n]

1 .
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7.4.2 d(q−2
0 w′n)

We have almost shown that the image of yn+1 in Ω(P (1);Fp[q1, q
−1
1 ]) is (−1)n[ξn+1]q−p

[n]

1 ; we just
need to show that d(q−2

0 w′n) contributes nothing to the image of yn+1 in Ω(P (1);Fp[q1, q
−1
1 ]).

First, we make a critical observation. Recall that

w′n = wn + (−1)nq−p
[n]

1 qn+1 ∈ Ω(P ; q−1
1 Q(1))

and that dwn = P̃ 0yn.

Lemma 7.4.2.1. The terms of

dw′n = P̃ 0yn + (−1)n
∑

i+j=n+1
i,j≥1

[ξp
j

i ]q−p
[n]

1 qj ∈ Ω(P ; q−1
1 Q(1))

involve a qj other than q1 or a ξj raised to a power greater than or equal to p2.

Proof. By the induction hypothesis

yn = (−1)n−1[ξn]q−p
[n−1]

1 + . . .

where the terms we have omitted involve a qj other than q1 or a ξj raised to a power greater than
or equal to p. So

P̃ 0yn = (−1)n−1[ξpn]q−p
[n]+1

1 + . . .

where the terms we have omitted involve a qj other than q1 or a ξj raised to a power greater than
or equal to p2. The term we have indicated cancels with the j = 1 term of the summation in the
lemma statement and this completes the proof.

We are now in a position to start work.
Suppose no power of q1 worse (more negative) than q−lp1 appears in w′n. Making use of the map

(see definitions 1.5 and 1.7)

Ω(P ;M2(l)) −→ Ω(P ; q−1
1 M2) ⊂ Ω(P ; q−1

1 Q(0)/q∞0 ), q−2
0 qlp1 w

′
n 7−→ q−2

0 w′n

it is sufficient to analyze d(q−2
0 qlp1 w

′
n): viewing qlp1 w

′
n as lying in Ω(P ;Q(0)), we care about terms

of d(qlp1 w
′
n) involving a single power of q0. We have the following corollary to lemma 7.4.2.1.

Corollary 7.4.2.2. The terms of dqlp1 w
′
n = qlp1 dw

′
n ∈ Ω(P ;Q(1)) involve a qj other than q1 or a ξj

raised to a power greater than or equal to p2.

For k1, . . . , kr ∈ {1, 2, . . . , p− 1} and 1 < n1 < . . . < nr we have

Q(1) −→ P ⊗Q(1), qk1n1
· · · qkrnr 7−→ ξk1pn1−1 · · · ξ

krp
nr−1 ⊗ q

∑
ki

1 + . . .

where the terms we have omitted involve qj ’s other than q1. This is the only way that the indicated
term can arise; there is no way to cancel it. Thus our critical observation (corollary 7.4.2.2) implies

that any monomial apppearing in qlp1 w
′
n must contain some qk (k > 1) raised to a power greater

than or equal to p. We conclude that the contribution from d(q−2
0 w′n) is zero in Ω(P (1);Fp[q1, q

−1
1 ]).

This completes the inductive step and the proof of the proposition 5.2.4 modulo the lemmas of
the next subsection.
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7.5 Two lemmas

We are just left two prove the two lemmas used in subsection 7.3

Lemma 7.5.1. Suppose that x ∈ Ω(P ; q−1
1 Q(0)/q∞0 ) is a cocycle. Then P̃ 0x ∈ Ω(P ; q−1

1 Q(0)/q∞0 )
is a cocyle. Moreover,

qp
[n]−1

0 x = q−1
0 qp

n−1

1 =⇒ qp
[n+1]−2

0 P̃ 0x = q−1
0 qp

n

1 .

Proof. Suppose that x and P̃ 0x involve negative powers of q0 at worst q−k0 and that x involves
negative powers of q1 at worst q−l1 . Then we have a sequence of injections

Ω(P ;Mk(lp)) // Ω(P ;Mk(l)) // Ω(P ; q−1
1 Mk) // Ω(P ; q−1

1 Q(0)/q∞0 )

qlp
k−1

1 x � // x � // x

qlp
k

1 P̃ 0x � // P̃ 0x � // P̃ 0x.

Since x is a cocycle in Ω(P ; q−1
1 Q(0)/q∞0 ), qlp

k−1

1 x is a cocycle in Ω(P ;Mk(l)). Thus qlp
k

1 P̃ 0x is a
cocycle in Ω(P ;Mk(lp)) and we see that P̃ 0x is a cocycle in Ω(P ; q−1

1 Q(0)/q∞0 ). Also,

qp
[n]−1

0 x = q−1
0 qp

n−1

1 =⇒ qp·p
[n]−p

0 P̃ 0x = q−p0 qp
n

1 =⇒ qp·p
[n]−1

0 P̃ 0x = q−1
0 qp

n

1

and since p · p[n] − 1 = p[n+1] − 2 we’re done.

Lemma 7.5.2. Suppose x ∈ Ω(P ; q−1
1 Q(0)/q∞0 ) is a cocycle and q0d(x/q0) = y ∈ Ω(P ; q−1

1 Q(1)).
Then q0d(P̃ 0x/q0) = P̃ 0y ∈ Ω(P ; q−1

1 Q(1)).

Proof. Suppose that x/q0 and P̃ 0x/qp0 involve negative powers of q0 at worst q−k0 and that x/q0

involves negative powers of q1 at worst q−l1 . Then we have a sequence of injections

Ω(P ;Mk(lp)) // Ω(P ;Mk(l)) // Ω(P ; q−1
1 Mk) // Ω(P ; q−1

1 Q(0)/q∞0 )

qlp
k−1

1 x/q0
� // x/q0

� // x/q0

qlp
k

1 P̃ 0x/qp0
� // P̃ 0x/qp0

� // P̃ 0x/qp0 .

We have

d(qlp
k

1 P̃ 0x/qp0) = P̃ 0d(qlp
k−1

1 x/q0) ∈ Ω(P ;Mk(l)) (7.5.3)

and so

d(P̃ 0x/qp0) = d(qlp
k

1 P̃ 0x/qp0)/qlp
k

1 = P̃ 0

[
d(qlp

k−1

1 x/q0)/qlp
k−1

1

]
= P̃ 0d(x/q0) ∈ Ω(P ; q−1

1 Q(0)/q∞0 ).

We obtain

q0d(P̃ 0x/q0) = q0d(qp−1
0 (P̃ 0x/qp0)) = qp0d(P̃ 0x/qp0) = P̃ 0(q0d(x/q0)) = P̃ 0y

where the penultimate equality comes from the preceding observation and this completes the proof.
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7.6 An illustration of the method

To illustrate the method notice that we have

x1 = q−1
0 q1, y1 = [ξ1], w1 = q−1

1 q2, w′1 = 0,

and
x2 = q−p−1

0 qp1 − q
−1
0 q−1

1 q2, y2 = [ξ2]q−1
1 + [ξ1]q−2

1 q2,

w2 = q−2p−1
1 qp+1

2 − q−p−1
1 q3, w′2 = q−2p−1

1 qp+1
2 .

8 Proof of proposition 5.2.6, the Kudo trangression

8.1 Notation

The reader should refer to [15, pages 75-76] for notation regarding twisting morphisms and twisted
tensor products. We write τ for the universal twisting morphism instead of [ ].

8.2 The strategy

Suppose given a connected commutative Hopf algebra P and a commutative algebra Q over P and
suppose that all nontrivial elements of P and Q have even degree. We will mimic theorem 3.1 of
[14] to define a natural operation

βP̃ 0 : Ω0(P ;Q) −→ Ω1(P ;Q).

Once this operation has been defined and we have observed its basic properties the proof of propo-
sition 5.2.6 follows quickly.

8.3 Homotopy commutativity of Ω(P ;Q) and Φ

The first step towards proving the existence of the operation βP̃ 0 is to describe a map

Φ : W ⊗ Ω(P ;Q)⊗p −→ Ω(P ;Q),

which acts as the θ in [14, theorem 3.1]. This can be obtained by dualizing the construction in [14,
lemma 11.3]. Conveniently, this has been written up in [5, lemma 2.3].

Let P be a commutative connected Hopf algebra and Q be a commutative algebra over P , i.e.
a commutative algebra, which is also a P -comodule, whose structure map is multiplicative.

0 // Q //

ψQ i0
��

0 //

i1
��

0 //

i2
��

. . .

0 // P ⊗Q d //

ε⊗1 r0

��

P ⊗ P ⊗Q d //

r1

��

P ⊗ P ⊗ P ⊗Q d //

r2

��

. . .

0 // Q // 0 // 0 // . . .

Consider the diagram above. The top and bottom row are equal to the chain complex consisting of
Q concentrated in cohomological degree zero and the middle row is the chain complex P⊗τ Ω(P ;Q).
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We have the counit ε : P → Fp and the coaction ψQ : Q→ P ⊗Q. The definition of a P -comodule
gives 1− ri = 0. We also have 1− ir = dS + Sd where S is the contraction defined by

S(p0[p1| . . . |ps]q) = ε(p0)p1[p2| . . . |ps]q.

Let Cp denote the cyclic group of order p and let W be the standard Fp[Cp]-free resolution of Fp (see
[5, definition 2.2]). Following Brüner’s account in [5, lemma 2.3], we can extend the multiplication
map displayed at the top of the following diagram and construct Φ, a Cp-equivariant map of DG
P -comodules (with Φ(Wi ⊗ (P ⊗τ Ω(P ;Q))⊗pj ) = 0 if pi > (p− 1)j).

Q⊗p //

e0⊗i⊗p
��

Q

i
��

W ⊗ (P ⊗τ Ω(P ;Q))⊗p
Φ // P ⊗τ Ω(P ;Q)

Precisely, we make the following definition.

Definition 8.3.1.
Φ : W ⊗ (P ⊗τ Ω(P ;Q))⊗p −→ P ⊗τ Ω(P ;Q)

is the map obtained by applying [5, lemma 2.3] to the following set up:

1. r = p, ρ = 〈(12 · · · p)〉 = Cp and V = W ;

2. (R,A) = (Fp, P ), M = N = Q and K = L = P ⊗τ Ω(P ;Q);

3. f : M⊗r −→ N is the iterated multiplication Q⊗p −→ Q.

Let’s recall the construction. Brüner defines

Φi,j : Wi ⊗ (P ⊗τ Ω(P ;Q))⊗pj −→ (P ⊗τ Ω(P ;Q))j−i

inductively. Other than a connectedness assumption we have not mentioned anything about the
gradings on P and Q in this subsection; the gradings here are all (co)homological gradings.

As documented in [20, page 325, A1.2.15] there is a natural associative multiplication

(P ⊗τ Ω(P ;Q))⊗∆ (P ⊗τ Ω(P ;Q)) −→ P ⊗τ Ω(P ;Q)

p[p1| · · · |ps]q · p′[p′1| · · · p′t]q′ =
∑
±pp′(0)[p1p

′
(1)| · · · |psp

′
(s)|q(1)p

′
1| · · · |q(t)p

′
t]q(t+1)q

′. (8.3.2)

Here,
∑
p′(0)⊗· · ·⊗p

′
(s) ∈ P

⊗(s+1) is the s-fold diagonal of p′ ∈ P and
∑
q(1)⊗· · ·⊗q(t+1) ∈ P⊗t⊗Q

is the t-fold diagonal of q ∈ Q. The sign is the usual one introduced when moving graded elements
past one another. Also, ⊗∆ denotes the internal tensor product in the category of P -comodules as
in [15, page 74]; one checks directly that the multiplication above is a P -comodule map.

Iterating this multiplication gives a map

(P ⊗τ Ω(P ;Q))⊗p −→ P ⊗τ Ω(P ;Q)

which determines Φ0,∗.
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Suppose we have defined Φi′,j for i′ < i. Since Φi,j = 0 for j < i we may suppose that we have
defined Φi,j′ for j′ < j. We define Φi,j using Cp-equivariance, the adjunction

P -comodules // Fp-modulesoo f � // f̃

and the contracting homotopy

T =

p∑
i=1

(ir)i−1 ⊗ S ⊗ 1p−i.

In particular, we define Φ̃i,j on ei ⊗ x by

Φ̃i,j = ([dΦi,j−1]∼ − [Φi−1,j−1(d⊗ 1)]∼)(1⊗ T ).

Our choice of Φ is natural in P and Q because we specified the multiplication determining Φ0,∗
and the contracting homotopy T in a natural way.

Applying Fp�P (−) shows that Φ restricts to a natural Cp-equivariant DG homomorphism

Φ : W ⊗ Ω(P ;Q)⊗p −→ Ω(P ;Q).

8.4 Φ and primitives in Q

Assume P and Q are as in subsection 8.3.

Definition 8.4.1. Suppose that x ∈ P ⊗τ Ω(P ;Q) and that q ∈ Q is a P -comodule primitive. We
write qx for x · 1[]q.

Lemma 8.4.2. Suppose that q ∈ Q is P -comodule primitive with even degree. Then

Φ(ei ⊗ qi1x1 ⊗ · · · qipxp) = q
∑
j ijΦ(ei ⊗ x1 ⊗ · · ·xp).

Proof. A special case of formula (8.3.2) gives

p′[p′1| · · · |p′s]q′ · 1[]q = p′[p′1| · · · |p′s]q′q.

Since q ∈ Q is a P -comodule primitive with even degree we also obtain

1[]q · p′[p′1| · · · p′t]q′ = p′[p′1| · · · |p′t]q′q;

left and right multiplication by 1[]q agree. This observation proves the i = 0 case of the result since
Φ0,∗(e0⊗−⊗ . . .⊗−) is is equal to the map (P ⊗Ω(P ;Q))⊗p −→ P ⊗Ω(P ;Q). We can now make
use of the inductive formula

Φ̃i,j = ([dΦi,j−1]∼ − [Φi−1,j−1(d⊗ 1)]∼)(1⊗ T ).

S, ε⊗ 1 and ψQ commute with multiplication by q and so 1⊗ T commutes with multiplication by
1⊗qi1⊗ . . .⊗qip . By an inductive hypothesis we can suppose Φi,j−1 and Φi−1,j−1 have the required
property. It follows that dΦi,j−1 and Φi−1,j−1(d⊗ 1) have the required property. The same is true
of their adjoints and so the result holds for the adjoint of Φi,j and thus for Φi,j itself.
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8.5 The operation βP̃ 0 : Ω0(P ;Q) −→ Ω1(P ;Q)

In this subsection we define βP̃ 0 : Ω0(P ;Q) −→ Ω1(P ;Q) and note a couple of its properties. One
should refer to the proof of [14, theorem 3.1]; this definition mimics that of βP0 : K0 −→ K−1. In
particular, we take q = s = 0 and the reader will note that we omit a ν(−1) in our definition.

Definition 8.5.1. Suppose that P is a connected commutative Hopf algebra, that Q is a commu-
tative algebra over P and suppose that all nontrivial elements of P and Q have even degree.

[The assumption on degree is to ensure that no panic about signs ensues as a result of reading
the discussion preceding [14, theorem 11.8].]

1. Let a ∈ Ω0(P ;Q) and let b = da ∈ Ω1(P ;Q).

2. We define tk ∈ Ω(P ;Q)⊗p for 0 < k < p; in the following two formulae juxtaposition denotes
tensor product. Write p = 2m+ 1 and define for 0 < k ≤ m

t2k = (k − 1)!
∑
I

bi1a2bi2a2 · · · bika2

summed over all k-tuples I = (i1, . . . , ik) such that
∑

j ij = p− 2k. Define for 0 ≤ k < m

t2k+1 = k!
∑
I

bi1a2 · · · bika2bik+1a

summed over all (k + 1)-tuples I = (i1, . . . , ik+1) such that
∑

j ij = p− 2k − 1.

3. Define c ∈W ⊗ Ω(P ;Q)⊗p by

c =
m∑
k=1

(−1)k [ep−2k−1 ⊗ t2k − ep−2k ⊗ t2k−1] .

4. βP̃ 0a is defined to be Φc.

The sum defining c involves t1, . . . , t2m. t2m is given by (m−1)!
∑m−1

i=0 a2iba2m−2i and the terms
in the sums defining t1, . . . , t2m−1 all involve at least two b’s.

We note that naturality of βP̃ 0 follows from the naturality of Φ.

Lemma 8.5.2 ([14, 3.1(8)]). With b and c as in definition 8.5.1 we have dc = −ep−2 ⊗ bp.

Corollary 8.5.3. With a and b as in definition 8.5.1 we have dβP̃ 0a = −Φ(ep−2 ⊗ bp).

8.6 The proof

We turn to the proof of the proposition. First, we make the requisite definition.

Definition 8.6.1. Assume P and Q are as in definition 8.5.1. Given b ∈ Ω1(P ;Q), we define 〈b〉p
to be Φ(ep−2⊗ bp). If y ∈ CotorP (Q) is represented by b, 〈y〉p is defined to be the class represented
by 〈b〉p.

〈y〉p is well-defined in the previous definition; this fact is used in [14, definition 2.2]. We are
now ready to prove the proposition.
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Proof of proposition 5.2.6. Looking back to the proof of lemma 3.3.2 we see that we can choose
a, b ∈ Ω(P ;Q(1)) together with lifts a′, b̃ ∈ Ω(P ;Q(0)) such that a, b, b̃ are cocycles, da′ = qr0 b̃, and
a, b represent the x, y in the proposition statement.

By the remarks after definition 8.5.1 and the fact that da′ = qr0 b̃, βP̃
0a′ is obtained by evaluating

Φ on a sum in which the symbol qr0 b̃ appears many times: one collection of terms contains precisely
one qr0 b̃ in each term and the others collections contain more than one qr0 b̃ in each term. By lemma
8.4.2 βP̃ 0a′ is divisible by qr0 and the image of (βP̃ 0a′)/qr0 in Ω(P ;Q(1)) is a unit multiple of the
image of Φ(e0 ⊗ t2m)/qr0 in Ω(P ;Q(1)). This latter image is equal to

γ = (m− 1)!
m−1∑
i=0

a2iba2m−2i

which represents a unit multiple of xp−1y. [In the formula above juxtaposition denotes multiplica-
tion.] Moreover, by corollary 8.5.3 and lemma 8.4.2, dβP̃ 0a′ is divisible by qpr0 and (dβP̃ 0a′)/qpr0 is
equal to a unit multiple of Φ(ep−2 ⊗ b̃p) = 〈b̃〉p. The image of this element in Ω(P ;Q(1)) is 〈b〉p.

We have shown that a unit multiple of (βP̃ 0a′)/qr0 lifts γ. Moreover,

d

(
(βP̃ 0a′)/qr0

)
= q

(p−1)r
0

(
(dβP̃ 0a′)/qpr0

)
.

= q
(p−1)r
0 〈b̃〉p

and 〈b̃〉p lifts 〈b〉p. Since γ represents a unit multiple of xp−1y and 〈b〉p respresents 〈y〉p we are done
by definition 2.2 and definition 3.1.1.

8.7 An auxilary calculation

We still need to prove lemma 5.2.7. We proceed by using the following lemma.

Lemma 8.7.1. Let P be the primitively generated Hopf algebra Fp[ξ]/(ξp) where |ξ| is even. Let h
and b be classes in CotorP (Fp) which are represented in ΩP by [ξ] and

p−1∑
j=1

(−1)j

j
[ξj |ξp−j ],

respectively. Then 〈h〉p .
= b.

Proof. This follows from remarks 6.9 and 11.1 of [14]. Beware of the different use of notation: our
〈y〉p is May’s βP̃ 0y and May defines 〈y〉p using the ∪1-product associated to ΩP .

The author thinks that the lemma above is true at the level of cochains. It is simple to check
for p = 3 but for p > 3 the calculation become tedious.

Proof of lemma 5.2.7. Lemma 8.7.1 shows that 〈hi〉p
.

= bi in CotorFp[ξi]/(ξ
p
i )(Fp). Since q1 is primi-

tive, definition 8.6.1 and lemma 8.4.2 show that

〈Jpi − p[i−1]Khi〉p = Jp · [pi − p[i−1]]Kbi

in CotorFp[ξi]/(ξ
p
i )(Fp[q1, q

−1
1 ]). We have homomorphisms

CotorP (Q(1)) // CotorP (q−1
1 Q(1)) // CotorP (1)(Fp[q1, q

−1
1 ]) CotorFp[ξi]/(ξ

p
i )(Fp[q1, q

−1
1 ]).oo
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The third is induced by the inclusion Fp[ξi]/(ξpi ) −→ P (1). Theorem 5.1.2 tells us that the second
is an isomorphism. Proposition 4.1.1 tells us the first is an isomorphism in a range; in lemma
5.2.8 we see that Jpi − p[i−1]hiK and Jp · [pi − p[i−1]]Kbi lie in this range and so have unique lifts to
CotorP (Q(1)). We are done by naturality of 〈−〉p.

9 Some differentials in the Q(0)-BSS

In this section we make note of some differentials in the Q(0)-BSS and observe that they give
nontrivial q0-towers in CotorP (Q(0)). These are of interest if we wish to analyze the differentials
in the ASS-S0 relevant to the image of J . This is not important for the main goal of the thesis but
it may be useful for future work on the ASS-S0.

Theorem 9.1. For i, j ≥ 1, k > 1, Jkpj−1−p[j]Khj, Jkpi−p[i]Khi, and Jkpi+1−p[i+1]Kbi, elements
of CotorP (q−1

1 Q(1)), have unique lifts to CotorP (Q(1)). In addition, in the Q(0)-BSS we have, for
i, j ≥ 1 and k > 1, the following differentials:

1. dp[j]Jkp
j−1K .

= Jkpj−1 − p[j]Khj if p - k;

2. dpi−1Jkpi − p[i]Khi
.

= Jkpi + 1− p[i+1]Kbi.

Proof. The differentials hold in the q−1
1 -BSS by theorem 5.2.10 and lemma 3.5.4. It is enough by

lemma 3.3.2 to prove that the differentials hold in the q∞0 -BSS. As in the proof of lemma 5.2.8 we
refer to proposition 4.1.1 and lemma 4.1.2. We note that

Jkpj−1K ∈E0,kpj−1−p[j]−1,2kpj−1(p−1),−p[j]−1
1 (q−1

1 );

Jkpj−1 − p[j]Khj ∈E1,kpj−1−p[j]−1,2kpj−1(p−1),−1
1 (q−1

1 );

Jkpi − p[i]Khi ∈E1,kpi−p[i+1],2kpi(p−1),−pi
1 (q−1

1 );

Jkpi + 1− p[i+1]Kbi ∈E2,kpi−p[i+1],2kpi(p−1),−1
1 (q−1

1 );

and so it is enough to show 2kpj−1(p−1) < U(0) + 2(p2−1)(kpj−1−p[j] + 1)−2(p−1). The worst
case is when k = 2 and in this case the inequality is equivalent to (p+ 1)p[j] < 2pj + p.

We rewrite the theorem using the more cumbersome notation hj,0 and bi,0 since we have cause
to use the second grading in the proposition which follows.

Theorem 9.2. In the Q(0)-BSS we have, for i, j ≥ 1 and k > 1, the following differentials:

1. dp[j]Jkp
j−1K .

= Jkpj−1 − p[j]Khj,0 if p - k;

2. dpi−1Jkpi − p[i]Khi,0
.

= Jkpi + 1− p[i+1]Kbi,0.

The following proposition takes care of the k = 1 case.

Proposition 9.3. For i ≥ 1, Jpi − p[i]Khi,0 has a unique lift to CotorP (Q(1)). Moreover, in the
Q(0)-BSS we have, for i, j ≥ 1, the following differentials:

1. dpj−1Jpj−1K .
= h1,j−1;

47



2. dpi−p[i]Jp
i − p[i]Khi,0

.
= b1,i−1.

Proof. Jpi− p[i]Khi ∈ Cotor
1,pi−p[i],2pi(p−1)
P (q−1

1 Q(1)). Moreover, pi + (p+ 1)p[i] + 1 < (p+ 1)(pi + 1)
which implies 2pi(p− 1) < U(0) + 2(p2 − 1)(pi − p[i] + 1)− 2(p− 1) and so proposition 4.1.1 gives
the first claim.

The first class of differentials follows from the following formulae in the cobar complex Ω(P ;Q(0)).

d
(
qp
j−1

1

)
=
[
ξp
j−1

1

]
qp
j−1

0

We turn to the second class of differentials. The proof is by an induction. Some of the ideas used
are similar in flavour to those in section 7. Because this result will not be used in the remainder of
the thesis we will not go through all the details.

The i = 1 case is verified by checking the following formula in Ω(P ;Q(0)).

d

p−1∑
j=1

(−1)j

j
[ξj1]qj−1

0 qp−j1

 =

p−1∑
j=1

(
p
j

)
p

[ξj1|ξ
p−j
1 ]qp−1

0

Suppose that for some n ≥ 1 we have x̃ and ỹ such that

Ω(P ;Q(0))

��

x̃_

��

� d // qp
n−p[n]

0 ỹ ỹ_

��

Ω(P ;Q(1))

��

x_

��

y =
∑p−1

j=1

(pj)
p [ξjp

n−1

1 |ξ(p−j)pn−1

1 ]

Ω(P (1);Fp[q1]) (−1)n[ξn]qp
n−p[n]

1

We can raise all expressions to the pth power to get

Ω(P ;Q(0))

��

z̃_

��

P̃ 0x̃_

��

� d // qp
n+1−p·p[n]

0 P̃ 0ỹ P̃ 0ỹ_

��

Ω(P ;Q(1))

��

z dz = P̃ 0x_

��

P̃ 0y =
∑p−1

j=1

(pj)
p [ξjp

n

1 |ξ(p−j)pn
1 ]

Ω(P (1);Fp[q1]) 0 = (−1)n[ξpn]qp
n+1−p·p[n]

1

We see that P̃ 0x̃ − dz̃ maps to zero in Ω(P ;Q(1)) and so it is divisible by q0. Let w̃ = P̃ 0x̃−dz̃
q0

.
Then

q0dw̃ = dq0w̃ = dP̃ 0x̃ = qp
n+1−p·p[n]

0 P̃ 0ỹ =⇒ dw̃ = qp
n+1−p[n+1]

0 P̃ 0ỹ.

The induction is completed by showing that the image of w̃ in Ω(P (1);Fp[q1]) is

(−1)n+1[ξn+1]qp
n+1−p[n+1]

1 ,
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for then we have the following diagram.

Ω(P ;Q(0))

��

w̃_

��

� d // qp
n+1−p[n+1]

0 P̃ 0ỹ P̃ 0ỹ_

��

Ω(P ;Q(1))

��

w_

��

P̃ 0y =
∑p−1

j=1

(pj)
p [ξjp

n

1 |ξ(p−j)pn
1 ]

Ω(P (1);Fp[q1]) (−1)n+1[ξn+1]qp
n+1−p[n+1]

1

P̃ 0x̃ will not contribute to the image of w̃ in Ω(P (1);Fp[q1]). We see that z must have a term equal
to

(−1)nqp
n+1−p[n+1]

1 qn+1

Thus −dz̃ has a term equal to (−1)n+1[ξn+1]q0q
pn+1−p[n+1]

1 . With care, one can complete the proof
by mimicking the methods of I.7.4.

Corollary 9.4. We have nonzero elements in E∗,∗,∗,∗∞ (q−1
0 )

{〈1〉v : v < 0}

∪

{〈
Jpj−1K

〉
v

: −pj−1 ≤ v < 0

}
∪

{〈
Jkpj−1K

〉
v

: p - k > 1, −p[j] ≤ v < 0,

}

∪

{〈
Jpi − p[i]Khi,0

〉
v

: p[i] − pi ≤ v < 0

}
∪

{〈
Jkpi − p[i]Khi,0

〉
v

: k > 1, 1− pi ≤ v < 0

}
,

where the i and j indices range over all positive integers.

Proof. The previous results together with lemma 3.3.2 show that the elements are permanent cycles.
Corollary 5.4.2 tells us that all the elements are nonzero in E∗,∗,∗,∗∞ (q−1

1 ).

This result can be interpretted as saying that certain elements in CotorP (q−1
1 Q(0)/q∞0 ) are

permanent cycles in the “chromatic spectral sequence” for CotorP (Q(0)) (see [15, section 5]). The
only boundaries on the 1-line are of the form qt0 for t < 0. Thus, the subgroup of permanent cycles
in CotorP (q−1

1 Q(0)/q∞0 )/ Fp 〈qt0 : t < 0〉 determines elements in CotorP (Q(0)). In particular, by
using the identification of (5.3.1) we obtain q0-towers in CotorP (Q(0)).

Corollary 9.5. We have nonzero elements in E∗,∗,∗,∗∞ (Q(0))

{〈1〉v : v ≥ 0}

∪

{〈
h1,j−1

〉
v

: 0 ≤ v < pj−1

}
∪

{〈
Jkpj−1 − p[j]Khj,0

〉
v

: p - k > 1, 0 ≤ v < p[j],

}

∪

{〈
b1,i−1

〉
v

: 0 ≤ v < pi − p[i]

}
∪

{〈
Jkpi + 1− p[i+1]Kbi,0

〉
v

: k > 1, 0 ≤ v < pi − 1

}
,

where the i and j indices range over all positive integers.
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For the elements in CotorP (q−1
1 Q(0)/q∞0 ) corresponding to{〈

Jpj−1K
〉
v

: −p[j] ≤ v < −pj−1

}
∪

{〈
Jpi − p[i]Khi,0

〉
v

: 1− pi ≤ v < p[i] − pi
}
⊂ E∗,∗,∗,∗∞ (q−1

1 )

we can ask about what differentials they support in the chromatic spectral sequence of [15]. We do
not say anything more about this problem.
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Chapter II

Adams spectral sequences

1 Main results and outline of chapter

Recall that the goal of this thesis is to compute the homotopy of the v1-periodic sphere v−1
1 S/p∞

using classical Adams spectral sequence methods and to use this computation to obtain information
about the classical mod p Adams spectral sequence for S0. Our main result of this chapter is the
following theorem.

Theorem 1.1. There is a spectral sequence with E2-page CotorP (q−1
1 Q(0)/q∞0 ) which converges to

π∗(v
−1
1 S/p∞). We call this the localized Adams spectral sequence for the v1-periodic sphere v−1

1 S/p∞

(LASS-∞).

In order to obtain information about the classical mod p Adams spectral sequence for S0 we
need two propositions.

Proposition 1.2. There is a spectral sequence with E2-page CotorP (Q(0)/q∞0 ) which converges to
π∗(S/p

∞), called the modified Adams spectral sequence for the Prüfer sphere S/p∞ (MASS-∞).
By construction there is a map of spectral sequences E∗,∗∗ (MASS-∞) −→ E∗,∗∗ (LASS-∞).

Proposition 1.3. Associated to the map Σ−1S/p∞ −→ S0 is a map of spectral sequences

E∗,∗∗ (MASS-∞) −→ E∗,∗∗ (ASS-S0).

At E2-pages this map can be identified with the connecting homomorphism

CotorP (Q(0)/q∞0 ) −→ CotorP (Q(0))

arising from the short exact sequences of P -comodules 0 −→ Q(0) −→ q−1
0 Q(0) −→ Q(0)/q∞0 −→ 0

(see definition I.1.4).

The LASS-∞ has an involved construction and there are many intermediate spectral sequences
to set up because the LASS-∞ is a direct limit of localized modified Adams spectral sequences. We
note that this spectral sequence is set up in [13] but we choose to give a self-contained exposition.

We begin the chapter by recalling the construction of the classical Adams spectral sequence
(ASS) for a p-complete spectrum. We proceed to show how this construction is altered to give a
modified Adams spectral sequence for S/pn (MASS-n). The work of Miller in [15] allows us to give
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convenient descriptions of E2(ASS-S0) and E2(MASS-n). By taking a direct limit of the MASS-n’s
we obtain a modified Adams spectral sequence for the Prüfer sphere S/p∞ (MASS-∞). We then
repeat the story, localizing throughout, to construct the LASS-n and the LASS-∞.

There are four technical issues which we have to battle against. We wish to give the MASS-n a
multiplicative structure. In order to set up the LASS-n we need to show that a particular element
in the MASS-n is a permanent cycle. We must show that our spectral sequences converge. We
must construct various maps between our spectral sequences.

Giving the MASS-n a multiplicative structure leads us to consider pointset level constructions
and these are addressed in chapter III, section 2. Section 1 of chapter III addresses the permanent
cycle issue.

The convergence problems associated to a localized Adams spectral sequence are considered in
[12, theorem 2.13]. The convergence problems associated to a modified Adams spectral sequence
are considered in [23, theorem 3.6]. Since we localize modified Adams spectral sequences the result
of [12] does not apply. We make explicit use of [23, 3.6] but we address all other convergence issues
in a self-contained manner in section 7. For this we need some results on vanishing lines which are
proved in section 6.

The hardest map of spectral sequences we need to construct would be given to us immediately
by a general geometric boundary. The cobar construction was useful for us in chapter I and we
imitate the algebra by using canonical resolutions for our Adams spectral sequences. This leads
to a pretty way of constructing the requisite map and we do not try and prove the most general
result.

In the final part of the chapter we set up two more spectral sequences which are needed to
calculate E3(LASS-∞) and we tie up all the loose ends in the main computation.

2 The classical Adams spectral sequence

In this section we recall the construction of the classical Adams spectral sequences along with some
of its properties. This section may be omitted as it contains nothing new for the expert.

2.1 The main result

Before stating the main result of the section we recall some notation.

Recall that P is the polynomial algebra on generators {ξn : n ≥ 1} where |ξn| = (0, 2(pn − 1))
and that P is a Hopf algebra when equipped with the Milnor diagonal

P −→ P ⊗ P, ξn 7−→
n∑
i=0

ξp
i

n−i ⊗ ξi, (ξ0 = 1).

Definition 2.1.1. Let E be the exterior Hopf algebra on primitive generators {τn : n ≥ 0} where
|τn| = (0, 2pn − 1). E is a Hopf algebra over P , i.e. we have a multiplicative map

E −→ P ⊗ E, τn 7−→
n∑
i=0

ξp
i

n−i ⊗ τi

which makes E a coalgebra over P .
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Since p > 2 the semi-tensor product Hopf algebra A = E⊗̃P is the dual of Steenrod algebra
and A-comodules are the same as E-comodules over P [15, pages 78, 75]. The reader should refer
to [15, pages 75-76] for notation regarding twisting morphisms and twisted tensor products. We
have a twisting morphism θ : E → Q(0) which takes 1 7−→ 0, τn 7−→ qn, and τn1 · · · τnr 7−→ 0 when
r > 1. We write τ for the universal twisting morphism instead of [ ].

The next proposition contains all the properties that we wish to recall about the classical Adams
spectral sequence.

Proposition 2.1.2. Let Y be a p-complete bounded below spectrum. There is a spectral sequence,
the Adams spectral sequence for Y , with E1-page Ω(A;H∗(Y )) and E2-page CotorP (Q(0)⊗θH∗(Y )).
Moreover, it converges to π∗(Y ) and is functorial in Y .

Suppose Y ′ is another p-complete bounded below spectrum. Then there is a pairing

E∗,∗∗ (ASS-Y )⊗ E∗,∗∗ (ASS-Y ′) −→ E∗,∗∗ (ASS-(Y ∧ Y ′))

converging to the smash product π∗(Y )⊗ π∗(Y ′) −→ π∗(Y ∧ Y ′) which, at the E1-page, agrees with
the multiplication

Ω(A;H∗(Y ))⊗ Ω(A;H∗(Y
′)) −→ Ω(A;H∗(Y )⊗∆ H∗(Y

′)) = Ω(A;H∗(Y ∧ Y ′))

and at the E2-page agrees with the multiplication

CotorP (Q(0)⊗θ H∗(Y ))⊗ CotorP (Q(0)⊗θ H∗(Y ′)) −→ CotorP (Q(0)⊗θ H∗(Y ∧ Y ′)).

This result is well-known and, of course, the spectral sequence is originally due to Adams. We
take convergence for granted but we recall how the other properties are verified. In this section we
address all the claims of the propostion except those concerning the E2-page; they will be verified
in section 4. We hope that recalling these arguments will help illuminate our later arguments.

2.2 Setting up the ASS-Y

Notation 2.2.1. Recall that S0 denotes the sphere spectrum completed at p. We write S for the
sphere spectrum, H for the Eilenberg-MacLane spectrum of type Fp (a ring spectrum), η : S −→ H
for the unit, H for the homotopy fiber of η and µ : H ∧H −→ H for the multiplication.

Let Y be the p-completion of a bounded below spectrum. Applying π∗(−) to the H-canonical
tower for Y

Y

η∧Y
��

H ∧ Yoo

��

. . .oo H
s ∧ Yoo

��

H
s+1 ∧ Yoo

��

. . .oo

H ∧ Y

88

H ∧H ∧ Y

::

H ∧Hs ∧ Y

66

H ∧Hs+1 ∧ Y

88

gives an exact couple.

Definition 2.2.2. The spectral sequence arising from this exact couple is called the classical Adams
spectral sequence for Y (ASS-Y ). It has E1-page

Es,t1 (ASS-Y ) =

{
πt−s(H ∧H

∧s ∧ Y ) = πt(H ∧ (ΣH)∧s ∧ Y ) if s ≥ 0

0 if s < 0
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and dr has degree (r, r − 1). The spectral sequence converges to π∗(Y ) and the filtration degree is
given by s. In particular, we have an identification

Es,t∞ (ASS-Y ) = F sπt−s(Y )/F s+1πt−s(Y )

where F sπ∗(Y ) = im(π∗(H
∧s ∧ Y ) −→ π∗(Y )). The identification is given by lifting an element of

F sπ∗(Y ) to π∗(H
∧s∧Y ) and mapping this lift down to π∗(H ∧H

∧s∧Y ) to give a permanent cycle.

2.3 Relation of E1(ASS-Y ) to the cobar construction

Throughout this subsection Y will denote a spectrum; one can set up the ASS for any spectrum Y
but it may not converge. Our goal is to identify E•,∗1 (ASS-Y ) with Ω(A;H∗(Y )). Firstly, we need
to fix notation and some identifications.

Notation 2.3.1. In this subsection and the beginning of the next we will write H for the homotopy
cofiber of η so that we have a cofibration sequence

S
η // H

p // H

and a split cofibration sequence

H
H∧η // H ∧H H∧p //

µ

yy
H ∧H.

s

ee

[Because Hs(H) = 0 for s < 0, the µ and s are actually determined uniquely by the properties that
µ ◦ (H ∧ η) = 1 and (H ∧ p) ◦ s = 1.]

Lemma 2.3.2. Write A, A, ι : A −→ A and H∗(Y ) for π∗(H∧H), π∗(H∧H), π∗(s) and π∗(H∧Y ).
We have isomorphisms

as,i : A⊗A⊗(s−i) ⊗A⊗i ⊗H∗(Y ) −→ H∗(H ∧H∧(s−i) ∧H∧i ∧ Y )

for all s and i with 0 ≤ i ≤ s. They can be chosen so that the following diagrams commute.

A⊗A⊗(s−i) ⊗A⊗i ⊗H∗(Y )
as,i //

A⊗A⊗(s−i)⊗ι⊗A⊗(i−1)⊗H∗(Y )
��

H∗(H ∧H∧(s−i) ∧H∧i ∧ Y )

H∗(H∧(s−i)∧s∧H
∧(i−1)∧Y )

��

A⊗A⊗(s−i+1) ⊗A⊗(i−1) ⊗H∗(Y )
as,i−1 // H∗(H ∧H∧(s−i+1) ∧H∧(i−1) ∧ Y )

In particular, as,i can be described as the composite

A⊗A⊗(s−i) ⊗A⊗i ⊗H∗(Y )
A⊗A⊗(s−i)⊗ι⊗i⊗H∗(Y ) // A⊗A⊗s ⊗H∗(Y )

as,0
rr

H∗(H ∧H∧s ∧ Y )
H∗(H∧H∧(s−i)∧p∧i∧Y )

// H∗(H ∧H∧(s−i) ∧H∧i ∧ Y ).
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Proof. We define the maps by induction on i. Let as,0 : A ⊗ A⊗s ⊗H∗(Y ) −→ H∗(H ∧H∧s ∧ Y )
be defined by

f0 ⊗ f1 ⊗ . . .⊗ fs ⊗ g 7−→ H∗(µ ∧ µs ∧ Y )(f0 ∧ f1 ∧ . . . ∧ fs ∧ g).

It is a familiar result that this is an isomorphism. For the inductive step we note that the cofibration
sequence

H ∧H s // H ∧H µ // H

gives the short exact sequences in the following diagram (we have written j for π∗(µ)).

0

��

0

��

A⊗A⊗(s−i) ⊗A⊗A⊗(i−1) ⊗H∗(Y ) //

1⊗1⊗ι⊗1⊗1
��

H∗(H
∧(s−i) ∧ (H ∧H) ∧H∧(i−1) ∧ Y )

H∗(1∧s∧1∧1)

��

A⊗A⊗(s−i) ⊗A⊗A⊗(i−1) ⊗H∗(Y )
as,i−1 //

1⊗1⊗j⊗1⊗1

��

H∗(H
∧(s−i) ∧ (H ∧H) ∧H∧(i−1) ∧ Y )

H∗(1∧µ∧1∧1)

��

A⊗A⊗(s−i) ⊗ Fp ⊗A
⊗(i−1) ⊗H∗(Y )

��

as−1,i−1 // H∗(H
∧(s−i) ∧H ∧H∧(i−1) ∧ Y )

��
0 0

One checks that the bottom square commutes so we can take as,i to be the induced dashed arrow.

It is well-known that A is the dual of the Steenrod algebra (and so the notation of the lemma
is consistent with the notation used earlier). a0,0 : A⊗H∗(Y ) −→ H∗(H ∧ Y ) and the A-comodule
structure map of H∗(Y ) is given by a−1

0,0 ◦H∗(η ∧ 1). as,i is an isomorphism of A-comodules as long
as we give the domain the extended comodule structure.

Notation 2.3.3. Write S for the stable homotopy category.

Now we go about defining three cochain complexes in S . The second complex’s relationship
with E•,∗1 (ASS-Y ) is clear and the third complex is constructed so that it realises A⊗τ Ω(A;H∗(Y )).
The first complex is used as an intermediate object and the letters N and D are chosen with the
terminology ‘normalized’ and ‘degenerate’ in mind. The reader may need to recall the definition of
H-injective from [17].

Definition 2.3.4. Let C• be the cochain complex in S with Cs = H∧(s+1)∧Y and d : Cs−1 −→ Cs

given by ( s∑
i=0

(−1)i
[
H∧i ∧ η ∧H∧(s−i)

])
∧ Y.

Using the isomorphisms, as,0, we can identify H∗(C
•) with C(A,A,H∗(Y ))•, the unreduced two-

sided cobar construction. This cochain complex has sth term A ⊗ A⊗s ⊗H∗(Y ) and a differential
given by an alternating sum of coaction maps.
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Definition 2.3.5. Let N• be the cochain complex in S with N s = H ∧H∧s∧Y and d : N s−1 −→
N s given by (

H ∧H∧(s−1) p∧H∧(s−1)

// H
∧s η∧H∧s // H ∧H∧s

)
∧ Y.

Let r : C• −→ N• be the map H ∧ p∧• ∧ Y . We have E•,∗1 (ASS-Y ) = π∗(N
•).

Definition 2.3.6. Let Ds = H ∧H∧s ∧ Y . Using the isomorphisms, as,s, we can identify H∗(D
s)

with (A⊗τ Ω(A;H∗(Y )))s. Since each Ds is H-injective we can define a map d : Ds−1 −→ Ds by
requiring that it induce the coboundary map d : (A⊗τ Ω(A;H∗(Y )))s−1 −→ (A⊗τ Ω(A;H∗(Y )))s.
Similarly, we can define a map i : D• −→ C• by requiring that it induce the inclusion

A⊗A⊗s ⊗H∗(Y ) −→ A⊗A⊗s ⊗H∗(Y )

at the sth level. By lemma 2.3.2 we can describe this map explcitly as(
(H∧(s−1)∧s)◦(H∧(s−2)∧s∧H)◦. . .◦(H∧(s−i)∧s∧H∧(i−1)

)◦. . .◦(H∧s∧H∧(s−2)
)◦(s∧H∧(s−1)

)

)
∧Y.

We wish to identify N• and D• since the first arises in our construction of the ASS-Y , whereas
the second gives rise to the cobar construction Ω(A;H∗(Y )). By the explicit descriptions above we
have the following result.

Lemma 2.3.7. The composite D•
i // C•

r // N• is the identity.

Corollary 2.3.8. Using the isomorphisms, as,s, we can identify H∗(N
•) with A ⊗τ Ω(A;H∗(Y ).

Thus we can identify E•,∗1 (ASS-Y ) = π∗(N
•) = Fp�AH∗(N

•) with Ω(A;H∗(Y )).

Ω(A;H∗(Y )) is bigraded since we have a cohomological grading s and a ‘total’ grading t coming
from the gradings on A and H∗(Y ). In the indentification above Es,t1 (ASS-Y ) = Ωs,t(A;H∗(Y )).

We note that the differentials in C• and N• and the maps i and r are all obtained by smashing
various maps with Y .

2.4 Multiplicativity of the ASS-S0

π∗(S
0) and Ω(A) are rings and the ASS-S0 is multiplicative. In this subsection we recall why the

ASS-S0 is multiplicative and how we can identify E•,∗1 (ASS-S0) = E•,∗1 (ASS-S) with Ω(A) as rings.

In short, the spectral sequence is given a multiplicative structure using the argument in theorem
IV.4.4 of [5] which makes use of a map of towers. To make sure we obtain the desired structure on
the E1-page we take care when constructing the underlying map on augmented chain complexes.
For an explanation of the terminology just used see III.2.

First, we adapt some of the notation from the last subsection to this subsection.

Notation 2.4.1. Let C• be the augmented cochain complex in S with Cs = H∧(s+1) and d :
Cs−1 −→ Cs given by

s∑
i=0

(−1)i
[
H∧i ∧ η ∧H∧(s−i)

]
.
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Let N• be the augmented cochain complex in S with N−1 = S and N s = H ∧ H∧s for s ≥ 0,
d : N−1 −→ N0 given by η : S −→ H and d : N s−1 −→ N s given by

H ∧H∧(s−1) p∧H∧(s−1)

// H
∧s η∧H∧s // H ∧H∧s

for s > 0. Let i : N• → C• be the unique map of chain complexes with the property that it induces
the inclusion

A⊗A⊗s −→ A⊗A⊗s

at the sth level. Let r : C• −→ N• be the map of chain complexes H ∧ p∧•. Note that both maps
respect the augmentations and recall that the composite ri is the identity.

We wish to define multiplications mN : N• ∧N• −→ N• and mC : C• ∧ C• −→ C• so that the
multiplication on the cobar complex ΩA is realised by mN and the following diagram commutes.

N• ∧N• mN //

i∧i
��

N•

i
��

C• ∧ C• mC // C•

(2.4.2)

Definition 2.4.3. Using the Künneth isomorphism together with the isomorphisms above we can
identify H∗(N

• ∧N•) with (A⊗τ ΩA)⊗∆ (A⊗τ ΩA). Analogous to that which is defined in [15],
there is a multiplication (A ⊗τ ΩA) ⊗∆ (A ⊗τ ΩA) −→ A ⊗τ ΩA. Since everything in sight is
H-injective this defines a map mN : N• ∧N• −→ N•.

Definition 2.4.4. mC : C• ∧ C• −→ C• is given by H∧s ∧ µ ∧H∧t : Cs ∧ Ct −→ Cs+t.

On homology mC induces a map extending the multiplication (A ⊗τ ΩA) ⊗∆ (A ⊗τ ΩA) −→
A⊗τ ΩA and so (2.4.2) commutes. Thus, we can describe mN as the composite

N• ∧N• i∧i // C• ∧ C• mC // C•
r // N•.

This map is compatible with the multiplication S ∧ S −→ S (the map on the augmentations) and
we claim that it extends to a map on the level of towers to which we can apply the argument of [5].

Notation 2.4.5. We resort back to writing H for the homotopy fiber of η.

Definition 2.4.6. Let (X, I) be the H-canonical tower for S

S

��

Hoo

��

. . .oo H
soo

��

H
s+1oo

��

. . .oo

H

<<

H ∧H

<<

H ∧Hs

88

H ∧Hs+1

::

so that X ∈ S Z is the sequence given by

Xs =

{
S if s ≤ 0

H
∧s

if s ≥ 0,

where Xs+1 −→ Xs is

H
∧(s+1) (H−→S)∧H∧s // H

s

for s ≥ 0 and the identity on S otherwise.
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In III.2 we will discuss precisely what we mean by the augmented chain complex associated to
a tower and what we mean by extending a map of augmented chain complexes to a map of towers.
We will also discuss in depth the smash product of two towers.

By an obstruction theory argument utilizing the technology of [17] the map mN can be extended
to a map of towers (X, I)∧ (X, I)→ (X, I) and the argument in theorem IV.4.4 of [5] gives us what
we need to obtain a multiplicative structure on the ASS-S. One sees directly from the definition
that we have E•,∗1 (ASS-S) = π∗(N

•) = Fp�AH∗(N
•) = ΩA as rings.

Smashing with Y ∧ Y ′, where Y and Y ′ are any two spectra, and applying the same argument
gives a pairing E∗,∗∗ (ASS-Y )⊗E∗,∗∗ (ASS-Y ′) −→ E∗,∗∗ (ASS-(Y ∧Y ′)) which converges to the smash
product π∗(Y )⊗ π∗(Y ′) −→ π∗(Y ∧ Y ′). At the E1-page this agrees with the multiplication

Ω(A;H∗(Y ))⊗ Ω(A;H∗(Y
′)) −→ Ω(A;H∗(Y ∧ Y ′)) = Ω(A;H∗(Y )⊗∆ H∗(Y

′)). (2.4.7)

Miller claims this at the bottom of page 76 in [15].

3 A modified Adams spectral sequence for S/pn

3.1 The main result

Recall that S/pn denotes the mod pn Moore spectrum. The first step towards computing E2(ASS-
S/p) is to understand the A-comodule H∗(S/p). This is straightforward. It is given by E[τ0] which
has a nontrivial action under the Bockstein β. However, for n > 1 the A-comodule structure of
H∗(S/p

n) is trivial; when calculating the E2-page for S/pn we obtain two copies of the E2-page
for the sphere. In [15] Miller identifies the E2-pages for the sphere and the Moore spectrum as
CotorP (Q(0)) and CotorP (Q(1)), respectively. We would like a spectral sequence converging to
π∗(S/p

n), with E2-page CotorP (Q(0)/qn0 ). This is a more convenient E2-page because multiplica-
tion by qn0 is zero. It is also clearer, based on our algebraic work, how to obtain a localized spectral
sequence from this one. We need a modified Adams spectral sequence for S/pn.

The next proposition is the main result of this section. Before stating it, we need to introduce
some notation, which is explained more thoroughly in definition 3.3.1.

We have a DG algebra over A called M(n). As an Fp-vector space M(n) =
⊕n−1

i=0 E[τ0,i]; M(n)
has differential defined by d1i = 0, dτ0,i = 1i+1 (with the convention that 1i = 0 = τ0,i for i ≥ n).

Proposition 3.1.1. There is a spectral sequence called the modified Adams spectral sequence for
S/pn with E1-page Ω(A;M(n)) and E2-page CotorP (Q(0)/qn0 ). Moreover, it converges to π∗(S/p

n)
and there is a pairing

E∗,∗∗ (MASS-n)⊗ E∗,∗∗ (MASS-n) −→ E∗,∗∗ (MASS-n)

converging to the multiplication π∗(S/p
n)⊗π∗(S/pn)→ π∗(S/p

n) which, at the E1-page, agrees with
the multiplication on Ω(A;M(n)) and, at the E2-page, with the multiplication on CotorP (Q(0)/qn0 ).

This result is probably well-known to the experts. However, the multiplicative structure does
not appear to be well-documented in the literature. In this section we address all the claims of the
proposition except those concerning the E2-page; they will be verified in section 4.
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3.2 Setting up the MASS-n

Definition 3.2.1. Let (Y (n), J(n)) be the tower

S/pn

��

S/pn−1poo

��

. . .
poo S/p

poo

��

∗oo

��

. . .oo

S/p

99

S/p

::

S/p

<<

∗

so that Y (n) ∈ S Z is the sequence given by

Y (n)s =


S/pn if s ≤ 0

S/pn−s if 0 ≤ s < n

∗ if s ≥ n,

where Y (n)n−s+1 −→ Y (n)n−s is p : S/ps−1 −→ S/ps for 0 < s ≤ n and the identity on S/pn or ∗
otherwise.

Recall definition 2.4.6. Applying π∗(−) to the tower (Z(n),K(n)) = (X, I)∧ (Y (n), J(n)) gives
an exact couple.

Definition 3.2.2. The spectral sequence arising from this exact couple is called the modified Adams
spectral sequence for S/pn (MASS-n). It has E1-page

Es,t1 (MASS-n) = πt−s(K(n)s) = πt(Σ
sK(n)s)

and dr has degree (r, r− 1). The spectral sequence converges to π∗(S/p
n) and the filtration degree

is given by s. In particular, we have an identification

Es,t∞ (MASS-n) = F sπt−s(S/p
n)/F s+1πt−s(S/p

n)

where F sπ∗(S/p
n) = im(π∗(Z(n)s) −→ π∗(S/p

n)). The identification is given by lifting an element
of F sπ∗(S/p

n) to π∗(Z(n)s) and mapping this lift down to π∗(K(n)s) to give a permanent cycle.

The reader might be unfamiliar with modified Adams spectral sequences and have doubts about
the convergence of the MASS-n. In fact, convergence is proved in [23, theorem 3.6]. We give more
details in subsection 7.3.

3.3 Relation of E1(MASS-n) to the cobar construction

Our goal is to identify E•,∗1 (MASS-n) with Ω(A;M(n)) as DG vector spaces, where M(n) is defined
below.

Definition 3.3.1. We describe a DG algebra over A which we call M(n). As an Fp-vector space
we have

M(n) =

n−1⊕
i=0

E[τ0,i].
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We grade M(n) by |1i| = (i, i) and |τ0,i| = (i, i+ 1). We have the convention that 1i = 0 = τ0,i for
i ≥ n. We equip M(n) with a with differential d1i = 0, dτ0,i = 1i+1 and a multiplication

1i ⊗ 1j 7−→ 1i+j , τ0,i ⊗ 1j 7−→ τi+j,0, 1i ⊗ τ0,j 7−→ τi+j,0, τ0,i ⊗ τ0,j 7−→ 0.

We make it into an A-comodule via the following structure map. We note that A only has a single
grading and the structure map is a graded map using the second grading on M(n).

1i 7−→ 1⊗ 1i, τ0,i 7−→ 1⊗ τ0,i + τ0 ⊗ 1i.

We note that as a cochain complex in A-comodules M(n) is obtained by applying H∗(−) to Σ•J(n)•:
the first grading is the cohomological grading, the second is the grading from H∗(−).

Notice that we can consider M(∞). This object will only be important momentarily and it will
not be used to construct the MASS-∞. To avoid any potential confusion we will call this object
M . Notice that M(n) is a quotient of M .

All the work in identifying E•,∗1 (MASS-n) was done in corollary 2.3.8. As Fp-vector spaces we
have

Es,t1 (MASS-n) = πt(Σ
sK(n)s) = πt

( ∨
i+j=s

ΣiIi ∧ ΣjJ(n)j

)
=
⊕
i+j=s

πt(Σ
iIi ∧ ΣjJ(n)j) =

⊕
i+j=s

Ωi,t(A;H∗(Σ
jJ(n)j)) =

⊕
i+j=s

Ωi,t(A;M(n)j,∗).

Because the isomorphism as,s of lemma 2.3.2 is natural in Y , proposition III.2.4.5 together with
the definition of Ω(A;M(n)) tells us that this is, in fact, an identification of cochain complexes
E•,∗1 (MASS-n) = Ω(A;M(n)).

3.4 Multiplicativity of the MASS-n

π∗(S/p
n) and Ω(A;M(n)) are rings. In this subsection we show that the MASS-n is multiplicative

and identify E•,∗1 (MASS-n) with Ω(A;M(n)) as rings. Our strategy is as follows.

First, we note that M(n) has the structure of an algebra. We show that the topology follows
suit and that we can give the augmented cochain complex Σ•J(n)• a multiplication by using the
multiplication on S/p. By a technical pointset level construction we extend this multiplication to
towers. Finally, we smash together the multiplications on the towers (X, I) and (Y (n), J(n)). Here
are most of the details.

Notation 3.4.1. Let β : S/p −→ ΣS/p denote the Bockstein map.

Lemma 3.4.2. [S/p, S/p] = Z/p〈1〉 and [S/p,ΣS/p] = Z/p〈β〉.

Proof. This comes down to computing π0 and π−1 of the endomorphism spectrum End(S/p). Using
Spanier-Whitehead duality we have End(S/p) = Σ−1S/p ∧ S/p = Σ−1S/p ∨ S/p and so the result
follows from the fact that π0(S/p) = Z/p, π−1(S/p) = π1(S/p) = 0 and that 1 and β are nontrivial.
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Lemma 3.4.3. The following diagram commutes

S/p ∧ S/p
(β∧S/p,S/p∧β) //

µ

��

(ΣS/p ∧ S/p) ∨ (S/p ∧ ΣS/p)

Σ(µ,µ)

��
S/p

β // ΣS/p.

where µ : S/p ∧ S/p −→ S/p is the multiplication on the ring spectrum S/p.

Proof. Since S/p∧S/p = S/p∨ΣS/p it is enough to restrict to each factor. We are then comparing
maps in [S/p,ΣS/p] and [ΣS/p,ΣS/p] = [S/p, S/p]. Since 1 and β are homologically nontrivial, it
is enough, by the previous lemma, to check that the diagram commutes after applying homology:

E[τ0]⊗∆ E[τ0]
((τ0 7−→1)⊗E[τ0], E[τ0]⊗(τ0 7−→1)) //

µ

��

(ΣE[τ0]⊗ E[τ0])⊕ (E[τ0]⊗ ΣE[τ0])

Σ(µ,µ)

��
E[τ0]

τ0 7−→1 // ΣE[τ0].

Here E[τ0] is the sub-Hopf algebra of A generated by τ0; it is a subalgebra in A-comodules.

Corollary 3.4.4. We obtain a map mn : Σ•J(n)•∧Σ•J(n)• → Σ•J(n)• by using the multiplication
of S/p or the zero map on each factor. Applying H∗(−) returns the multiplication M(n)⊗∆M(n)→
M(n).

Recall that the map mN of definition 2.4.3 extends to a map of towers (X, I)∧ (X, I) −→ (X, I)
and this enabled us to make the ASS-S multiplicative. We’d like to extend the map mn to a map
of towers. The obstruction theory seems hard if one attacks it directly. Instead, we apply the
obstruction theory to the S/p-canonical tower for S.

Definition 3.4.5. Let (Y, J) be the S/p-canonical tower for S

S

��

S
poo

��

. . .oo S
poo

��

S
poo

��

. . .oo

S/p

<<

S/p

==

S/p

<<

S/p

==

so that Y ∈ S Z is the sequence given by Ys = S, where Ys+1 −→ Ys is multiplication by p for s ≥ 0
and the identity otherwise.

Using Miller’s technology [17] we have another corollary to lemma 3.4.3.

Corollary 3.4.6. We obtain a map mS : Σ•J•∧Σ•J• → Σ•J• by using the multiplication of S/p on
each factor. It is compatible with the multiplication S ∧S −→ S (i.e. it respects the augmentation)
and we can extend it to a map of towers (Y, J) ∧ (Y, J) −→ (Y, J). Moreover, H∗(mS) gives the
multiplication M ⊗∆ M −→M (see definition 3.3.1).

Just like we can quotient M to give M(n) we wish to ‘quotient’ the map (Y, J)∧(Y, J) −→ (Y, J)
by the part of the tower from the nth position onwards to obtain a map of towers (Y (n), J(n)) ∧
(Y (n), J(n)) → (Y (n), J(n)). This requires the pointset model for S , Spec which is discussed in
III.2.2.

61



Lemma 3.4.7. mn extends to a map of towers (Y (n), J(n)) ∧ (Y (n), J(n)) −→ (Y (n), J(n)).

Proof. The idea of the proof is straightforward: we strictify the map of towers in corollary 3.4.6 up
to the (2n− 1)th position and collapse from the nth position onwards. However, the proof is messy.
In order to avoid having to delve into any true pointset level discussion of spectra we use a Quillen
adjunction with spaces and work there. The reader who wishes to understand all the details should
look ahead to subsections III.2.2 and III.2.3 for all the relevant notation. The proof is completed
in subsection III.2.5.

We now have a map of towers (Z(n),K(n)) ∧ (Z(n),K(n)) −→ (Z(n),K(n)) given by[
(X,I)∧(Y (n),J(n))

]
∧

[
(X,I)∧(Y (n),J(n))

]
∼= //
[

(X,I)∧(X,I)

]
∧

[
(Y (n),J(n))∧(Y (n),J(n))

]
// (X,I)∧(Y (n),J(n)).

Proposition III.2.4.7 is devoted to the construction of a map in this way and Bruner’s argument ([5,
IV.4.4]) gives us a multiplicative structure on the MASS-n. Using the definition of the multiplication
on Ω(A;M(n)), the observation of 2.4.7 and the property verified in III.2.4.7 one can see directly
from Bruner’s definition that we have E•,∗1 (MASS-n) = Ω(A;M(n)) as rings.

4 E2-pages

In this section we complete the proofs of proposition 2.1.2 and proposition 3.1.1 by recalling the
homological algebra needed to identify the E2-pages.

4.1 E2(ASS-S0) = CotorP (Q(0))

In [15] Miller identified the E2(ASS-S0) as CotorP (Q(0)). We begin this section by recalling how
this identification is obtained.

The twisting homomorphism θ : E −→ Q(0) defined before propostion 2.1.2 gives a map of DG
P -comodules ΩE −→ Q(0). Miller defines a map ΩA −→ Ω(P ; ΩE) ([15, proposition 1.2]) and he
proves the following theorem.

Theorem 4.1.1. The composite ΩA −→ Ω(P ; ΩE) −→ Ω(P ;Q(0)) is a homology isomorphism.

Let’s be precise about gradings.

1. ΩA has a cohomological grading σ and a ‘total’ grading λ coming from the grading on A.

2. Ω(P ; ΩE) has an external cohomological grading w, an internal cohomological grading x
coming from the cohomological grading on ΩE, a ‘total’ grading z coming from the second
gradings on E and P , and one checks that these are respected by the multiplication.

3. Ω(P ;Q(0)) has a cohomological grading s and gradings t and u coming from the fact that P
and Q(0) are bigraded.

We see directly from the formula in [15, page 77] that

(ΩA)1,λ −→ Ω(P ; ΩE)1,0,λ ⊕ Ω(P ; ΩE)0,1,λ =⇒ (ΩA)σ,λ −→
⊕

w+x=σ
z=λ

Ω(P ; ΩE)w,x,z.
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We also see that Ω(P ; ΩE)w,x,z −→ Ω(P ;Q(0))s,t,u, where s = w, t = x, and u = z − x; the minus
x comes from the fact that |qn|u = |τn|u − 1. Thus

(ΩA)σ,λ −→
⊕
s+t=σ
u+t=λ

Ω(P ;Q(0))s,t,u.

These gradings persist to Cotor and so we have the following result.

Proposition 4.1.2.

Eσ,λ2 (ASS-S0) = Cotorσ,λA (Fp) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (Q(0)).

Note the bigrading (σ, λ) that we have introduced for the ASS-S0 above. We will continue to
use this bigrading for all of our Adams spectral sequences. This will help avoid confusion with the
s, t and u of our Bockstein spectral sequences.

4.2 E2(MASS-n) = CotorP (Q(0)/qn0 )

We wish to perform an analogous calculation for the MASS-n. The starting point is the observation
that Miller proves a stronger result than that of theorem 4.1.1.

Theorem 4.2.1 ([15, page 80]). For any A-comodule M which is bounded below the composite

Ω(A;M) −→ Ω(P ; ΩE ⊗τ M) −→ Ω(P ;Q(0)⊗θM)

is a homology isomorphism.

Thus, to identify the E2-page of the MASS-n we need to identify CotorP (Q(0)⊗θM(n)).

Lemma 4.2.2. We have a homology isomorphism Ω(P ;Q(0)⊗θ M(n)) −→ Ω(P ;Q(0)/qn0 ). Mor-
ever, this is a map of DG algebras.

Proof. A short calculation in Q(0)⊗θM(n) shows that

d(q ⊗ 1i) = 0 and d(q ⊗ τ0,i) = q0q ⊗ 1i − q ⊗ 1i+1.

[A sign might be wrong here but the end result will still be the same.] Define a map

Q(0)⊗θM(n) −→ Q(0)/qn0

by q ⊗ 1i 7−→ qi0q and q ⊗ τ0,i 7−→ 0. This is a map of DG algebras over P , where the target has a
trivial differential. In addition, it is a homology isomorphism and so the Eilenberg-Moore spectral
sequence completes the proof.

We keep track of the gradings in the composite

Ω(A;M(n)) −→ Ω(P ; ΩE ⊗τ M(n)) −→ Ω(P ;Q(0)/qn0 ).
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1. Ω(A;M(n)) has an external cohomological grading i, an internal ‘cohomological’ grading j,
which comes from the first grading on M(n) and a ‘total’ grading λ coming from the grading
on A and the second grading on M(n). These are preserved by the multiplication.

2. Ω(P ; ΩE⊗τM(n)) has an external cohomological grading w, a middle cohomological grading
x coming from the cohomological grading on ΩE, an internal ‘cohomological’ grading y coming
from the first grading on M(n), a ‘total’ grading z coming from the second gradings on E, P
and M(n), and one checks that these are respected by the multiplication.

3. Ω(P ;Q(0)/qn0 ) has a cohomological grading s and gradings t and u coming from the fact that
P and Q(0)/qn0 are bigraded.

As before, we see directly from the formula in [15, page 77] that

Ω(A;M(n))1,j,λ −→ Ω(P ; ΩE ⊗τ M(n))1,0,j,λ ⊕ Ω(P ; ΩE ⊗τ M(n))0,1,j,λ

=⇒ Ω(A;M(n))i,j,λ −→
⊕
w+x=i
y=j, z=λ

Ω(P ; ΩE ⊗τ M(n))w,x,y,z.

We also see that Ω(P ; ΩE ⊗τ M(n))w,x,y,z −→ Ω(P ;Q(0)/qn0 )s,t,u, where

s = w, t = x+ y and u = z − (x+ y);

the minus (x+ y) comes from the fact that |qn|u = |τn|u − 1 and that |qi0|u = |1i|u − i. Thus

Ω(A;M(n))i,j,λ −→
⊕

s+t=i+j

u+t=λ

Ω(P ;Q(0)/qn0 )s,t,u

and we obtain the following result.

Proposition 4.2.3. We have a homology isomorphism

Eσ,λ1 (MASS-n) =
⊕
i+j=σ

Ω(A;M(n))i,j,λ −→
⊕
s+t=σ
u+t=λ

Ω(P ;Q(0)/qn0 )s,t,u

and the gradings σ, λ, s, t and u persist to homology so that

Eσ,λ2 (MASS-n) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (k,Q(0)/qn0 ).

We have now completed the proof of proposition 2.1.2 and proposition 3.1.1.

5 The journey towards setting up the LASS-∞

5.1 The reindexed MASS-n and setting up the MASS-∞

This subsection begins the work required to prove the following proposition.
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Proposition 5.1.1. There is a spectral sequence called the modified Adams spectral seqence for the
Prüfer sphere S/p∞ (MASS-∞). It has E2-page CotorP (Q(0)/q∞0 ) and converges to π∗(S/p

∞).

Our first step in the construction of this spectral sequence is a reindexing procedure.

Definition 5.1.2. Let (Y (n)′, J(n)′) be a shifted version of (Y (n), J(n)) so that Y (n)′ ∈ S Z is
the sequence given by

Y (n)′s =


S/pn if s ≤ −n
S/p−s if − n ≤ s < 0

∗ if s ≥ 0.

Applying π∗(−) to the tower (Z(n)′,K(n)′) = (X, I) ∧ (Y (n)′, J(n)′) gives an exact couple.

Definition 5.1.3. The spectral sequence arising from this exact couple is called the reindexed
modified Adams spectral sequence for S/pn (MASS-n′). It has E1-page

Eσ,λ1 (MASS-n′) = πλ(ΣσK(n)′σ) = πλ+n(Σσ+nK(n)σ+n) = Eσ+n,λ+n
1 (MASS-n)

and hence, by proposition 4.2.3, E2-page

Eσ,λ2 (MASS-n′) =
⊕

s+(t−n)=σ

u+(t−n)=λ

Cotors,t,uP (Q(0)/qn0 ) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (k,Mn)

(see definition 1.5 in chapter I). dr has degree (r, r−1), the spectral sequence converges to π∗(S/p
n)

and the filtration degree is given by σ. In particular, we have an identification

Eσ,λ∞ (MASS-n′) = F σπλ−σ(S/pn)/F σ+1πλ−σ(S/pn)

where F σπ∗(S/p
n) = im(π∗(Z(n)′σ) −→ π∗(S/p

n)). The identification is given by lifting an element
of F σπ∗(S/p

n) to π∗(Z(n)′σ) and mapping this lift down to π∗(K(n)′σ) to give a permanent cycle.

We have a map of towers (Y (n)′, J(n)′) −→ (Y (n+ 1)′, J(n+ 1)′). Here, Y (n)′s −→ Y (n+ 1)′s
is the identity for s ≥ −n and p : S/pn −→ S/pn+1 for s < −n. This map of towers gives rise to
an induced map of spectral sequences E∗,∗∗ (MASS-n′) −→ E∗,∗∗ (MASS-(n+ 1)′). One checks using
the map in the proof of lemma 4.2.2 that the map on E2-pages, CotorP (Mn) −→ CotorP (Mn+1) is
induced by the inclusion Mn −→Mn+1.

Since taking filtered colimits is exact, we can take the colimit of the diagram

E∗,∗∗ (MASS-1′) // E∗,∗∗ (MASS-2′) // . . . // E∗,∗∗ (MASS-n′) // E∗,∗∗ (MASS-(n+ 1)′) // . . .

to obtain a spectral sequence.

Definition 5.1.4. The spectral sequence constructed above is called the modified Adams spectral
sequence for the Prüfer sphere S/p∞ (MASS-∞). It has E2-page

Eσ,λ2 (MASS-∞) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (k,Q(0)/q∞0 )

and dr has degree (r, r − 1).
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It is nonobvious that the spectral sequence above converges to π∗(S/p
∞). In fact, it is not even

clear what we should mean by E∞(MASS-∞) since it is not obtained by the procedure in section
2 of chapter I.

We explain, in a little more detail, the construction of the MASS-∞. We have natural identifica-
tions Er+1(MASS-n′) = H(Er(MASS-n′), dr). We define Er(MASS-∞) to be colimnEr(MASS-n′)
and then we have natural identifications

Er+1(MASS-∞) = colimnEr+1(MASS-n′)

= colimnH(Er(MASS-n′), dr)

= H(colimnEr(MASS-n′), dr)

= H(Er(MASS-∞), dr).

This justifies us calling the MASS-∞ a spectral sequence.
The vanishing lines for the MASS-n′ (lemma 6.5) provide us with maps Eσ,λr (MASS-n′) −→

Eσ,λr+1(MASS-n′) for large r; how large r is required to be depends on (σ, λ) but not on n. By corollary

6.6, n is allowed to be∞. Thus we may define Eσ,λ∞ (MASS-∞) to be colimr>>0E
σ,λ
r (MASS-∞) and

we obtain

Eσ,λ∞ (MASS-∞) = colimr>>0E
σ,λ
r (MASS-∞)

= colimr>>0colimnE
σ,λ
r (MASS-n′)

= colimncolimr>>0E
σ,λ
r (MASS-n′)

= colimnE
σ,λ
∞ (MASS-n′).

We leave the issue of convergence until subsection 7.3.

5.2 The localized Adams spectral sequence for v−1
1 S/pn

We now proceed to localize the MASS-n. Our main result is the following proposition.

Proposition 5.2.1. There is a spectral sequence, which we call the localized Adams spectral se-
quence for v−1

1 S/pn with E2-page CotorP (q−1
1 Q(0)/qn0 ). It converges to π∗(v

−1
1 S/pn) and there is a

pairing
E∗,∗∗ (LASS-n)⊗ E∗,∗∗ (LASS-n) −→ E∗,∗∗ (LASS-n)

converging to the multiplication π∗(v
−1
1 S/pn)⊗π∗(v−1

1 S/pn) −→ π∗(v
−1
1 S/pn) which, at the E2-page,

agrees with the multiplication on CotorP (q−1
1 Q(0)/qn0 ).

This section sets up the spectral sequence. Convergence is left until subsection 7.4. We do not
need the full multiplicative structure, only the fact that d2 is a derivation. This follows quickly from
the construction and the fact that the MASS-n is multiplicative. We omit other details concerning
the multiplicative structure although they are not hard to verify.

In order to localize the MASS-(n + 1), we would like to find a permanent cycle detecting the
map

vp
n

1 : S/pn+1 −→ Σ−p
nqS/pn+1

constructed by Crabb and Knapp in [6, proposition 1.1]. We could not achieve this “on the nose”
and so we make use of the periodicity theorem of [10] to prove the following lemma.
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Lemma 5.2.2. Suppose that a map f : S/pn+1 → Σ−p
nqS/pn+1 induces an isomorphism on K-

theory. Then there exists an i ∈ N such that f i = (vp
n

1 )i.

Proof. By [10, corollary 3.7] it is enough to show that f is a v1-self map (see [10, definition 8]). Since
K(0)∗(S/p

n+1) = 0 and K(1)∗(f) is an isomorphism we are just left with showing that K(m)∗(f) is
nilpotent form > 1. This occurs for degree reasons: form ≥ 1, K(m)∗(S/p

n+1) = K(m)∗⊕ΣK(m)∗
and K(m)∗ = Fp[vm, v−1

m ], while pnq/|vm| ∈ Z if and only if m = 1.

The following theorem is our main technical result.

Theorem 5.2.3. The element qp
n

1 ∈ CotorP (Q(0)/qn+1
0 ) is a permanent cycle in the MASS-(n+1)

detecting an element αpn : Sp
nq −→ S/pn+1 such that

ΣpnqS/pn+1
αpn∧S/pn+1

// S/pn+1 ∧ S/pn+1 µ // S/pn+1

induces an isomorphism on K-theory.

Proof. The proof is long and carried out in III.1.

Multiplication by qp
n−1

1 defines a map of spectral sequences. Since taking filtered colimits is
exact, we can take the colimit of the diagram

E∗,∗∗ (MASS-n)
qp
n−1

1 // E∗,∗∗ (MASS-n)
qp
n−1

1 // E∗,∗∗ (MASS-n)
qp
n−1

1 // . . .

to obtain a spectral sequence. [In the above diagram we are not precise about gradings.]

Definition 5.2.4. The spectral sequence constructed above is called the localized Adams spectral
sequence for v−1

1 S/pn (LASS-n). It has E2-page

Eσ,λ2 (LASS-n) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (k, q−1
1 Q(0)/qn0 )

and dr has degree (r, r − 1).

It is nonobvious that the spectral sequence above converges to π∗(v
−1
1 S/pn) and we leave this

verification until subsection 7.4. An identical discussion to the one following the construction of
the MASS-∞ explains what we mean by E∞(LASS-n).

5.3 The reindexed LASS-n and the LASS-∞

We are finally ready to set up the LASS-∞ and we begin the work required to prove the following
theorem.

Theorem 5.3.1. There is a spectral sequence with E2-page CotorP (q−1
1 Q(0)/q∞0 ) which converges

to π∗(v
−1
1 S/p∞). We call this the localized Adams spectral sequence for the v1-periodic sphere

v−1
1 S/p∞ (LASS-∞).
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As with the MASS-∞, the first step in the construction is a reindexing procedure. We can take
the colimit of the diagram

E∗,∗∗ (MASS-n′)
qp
n−1

1 // E∗,∗∗ (MASS-n′)
qp
n−1

1 // E∗,∗∗ (MASS-n′)
qp
n−1

1 // . . .

to obtain a spectral sequence.

Definition 5.3.2. The spectral sequence constructed above is called the reindexed localized Adams
spectral sequence for v−1

1 S/pn (LASS-n′). It has E2-page

Eσ,λ2 (LASS-n′) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (k, q−1
1 Mn)

and dr has degree (r, r − 1).

The following diagram commutes at the level of E2-pages, where the vertical maps are those
used in the construction of the MASS-∞. By induction on the page, repeatedly taking homology,
we see that this square is a commutative diagram of spectral sequences.

E∗,∗∗ (MASS-n′)
qp
n

1 //

��

E∗,∗∗ (MASS-n′)

��
E∗,∗∗ (MASS-(n+ 1)′)

qp
n

1 // E∗,∗∗ (MASS-(n+ 1)′)

Thus the maps of spectral sequences

E∗,∗∗ (MASS-1′) // E∗,∗∗ (MASS-2′) // . . . // E∗,∗∗ (MASS-n′) // E∗,∗∗ (MASS-(n+ 1)′) // . . .

induce maps of spectral sequences

E∗,∗∗ (LASS-1′) // E∗,∗∗ (LASS-2′) // . . . // E∗,∗∗ (LASS-n′) // E∗,∗∗ (LASS-(n+ 1)′) // . . .

Taking the colimit of the last diagram gives a spectral sequence.

Definition 5.3.3. The spectral sequence just constructed is called the localized Adams spectral
sequence for the v1-periodic sphere v−1

1 S/p∞ (LASS-∞). It has E2-page

Eσ,λ2 (LASS-∞) =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (k, q−1
1 Q(0)/q∞0 )

and dr has degree (r, r − 1).

It is nonobvious that the spectral sequence above converges to π∗(v
−1
1 S/p∞) and we leave this

verification until subsection 7.4. An identical discussion to the one following the construction of
the MASS-∞ explains what we mean by E∞(LASS-∞).
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6 Vanishing Lines

Some results on vanishing lines are essential for proving convergence of our spectral sequences and
the technical theorem 5.2.3.

Definition 6.1. For s ∈ N ∪ {0} let U(2s) = pqs and U(2s+ 1) = pqs+ q and write U(−1) =∞.

In [15] Miller uses the following result of Adams.

Lemma 6.2. Cotors,t,uP (k,Q(1)) = 0 when u < U(s) + 2(p− 1)t.

Corollary 6.3. Eσ,λ2 (MASS-1) = 0 when λ < (2p− 1)σ − 1.

Proof. By the n = 1 case of proposition 4.2.3 it is enough to observe that (2p− 1)s− 1 ≤ U(s).

Since q1 has (σ, λ) bigrading (1, 2p− 1) we obtain the following corollary.

Corollary 6.4. Eσ,λ2 (LASS-1) = 0 when λ < (2p− 1)σ − 1.

The main results on vanishing lines which we need are given by the following lemma and its
corollaries.

Lemma 6.5. Eσ,λ2 (MASS-n′) = 0 when λ < (2p− 1)σ + (2p− 3).

Proof. We proceed by induction on n.

Corollary 6.3 gives Eσ,λ2 (MASS-1) = 0 when λ < (2p− 1)σ− 1 and so Eσ,λ2 (MASS-1′) = 0 when
λ+ 1 < (2p− 1)(σ + 1)− 1 giving the base case.

The short exact sequence of P -comodules 0 −→M1 −→Mn+1
q0−→Mn −→ 0 gives a long exact

sequence some of which is displayed below.

Cotors,t,uP (k,M1) −→ Cotors,t,uP (k,Mn+1)
q0−→ Cotors,t+1,u

P (k,Mn)

By taking direct sums over appropriate indexings we obtain a long exact sequence

. . . −→ Eσ,λ2 (MASS-1′) −→ Eσ,λ2 (MASS-(n+ 1)′) −→ Eσ+1,λ+1
2 (MASS-n′) −→ . . . .

We conclude that Eσ,λ2 (MASS-(n+ 1)′) is zero provided that Eσ,λ2 (MASS-1′) and Eσ+1,λ+1
2 (MASS-

n′) are zero. Since λ < (2p− 1)σ+ (2p− 3) implies λ+ 1 < (2p− 1)(σ+ 1) + (2p− 3) the inductive
step is complete.

Corollary 6.6. Eσ,λ2 (MASS-∞) = 0 when λ < (2p− 1)σ + (2p− 3).

Corollary 6.7. Eσ,λ2 (LASS-n′) = 0 when λ < (2p− 1)σ + (2p− 3).

Corollary 6.8. Eσ,λ2 (LASS-∞) = 0 when λ < (2p− 1)σ + (2p− 3).
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7 Convergence Issues

7.1 What is convergence?

In this section we prove that all of the spectral sequences we use converge.

A spectral sequence converges if we can recover the graded abelian group we are trying to calcu-
late from the E∞-page of the spectral sequence. The author is aware that the most recommended
account addressing these type of issues is [4]. However, the previously undocumented convergence
problems arising in this thesis are easily tackled without such a reference.

In each of the spectral sequences of this thesis we have a graded abelian group A which we are
trying to calculate and the recovery procedure can be viewed as having three steps.

1. Define a filtration of A

A ⊃ . . . ⊃ F s−1A ⊃ F sA ⊃ F s+1A ⊃ . . . ⊃ 0, s ∈ Z

together with an idenfication of the associated graded object Es∞ = F sA/F s+1A.

2. Resolve extension problems. Depending on circumstance this will give either F sA for each s
or A/F sA for each s.

3. Recover A. Depending on circumstance this will either be via an isomorphism colimsF
sA −→

A or an isomorphism A −→ limsA/F
sA.

There are three cases which arise for us. We highlight how each affects the procedure above.

1. Each case is determined by the way in which the filtration behaves.

(a) F 0A = A and
⋂
F sA = 0.

(b) F 0A = 0 and
⋃
F sA = A.

(c)
⋃
F sA = A; if we keep track of the grading of A we have Es,t∞ = F sAt−s/F

s+1At−s and
for each u there exists an s such that F sAu = 0.

2. The way in which we would go about resolving extension problems varies according to which
case we are in.

(a) A/F 0A = 0. Suppose that we know A/F sA where s ≥ 0. (1) gives us F sA/F s+1A and
so resolving an extension problem gives A/F s+1A. By induction we know A/F sA for all
s.

(b) F 0A = 0. Suppose that we know F s+1A where s < 0. (1) gives us F sA/F s+1A and so
resolving an extension problem gives F sA. By induction we know F sA for all s.

(c) This is similar to (2b). Fix u. Then there exists an s0 with F s0Au = 0. Suppose that we
know F s+1Au where s < s0. (1) gives us F sAu/F

s+1Au and so resolving an extension
problem gives F sAu. By induction we know F sAu for all s. We can now vary u.

3. In case (a) we need an isomorphism A −→ limsA/F
sA. In cases (b) and (c) we have an

isomorphism colimsF
sA −→ A.
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When we say that our spectral sequences converge we ignore whether or not we can resolve the
extension problems to carry out stage (2). This is paralleled by the fact that, when making such
a statement, we ignore whether or not we can calculate the differentials in the spectral sequence.
The point is that theoretically, both of these computations are possible even if they are extremely
difficult in practice. Thus, the important statements in convergence, for us, are given in stage (1)
and (3) of our recovery procedure.

Definition 7.1.1. Suppose given a graded abelian group A and a spectral sequence E∗∗ . Suppose
that A is filtered, that we have an identification Es∞ = F sA/F s+1A and that one of the following
conditions holds.

1. F 0A = A,
⋂
F sA = 0 and the natural map A −→ limA/F sA is an isomorphism.

2. F 0A = 0 and
⋃
F sA = A.

3.
⋃
F sA = A; if we keep track of the grading of A we have Es,t∞ = F sAt−s/F

s+1At−s and for
each u there exists an s such that F sAu = 0.

Then the spectral sequence is said to converge.

The ASS-Y converges in the sense of case 1 and this shows why one should expect to need a
completeness condition.

We now go about proving that each of our spectral sequences converges.

7.2 Algebraic spectral sequences

In section I.3 we set up the Q(0)-BSS (I.3.1.1), the q∞0 -BSS (I.3.2.2) and the q−1
1 -BSS (I.3.4.1). We

made claims about the convergence of these spectral sequences and it is only now that we address
them. The reason for the delay is that it is actually a rather easy fact that these spectral sequences
converge and we did not wish to clutter the exposition in chapter I.

Proposition 7.2.1. The Q(0)-BSS, the q∞0 -BSS and the q−1
1 -BSS converge in the sense of defini-

tion 7.1.1.

Proof. The relevant filtrations are given in I.3.1.1, I.3.2.2 and I.3.4.1 as are the identifications
Ev∞ = F v/F v+1.

For the Q(0)-BSS we are in case 1. We have

F 0 CotorP (Q(0)) = CotorP (Q(0)) and F t+1 Cotors,t,uP (Q(0)) = 0

and so the requisite conditions hold.
For the q∞0 -BSS and the q−1

1 -BSS we are in case 2. Let N(t, u) = max
{

0, du/q − te
}

, which is
the maximum possible power of q0 in the denominator of element with bigrading (t, u). We note,
although it is not required, that we have

F−N(t,u) Cotors,t,uP (Q(0)/q∞0 ) = Cotors,t,uP (Q(0)/q∞0 )

and
F−N(t,u) Cotors,t,uP (q−1

1 Q(0)/q∞0 ) = Cotors,t,uP (q−1
1 Q(0)/q∞0 ).
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7.3 The MASS-n and MASS-∞

In this subsection we recall why the MASS-n converges and then prove that the MASS-∞ converges.

Proposition 7.3.1. The MASS-n (definition 3.2.2) converges.

Proof. We are in case 1 of definition 7.1.1. We need to check the following conditions.

1. The map F sπ∗(S/p
n)/F s+1π∗(S/p

n) −→ Es,∗∞ (MASS-n) constructed in 3.2.2 is an isomor-
phism.

2.
⋂
s F

sπ∗(S/p
n) = 0 and the natural map π∗(S/p

n) −→ lims π∗(S/p
n)/F sπ∗(S/p

n) is an iso-
morphism.

Dualizing the tower (Y (n), J(n)) of definition 3.2.1 gives (up to a desuspension) the following tower.

S/pn // S/pn−1 //

yy

. . . // S/p // ∗ //

||

. . .

S/p

OO

S/p

OO

S/p

OO

∗

OO

We appeal to theorem 3.6 of [23]; with the notation of that paper we have S/pn = F (DS/pn, S) and
the MASS-n is obtained by using the tower D(Y (n), J(n)) in the source and the tower (X, I) (2.4.6)
in the target. The result is applicable because each S/ps has such good properties: S/ps is finite
and because ps : S/ps −→ S/ps is zero, proposition 1.2(a) of [23] tells us S/ps is p-adically complete
and p-adically cocomplete. The connectivity hypothesis is not strictly satisfied but this is not a
problem; it is satisfied once we suspend the source variable and this does not affect convergence.

This result certainly gives 1 and the first part of 2. The vanishing line of lemma 6.5 implies a van-
ishing line for the MASS-n. Combining these facts we see that for each u there exists an s such that
F sπu(S/pn) = 0 and so we conclude that the natural map π∗(S/p

n) −→ lims π∗(S/p
n)/F sπ∗(S/p

n)
is an isomorphism.

Corollary 7.3.2. The MASS-n′ (definition 5.1.3) converges.

Proof. We are in case 3 of definition 7.1.1. The previous argument completes the proof.

Proposition 7.3.3. The MASS-∞ (definition 5.1.4) converges to π∗(S/p
∞).

Proof. We draw the following diagram in which each row and column is exact and where the last
nontrivial map in the short exact sequence is described in definition 5.1.3. Notice that we are using
the filtration associated to the MASS-n′, not the MASS-n.

0

��

0

��
0 // F σ+1πλ−σ(S/pn) //

��

F σπλ−σ(S/pn) //

��

Eσ,λ∞ (MASS-n′) // 0

πλ−σ(S/pn)
= // πλ−σ(S/pn)
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Recall from the discussion after definition 5.1.4 that Eσ,λ∞ (MASS-∞) = colimnE
σ,λ
∞ (MASS-n′) and

so taking filtered colimits gives the following diagram in which the rows and columns remain exact.

0

��

0

��
0 // colimnF

σ+1πλ−σ(S/pn) //

��

colimnF
σπλ−σ(S/pn) //

��

Eσ,λ∞ (MASS-∞) // 0

πλ−σ(S/p∞)
= // πλ−σ(S/p∞)

Defining F σπ∗(S/p
∞) = im(colimnF

σπ∗(S/p
n) −→ π∗(S/p

∞)) the short exact sequence above gives
an identification

Eσ,λ∞ (MASS-∞) = F σπλ−σ(S/p∞)/F σ+1πλ−σ(S/p∞)

and we see that ⋃
σ
F σπ∗(S/p

∞) = im(colimσcolimnF
σπ∗(S/p

n) −→ π∗(S/p
∞))

= im(colimncolimσF
σπ∗(S/p

n) −→ π∗(S/p
∞))

= im(colimnπ∗(S/p
n) −→ π∗(S/p

∞))

= π∗(S/p
∞).

Lemma 6.5, together with convergence of the MASS-n′ shows that F σπλ−σ(S/pn) = 0 for σ > K
when we let

K =
(λ− σ)− (2p− 3)

2(p− 1)
.

K is indepenedent of n and so F σπλ−σ(S/p∞) = 0 for σ > K. All of this gives convergence as in
case 3 of definition 7.1.1.

7.4 The LASS-n and LASS-∞

An almost identical argument to that for the MASS-∞ shows that the LASS-n converges. However,
some preliminary observations are in order and they justify why we took so much care when verifying
the multiplicative structure of the MASS-n.

Proposition 7.4.1. The LASS-(n+ 1) (definition 5.2.4) converges.

Proof. We start with some preliminary observations. Recall from theorem 5.2.3 that we have an
element αpn : Sp

nq −→ S/pn+1 detected by qp
n

1 in the MASS-(n+ 1). Moreover,

fn : ΣpnqS/pn+1
αpn∧S/pn+1

// S/pn+1 ∧ S/pn+1 µ // S/pn+1

induces an isomorphism on K-theory and the periodicity theorem tells us, via lemma 5.2.2, that
there exists an i ∈ N such that (fn)i = (vp

n

1 )i. We deduce the following identity.

v−1
1 S/pn+1 = hocolim(S/pn+1

vp
n

1 // Σ−p
nqS/pn+1

vp
n

1 // Σ−2pnqS/pn+1 // . . .)

= hocolim(S/pn+1 fn // Σ−p
nqS/pn+1 fn // Σ−2pnqS/pn+1 // . . .)
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By construction the induced homomorphism (fn)∗ : π∗(S/p
n+1) −→ π∗(S/p

n+1) is multiplication
by αpn ∈ π∗(S/pn+1) so that

π∗(v
−1
1 S/pn+1) = colim(π∗(S/p

n+1)
(fn)∗ // π∗(S/p

n+1)
(fn)∗ // π∗(S/p

n+1) // . . .)

= colim(π∗(S/p
n+1)

·αpn // π∗(S/p
n+1)

·αpn // π∗(S/p
n+1) // . . .)

= α−1
pn π∗(S/p

n+1).

The point in this observation is that it allows us to use the multiplicative structure of the MASS-n
to localize the spectral sequence as opposed to constructing maps of towers. Maps of towers are
constructed in [12, section 2.3] but the situation there is easier: to construct a map of Adams
resolutions only requires one map; to construct a map of ‘modified Adams resolutions’ appears to
be much harder.

For each k let [σ, k] = σ + pnk and [λ, k] = λ + pn(q + 1)k; we draw the following diagram in
which each row and column is exact and where the last nontrivial map in the short exact sequence is
described in definition 3.2.2. Notice that we are using the filtration associated to the MASS-(n+1),
not the MASS-(n+ 1)′.

0

��

0

��
0 // F [σ,k]+1π[λ,k]−[σ,k](S/p

n+1) //

��

F [σ,k]π[λ,k]−[σ,k](S/p
n+1) //

��

E
[σ,k],[λ,k]
∞ (MASS-(n+ 1)) // 0

π[λ,k]−[σ,k](S/p
n+1)

= // π[λ,k]−[σ,k](S/p
n+1)

Multiplication by αpn defines maps between the F [σ,k]π∗(S/p
n+1) as k varies. Since multiplication

by αpn is seen as multiplication by qp
n

1 on the E∞-page we may take filtered colimits over k to give
the following diagram in which the rows and columns remain exact and the middle row is part of
a short exact sequence.

0

��

0

��
colimkF

[σ,k]+1π[λ,k]−[σ,k](S/p
n+1) //

��

colimkF
[σ,k]π[λ,k]−[σ,k](S/p

n+1) //

��

Eσ,λ∞ (LASS-(n+ 1))

πλ−σ(v−1
1 S/pn+1)

= // πλ−σ(v−1
1 S/pn+1)

Defining F σπ∗(v
−1
1 S/pn+1) = im(colimkF

[σ,k]π∗(S/p
n+1) −→ π∗(v

−1
1 S/pn+1)) the short exact se-

quence above gives an identification

Eσ,λ∞ (LASS-(n+ 1)) = F σπλ−σ(v−1
1 S/pn+1)/F σ+1πλ−σ(v−1

1 S/pn+1)

74



and we see that⋃
σ
F σπ∗(v

−1
1 S/pn+1) = im(colimσcolimkF

[σ,k]π∗(S/p
n+1) −→ π∗(v

−1
1 S/pn+1))

= im(colimkcolimσF
[σ,k]π∗(S/p

n+1) −→ π∗(v
−1
1 S/pn+1))

= im(colimkπ∗(S/p
n+1) −→ π∗(v

−1
1 S/pn+1))

= π∗(v
−1
1 S/pn+1).

To verify case 3 of definition 7.1.1 we just need to check that for each u we can find a σ so that
F σπu(v−1

1 S/pn+1) vanishes. The vanishing line of lemma 6.5 implies a vanishing line for the MASS-
(n+ 1) and so convergence of the MASS-(n+ 1) shows that for each u we can systematically find a
σ with F σπu(S/pn+1) = 0. Since multiplication by qp

n

1 acts parallel to the vanishing line we have
F σπu(v−1

1 S/pn+1) = 0, too.

Corollary 7.4.2. The LASS-n′ (definition 5.3.2) converges.

Finally, we are in a position to complete the proof of theorem 5.3.1.

Proposition 7.4.3. The LASS-∞ (definition 5.3.3) converges.

Proof. The proof is almost identical to that for the MASS-∞ although there is an extra subtlety.
First, we indicate the changes to the proof for the MASS-∞. The two diagrams are replaced by

0

��

0

��
0 // F σ+1πλ−σ(v−1

1 S/pn) //

��

F σπλ−σ(v−1
1 S/pn) //

��

Eσ,λ∞ (LASS-n′) // 0

πλ−σ(v−1
1 S/pn)

= // πλ−σ(v−1
1 S/pn)

and

0

��

0

��
0 // colimnF

σ+1πλ−σ(v−1
1 S/pn) //

��

colimnF
σπλ−σ(v−1

1 S/pn) //

��

Eσ,λ∞ (LASS-∞) // 0

πλ−σ(v−1
1 S/p∞)

= // πλ−σ(v−1
1 S/p∞)

and we define F σπ∗(v
−1
1 S/p∞) = im(colimnF

σπ∗(v
−1
1 S/pn) −→ π∗(v

−1
1 S/p∞)). We use corollary

6.7 instead of lemma 6.5 and convergence of the LASS-n′ instead of convergence of the MASS-n′.
We use exactly the same inequality.

The remaining issue is to show how we can pass from the first diagram to the second diagram.
This comes down to constructing a map of diagrams as we let n vary in the first.
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Lemma 5.2.2 tells us that there exists an i such that the top and bottom rectangles in the
following diagram commute; the v1-maps are chosen as in [6, 1.1] so that each square commutes.

S/pn
(fn−1)p //

=

��

Σ−p
nqS/pn // . . . // Σ−(i−1)pnqS/pn

(fn−1)p // Σ−ip
nqS/pn

=

��
S/pn

(
vp
n−1

1

)p
//

p

��

Σ−p
nqS/pn //

p

��

. . . // Σ−(i−1)pnqS/pn

(
vp
n−1

1

)p
//

p

��

Σ−ip
nqS/pn

p

��
S/pn+1

vp
n

1 //

=

��

Σ−p
nqS/pn // . . . // Σ−(i−1)pnqS/pn+1

vp
n

1 // Σ−ip
nqS/pn+1

=

��
S/pn+1 fn // Σ−p

nqS/pn // . . . // Σ−(i−1)pnqS/pn+1 fn // Σ−ip
nqS/pn+1

The diagram above implies commutativity of the following diagram and so we deduce from a cofinal-
ity argument that the maps p : F σπ∗(S/p

n) −→ F σπ∗(S/p
n+1) induce maps p : F σπ∗(v

−1
1 S/pn) −→

F σπ∗(v
−1
1 S/pn+1).

F σπ∗(S/p
n)

·(αpn−1 )ip
//

p

��

F σ+ipnπ∗(S/p
n)

p

��
F σπ∗(S/p

n+1)
·(αpn )i

// F σ+ipnπ∗(S/p
n+1)

We saw in the construction of the LASS-∞ that the maps of spectral sequences

E∗,∗∗ (MASS-1′) // E∗,∗∗ (MASS-2′) // . . . // E∗,∗∗ (MASS-n′) // E∗,∗∗ (MASS-(n+ 1)′) // . . .

induce maps of spectral sequences

E∗,∗∗ (LASS-1′) // E∗,∗∗ (LASS-2′) // . . . // E∗,∗∗ (LASS-n′) // E∗,∗∗ (LASS-(n+ 1)′) // . . .

These constructions are compatible and so this completes the proof.

8 Maps of spectral sequences

We have set up a number of spectral sequences now and have seen some maps between them. For
instance, we have the maps E∗,∗∗ (MASS-n′) −→ E∗,∗∗ (MASS-(n + 1)′) used in the construction of
the MASS-∞. Inspecting the construction of the LASS-n and LASS-∞ we find maps of spectral
sequences E∗,∗∗ (MASS-n) −→ E∗,∗∗ (LASS-n) and E∗,∗∗ (MASS-∞) −→ E∗,∗∗ (LASS-∞).

In order to obtain information about the ASS-S0 we need a map of spectral sequences

ΣσE
∗,∗
∗ (MASS-∞) −→ E∗,∗∗ (ASS-S0).

This is also crucial for proving theorem 5.2.3.
In order to calculate the LASS-∞ we use the filtration of the E2-page given by the q−1

1 -BSS
(I.3.4.1). We need to know that the maps used to construct the q∞0 -BSS (those given by applying
CotorP (−) to I.3.2.1) and q−1

1 -BSS come from maps of topological spectral sequences.
This section sets up all the maps of spectral sequences that we need and identifies their effect

algebraically at the E2-page.
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8.1 Σ−1S/p∞ −→ S0

The hardest map of spectral sequences to identify at the level of E2-pages is given by the following
proposition.

Proposition 8.1.1. Associated to the map Σ−1S/pn −→ S0 is a map of spectral sequences

ΣσE
∗,∗
∗ (MASS-n′) −→ E∗,∗∗ (ASS-S0).

At E2-pages this map can be identified, up to a sign, with the connecting homomorphism

∂ : CotorP (Mn) −→ CotorP (Q(0))

arising from the short exact sequences of P -comodules 0 −→ Q(0) −→ Q(0)〈q−k0 〉 −→ Mk −→ 0
(see definition I.1.5).

From the construction, which we address shortly, we immediately obtain the following corollary.

Corollary 8.1.2. Associated to the map Σ−1S/p∞ −→ S0 is a map of spectral sequences

ΣσE
∗,∗
∗ (MASS-∞) −→ E∗,∗∗ (ASS-S0).

At E2-pages this map can be identified, up to a sign, with the connecting homomorphism

∂ : CotorP (Q(0)/q∞0 ) −→ CotorP (Q(0))

arising from the short exact sequences of P -comodules 0 −→ Q(0) −→ q−1
0 Q(0) −→ Q(0)/q∞0 −→ 0

(see definition I.1.4).

The connecting homomorphism of the previous corollary is an isomorphism in a large range and
the MASS-∞ is isomorphic to the ASS-S0 in this range. More precisely, because CotorP (q−1

0 Q(0)) =
Fp[q0, q

−1
0 ] we have

Σs CotorP (Q(0)/q∞0 )/ Fp 〈qt0 : t < 0〉 = CotorP (Q(0))/ Fp [q0] (8.1.3)

and the spectral sequences are isomorphic in the range λ − σ > 0. This corresponds to the fact,
obtained using the cofibration sequence S(p) −→ HQ −→ S/p∞, that

Σ−1π∗(S/p
∞)/π0(S/p∞) = π∗(S

0)/π0(S0).

Using these observations together with proposition 4.2.6, we find that the LASS-∞ tells us a lot
about the ASS-S0. We can be more precise once we compute the LASS-∞.

We turn to the proof of proposition 8.1.1. First we need to construct the map of towers which
gives rise to the map of spectral sequences. We introduce the relevant notation.

Definition 8.1.4. Write (C,L) for the tower in which the sequence C ∈ S Z is given by

Cs =

{
S if s ≤ 0

∗ if s > 0

and all nontrivial structure maps are the identity.
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We have a map of towers (Y (n)′, J(n)′) −→ (C,L) of nonzero degree. More precisely, we have
compatible maps Σ−1Y (n)′s−1 −→ Cs and Σ−1J(n)′s−1 −→ Ls: the map Σ−1S/ps −→ S is given by
composing Σ−1S/ps −→ Σ−1S/p∞ with the connecting map obtained from the cofibration sequence

S // p−1S // S/p∞.

Smashing with (X, I) (2.4.6) induces map of spectral sequences ΣσE
∗,∗
∗ (MASS-n′)→ E∗,∗∗ (ASS-S0).

Moreover, these maps are compatible as we vary n and so we obtain a map

ΣσE
∗,∗
∗ (MASS-∞) −→ E∗,∗∗ (ASS-S0).

Definition 8.1.5. The maps of spectral sequences

ΣσE
∗,∗
∗ (MASS-n′) −→ E∗,∗∗ (ASS-S0), ΣσE

∗,∗
∗ (MASS-∞) −→ E∗,∗∗ (ASS-S0)

just constructed are the maps of spectral sequences associated to the maps Σ−1S/pn −→ S0 and
Σ−1S/p∞ −→ S0, respectively.

Proof of proposition 8.1.1. Consider the following diagram of cochain complexes.

−n− 1 −n −n+ 1 −1 0 1

∗

��

// ∗

��

// ∗

��

// . . . // ∗

��

// ∗

��

// S

=

��

// ∗

��

−n− 1 −n− 1 −n− 1 −n− 1 −n− 1 −n− 1

∗

��

// S/p

=

��

β // S/p

=

��

// . . . // S/p

=

��

β // S/p

=

��

// S

��

// ∗

��

−n− 1

∗ // S/p
β // S/p // . . . // S/p

β // S/p // ∗ // ∗

We have omitted suspensions: each spectrum lying in ‘cohomological’ grading s should be suspended
s times. The map Σ−1S/p→ S is the same one that we used before. We note that the first row of
the diagram is Σ•L• and the last row of the diagram is Σ•J(n)′•. We call the middle row Σ•L(n)′•.
Applying H∗(−) gives the following diagram.

0

��

// 0

��

// 0

��

// . . . // 0

��

// 0

��

// Fp

=

��

// 0

��

−n− 1 −n− 1 −n− 1 −n− 1 −n− 1 −n− 1

0

��

// E[τ0]

=

��

β // E[τ0]

=

��

// . . . // E[τ0]

=

��

β // E[τ0]

=

��

// Fp

��

// 0

��

−k − 1

0 // E[τ0]
β // E[τ0] // . . . // E[τ0]

β // E[τ0] // 0 // 0
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This diagram is a short exact sequence of DG A-comodules and we can apply the snake lemma to
the short exact sequence

0 −→ Ω(A;H∗(Σ
•L•)) −→ Ω(A;H∗(Σ

•L(n)′•)) −→ Ω(A;H∗(Σ
•J(n)′•)) −→ 0

to give a connecting homomorphism. In fact, we can perform the ‘lift, apply coboundary, pullback’
procedure of the snake lemma geometrically:[

(Σ•I•)∧(Σ•J(n)′•)

]
σ

//
[

(Σ•I•)∧(Σ•L(n)′•)

]
σ

d //
[

(Σ•I•)∧(Σ•L(n)′•)

]
σ+1

//
[

(Σ•I•)∧(Σ•L•)

]
σ+1

The first and last map are ‘inclusion’ and ‘collapse’ maps, respectively. Of course, these are not
maps of cochain complexes but they correspond to the ‘extend by zero’ and ‘project’ maps at the
level of the cobar construction.

The map (Z(n)′,K(n)′) = (X, I)∧ (Y (n)′, J(n)′)→ (X, I)∧ (C,L) = (X, I), which induces the
map of spectral sequences has an associated map of cochain complexes. This is precisely the map
above and so we deduce that at the level of E2-pages the map of spectral sequences is given by

∂ : CotorA(H∗(Σ
•J(n)′•)) −→ CotorA(H∗(Σ

•L•)).

We have a commutative diagram in which the vertical maps are homology isomorphisms. The maps
are constructed in the same way as in lemma 4.2.2.

0 // Q(0)⊗θ H∗(Σ•L•) //

��

Q(0)⊗θ H∗(Σ•L′•) //

��

Q(0)⊗θ H∗(Σ•J(n)′•) //

��

0

0 // Q(0) // Q(0)〈q−k0 〉 //Mn
// 0

Thus, using the map in theorem 4.2.1 we obtain a commuting diagram in which the vertical maps
are homology isomorphisms

0 // Ω(A;H∗(Σ
•L•)) //

��

Ω(A;H∗(Σ
•L′•)) //

��

Ω(A;H∗(Σ
•J(n)′•)) //

��

0

0 // Ω(P ;Q(0)) // Ω(P ;Q(0)〈q−k0 〉) // Ω(P ;Mn) // 0

and the connecting homomorphism above is isomorphic to the connecting homomorphism in the
proposition statement, completing the proof.

Note that in the preceding argument we omitted some details regarding signs. More signs than
usual appear because (Y (n)′, J(n)′)→ (C,L) has nonzero degree.

8.2 S/p −→ S/p∞ −→ S/p∞

Next, we need to identify the maps of spectral sequences induced by the maps in the cofibration
sequence S/p→ S/p∞ → S/p∞ and show that at the E2-pages they give the maps used to construct
the q∞0 -BSS.

First, we use corollary 8.1.2 to identify the map induced by the connecting homomorphism.
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Corollary 8.2.1. Associated to the map Σ−1S/p∞ −→ S/p is a map of spectral sequences

ΣσE
∗,∗
∗ (MASS-∞) −→ E∗,∗∗ (MASS-1).

At E2-pages this map can be identified with the connecting homomorphism

∂ : CotorP (Q(0)/q∞0 ) −→ CotorP (Q(1))

arising from the short exact sequences of P -comodules 0 −→ Q(1) −→ Q(0)/q∞0
q0−→ Q(0)/q∞0 −→ 0

(see I.3.2.1).

Proof. We have the following map of cofibration sequences.

S //

��

p−1S //

��

S/p∞

=

��
S/p // S/p∞ // S/p∞

We have an analogous map between short exact sequences of P -comodules.

0 // Q(0) //

��

q−1
0 Q(0) //

/q0
��

Q(0)/q∞0
//

=

��

0

0 // Q(1) // Q(0)/q∞0
q0 // Q(0)/q∞0

// 0

This shows that Σ−1S/p∞ −→ S/p factors as Σ−1S/p∞ −→ S0 −→ S/p. Similarly, the connecting
homomorphism ∂ : CotorP (Q(0)/q∞0 ) −→ CotorP (Q(1)) factors as

CotorP (Q(0)/q∞0 )
∂ // CotorP (Q(0)) −→ CotorP (Q(1)).

The result follows by composing the map in corollary 8.1.2 with the map induced by S0 −→ S/p,
which can be identified at E2-pages with CotorP (Q(0)) −→ CotorP (Q(1)).

The other maps are identified by the following proposition.

Proposition 8.2.2. Associated to the maps in the cofibration sequence S/p −→ S/p∞
p−→ S/p∞

are maps of spectral sequences

E∗,∗∗ (MASS-1) −→ Σσ,λE
∗,∗
∗ (MASS-∞) −→ E∗,∗∗ (MASS-∞).

At E2-pages these maps can be identified with the maps

CotorP (Q(1)) −→ CotorP (Q(0)/q∞0 ) −→ CotorP (Q(0)/q∞0 )

arising from the short exact sequences of P -comodules 0 −→ Q(1) −→ Q(0)/q∞0
q0−→ Q(0)/q∞0 −→ 0

(see I.3.2.1).
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Proof. The first map is the composite Σ−1
σ,λE

∗,∗
∗ (MASS-1) = E∗,∗∗ (MASS-1′)→ E∗,∗∗ (MASS-∞). We

turn to the second map.
The maps S/ps+1 −→ S/ps for s ≥ 0 give maps (Y (n + 1), J(n + 1)) −→ (Y (n), J(n)). Rein-

dexing, we obtain maps (Y (n + 1)′, J(n + 1)′) −→ (Y (n)′, J(n)′) of nonzero degree. These induce
maps of spectral sequences

Σσ,λE
∗,∗
∗ (MASS-(n+ 1)′) −→ E∗,∗∗ (MASS-n′)

The second map is given by taking a colimit of these maps. The E2-page identifications are obtained
using the same arguments as in lemma 4.2.2.

We summarizing the previous two results in the following proposition.

Proposition 8.2.3. Associated to the cofibration sequence S/p −→ S/p∞
p−→ S/p∞ we have maps

of spectral sequences. At E2-pages these maps can be identified with the long exact sequence used
to construct the q∞0 -BSS (definition I.3.2.2).

We also have the requisite localized version of this result.

Proposition 8.2.4. Associated to the cofibration sequence v−1
1 S/p −→ v−1

1 S/p∞
p−→ v−1

1 S/p∞

we have maps of spectral sequences. At E2-pages these maps can be identified with the long exact
sequence used to construct the q−1

1 -BSS (definition I.3.4.1).

Proof. The first map is the composite Σ−1
σ,λE

∗,∗
∗ (LASS-1) = E∗,∗∗ (LASS-1′) −→ E∗,∗∗ (LASS-∞).

For the second map we note that the maps Σσ,λE
∗,∗
∗ (MASS-(n+1)′) −→ E∗,∗∗ (MASS-n′) induce

maps Σσ,λE
∗,∗
∗ (LASS-(n+ 1)′) −→ E∗,∗∗ (LASS-n′) and we take colimits.

For the connecting homomorphism we note that the map ΣσE
∗,∗
∗ (MASS-∞) → E∗,∗∗ (MASS-1)

can be constructed in one shot. We have a map of towers (Y (n)′, J(n)′)→ (Y (1), J(1)) of nonzero
degree. More precisely, we have compatible maps Σ−1Y (n)′s−1 → Y (1)s and Σ−1J(n)′s−1 → J(1)s:
the map Σ−1S/ps → S/p is given by composing Σ−1S/ps → Σ−1S/p∞ with the connecting map
obtained from the cofibration sequence S/p −→ S/p∞ −→ S/p∞. These induce maps of spectral
sequences ΣσE

∗,∗
∗ (MASS-n′) → E∗,∗∗ (MASS-1); these maps are compatible as we vary n and so

we obtain a map ΣσE
∗,∗
∗ (MASS-∞) → E∗,∗∗ (MASS-1). Moreover, the maps ΣσE

∗,∗
∗ (MASS-n′) →

E∗,∗∗ (MASS-1) induce maps of spectral sequences ΣσE
∗,∗
∗ (LASS-n′) → E∗,∗∗ (LASS-1); these maps

are compatible as we vary n and so we obtain a map ΣσE
∗,∗
∗ (LASS-∞)→ E∗,∗∗ (LASS-1).

That the maps are as claimed on E2-pages follows from the construction and proposition 8.2.3.

9 Finishing up the computation

In this section we compute the LASS-∞. We have already addressed the necessary combinatorics
for the calculation in I.6. We need to introduce two more spectral sequences so that we can see the
value in proposition 6.3.

9.1 Setting up the q0-filtration spectral sequence

The heart of the calculation is computing E3(LASS-∞) = H(E2(LASS-∞), d2). E2(LASS-∞) has
the filtration arising from the q−1

1 -BSS and this is respected by d2. There is an associated spectral
sequence, which we proceed to set up.
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Definition 9.1.1. For v ≤ 0 let F vBE
∗,∗
2 (LASS-∞) = ker (q−v0 : E∗,∗2 (LASS-∞)→ E∗,∗2 (LASS-∞)).

For v > 0 let F vBE
∗,∗
2 (LASS-∞) = 0.

q0 ∈ CotorP (q−1
1 Q(0)/qn0 ) is a permanent cycle in the LASS-n. Because d2 is a derivation we

see that multiplication by q0 commutes with d2. Thus, the same is true in the LASS-n′ and the
LASS-∞. We summarize in the following lemma.

Lemma 9.1.2. d2 : E∗,∗2 (LASS-∞) −→ E∗,∗2 (LASS-∞) respects the filtration of definition 9.1.1.
In particular, we have an induced map

d2 : F vBE
∗,∗
2 (LASS-∞)/F v+1

B E∗,∗2 (LASS-∞) −→ F vBE
∗,∗
2 (LASS-∞)/F v+1

B E∗,∗2 (LASS-∞).

Applying H∗,∗(−) to the short exact sequence

0 // F v+1
B E∗,∗2 (LASS-∞) // F vBE

∗,∗
2 (LASS-∞) // F vBE

∗,∗
2 (LASS-∞)/F v+1

B E∗,∗2 (LASS-∞) // 0

gives a long exact sequence and intertwining all of these long exact sequences gives an exact couple.

Definition 9.1.3. The spectral sequence arising from this exact couple is called the q0-filtration
spectral sequence (q0-FILT). It has E1-page

Eσ,λ,v1 (q0-FILT) = Hσ,λ(F vBE
∗,∗
2 (LASS-∞)/F v+1

B E∗,∗2 (LASS-∞), d2)

and dr has degree (2, 1, r). As a notational device we define the E0-page (recall I.3.4.1 and I.4.2.1).

Eσ,λ,v0 (q0-FILT) = F vBE
σ,λ
2 (LASS-∞)/F v+1

B Eσ,λ2 (LASS-∞) = Eσ,λ,v∞ (bi-q−1
1 ) =

⊕
s+t=σ
u+t=λ

Es,t,u,v∞ (q−1
1 )

The spectral sequence converges to E∗,∗3 (LASS-∞); the filtration degree is given by v. In particular,
we have an identification

Eσ,λ,v∞ (q0-FILT) = F vEσ,λ3 (LASS-∞)/F v+1Eσ,λ3 (LASS-∞)

where F vE∗,∗3 (LASS-∞) = im(H∗,∗(F vBE
∗,∗
2 (LASS-∞), d2) → H∗,∗(E∗,∗2 (LASS-∞), d2)). The iden-

tification is given by lifting an element of F vE∗,∗3 (LASS-∞) to H∗,∗(F vBE
∗,∗
2 (LASS-∞), d2) and

mapping this down to E∗,∗,v1 (q0-FILT) to give a permanent cycle.

We note that convergence is given by case 2 of definition 7.1.1, using convergence of the q−1
1 -BSS.

9.2 The Mahowald Filtration

To make the next subsection clearer we recap, in this subsection, some of the work of Miller. In [17]
he computes the v1-periodic homotopy of the Moore spectrum S/p using the LASS-1 (notice that
the MASS-1 is simply the ASS-S/p which is why there is no mention of modified Adams spectral
sequences). In proposition 4.2.3 we saw that the E2-page of the MASS-1 can be given three gradings;
we can filter it using the s grading. Miller observes that, by constructing this filtration geometrically,
we can show that the d2’s in the MASS-1 interact nicely with this additional structure. We explain
in a little more detail.
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Definition 9.2.1. All of the spectral sequences of sections 2 through 5 have E2-pages of the form

Eσ,λ2 =
⊕
s+t=σ
u+t=λ

Cotors,t,uP (N)

for some bigraded P -comodule N . In each case, the Mahowald filtration is given by

F ŝME
σ,λ
2 =

⊕
s+t=σ, s≥ŝ
u+t=λ

Es,t,u2 .

Our nomenclature follows Miller in [17] who named this filtration in honour of Mahowald who
made use of a related filtration in [11]. Miller constructed this filtration geometrically in the case
of the ASS-Y for a “(BP,H)-primary” spectrum Y , in particular, when Y is S0 or S/p.

Definition 9.2.2. Let (W,G) be the BP -canonical tower for S

S

��

BPoo

��

. . .oo BP
soo

��

BP
s+1oo

��

. . .oo

BP

::

BP ∧BP

::

BP ∧BP s

77

BP ∧BP s+1

99

so that W ∈ S Z is the sequence given by

Ws =

{
S if s ≤ 0

BP
∧s

if s ≥ 0,

where Ws+1 −→Ws is

BP
∧(s+1) (BP−→S)∧BP∧s // BP

s

for s ≥ 0 and the identity on S otherwise.

Recall the definition of (X, I), 2.4.6. The Mahowald filtration is constructed geometrically using
the observation that (W,G)∧ (X, I) is an H-Adams towers for S and truncating (W,G) to a tower
for BP

s
gives a filtration of (W,G)∧(X, I). On Adams E2-pages this gives the Mahowald filtration

(see remark 5.3, (5.5), (5.10) and remark 8.15 of [17]). We could surely apply the same reasoning
to the MASS-n since [23, lemma 3.5] tells us that we do not have to use the canonical resolution
(X, I) in its construction; we’re free to use (W,G) ∧ (X, I) instead.

The key result, which Miller proves, is the following theorem (a restated version of I.6.1).

Theorem 9.2.3 ([17, 4.8]). In the LASS-1 we have d2 : F sME
∗,∗
2 (LASS-1) −→ F s+1

M E∗,∗2 (LASS-1)
and d2hi+1

.
= q1bi for i > 0, up to higher filtration.

The proof proceeds in two stages. Firstly, Miller checks the claim concerning the filtration and
that, up to higher filtration, differentials in the LASS-1 are determined by differentials in another
spectral sequence. Then he computes the relevant differentials in the other spectral sequence. We
believe that the first part of the argument holds for the LASS-n and the LASS-∞, in particular
that d2 increases Mahowald filtration by one. In fact, we have a different proof of [17, theorem 6.1]
that is easily generalized. We do not give it here since it is not necessary. However, it does put the
mind at rest, knowing that underpinning the algebra is geometry.
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9.3 Setting up the Mahowald spectal sequence

The bulk of the work in computing the q0-FILT spectral sequence is determining the E1-page. For
this we introduce our final spectral sequence. Its set up uses the fact that the maps in the exact
couple giving rise to the the q−1

1 -BSS come from maps of topological spectral sequences and that
E0(q0-FILT) has a Mahowald filtration.

Lemma 9.3.1. We know from definition I.4.2.1 and proposition 4.2.3 that E∗,∗,∗∞ (bi-q−1
1 ) is a

subquotient of
⊕

v<0E
∗,∗
2 (LASS-1)v.

d2 : E∗,∗2 (LASS-1)→ E∗,∗2 (LASS-1) induces a map d2 : E∗,∗,v∞ (bi-q−1
1 )→ E∗,∗,v∞ (bi-q−1

1 ) such that
the identification

(Eσ,λ,v∞ (bi-q−1
1 ), d2) = (F vBE

σ,λ
2 (LASS-∞)/F v+1

B Eσ,λ2 (LASS-∞), d2)

is an idenfication of complexes (recall lemma 9.1.2).

Proof. This follows immediately from the fact that the bi-q−1
1 -BSS is set up using the exact couple

Eσ−v+r−1,λ−v+r−1
2 (LASS-∞) . . .

q0oo Eσ−v,λ−v2 (LASS-∞)
q0oo

∂ **

Eσ−v−1,λ−v−1
2 (LASS-∞)oo

Eσ−v+r,λ−v+r
2 (LASS-1)v−r

OO

Eσ−v,λ−v2 (LASS-1)v

OO

and each of the maps comes from a map of spectral sequences (8.2.4).

Corollary 9.3.2. Eσ,λ,v1 (q0-FILT) = Hσ,λ(E∗,∗,v∞ (bi-q−1
1 ), d2).

Since the bi-q−1
1 -BSS is obtained from the q−1

1 -BSS by collapsing one of the gradings, E∞(bi-q−1
1 )

has a Mahowald filtration.

Definition 9.3.3. The Mahowald filtration on E∗,∗,∗∞ (bi-q−1
1 ) is induced from the Mahowald filtra-

tion on E∗,∗1 (bi-q−1
1 ) =

⊕
v<0E

∗,∗
2 (LASS-1)v:

F ŝME
σ,λ,v
∞ (bi-q−1

1 ) =
⊕

s+t=σ, s≥ŝ
u+t=λ

Es,t,u,v∞ (q−1
1 )

=
⊕

s+t=σ, s≥ŝ
u+t=λ

(
Es,t,u,v1 ∩

⋂
r

ker dr

)
/

(
Es,t,u,v1 ∩

⋃
r

im dr

)
.

Theorem 9.2.3 and the proof of lemma 9.3.1 give the following result.

Proposition 9.3.4. d2 : E∗,∗,v∞ (bi-q−1
1 ) −→ E∗,∗,v∞ (bi-q−1

1 ) induces a map

d2 : F sME
∗,∗,v
∞ (bi-q−1

1 ) −→ F s+1
M E∗,∗,v∞ (bi-q−1

1 ).

Applying H∗,∗(−) to the short exact sequence

0 // F s+1
M E∗,∗,v∞ (bi-q−1

1 ) // F sME
∗,∗,v
∞ (bi-q−1

1 ) // F sME
∗,∗,v
∞ (bi-q−1

1 )/F s+1
M E∗,∗,v∞ (bi-q−1

1 ) // 0

gives a long exact sequence and intertwining all of these long exact sequences gives an exact couple.
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Definition 9.3.5. The spectral sequence arising from this exact couple is called the Mahowald
spectral sequence (MAHSS). It has E1-page

Es,σ,λ,v1 (MAH) = F sME
σ,λ,v
∞ (bi-q−1

1 )/F s+1
M Eσ,λ,v∞ (bi-q−1

1 ) = Es,σ−s,(λ−σ)+s,v
∞ (q−1

1 )

and dr has degree (r, 2, 1, 0). The spectral sequence converges to E1(q0-FILT) and the filtration
degree is given by s. In particular, we have an identification

Es,σ,λ,v∞ (MAH) = F sEσ,λ,v1 (q0-FILT)/F s+1Eσ,λ,v1 (q0-FILT)

where

F sE∗,∗,∗1 (q0-FILT) = im(H∗,∗,∗(F sME
∗,∗,∗
∞ (bi-q−1

1 ), d2) −→ H∗,∗,∗(E∗,∗,∗∞ (bi-q−1
1 ), d2)).

The identification is given by lifting an element of F sE∗,∗,∗1 (q0-FILT) to H∗,∗,∗(F sME
∗,∗,∗
∞ (bi-q−1

1 ), d2)
and mapping this down to Es,∗,∗,∗1 (MAH) to give a permanent cycle.

Convergence of this spectral sequence is given by case 1 of definition 7.1.1, although we need
the corollary of the following lemma.

Lemma 9.3.6. For each (σ, λ) there are only finitely many s such that Cotor
s,σ−s,(λ−σ)+s
P (q−1

1 Q(1))
is nonzero.

Proof. Recall from I.5.1.4 that CotorP (q−1
1 Q(1)) = Fp[q1, q

−1
1 ]⊗E[hi : i > 0]⊗ Fp[bi : i > 0], using

the notation of I.5.2.2. Certainly s needs to be non-negative so assume s ≥ 0 throughout.

Working in the (λ− σ, σ) grading in which we plot our Adams spectral sequences, we find that
the line from the origin to any of the hi’s or bi’s except h1 has slope strictly less than 1/(2p − 2),
in particular, slope less than or equal to 1/(p2 − p − 1). Also, with the exception of h1, each has
(λ− σ) grading greater than or equal to 2(p2 − p− 1). Since

2(p2 − p− 1)

2p− 2
− 2(p2 − p− 1)

p2 − p− 1
=
p(p− 3) + 1

p− 1
>

1

p
,

all except h1 have vertical distance greater than 1/p to the vanishing line of corollary 6.4.

If an element in CotorP (q−1
1 Q(1)) has grading (s, t, u), its monomials contain precisely s symbols

in the set {hi, bi : i > 0}. Since h2
1 = 0, and multiplication by q1 acts parallel to the vanishing line,

we see that if a nonzero element has grading (s+1, t, u) then it has vertical distance is greater than
s/p to the vanishing line. The proof follows quickly.

Corollary 9.3.7. For each (σ, λ, v) there are only finitely many s such that E
s,σ−s,(λ−σ)+s,v
∞ (q−1

1 )
is nonzero.

9.4 The MAHSS, the q0-FILT and the LASS-∞

We are finally ready to compute the LASS-∞ (5.3.3).

Miller’s theorem (9.2.3) tells us that (E•,∗,∗,v1 (MAH), d1) is determined by definition I.6.2 and
propostion I.6.3. We obtain the following results.
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Theorem 9.4.1. E∗,∗,∗,∗2 (MAH) has Fp-basis

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j] ≤ v < 0

}
∪
{〈

JkpiK
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
.

Degree considerations give the following corollary.

Corollary 9.4.2. E∗,∗,∗,∗∞ (MAH) = E∗,∗,∗,∗2 (MAH).

Proof. JnK ∈ Cotor
0,n,2n(p−1)
P (q−1

1 Q(1)) and so for the appropriate n and v (given by theorem 9.4.1)
we have 〈

JnK
〉
v
∈ E0,n+v,(2p−1)n+v,v

2 (MAH).

JnKhi ∈ Cotor
1,n,2[n+p[i]](p−1)
P (q−1

1 Q(1)) and so for the appropriate n and v (given by theorem 9.4.1)
we have 〈

JnKhi
〉
v
∈ E1,(n+v)+1,2[n+p[i]](p−1)+(n+v),v

2 (MAH).

Write q for 2(p− 1) as usual, and consider the topological dimension λ− σ of these classes. In the
first case we have λ−σ = nq; in the second case we have λ−σ = [n+p[i]]q−1. Using just this data
we know that there can only be differentials from elements in the first class and there can only be
differentials to elements in the second class.

We have
dr

〈
JnK
〉
v
∈ Er,n+v+2,(2p−1)n+v+1,v

r (MAH).

and the vanishing line of corollary 6.8 tells us that

F v+2
B E

n+v+2,(2p−1)n+v+1
2 (LASS-∞) = E

n+v+2,(2p−1)n+v+1
2 (LASS-∞).

Thus E
n+v+2,(2p−1)n+v+1,v
∞ (bi-q−1

1 ) = 0 and so E
r,n+v+2,(2p−1)n+v+1,v
r (MAH) = 0. We deduce that

there cannot be any more nontrivial differentials, which completes the proof.

Corollary 9.4.3. E∗,∗,∗1 (q0-FILT) has an Fp-basis, which we write abusively as

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j] ≤ v < 0

}
∪
{〈

JkpiK
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
.

This gives an almost perfect upper bound on the size of E∗,∗3 (LASS-∞) and because π∗(v
−1
1 S/p∞)

is already known (see [21]), we can deduce the rest of the spectral sequence. For completeness we
note the following results.

Corollary 9.4.4. With the notation of corollary 9.4.3, E∗,∗,∗∞ (q0-FILT) has an Fp-basis given by

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j−1] − 1 ≤ v < 0

}
∪
{〈

Jkpi+1K
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
.
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Corollary 9.4.5. E∗,∗3 (LASS-∞) has an Fp-basis, which we write abusively as

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j−1] − 1 ≤ v < 0

}
∪
{〈

Jkpi+1K
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
.

Corollary 9.4.6. With the notation of corollary 9.4.5, and the convention that for r > j,

−p[j−r] − r = −j,

E∗,∗r+2(LASS-∞) has an Fp-basis given by

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −p[j−r] − r ≤ v < 0

}
∪
{〈

Jkpi+rK
[
J−p[i]Khi

]〉
v

: k ∈ Z, i ≥ 1, 1− pi ≤ v < 0

}
whenever r ≥ 1.

Corollary 9.4.7. With the notation of corollary 9.4.5, E∗,∗∞ (LASS-∞) has an Fp-basis given by

{〈1〉v : v < 0}∪
{〈

Jkpj−1K
〉
v

: p - k ∈ Z, j ≥ 1, −j ≤ v < 0

}
∪
{〈

J−p[i]Khi
〉
v

: i ≥ 1, 1− pi ≤ v < 0

}
.

These results are hard to digest if one has not been staring at Christian Nassau’s charts [19]
for three months. Recall, figure I.1, which displays some of his chart for E2(ASS-S0) when p = 3.
This tells us about E2(LASS-∞) in a range by (8.1.3) and proposition 4.1.4. We obtained figure I.2
by removing some of the towers in figure I.1 and the complement of figure I.2 in figure I.1 gives
E2(MAH) = E1(q0-FILT) in the plotted range (up to the regrading coming from the Σσ in corollary
8.1.2). Figure II.1 displays the plot of E1(q0-FILT) with the gradings fixed. It also highlights the
differentials which occur in the LASS-∞. The d2’s occur as differentials in the q0-FILT: at what
point they show up in the spectral sequence depends on the difference in the size of the towers they
map between. d3’s and d4’s are also displayed in the picture. They are all forced from knowledge
of π∗(v

−1
1 S/p∞). We highlight the permanent cycles in blue.

9.5 The LASS-∞ and the ASS-S0

We finally address the information that the LASS-∞ gives us about the ASS-S0. Proposition 4.2.6
together with lemma III.1.5.2 give the following result.

Corollary 9.5.1. The localization map Eσ,λ3 (MASS-∞) −→ Eσ,λ3 (LASS-∞) is

1. a surjection if λ < p(p− 1)(σ + 1)− 2;

2. an isomorphism if λ− 1 < p(p− 1)(σ − 1)− 2.

Using (8.1.3) we obtain the following.

87



180 185 190 195 200 205 210 215

10

15

20

25

30

35

40

45

50

55

λ− σ

σ

q41
1 h2

q33
1 b2

q45
1

q32
1 h3

q46
1

q47
1

q48
1

q44
1 h2

q47
1 h1

q45
1 b1

q51
1

q47
1 h2

q54
1

q14
1 h4

q41
1 h3

q15
1 b3

Figure II.1: A portion of Eσ,λ∗ (LASS-∞) when p = 3
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Figure II.2: A portion of Eσ,λ∗ (ASS-S0) when p = 3

Corollary 9.5.2. Eσ,λ3 (ASS-S0) = Eσ−1,λ
3 (LASS-∞) if λ < p(p− 1)(σ − 2)− 1 and λ− σ > 0.

Writing down exactly what else can be deduced from these corollaries is tricky. Rather than
writing opaque looking statements we draw the picture and discuss what we can say about it.

Corollary 9.5.2 tells us that figure II.2 displays E3(ASS-S0) faithfully above the green line.
First, we identify the permanent cycles.

Theorem 5.2.3 tells us that qp
n

1 ∈ CotorP (Q(0)/qn+1
0 ) is a permanent cycle in the MASS-(n+1).

Since the MASS-(n + 1) is multiplicative the same is true for powers of this element. Using the
maps of spectral sequences E∗,∗∗ (MASS-(n + 1)) −→ E∗,∗∗ (MASS-∞) −→ E∗,∗∗ (ASS-S0) we obtain
permanent cycles in the ASS-S0. Their q0-multiples are displayed as the blue dots in figure II.2.

Now we discuss differentials in figure II.2. The elements directly below the blue dots cannot be
permanent cycles since otherwise, the corresponding elements in the LASS-∞ would be permanent
cycles, too. Similarly, the elements to the left of the towers containing the blue dots cannot be hit
before they are hit in the LASS-∞. This allows us to conclude that the towers containing the blue
dots support differentials which obey exactly the same pattern as in the LASS-∞.

By the surjectivity statement of corollary 9.5.1 we can deduce the existence of a few more dif-
ferentials such as those in figure II.2 whose sources are not drawn. However, we cannot see an easy
argument for why the circled element is the target of a differential. As we move further out in
the (λ− σ)-direction our green line will intersect towers supporting longer differentials and we will
have towers of questionable elements like this one. We believe that these questionable elements are
always hit by a differential like that in the LASS-∞ and we have already proved a useful result in
this direction (I.9.5). Rather than writing down the weaker statements that we can deduce from
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the results above, we make the following conjecture and postpone its proof for future work.

Conjecture: For all r ≥ 2, Eσ,λr (ASS-S0) = Eσ−1,λ
r (LASS-∞) if σ < λ < p(p− 1)(σ − 2)− 1.

In the case of the circled element in the figure, our result in this direction together with Nassau’s
charts give an argument for why it is the target of a differential. But in a less specific case, there is
still the possibility that a questionable element like this is a permanent cycle detecting a nontrivial
homotopy class. Although the following example does not give a counterexample to our conjecture
(the elements used lie below the green line and we are considering d2’s) it does illustrate how this
sort of phenomenon might occur.

1. Let x ∈ E−1,2p(p−1)−1
2 (LASS-∞) be an element corresponding to

〈qp1〉−1−p ∈ E0,−1,2p(p−1),−1−p
∞ (q−1

1 ).

2. Let y ∈ E1,2p(p−1)
2 (LASS-∞) be an element corresponding to

〈qp−1
1 h1〉1−p ∈ E1,0,2p(p−1),1−p

∞ (q−1
1 ).

3. E
−1,2p(p−1)−1
2 (MASS-∞) = E

0,2p(p−1)−1
2 (ASS-S0) = 0.

4. We can take y to be the image of the element in E
1,2p(p−1)
2 (MASS-∞) mapping to b1,0.

E
2,2p(p−1)
2 (ASS-S0) E

1,2p(p−1)
2 (MASS-∞)oo // E

1,2p(p−1)
2 (LASS-∞)

b1,0 •�oo � // y

5. We find that d2x = y in the LASS-∞ whereas b1,0 is a permanent cycle detecting a nonzero
homotopy class β1 ∈ π2p(p−1)−2(S0), the first non-trivial element in the cokernel of the J-
homomorphism.

This example reminds us of Ravenel’s work in [22].
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Chapter III

Appendix

1 A permanent cycle in the MASS-n

1.1 Strategy

This section is devoted to a proof of theorem II.5.2.3.
Firstly, we wish to show that the element qp

n

1 ∈ CotorP (Q(0)/qn+1
0 ) = E2(MASS-(n + 1)) is a

permanent cycle. The idea of the proof follows from the observation that if this is true, then there
is a related permanent cycle in the MASS-∞ and thus, in the ASS-S0. This is because we have
a map of spectral sequences from the MASS-(n + 1)′ to the MASS-∞ and because in subsection
II.8.1 we construct a map of spectral sequences from the MASS-∞ to the ASS-S0. We prove that
the corresponding element is a permanent cycle in the ASS-S0 (theorem 1.4.1), deduce the same
for the MASS-∞, and then use an injectivity argument (lemma 1.5.3) to prove the result for the
MASS-(n+ 1).

In order to prove the statement for the ASS-S0 we construct a corresponding homotopy class. To
do this requires a thorough analysis of stunted projective spaces and this is performed in subsections
1.2 and 1.3. Once we have proven the permanent cycle statement we need to verify the K-theory
statement and this is done in subsection 1.6.

1.2 Some classes in the (co)homology of stunted projective spaces

We make extensive use of stunted projective spaces. Firstly, let’s recall the cohomology of BΣp.

Proposition 1.2.1 ([1, 2.1]). Let i : Cp −→ Σp be the inclusion of a Sylow subgroup. H∗(BCp) =
E[x]⊗Fp[y] where |x| = 1, |y| = 2 and βx = y and H∗(BΣp) = E[xq−1]⊗Fp[yq] where (Bi)∗(xq−1) =
xyp−2 and (Bi)∗(yq) = yp−1.

Proposition 2.7 of [5], first proved by Adams in [1], says that there is a CW spectrum L with
one cell in each nonnegative dimension congruent to 0 or −1 modulo q, such that L ' (Σ∞BΣp)(p).
Denote the skeletal fitration by a superscript in parentheses. Then we make the following definition.

Definition 1.2.2. Write B for the spectrum of [5, 2.7]. For n ≥ 0 let Bn = B(nq) and for 1 ≤ n ≤ m
let Bm

n = Bm/Bn−1. For n > m let Bm
n = ∗.

Notation 1.2.3. For j > 0 write ej for xq−1y
j−1
q ∈ H̃jq−1(BΣp) = Hjq−1(B) and write ej for the

class in Hjq−1(B) dual to ej .
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To construct the relevant permanent cycle in the ASS-S0 we make use of a homotopy class in
πpnq−1(Bpn

pn−n). Firstly, we analyze the algebraic picture and identify the corresponding A-comodule
primitive.

Proposition 1.2.4. For each n ≥ 0, epn ∈ Hpnq−1(B) is an A-comodule primitive.

Proof. The result is obvious when n = 0 so assume from now on that n > 0.
Since the (co)homology of B is concentrated in dimensions which are 0 or −1 congruent to q,

the dual result is that P iej = 0 whenever i, j > 0 and i+ j = pn.
Let i : Cp −→ Σp be the inclusion of a Sylow subgroup. Since (Bi)∗ is injective it is enough to

show that the equation is true after applying (Bi)∗. Writing this out explicitly, we must show that

P i(xy(p−1)j−1) = 0 whenever i, j > 0 and i+ j = pn.

Write P for the total reduced p-th power. Then we have P (x) = x and P (y) = y+yp = y(1+yp−1).
Suppose that i, j > 0 and that i+ j = pn. Then

P (xy(p−1)j−1) = xy(p−1)j−1(1 + yp−1)(p−1)j−1 = xy(p−1)j−1

(p−1)j−1∑
k=0

(
(p− 1)j − 1

k

)
y(p−1)k

which gives

P i(xy(p−1)j−1) =

(
(p− 1)j − 1

i

)
xy(p−1)pn−1

as long as i ≤ (p− 1)j − 1 and P i(xy(p−1)j−1) = 0 otherwise. We just need to show that

p

∣∣∣∣ ((p− 1)(pn − i)− 1

i

)
whenever 0 < i ≤ (p−1)(pn− i)−1. The largest value of i for which we have i ≤ (p−1)(pn− i)−1
is (p− 1)pn−1 − 1 so write i = spk for 0 ≤ k < n and s 6≡ 0 (mod p). Let m = (p− 1)(pn − i)− 1
so that we are interested in

(
m
i

)
. m− i ≡ −1 (mod pk+1) and so when we add m− i to i in base p

there is a carry. An elementary fact about binomial coefficients completes the proof.

The relevant topological result is given by the following proposition.

Proposition 1.2.5. For each n ≥ 0, epn ∈ Hpnq−1(Bpn

pn−n) is in the image of the Hurewicz homo-
morphism.

Proof. Setting ε = 0, i = n+ 1, j = pn − n− 1 and k = iq − 1 in [5, V.2.9(v)] shows that

Z = B(pnq−1)/B((pn−n−1)q−1)

has reductive top cell and we have an ‘include-collapse’ map Z −→ Bpn

pn−n.

In constructing the relevant permanent cycle in the ASS-S0 we make use of the transfer. First,
we analyze it algebraically.

Definition 1.2.6. Write t : B −→ S0 for the transfer map of [1, 2.3(i)] and let C be the cofiber of
Σ−1t.
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Notation 1.2.7. We have a cofibration sequence S−1 −→ C −→ B. Abuse notation and write ej

and ej for the elements in H∗(C) and H∗(C) which correspond to the elements of the same name
in H∗(B) and H∗(B). Write U and u for the dual classes in H∗(C) and H∗(C) corresponding to
generators of H−1(S−1) and H−1(S−1).

Proposition 1.2.8. Let n ≥ 0. Then epn ∈ Hpnq−1(C) is mapped to 1 ⊗ epn
.

+ ξp
n

1 ⊗ u under the
A-coaction map.

Proof. First, let’s introduce some notation which will be useful for the proof. Write Sqkqp and Sqkq+1
p

for P k and βP k, respectively. Recall that the Steenrod algebra A∗ has a Fp-vector space basis given
by admissable monomials

B = {Sqi1p · · · Sqirp : ij ≥ pij+1, ij ≡ 0 or 1 (mod p)}.

We claim that Sqp
nq
p U

.
= ep

n
, and that bU = 0 for any b ∈ B of length greater than 1. Here, length

greater than one means that r > 1 and ir > 0.

By proposition 1.2.4 we know that epn is mapped, under the coaction map, to 1⊗ epn + a⊗ u
for some a ∈ A. If we can prove the claim above then we will deduce that a

.
= ξp

n

1 .

Take an element b = Sqi1p · · · Sqirp ∈ B of length greater than one and let k = bir−1/qc. We have

ir−1 ≥ pir =⇒ ir−1/p ≥ ir =⇒ k ≥ ir =⇒ 2k > ir − 1.

Since |Sqirp U | = ir−1 and Sqirp U comes from the cohomology of a space we deduce that P kSqirp U = 0.

Now either ir−1 = kq or kq + 1 so that Sq
ir−1
p = P k or βP k. Thus Sq

ir−1
p Sqirp U = 0 and bU = 0 as

required for the second part of the claim.

To prove that P p
n
U

.
= ep

n
it is enough to show that βP p

n
U

.
= βep

n
. Notice that |βe1| = q and

so

P p
n−1q/2 · · ·P pq/2P q/2βe1 = (βe1)p

n
= βep

n
.

The Kahn-Priddy theorem ([1, 2.3]) tells us that the map t : B −→ S0 is surjective in homotopy.
The ASS shows that there is a unique nontrivial class πq−1(S0) (up to unit) detected by h1,0 and
by cellular approximation this is the composite

Sq−1 i // B
t // S0.

We conclude that P 1U
.

= e1 and so it is enough to prove that

P p
n−1q/2 · · ·P pq/2P q/2βP 1U

.
= βP p

n
U.

We induct on n, the result being trivial for n = 0. Suppose it is proven for some n ≥ 0. Then we
have

P p
nq/2P p

n−1q/2 · · ·P pq/2P q/2βP 1U
.

= P p
nq/2βP p

n
U

.
= (βP p

n+pnq/2 + elements of B of length greater than 1)U

= βP p
n+1

U,

which completes the inductive step and the proof of the proposition.
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1.3 Maps between stunted projective spaces

We now proceed to construct maps between stunted projective spaces whilst analyzing their Adams
filtration. For our purposes the following spectra are more convenient than those in the H-canonical
Adams tower.

Definition 1.3.1. For 1 ≤ n ≤ m ≤ ∞ define Bm
n 〈1〉 by the following cofibration sequence.

Bm
n 〈1〉 // Bm

n

(en,...,em) //
∨m
i=n Σiq−1H

The following diagram commutes

Bn−1 i //

��

Bm j //

��

Bm
n

��∨n−1
i=1 Σiq−1H //

∨m
i=1 Σiq−1H //

∨m
i=n Σiq−1H

and so we obtain cofibration sequences

Bn−1〈1〉 i // Bm〈1〉 j // Bm
n 〈1〉.

The following proposition might appear long and technical but the proof is, in fact, very straight-
forward.

Proposition 1.3.2. For each n ∈ N there exists a unique map f : Bn −→ Bn−1 such that the left
diagram commutes. Moreover, the centre diagram commutes so that the right diagram commutes.

Bn

p

&&
f
��

Bn−1 i // Bn

Bn i //

p
&&

Bn+1

f

��
Bn

Bn i //

f

��

Bn+1

f

��
Bn−1 i // Bn

For 1 ≤ n ≤ m the filler for the diagram

Bn i //

f

��

Bm+1 j //

f

��

Bm+1
n+1

��
Bn−1 i // Bm j // Bm

n

is unique and we call it f . For 1 ≤ n ≤ m the filler for the diagram

Bn−1 i //

p

��

Bm j //

p

��

Bm
n

��
Bn−1 i // Bm j // Bm

n
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is unique and so equal to p. Thus, the following diagrams commute for the appropriate vaules of m
and n.

Bm+1
n+1

f

��

p

##
Bm
n

ij // Bm+1
n+1

Bm
n

ij //

p
""

Bm+1
n+1

f

��
Bm
n

Bm
n+1

i
��

p // Bm
n+1

Bm+1
n+1

f // Bm
n

j

OO
Bm+1
n+1

f // Bm
n

i
��

Bm+1
n

j

OO

p // Bm+1
n

For each n ∈ N there exists a unique map g : Bn −→ Bn−1〈1〉 such that the left diagram commutes.
Moreover, the right diagram commutes.

Bn

f

��

g

yy
Bn−1〈1〉 // Bn−1

Bn i //

g

��

Bn+1

g

��
Bn−1〈1〉 i // Bn〈1〉

For 1 ≤ n ≤ m the filler for the diagram

Bn i //

g

��

Bm+1 j //

g

��

Bm+1
n+1

��
Bn−1〈1〉 i // Bm〈1〉 j // Bm

n 〈1〉

is unique and we call it g. For 1 ≤ n ≤ m the following diagram commutes.

Bm+1
n+1

g

zz
f

��
Bm
n 〈1〉 // Bm

n

Before the proving the proposition we make a preliminary calculation.

Lemma 1.3.3. For m,n ≥ 1 [ΣBn−1, Bm
n ] = 0, [ΣBn, Bm

n ] = 0, [ΣBn, Bm
n 〈1〉] = 0.

Proof. The results are all obvious if m < n so suppose that m ≥ n.

The first follows from cellular approximation; the third does too, although we will give a different
proof.

Cellular approximation gives [ΣBn, Bm
n ] = [ΣBn

n , B
n
n ] = [ΣS/p, S/p]. We have an exact sequence

π2(S/p) −→ [ΣS/p, S/p] −→ π1(S/p)

and π1(S/p) = π2(S/p) = 0, which gives the second identification. Since [ΣBn,
∨m
i=n Σiq−2H] = 0,

[ΣBn, Bm
n 〈1〉] −→ [ΣBn, Bm

n ] is injective and this completes the proof.

Proof of proposition 1.3.2. f exists because the composite Bn p−→ Bn −→ Bn
n = Σnq−1S/p is null.

f is unique because [Bn,Σ−1Bn
n ] = 0.
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Since [Bn,Σ−1Bn+1
n+1 ] = 0 the map i∗ : [Bn, Bn] −→ [Bn, Bn+1] is injective and so commutativity

of the following diagram gives commutativity of the second diagram of the proposition.

Bn i //

p

��

Bn+1

f

��
p

��

Bn

i
��

Bn i // Bn+1

Uniqueness of the first and second fillers of the proposition is given by the facts [ΣBn, Bm
n ] = 0

and [ΣBn−1, Bm
n ] = 0, respectively. The deductions that each of the four diagrams commute are

similar. We’ll need the fourth diagram so we show this in detail. We have a commuting diagram.

Bn−1 //

i

��

Bm+1 //

=

��

Bm+1
n

j

��
Bn //

f

��

Bm+1 //

f

��

Bm+1
n+1

f

��
Bn−1 //

=

��

Bm //

i

��

Bm
n

i
��

Bn−1 // Bm+1 // Bm+1
n

The vertical composites in the first two columns are p and so the third is too.

We turn to the existence of g. We have [Bn,Σnq−2H] = 0 and so the map [Bn,
∨n−1
i=1 Σiq−1H] −→

[Bn,
∨n
i=1 Σiq−1H] is injective. Thus, the following diagram proves the existence of g.

Bn

f

��

0

!!

Bn−1〈1〉 // Bn−1 //

i
**

∨n−1
i=1 Σiq−1H

**
Bn //

∨n
i=1 Σiq−1H

Uniqueness of g is given by the fact that [Bn,
∨n−1
i=1 Σiq−2H] = 0.

Since [Bn,
∨n
i=1 Σiq−2H] = 0 the map [Bn, Bn〈1〉] −→ [Bn, Bn] is injective and so commutativity
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of the following diagram gives commutativity of the second diagram involving g in the proposition.

Bn

i

**
g

��

f

��

Bn+1 g //

f

��

Bn〈1〉

��

Bn−1〈1〉 //

i

))

Bn−1

i

))
Bn〈1〉 // Bn

The final filler is unique because [ΣBn, Bm
n 〈1〉] = 0. The final diagram commutes because we

have the following commutative diagram and a uniqueness condition on f as a filler.

Bn i //

g

��
f

##

Bm+1

g

��
f

zz

Bn−1〈1〉

��

i // Bm〈1〉

��
Bn−1 i // Bm

The Bm
n 〈1〉 are useful because they simultaneously appear in an H-Adams resolution for Bm

n

and allow the statement and proof of the previous proposition to be so simple.

Lemma 1.3.4. A map to Bm
n can be factored through Bm

n 〈1〉 if and only if it can be factored through
H ∧Bm

n

Proof. H∗(Bm
n ;Fp) is free over E[β] with basis en, . . . , em. This basis allowed us to construct the

top map in the following diagram.

Bm
n

(en,...,em) //

��

∨m
n Σiq−1H∨m

n Σiq−1(1,β)
��

H ∧Bm
n

' //
∨m
n

(
Σiq−1H ∨ ΣiqH

)

We have a map (1, β) : H −→ H ∧ΣH which is used to construct the map on the right. Since the
target of this map is an H-module we obtain the bottom map and one can check that this is an
equivalence. Thus we obtain the map of cofibration sequences displayed at the top of the following

97



diagram.

Bm
n 〈1〉 //

��

Bm
n

(en,...,em) //

=

��

∨m
n Σiq−1H

'◦

[∨m
n Σiq−1(1,β)

]
��

H ∧Bm
n

//

��

Bm
n

//

=

��

H ∧Bm
n[∨m
n Σiq−1(1,∗)

]
◦'

��
Bm
n 〈1〉 // Bm

n

(en,...,em) //
∨m
n Σiq−1H

The bottom right square is checked to commute and so we obtain the map of cofibration sequences
displayed at the bottom. This diagrams shows that a map to Bm

n can be factored through Bm
n 〈1〉

if and only if it can be factoring through H ∧Bm
n ; this is clear if one uses the more general theory

of Adams resolutions disussed in [17].

[One sees that (en, . . . , em) is an H∗(−;Fp)-isomorphism in dimensions which are strictly less
than (n+ 1)q − 1 so Bm

n 〈1〉 is ((n+ 1)q − 3)-connected and hence nq-connected.]

The purpose of proposition 1.3.2 now comes to light. It allow us to prove the following lemma.

Lemma 1.3.5. The maps f : Bm+1
n+1 −→ Bm

n are compatible and have Adams filtration one.

Proof. The last diagram of proposition 1.3.2 together with lemma 1.3.4 tells us that they have
Adams filtration one. Proposition 1.3.2 also gives us the following commutative diagram.

B1 //

f

��

B2 //

f
��

. . . // Bn i //

f
��

Bn+1 //

f

��

. . .

∗ // B1 // . . . // Bn−1 i // Bn // . . .

This is commutative in the homotopy category. For concreteness suppose that we a have pointset
level model for this diagram in which each i : Bn−1 −→ Bn is a cofibration between cofibrant
spectra (see 2.2 for details). The ‘homotopy extension property’ says that we can make any of the
squares strictly commute at the cost of changing the right map to a homotopic one. By proceeding
inductively, starting with the left most square, we can assume that the f ’s are chosen so that each
square strictly commutes.

Each f : Bm+1
n+1 −→ Bm

n can be obtained by taking strict cofibers of the appropriate diagram.

It is now clear that the f : Bm+1
n+1 → Bm

n are compatible.

1.4 A permanent cycle in the ASS-S0

We are now ready to construct the relevant homotopy class in the ASS-S0.

Theorem 1.4.1. The element qp
n−n−1

0 h1,n
.

= {[τ0]p
n−n−1[ξp

n

1 ]} ∈ Ep
n−n,pn(q+1)−n−1

2 (ASS-S0) is a
permanent cycle.
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Proof. Firstly, we’ll construct the homotopy class that qp
n−n−1

0 h1,n detects. By propositon 1.2.5

we have a map i : Sp
nq−1 → Bpn

pn−n which is nontrivial homology. We take αpn to be t ◦ fpn−n−1 ◦ i
as displayed in the diagram below.

Sp
nq−1

i $$

αpn

++Bpn

pn−n
f // Bpn−1

pn−n−1
// . . . // Bn+2

2

f // Bn+1
1

//

i
��

S0

Bpn

1

j

OO

pp
n−n−1

// Bpn

1

i
��
B

t

MM

We look at the maps induced on E2-pages.

t∗ : E2(B)→ E2(S0) is described by the geometric boundary theorem. The cofibration sequence
S−1 → C → B induces a short exact sequence of A-comodules. The boundary map obtained by
applying CotorA(−) is the map induced by t.

0 // Ω(A;H∗(S
−1)) // Ω(A;H∗(C)) // Ω(A;H∗(B)) // 0

[τ0]p
n−n−1epn

� //
_

��

[τ0]p
n−n−1epn

[τ0]p
n−n−1[ξp

n

1 ] � // [τ0]p
n−n−1[ξp

n

1 ]u

Using propostion 1.2.4 and propostion 1.2.8 we see that t∗(q
pn−n−1
0 · epn) = qp

n−n−1
0 h1,n.

The maps labelled by i and j are all nontrivial on homology and so are easily described on
E2-pages. The following diagram almost completes the proof.

epn
� f∗ // ? � // . . . � // ? � f∗ // ? � //

_

i

��

qp
n−n−1

0 h1,n

epn
_

j

OO

� pp
n−n−1

// qp
n−n−1

0 · epn_

i
��

qp
n−n−1

0 · epn
2

t

GG

There is a subtlety, however. A map of filtration degree k only gives a well-defined map on Ek+1

pages. This means means that, as we have drawn the diagram above, it is not completely obvious
that the rectangle commutes. This is easily resolved. We can break the rectangle up into (pn−n−1)2

squares. We have demonstrated this for the case when p = 5 and n = 1 below. Each square involves
two maps of Adams filtration zero in the vertical direction and two maps of Adams filtration one
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in the horizontal direction. Each square commutes by proposition 1.3.2 and lemma 1.3.5 and the
maps induced on E2-pages are well-defined. This completes the proof.

B5
4

f // B4
3

f // B3
2

f // B2
1

i
��

e5
� // ? � // ? � // ?_

��
B5

3

f //

j

OO

B4
2

f //

j

OO

B3
1

5 //

i
��

j

OO

B3
1

i
��

e5
� //_

OO

? � //
_

OO

? � //
_

��

_

OO

?_

��
B5

2

f //

j

OO

B4
1

5 //

j

OO

i
��

B4
1

5 //

i
��

B4
1

i
��

e5
� //_

OO

? � //
_

OO

_

��

? � //
_

��

?_

��
B5

1
5 //

j

OO

B5
1

5 // B5
1

5 // B5
1 e5

� //_

OO

q0 · e5
� // q2

0 · e5
� // q3

0 · e5

This gives a permanent cylce in the MASS-∞.

Corollary 1.4.2. The element qp
n

1 /qn+1
0 ∈ Cotor0,pn−n−1,pnq

P (Q(0)/q∞0 ) is a permanent cycle in
the MASS-∞.

Proof. The map Σ−1S/p∞ −→ S0 induces a map of spectral sequences E2(MASS-∞) −→ E2(ASS-
S0). Corollary II.8.1.2 tells us that the map on E2-pages can be identified, up to a sign, with the
map

∂ : CotorP (Q(0)/q∞0 ) −→ CotorP (Q(0))

induced by the short exact sequence 0 −→ Q(0) −→ q−1
0 Q(0) −→ Q(0)/q∞0 −→ 0.

Since ∂(qp
n

1 /qn+1
0 ) = qp

n−n−1
0 h1,n and the map of spectral sequences is an isomorphism in the

region of interest theorem 1.4.1 gives the result.

1.5 A permanent cycle in the MASS-n

In this subsection we perform an injectivity argument to prove that qp
n

1 is a permanent cycle in the
MASS-(n+ 1). The next three lemmas are the required technical lemmas.

Lemma 1.5.1. Write (σ, λ) for the bigrading of qp
n−1

1 /qn0 ∈ E2(MASS-n′) and consider the map

E2(MASS-n′) −→ E2(MASS-∞)

induced by S/pn −→ S/p∞. It is

1. injective in bigrading (σ + r, λ+ r − 1) for r ≥ 2.

2. surjective in bigrading (σ + s, λ+ s) for s ≥ 1.

Proof. We have a short exact sequence of P -comodules

0 //Mn
// Q(0)/q∞0

qn0 // Q(0)/q∞0
// 0
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which induces the long exact sequence

Eσ+n−1,λ+n
2 (MASS-∞)

∂ // Eσ,λ2 (MASS-n′) // Eσ,λ2 (MASS-∞)
qn0 // Eσ+n,λ+n

2 (MASS-∞).

The map S/pn −→ S/p∞ induces a map of spectral sequences. On E2-pages this is precisely the
middle map above. [The other maps are induced from maps of spectra, though we shall not need
this.]

Recall corollary II.6.6 which says that Eσ,λ2 (MASS-∞) = 0 when λ < (2p− 1)σ + (2p− 3) and

thus when λ < (2p− 1)σ − (2p− 3). We deduce that Eσ,λ2 (MASS-n′) −→ Eσ,λ2 (MASS-∞) is

1. injective when λ+ n < (2p− 1)(σ + n− 1)− (2p− 3);

2. surjective when λ+ n < (2p− 1)(σ + n)− (2p− 3).

Thus, we need to check that

1. (λ+ r − 1) + n < (2p− 1)((σ + r) + n− 1)− (2p− 3) for r ≥ 2;

2. (λ+ s) + n < (2p− 1)((σ + s) + n)− (2p− 3) for s ≥ 1.

We see that these statements are equivalent by setting s = r − 1. We also see that it is enough to
check the s = 1 case:

λ+ n+ 1 < (2p− 1)(σ + n+ 1)− (2p− 3).

qp
n−1

1 /qn0 lies in bigrading (σ, λ) = (pn−1 − n, (2p− 1)pn−1 − n) and so the result follows.

[One might wonder why we made the inequality tighter and our lives harder. Originally I made
a sign error and so this was the bound I had to go on. Luckily it didn’t make a difference, otherwise
I might have rejected this idea erroneously.]

Lemma 1.5.2. Suppose we have a commutative diagram of abelian groups in which the rows are
exact.

0 // X // X ′

Y //

f

ZZ

Y ′

f ′
[[

// 0

Then the induced maps coker f → coker f ′ and ker f → ker f ′ are injective and surjective, respec-
tively.

Proof. An elementary diagram chase.

Lemma 1.5.3. Write (σ, λ) for the bigrading of qp
n−1

1 /qn0 ∈ E2(MASS-n′) and consider the map

E∗(MASS-n′) −→ E∗(MASS-∞)

induced by S/pn −→ S/p∞. Let r ≥ 2. Then on the r-th page the map is

1. injective in bigrading (σ + r̃, λ+ r̃ − 1) for r̃ ≥ r.

2. surjective in bigrading (σ + s, λ+ s) for s ≥ 1.

101



Proof. Lemma 1.5.1 is the base case for an induction on the page number starting at the second
page. Using the following diagram together with lemma 1.5.2 we obtain the inductive step [taking
subgroups does not affect injectivity and quotienting does not affect surjectivity].

0 // Eσ+r+s,λ+r+s−1
r (MASS-n′) // Eσ+r+s,λ+r+s−1

r (MASS-∞)

Eσ+s,λ+s
r (MASS-n′)

dr

OO

// Eσ+s,λ+s
r (MASS-∞)

dr

OO

// 0

We are finally ready to show that qp
n

1 is a permanent cycle. We work in the reindexed spectral
sequence.

Theorem 1.5.4. The element qp
n

1 /qn+1
0 ∈ Cotor0,pn−n−1,pnq

P (Mn+1) is a permanent cycle in the
MASS-(n+ 1)′.

Proof. Write (σ, λ) for the bigrading of qp
n

1 /qn+1
0 ∈ E2(MASS-(n+ 1)′). Lemma 1.5.3 tells us that

Eσ+r,λ+r−1
r (MASS-(n+ 1)′) −→ Eσ+r,λ+r−1

r (MASS-∞)

induced by S/pn+1 −→ S/p∞ is injective for r ≥ 2. This completes the proof by corollary 1.4.2.

Since the MASS-(n+ 1)′ is just the reindexed MASS-(n+ 1) we obtain the following corollary.

Corollary 1.5.5. The element qp
n

1 ∈ Cotor0,pn,pnq
P (Q(0)/qn+1

0 ) is a permanent cycle in the MASS-
(n+ 1).

1.6 K-theory

Finally, we need to address the claim concerning K-theory. First, we look at the maps between the
stunted projective spaces.

Lemma 1.6.1. The maps f : Bm+1
n+1 −→ Bm

n induce an isomorphism on K-theory.

Proof. Applying K−1 to the diagram on the left gives the diagram on the right and we deduce that
K−1(f : Bn −→ Bn−1) is surjective because the image of p : Z/pn −→ Z/pn has size pn−1.

Bn

p

""
f

��

Z/pn
p

$$��
Bn−1 i // Bn Z/pn−1 // Z/pn

Applying K−1 to the diagram

Bn i //

f

��

Bm+1 j //

f

��

Bm+1
n+1

f

��
Bn−1 i // Bm j // Bm

n
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gives

0 // Z/pn //

����

Z/pm+1 //

����

Z/pm−n+1

��

// 0

0 // Z/pn−1 // Z/pm // Z/pm−n+1 // 0.

We deduce that K−1(f : Bm+1
n+1 −→ Bm

n ) is surjective and so it is an isomorphism. K0(Bm
n ) = 0

and so by duality each K∗(f) is an isomorphism.

The following result of Miller and Snaith gives us the information we need about the transfer.

Theorem 1.6.2 ([18]). The transfer t : B −→ S0 induces an isomorphism on K-theory.

The following proposition almost completes the proof of theorem 5.2.3.

Proposition 1.6.3. The composite αpn used in theorem 1.4.1 induces a map α̃pn : ΣpnqS/pn+1 −→
S/pn+1 with the property that its desuspension fits into the following commutative diagram. More-
over, this map induces an isomorphism on K-theory.

Sp
nq−1

pn+1

��

S0

Sp
nq−1 i //

��

αpn

))
Bpn

pn−n
f // Bpn−1

pn−n−1
// . . . // Bn+2

2

f // Bn+1
1

t //

%%

S0

pn+1

OO

Σpnq−1S/pn+1

88

Σ−1α̃pn // Σ−1S/pn+1

OO

Proof. Multiplication by pn+1 is zero on Bpn

pn−n and Bn+1
1 since they are built up from (n + 1)

Moore spectra S/p on which multiplication by p is zero. Thus we obtain the two angled maps. We
take the map α̃pn : ΣpnqS/pn+1 −→ S/pn+1 to be the suspension of the obvious composite.

By lemma 1.6.1 we are just left to show that the angled maps induce isomorphisms on K-theory.
For the first angled map, the Atiyah-Hirzebruch SS gives us a commutative diagram

0 // 0 //

��

K−1(Σpnq−1S/pn+1) //

��

Hpnq−1(Σpnq−1S/pn+1;Z) //

��

0

0 // K−1(Bpn−1
pn−n) // K−1(Bpn

pn−n) // Hpnq−1(Bpn

pn−n;Z) // 0

which takes the following form.

0 // 0 //

��

Z/pn+1 //

��

Z/pn+1 //

��

0

0 // Z/pn // Z/pn+1 // Z/p // 0

Since the map on the right is surjective we deduce that the middle map is an isomorphism. Again,
K0(Σpnq−1S/pn+1) and K0(Bpn

pn−n) are zero and so we have an isomorphism on K∗. For the other
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map we apply K0 to the left diagram to obtain the right diagram. The top map is surjective and
the right map is an isomorphism. Thus the left map is surjective and hence an isomorphism. Since
K−1(Bn+1

1 ) and K−1(Σ−1S/pn+1) are zero, we’re done.

Bn+1
1

//

��

B

t

��

Z/pn+1 Zpoo

Σ−1S/pn+1 // S0 Z/pn+1

OO

Zpoo

OO

However, the proof is still not complete. If qp
n

1 detects an element αpn : Sp
nq −→ S/pn+1, we

do not know that µ ◦ (αpn ∧ S/pn+1) = α̃pn . To address this problem we use the following lemma
together with the vanishing line of the MASS-∞ (corollary II.6.6).

Lemma 1.6.4. Suppose that γ : ΣpnqS/pn+1 −→ S/pn+1 induces an isomorphism on K-theory.
Then the composite

Sp
nq // ΣpnqS/pn+1 γ // S/pn+1 // S1

has order pn+1.

Proof. First, recall that Cotor0,pnq
BP∗BP

(BP∗, BP∗) is zero and that Cotor1,pnq
BP∗BP

(BP∗, BP∗) is Z/pn+1,
so the boundary map associated to the short exact sequence 0 −→ BP∗ −→ BP∗ −→ BP∗/p

n+1 −→
0 of BP∗BP -comodules

∂ : Cotor0,pnq
BP∗BP

(BP∗/p
n+1, BP∗) // Cotor1,pnq

BP∗BP
(BP∗, BP∗)

vp
n

1
� // dvp

n

1 /pn+1

is an isomorphism. Moreover, vp
n

1 generates Cotor0,pnq
BP∗BP

(BP∗/p
n+1, BP∗).

BP∗(γ) is multiplication by an element P (v1, v2, . . .) ∈ BP∗/pn+1 and the hypothesis on γ tells
us that the coefficient of vp

n

1 is a unit e in Z/pn+1. Since this element is primitive we conclude that

P = evp
n

1 . Because the composite of interest is detected by ∂(P ) in the Adams-Novikov spectral
sequence we know that it has order at least pn+1. Since the class factors through S/pn+1 it has
order precisely pn+1.

We are finally ready to prove the theorem.

Proof of theorem 5.2.3. Proposition 1.6.3 gives us the following commuting diagram and tells us
that α̃pn induces an isomorphism on K-theory.

Sp
nq

Σαpn //

��

S1

ΣpnqS/pn+1
α̃pn // S/pn+1

OO
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Corollary 1.5.5 tells us that qp
n

1 is a permanent cycle so it detects some αpn : Sp
nq −→ S/pn+1 and

upon mapping to S1 we obtain Σαpn up to elements of higher Adams filtration. Summarizing, we
have the commuting diagram below.

Sp
nq

Σαpn+elements of higher Adams filtration
//

��

αpn

++

S1

ΣpnqS/pn+1
µ◦(αpn∧S/pn+1)

// S/pn+1

OO

Corollary II.6.6, together with the fact that

Σs CotorP (Q(0)/q∞0 )/ Fp 〈qt0 : t < 0〉 = CotorP (Q(0))/ Fp [q0]

and convergence of the ASS-S0 tell us that elements of higher Adams filtration have order strictly
less than pn+1. Using the fact that the stable homotopy category is additive we obtain the following
diagram by taking the difference of the previous diagrams.

Sp
nq elements of order strictly less than pn+1

//

��

S1

ΣpnqS/pn+1
µ◦(αpn∧S/pn+1)−α̃pn // S/pn+1

OO

If µ ◦ (αpn ∧S/pn+1)− α̃pn induced an isomorphism on K-theory then the composite along the top
would have order pn+1 (lemma 1.6.4) and so, by the contrapositive, µ ◦ (αpn ∧ S/pn+1)− α̃pn does
not induce an isomorphism on K-theory; it must induce multiplication by some number divisible
by p. An isomorphism of Z/pn+1 plus a homomorphism divisible by p is an isomorphism. Since
α̃pn induces an isomorphism on K-theory so does

µ ◦ (αpn ∧ S/pn+1) = α̃pn + (µ ◦ (αpn ∧ S/pn+1)− α̃pn).

2 Pointset level constructions

In the proof of lemma II.3.4.7 we require working at the pointset level. The final stage in making the
MASS-n (definition II.3.2.2) a multiplicative spectral sequence requires smashing maps of towers
together. This section deals with some of the technicalities that arise and we discuss some of the
questions that they lead one to ask.

2.1 Motivation

To aid the following discussion we immediately introduce some terminology.

Notation 2.1.1. Let S denote the stable homotopy category and write Z for the category with
the integers as objects and hom-sets determined by |Z(n,m)| = 1 if n ≥ m and |Z(n,m)| = 0
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otherwise. Write Z≥0 for the full subcategory of Z with the non-negative integers as objects and
write Ch(S ) for the category of non-negative cochain complexes in S ; an object of this category
is a diagram

C0 d // C1 // . . . // Cs
d // Cs+1 // . . .

in S with d2 = 0.

Definition 2.1.2. An object of the diagram category S Z≥0 will be called a sequence in S . A
system of interlocking cofibration sequences

. . . Xs−1
oo

��

Xs
oo

��

Xs+1
oo

��

. . .oo

Is−1

<<

Is

<<

Is+1

<<

in S will be called a tower and we will use the notation (X, I) for it. A map of towers (X, I) −→
(Y, J) is a compatible collection of maps {Xs −→ Ys} ∪ {Is −→ Js}. An augmentation X −→ C•

of a cochain complex C• ∈ Ch(S ) is a map of cochain complexes from

X // ∗ // . . . // ∗ // ∗ // . . .

to C•.

Many of the spectral sequences in chapter II are obtained by applying π∗(−) to a tower (see,
for example, II.2.2.2); a map of towers induces a map of spectral sequences. A tower (X, I) gives
a sequence X• ∈ S Z≥0 and an augmented cochain complex X0 −→ Σ•I•. A map of towers gives a
map of sequences and a map of augmented cochain complexes and applying π∗(−) to the map of
cochain complexes describes the corresponding map of spectral sequences at the E1-page.

Often we have a spectral sequence associated to a tower (X, I), the E1-page has the structure
of an algebra and we have a map X0∧X0 −→ X0. The argument of Bruner in theorem IV.4.4 of [5]
shows that we can make our spectral sequence multiplicative in a way compatible with the E1-page
multiplication and the π∗(X0) multiplication by realizing this structure geometrically. From towers
(X, I) and (Y, J) he constructs a third tower (Z,K):

• (Z,K) = (X, I) ∧ (Y, J) is given by Zs =
⋃
i+j=sXi ∧ Yj ; Ks =

∨
i+j=s Ii ∧ Jj ;

• the augmented cochain complex Z0 −→ Σ•K• is the ‘tensor product’ of the augmented cochain
complexes X0 −→ Σ•I• and Y0 −→ Σ•J•.

The definition of (Z,K) makes sense when one uses Adams’ CW-spectra and takes Xs+1 and Ys+1

to be subcomplexes of Xs and Ys, respectively, but with other more sophisticated models of spectra
around this seems like a slightly unsatifying definition. This gives our first motivation for a pointset
level discussion even if it is a purely aesthetic one.

We return to the problem of putting a multiplicative structure on a spectral sequence. Given
the property of the construction above, which is listed in the second bullet point, our approach is to
realize the algebra structure on the E1-page as a map of cochain complexes Σ•I• ∧Σ•I• −→ Σ•I•.
Taking into consideration the map X0 ∧ X0 −→ X0, this should be a map of augmented cochain
complexes; we then attempt to extend this to a map of towers (X, I)∧ (X, I) −→ (X, I). Provided
that all this is possible, the result referred to above ([5, IV.4.4]) gives the required structure.
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In one instance (II.3.2.2) our tower is decomposable as (X, I)∧ (Y, J) (in fact, it is defined this
way). In order to define a multiplication (X, I) ∧ (Y, J) ∧ (X, I) ∧ (Y, J)→ (X, I) ∧ (Y, J) we wish
to smash together two multiplications (X, I)∧ (X, I)→ (X, I) and (Y, J)∧ (Y, J)→ (Y, J). Ideally
we would like to make the construction above functorial although we need less than this. Suppose
we have maps of augmented cochain complexes

(X0 → Σ•I•) −→ (X ′0 → Σ•I ′•), (Y0 → Σ•J•) −→ (Y ′0 → Σ•J ′•)

and that these can be extended to maps of towers (X, I) −→ (X ′, I ′) and (Y, J) −→ (Y ′, J ′). We
wish to be able to construct a map of towers

(X, I) ∧ (Y, J) −→ (X ′, I ′) ∧ (Y ′, J ′),

which agrees with the map[
(X0 → Σ•I•) −→ (X ′0 → Σ•I ′•)

]
∧
[
(Y0 → Σ•J•) −→ (Y ′0 → Σ•J ′•)

]
at the level of the associated augmented cochain complexes; this is the real motivation for our foray
into the pointset world.

Finally, as mentioned above, lemma II.3.4.7 gives us motivation for addressing these issues.
The section begins by recalling the properties of the category of spectra Spec that we use. We

introduce a symmetric monoidal product on the category of sequences in any pointed simplicial
monoidal model category and show how we can deform it to be homotopical using a telescope
construction. This allows us to recover the classical construction documented by Bruner in [5]. It
also allows us to identify why one should not expect a ‘smashing together sequences in the homotopy
category’ functor. We prove a lemma which shows how we can sensibly smash together two maps
of sequences in the homotopy category. Then we address the additional structure a tower gives us.
We check that the cofibers of a tower behave as expected under the construction of [5] and show
that maps of towers can be smashed together in a way that respects the underlying augmented
chain complexes. Finally, we give the proof of lemma II.3.4.7.

2.2 S-modules

We use S-modules as our model for spectra. The main reason we find them convenient is that all
objects are fibrant in the standard model structure.

Notation 2.2.1. We write sSet and Top for the categories of simplicial sets and compactly
generated spaces, respectively. We write sSet∗ and Top∗ for their based analogues.

We recall that sSet, Top, sSet∗ and Top∗ are symmetric monoidal categories with respect to
×,×,∧ and ∧, respectively and that we have strong monoidal Quillen adjunctions

sSet
(−)+ //

|−|

��

⊥ sSet∗
U

oo

|−|

��

` `

Top
(−)+ //

Sing•

OO

⊥ Top∗
U

oo

Sing•

OO
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Notation 2.2.2. Let Spec be the category of S-modules of [9]. We refer to an object of Spec as
a spectrum rather than an S-module.

We recall that Spec has the following properties:

• Spec is a closed symmetric monoidal category with respect to the smash product ∧S , which
we write as ∧. The unit for the smash product is the sphere spectrum S.

• Spec is enriched, tensored and cotensored over the category Top∗. For X ∈ Spec, Y ∈ Top∗
we write X ∧ Y for the tensor object in Spec.

• Spec is a Top∗-model category. From the strong monoidal Quillen adjunctions above it has
the structure of a V-model category where V is any one of sSet, Top, sSet∗ and Top∗. In
particular, there is a cofibrantly generated pointed proper simplicial monoidal model structure
on Spec. Every object of Spec is fibrant in this model structure.

• The sphere spectrum S is not cofibrant and so we fix a cofibrant replacement Sc
∼−→ S. The

functor Sc ∧ (−) : Top∗ −→ Spec is a left Quillen functor modelling Σ∞ : Ho(Top∗) −→ S .

2.3 The telescope construction and smashing sequences together

This subsection looks at the homotopical properties of sequences (see definition 2.1.2). We do not
discuss towers or the associated cochain complexes; that discussion is left for the next subsection.

For the necessary homotopical language we refer the reader to [24], a lovely reference, which is
where the author learned this material.

We start off by introducing some notation which is used for the remainder of this section.

Notation 2.3.1. We write M for any pointed simplicial monoidal model category in which every
object is fibrant and which comes equipped with a cofibrant replacement functor. We write

q : Q
∼

=⇒ 1

for the natural weak equivalence from the cofibrant replacement functor to the identity and MQ

for the full subcategory of cofibrant objects. If X ∈ M, K ∈ sSet∗ and L ∈ sSet we write X ∧K
for the tensor object with respect to the tensoring over sSet∗ and X ⊗L for the tensor object with
respect to the tensoring over sSet. These tensorings are related by the formula X ⊗ L = X ∧ L+.
Given X,Y ∈M, we write M(X,Y ) for the simplicial set of maps from X to Y , M(X,Y ) for the
underlying set of maps sSet(∆0,M(X,Y )), and X ∧ Y for the symmetric monoidal product of X
and Y .

For example M could denote either Top∗ or Spec; the cofibrant replacement functors can be
constructed using the small object argument, or in Top∗ we could take it to be |Sing•(−)|.
Notation 2.3.2. Write N for the category Z≥0. [This goes against my own personal convention
that 0 /∈ N but makes the notation less cumbersome.]

Definition 2.3.3. As usual,MN denotes the diagram category, the category of sequences inM. It
is a homotopical category when given levelwise weak equivalences. It is symmetric monoidal with

(X ⊗ Y )s = colimi+j≥s
0≤i,j≤s

Xi ∧ Yj .

[The indexing category in this colimit is a full subcategory of Z×Z and the notation only indicates
the objects.]
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Notation 2.3.4.

• We write MN
Q for (MQ)N, the full subcategory of MN whose objects are levelwise cofibrant.

• Write (MN)Q for the full subcategory of MN
Q whose objects have cofibrations as structure

maps (i.e. each map Xs ←− Xs+1 is a cofibration).

MN
Q and (MN)Q are homotopical categories ([24, definition 2.1.1]) with levelwise weak equivalences.

Now we wish to show that (MN)Q is symmetric monoidal with respect to ⊗, as defined above,
and that ⊗ : (MN)Q × (MN)Q −→ (MN)Q is homotopical ([24, page 15]).

Lemma 2.3.5. Suppose X and Y are objects of (MN)Q; then so is X ⊗ Y . Suppose, in addition,
that X → X ′ and Y → Y ′ are weak equivalences; then X ⊗ Y −→ X ′ ⊗ Y ′ is a weak equivalence.

Proof. Write Es for the indexing category in the colimit defining (X⊗Y )s, i.e. the full subcategory
of Z× Z with objects

{(i, j) : i+ j ≥ s, 0 ≤ i, j ≤ s}.

Es is a directed Reedy category (we can take 2s− i− j as the degree function). Giving the diagram
categoryMEs the Reedy model structure (which, by directedness, is equal to the projective model
structure), the colimit and constant diagram functors form a Quillen adjunction. The pushout-
product axiom for M allows one to check that the latching maps for the diagram F : Es → M,
(i, j) 7−→ Xi ∧ Yj are cofibrations. Thus F is Reedy cofibrant implying that (X ⊗ Y )s is cofibrant.
The pushout-product axiom also implies that the map of diagrams F =⇒ F ′, where F ′(i, j) =
X ′i∧Y ′j is a levelwise weak equivalence. Thus (X⊗Y )→ (X ′⊗Y ′) is a (levelwise) weak equivalence.
It remains to show (X ⊗ Y )s+1 → (X ⊗ Y )s is a cofibration. We let E ′s be the full subcategory of
Z× Z with objects

{(i, j) : i+ j ≥ s, 0 ≤ i, j ≤ s+ 1}.

The inclusion Es+1
j−→ E ′s gives rise to an adjunction sk :MEs+1 //ME ′s : j∗.oo Write F for

the functor E ′s −→M with F (i, j) = Xi∧Yj , an extension of the F above. The map (X⊗Y )s+1 →
(X ⊗ Y )s can be described as colimEs+1j

∗F → colimE ′sF . Using the adjunction above we see this is
the same as colimE ′s(sk◦ j

∗)F −→ colimE ′sF . Now (sk◦ j∗)F =⇒ F is a Reedy cofibration, because
the relative latching maps are either the identity or latching maps or F , completing the proof.

(Q, q) is a left deformation M → MQ ([24, definition 2.2.1]) and it induces (QN, qN), a left
deformation MN −→ MN

Q. We wish to define (Tel, t), a left deformation MN
Q −→ (MN)Q, which

we call the telescope functor.

Definition 2.3.6. Suppose given X ∈ MN. Label the structure maps fs : Xs+1 → Xs. We define
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Tel(X) ∈MN levelwise: Tel(X)s is the colimit of the following diagram

Xs ⊗∆0 Xs+1 ⊗∆0

fs⊗∆0
oo Xs+1⊗[0] // Xs+1 ⊗∆1

Xs+1 ⊗∆0

Xs+1⊗[1]

22

Xs+2 ⊗∆0

fs+1⊗∆0
oo Xs+2⊗[0] // Xs+2 ⊗∆1

Xs+2 ⊗∆0

Xs+2⊗[1]

22

. . .oo . . .

We define a natural transformation t : Tel =⇒ 1 levelwise: the map ts : Tel(X)s −→ Xs is induced
by the maps ∆1 −→ ∆0 and fs · · · fs+r : Xs+r+1 −→ Xs, r ≥ 0.

Lemma 2.3.7. The functor Tel :MN −→ MN restricts to a functor Tel :MN
Q −→ (MN)Q. The

natural transformation t : Tel =⇒ 1MN restricts to a natural weak equivalence on MN
Q.

Proof. This makes use of the fact that ⊗ is a left Quillen bifunctor, that (acyclic) cofibrations are
stable under cobase change and transfinite composition, and the 2-of-3 property.

Let X ∈MN
Q. One should be able to prove that Tel(X)s is levelwise cofibrant by staring at the

following diagrams the second of which suggests an inductive argument. That each structure map
is a cofibration follows from the fact that Tel(X)s+1 → Tel(X)s is obtained from Xs+1 → Cyl(fs)
by cobase change. The diagrams below also show that Xs → Tel(X)s is a weak equivalence.
Postcomposition with ts gives the identity so we are done by the 2-of-3 property.

Xs+1 ⊗∆0

fs⊗∆0

��

� � 1st factor //
' �

∼

**
Xs+1 ⊗ (∆0 ∪∆0) �

� Xs+1⊗([0]∪[1]) //

(fs⊗∆0)∪(Xs+1⊗∆0)
��

Xs+1 ⊗∆1

��
Xs ⊗∆0 � � 1st factor //

� w

∼

44(Xs ⊗∆0) ∪ (Xs+1 ⊗∆0) �
� // Cyl(fs)

Xs+r+1� _

��
Xs+r

� � ∼ //
� _

��

Cyl(fs+r)� _

��
Xs
� � ∼ // Cyl(fs) ∪ · · · ∪ Cyl(fs+r−1) �

� ∼ // Cyl(fs) ∪ · · · ∪ Cyl(fs+r)
� � ∼ // Tel(X)s
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MN ×MN ⊗ //

=

��

MN

=

��

⇑

MN ×MN

��

QN×QN
//MN

Q ×MN
Q

��

Tel×Tel // (MN)Q × (MN)Q

��

⊗ // (MN)Q

��

//MN
Q

��

//MN

��
Ho(MN)×Ho(MN)

' //

��

Ho(MN
Q)×Ho(MN

Q)
' //

��

Ho((MN)Q)×Ho((MN)Q) // Ho((MN)Q)
' // Ho(MN

Q)
' //

��

Ho(MN)

��
Ho(M)N ×Ho(M)N

' // Ho(MQ)N ×Ho(MQ)N // Ho(MQ)N
' // Ho(M)N

Figure III.1: Deriving the monoidal structure on MN.
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We are now in a position to derive the monoidal structure on MN. To summarize what we
have achieved so far and to aid the following discussion we draw the large diagram, figure III.1 on
page 29. This diagram needs some explanation. Along the second row, we have the deformations
just constructed, the monoidal product and the inclusions of the various full subcategories we have
defined. This composite admits a natural transformation to the monoidal product displayed on
the top row; it is given by qN(tQN) ⊗ qN(tQN). Because Ho(N × N ) = Ho(N ) × Ho(N ) and each
functor in the second row is homotopical, we obtain the third row; the deformations and inclusions
of subcategories induce equivalences on the homotopy categories. The information described so far
gives a natural transformation

⊗ :MN ×MN

��

//MN

��

⇑

Ho(MN)×Ho(MN) // Ho(MN)

which shows that the third row is the left derived functor for ⊗ ([24, theorem 2.2.8]). The functor
MN → Ho(M)N induces a functor Ho(MN) → Ho(M)N. Because every object of M is fibrant,
MQ → Ho(MQ) is full ([24, theorem 10.5.1]). Thus MN

Q → Ho(MQ)N, and hence the induced

functor Ho(MN
Q)→ Ho(MQ)N, is surjective on objects.

One might hope to find a functor where the dashed arrow appears making the diagram commute.
Provided one did this successfully the composite along the bottom would be the ‘smashing together
sequences in the homotopy category’ functor. However, the author thinks that such a functor does
not exist. On the other hand, it is clear what such a functor should do on objects:

• suppose X,Y are objects in Ho(MQ)N;

• lift them to objects X̃, Ỹ ∈ Ho(MN
Q);

• mapping to the right and down into Ho(MQ)N recovers, in modern language, the construction
discussed in the motivating subsection, documented by Bruner in [5].

The issue here is that two different choices for a lift of X might not be isomorphic; the construction
here depends on the choices of X̃ and Ỹ . The situation is even worse once one considers morphisms
since the functor Ho(MN

Q)→ Ho(MQ)N is not obviously full. Regardless of this state of affairs we

will call the object constructed above X ∧ Y . Of course, using QN, we can also define X ∧ Y for
sequences, X and Y, in Ho(M).

In summary, the diagram below shows that we should expect to have to get our hands a little
dirty and so we get to work.

The following lemma is stated imprecisely although the construction used in the proof is useful.
We see its value in the next subsection (proposition 2.4.7), once we consider towers (2.1.2) as well
as sequences.

Lemma 2.3.8. Suppose X, X ′, Y, Y ′ ∈ (MN)Q and that we have morphisms X → X ′ and Y → Y ′

in Ho(M)N. Then we can construct a morphism X ⊗ Y → X ′ ⊗ Y ′ in Ho(M)N in a sensible way.
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Proof. Since all objects ofM are fibrant we may use theorem 10.5.1 of [24] to view the morphisms
X −→ X ′ and Y −→ Y ′ as homotopy commutative diagrams

X0

��

X1

��

oo . . .oo Xs

fXs
��

oo Xs+1

��

oo . . .oo

X ′0 X ′1
oo . . .oo X ′soo X ′s+1

oo . . .oo

Y0

��

Y1

��

oo . . .oo Ys

fYs
��

oo Ys+1

��

oo . . .oo

Y ′0 Y ′1
oo . . .oo Y ′soo Y ′s+1

oo . . .oo

Recall the full subcategories of Z× Z used in the proof of lemma 2.3.5: Es and E ′s have objects

{(i, j) : i+ j ≥ s, 0 ≤ i, j ≤ s} and {(i, j) : i+ j ≥ s, 0 ≤ i, j ≤ s+ 1},

respectively. We make note of the inclusions Es
i−→ E ′s

j←− Es+1. Let F, F ′ : E ′s −→M be defined
by F (i, j) = Xi ∧ Yj and F ′(i, j) = X ′i ∧ Y ′j . To construct the requisite morphism we construct the
following commuting diagram inM; we note that the top line is (X⊗Y )s = (X⊗Y )s ←− (X⊗Y )s+1

and the bottom line is the same with X and Y replaced by X ′ and Y ′.

colimEsFi
= // colimE ′sF colimEs+1Fj

oo

B(∗, Es, F i) ∼ //

∼
OO

=
��

B(∗, E ′s, F )

∼
OO

=
��

B(∗, Es+1, F j)oo

∼
OO

=
��

colimN(−/Es)Fi
= //

��

colimN(−/i)F // colimN(−/E ′s)F

��

colimN(−/j)Foo colimN(−/Es+1)Fj
=oo

��
colimEsF

′i
= // colimE ′sF

′ colimEs+1F
′joo

We refer to [24] for notation: 4.2.3 explains the objects in the second row; 7.4.1 explains the objects
in the third row.

The point is that the middle two rows are standard models for the homotopy colimit, which is
studied at length in Riehl’s book, [24]. The description in the second row is useful for us later. The
description in the third row is useful because of a universal property we employ shortly.

In proving lemma 2.3.5 we showed that the colimits in the top line actually compute a homotopy
colimit. Thus we obtain the weak equivalences from the second row to the top row. The equalities
in the third row come from 8.1.5 (as used in 8.1.8) of [24]. The weak equivalence in the second row
comes from the 2-of-3 property or by 8.5.6 of [24].

We are left with the problem of constructing the map from the third row to the final row. We
construct colimN(−/E ′s)F −→ colimE ′sF

′ first. Applying the underlying sets functor to the formula
in definition 7.4.1 of [24] gives

M(colimN(−/E ′s)F, colimE ′sF
′) ∼= sSetN

op
(N(−/E ′s),M(F−, colimE ′sF

′)).

So we go about inductively constructing a natural transformationN(−/E ′s) =⇒ M(F−, colimE ′sF
′).

For elements e = (i, j) ∈ E ′s with i+j = s we have N(e/E ′s) = ∆0 so defining a map N(e/E ′s) −→
M(Fe, colimE ′sF

′)) is the same as specifying a morphism Fe −→ colimE ′sF
′. We take Fe→ F ′e→

colimE ′sF
′.
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To proceed further we need to fix choices of homotopies for our original diagram. Let

hXi : ∆1 −→M(Xi+1, X
′
s) and hYj : ∆1 −→M(Yj+1, Y

′
s )

be homotopies from the Γ composite to the Lcomposite. Whenever (i′, j′) ∈ E ′s we have maps ∧

M(Xi,X
′
i′ )×M(Yj ,Y

′
j′ )

∧ //M(Xi∧Yj ,X′i′∧Y
′
j′ )

= //M(F (i,j),F ′(i′,j′)) //M(F (i,j),colimE′s
F ′)

and these give maps

∆0 ×∆1
fXi ×hYj−1 //M(Xi, X

′
i)×M(Yj , Y

′
j−1)

∧ //M(F (i, j), colimE ′sF
′),

∆1 ×∆0
hXi−1×fYj //M(Xi, X

′
i−1)×M(Yj , Y

′
j )

∧ //M(F (i, j), colimE ′sF
′),

∆1 ×∆1
hXi−1×hYj−1 //M(Xi, X

′
i−1)×M(Yj , Y

′
j−1)

∧ //M(F (i, j), colimE ′sF
′)

for (i, j − 1) ∈ E ′s, (i− 1, j) ∈ E ′s and (i− 1, j − 1) ∈ E ′s, respectively.
Suppose e = (i, j) ∈ E ′s with i + j > s. We wish to define the bottom map in the following

diagram and if e′ = (i′, j′) ∈ E ′s with i′ + j′ = i+ j − 1, we must define the map in such a way that
the whole diagram commutes.

N(e′/E ′s) //

��

M(Fe′, colimE ′sF )

��
N(e/E ′s) //M(Fe, colimE ′sF )

Generically, we have two distinct choices of e′ and we call them e′ and e′′. In this case N(e/E ′s) is
the colimit of a diagram

∆0 ×∆1

uu

[0]×∆1

))

∆1 ×∆0

))

∆1×[0]

uu
N(e′/E ′s) ∆1 ×∆1 N(e′′/E ′s).

In general, there might only be one choice of e′ but in either case we only have to define a map on
one of ∆0×∆1, ∆1×∆0 or ∆1×∆1 in a way compatible with what is already defined. The maps
above achieve this.

Our map colimN(−/E ′s)F −→ colimE ′sF
′ determines maps

colimN(−/Es)Fi −→ colimEsF
′i, colimN(−/Es+1)Fj −→ colimE ′sF

′.

We check that the second map factors through the map colimEs+1F
′j −→ colimE ′sF

′ to give

colimN(−/Es+1)Fj −→ colimEs+1F
′j.

Moreover, one can see that we could construct these maps directly, using the procedure above and
so the following morphisms in the homotopy category define a map X⊗Y −→ X ′⊗Y ′ in Ho(M)N.

(X ⊗ Y )s = colimEsFi B(∗, Es, F i) = colimN(−/Es)Fi
∼oo // colimEsF

′i = (X ′ ⊗ Y ′)s
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2.4 Smashing towers together

In this subsection M continues to denote a pointed simplicial monoidal model category in which
every object is fibrant and which comes equipped with a cofibrant replacement functor; N continues
to denote Z≥0.

In the last section we constructed an object X ∧ Y ∈ Ho(M)N from elements X,Y ∈ Ho(M)N.
The first objective of this section is to show that the induced construction on the homotopy cofibers
of our sequences is the expected one. There are two results that we wish to prove:

• if I and J denote the sequences consisting of homotopy cofibers of X and Y , respectively, then
the sequence K consisting of homotopy cofibers of X ∧ Y is given by Ks =

∨
i+j=s Ii ∧ Jj ;

• the augmented cochain complex (X ∧Y )0 −→ Σ•K• is the ‘tensor product’ of the augmented
cochain complexes X0 −→ Σ•I• and Y0 −→ Σ•J•.

We use a formal argument to analyze what happens to strict cofibers under the monoidal product
⊗; we begin by observing that we have an adjunction

i :MN //MZ : roo

i(X)s = Xs for s ≥ 0 and i(X)s = X0 for s < 0, i.e. i extends a sequence to be constant in negative
degrees. r(X)s = Xs for s ≥ 0, i.e. r truncates a sequence at 0. Because ri is the identity functor
we may view MN as a full subcategory of MZ. Since the category Z is symmetric monoidal and
M is closed symmetric monoidal, we obtain a closed symmetric monoidal structure on MZ, the
Day convolution, which we denote by ⊗ because it extends the monoidal structure on MN.

We have a functor (+1) : Z → Z and a unique natural tansformation α : (+1) =⇒ id. Thus,
for any X ∈ MZ we obtain a morphism Xα : X(+1) → X in MZ. Since M is pointed, MZ is
pointed and we can form the pushout diagram on the left.

X(+1) //

��

∗

��

Xs+1
//

��

∗

��
X // I Xs

// Is

Pushouts in a functor category are calculated pointwise and so Is is determined by the pushout
diagram on the right. One can check that the morphism I(+1) −→ I is 0, i.e. it factors through ∗.

Definition 2.4.1. I is said to be the sequence consisting of strict cofibers of X.

The following proposition contains the formal argument referred to above.

Proposition 2.4.2. Let X,Y ∈MZ and let I, J be the corresponding sequences consisting of strict
cofibers. Then the sequence of strict cofibers of X ⊗ Y is given by I ⊗ J and

(I ⊗ J)s =
∨

i+j=s

Ii ∧ Jj .

Proof. Since the symmetric monoidal product is closed, ⊗ preserves colimits in each variable. We
also note the canonical identifications X(+1)⊗Y = (X⊗Y )(+1) = X⊗Y (+1). These observations
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allow us to draw the following commuting diagram in which each of the asterisked squares is a
pushout.

∗

��

X(+1)⊗ Yoo

��

(X ⊗ Y )(+1)

��

X ⊗ Y (+1) //

��

∗

��
∗ ∗

I ⊗ Y X ⊗ Yoo X ⊗ Y X ⊗ Y // X ⊗ J

I ⊗ Y I ⊗ Y // I ⊗ J X ⊗ Joo X ⊗ J

∗ ∗

I(+1)⊗ Y

0

OO

I ⊗ Y (+1) //

OO

∗

OO

X(+1)⊗ Joo

OO

X ⊗ J(+1)

0

OO

The zero morphisms imply that the morphisms I⊗Y −→ I⊗J ←− X⊗J are isomorphisms and so
the top left and top right pushout squares are in fact isomorphic to the following pushout square.

(X ⊗ Y )(+1) //

��

∗

��
X ⊗ Y // I ⊗ J

Direct computation yields (I ⊗ J)s =
∨
i+j=s Ii ∧ Jj and so we are done.

Since the monoidal structure onMZ extends that onMN we immediately obtain the following
corollary.

Corollary 2.4.3. Let X,Y ∈ MN and let I, J be corresponding sequences consisting of strict
cofibers. Then the sequence of strict cofibers of X ⊗ Y is given by I ⊗ J and

(I ⊗ J)s =
∨

i+j=s

Ii ∧ Jj .

The following corollary addresses the first bullet point above.

Corollary 2.4.4. Let X,Y ∈ Ho(M)N and extend them to towers (X, I) and (Y, J) by taking
homotopy cofibers. Extending Z = X ∧ Y to a tower (Z,K) we have

Ks =
∨

i+j=s

Ii ∧ Jj .

Proof. Let X̃, Ỹ ∈ Ho(MN
Q) lift QNX,QNY ∈ Ho(MQ)N.

Models for I and J are given by the strict cofibers of Tel(X̃) and Tel(Ỹ ) and X ∧Y = Tel(X̃)⊗
Tel(Ỹ ) ∈ (MN)Q, whose strict cofibers give models for the homotopy cofibers. The result follows
from corollary 2.4.3.

For the second bullet point to make sense we need Ho(M) to be additive and so we take M to
be Spec.
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Proposition 2.4.5. Let X,Y ∈ S N and extend them to towers (X, I) and (Y, J) by taking homo-
topy cofibers. Extend Z = X ∧Y to a tower (Z,K). The augmented cochain complex Z0 −→ Σ•K•
is the ‘tensor product’ of the augmented cochain complexes X0 −→ Σ•I• and Y0 −→ Σ•J•.

In the course of the proof we need the following definition.

Definition 2.4.6. Given a sequence X ∈MN, write X(s) for the sequence

X
(s)
i =

{
Xi if i ≥ s
Xs if i ≤ s.

If s ≤ t define X(s,t) by the pushout square

X(t+1) //

��

∗

��
X(s) // X(s,t).

Proof of proposition 2.4.5. As in corollary 2.4.4, after making various replacements we can work
on the level of strict cofibers so suppose that X,Y ∈ (SpecN)Q and let I, J be the corresponding
sequences consisting of strict cofibers. We consider the following diagram

X ⊗ Y

X(s,s+1) ⊗ Y (t,t) X(s) ⊗ Y (t)oo

OO

// X(s,s) ⊗ Y (t,t+1)

The maps induced on the corresponding sequences consisting of strict cofibers can be described at
the s+ t and s+ t+ 1 levels as follows.

∨
i+j=s+t Ii ∧ Jj

Is ∧ Jt Is ∧ Jt=oo

OO

= // Is ∧ Jt∨
i+j=s+t+1 Ii ∧ Jj

Is+1 ∧ Jt (Is+1 ∧ Jt) ∨ (Is ∧ Jt+1)oo

OO

// Is ∧ Jt+1

We have a natural construction of the connecting map in the stable homotopy category which is
given on the poinset level by the analogue of the space construction W/A

∼←− W ∪ CA −→ ΣW .
The natural map U ∨ V −→ U × V induces an isomorphism in the stable homotopy category
and accounting for signs introduced by swapping suspension coordinates, we see that the following
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diagram commutes in the stable homotopy category, completing the proof.

Σs+tKs+t

ds+tK // Σs+t+1Ks+t+1

Σs+t(Is ∧ Jt)

OO

Σs+t+1

(
(Is+1 ∧ Jt) ∨ (Is ∧ Jt+1)

)
OO

(ΣsIs) ∧ (ΣtJt)

∼=

OO

(dsI∧1,(−1)s∧dtJ )
//
(

(Σs+1Is+1) ∧ (ΣtJt)

)
∨
(

(ΣsIs) ∧ (Σt+1Jt+1)

)∼=

OO

The reader might be concerned by the signs appearing in the proof above and so we attempt to
clarrify matters. Suppose that we have a cofibration sequence A −→ B −→ C in spaces. We can
model this sequence as a map f : A −→ B together with the inclusion map to the cone on f and in
this model the connecting map C −→ ΣA is constructed by ‘collapsing out’ B. We note that the
cone coordinate corresponds to the suspension coordinate and we use this observation to make a
convention: the cone coordinate should always correspond to the outermost suspension coordinate
(when other suspensions are lurking around). To summarise these ideas in the context of S we
use the language of triagulated categories and distinguished triangles. If

A
i // B

j // C
k // ΣA

is a distinguished triangle then so are

ΣA
−Σi // ΣB

−Σj // ΣC
−Σk // Σ2A and ΣA

Σi // ΣB
Σj // ΣC

−Σk // Σ2A.

The sign in front of Σk appears because otherwise the cone coordinate would correspond to the
inner suspension coordinate. In the proof above dsI ∧ 1 uses the outer suspension coordinate (by
convention) but 1∧dtJ uses a suspension coordinate s places in and so we have to introduce a (−1)s.

We can make lemma 2.3.8 of the previous subsection, which concerned sequences, more precise
once we consider towers.

Proposition 2.4.7. Suppose X, X ′, Y, Y ′ ∈ (SpecN)Q and that we extend their images in S N

to towers (X, I), (X ′, I ′), (Y, J), (Y ′, J ′) by taking homotopy cofibers. Suppose we have maps of
towers

(X, I) −→ (X ′, I ′) and (Y, J) −→ (Y ′, J ′).

Extend the images of Z = X ⊗ Y and Z ′ = X ′ ⊗ Y ′ in S N to towers (Z,K) and (Z ′,K ′).
Then we can construct a map of towers (Z,K) → (Z ′,K ′), such that the map on augmented

cochain complexes (Z0 → Σ•K•) −→ (Z ′0 → Σ•K ′•) is the tensor product[
(X0 → Σ•I•) −→ (X ′0 → Σ•I ′•)

]
∧
[
(Y0 → Σ•J•) −→ (Y ′0 → Σ•J ′•)

]
.
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Proof. The maps of towers restrict to maps of sequences (morphisms in S N). We are then free to
apply lemma 2.3.8 to obtain a map Z −→ Z ′ in S N.

We need to be more precise. In the proof of lemma 2.3.8 a choice of homotopy had to be made
for each square; in the current scenario, the map on cofibers determines which homotopy we should
use. Making this choice allows one to check that we obtain a map of towers (Z,K) −→ (Z ′,K ′) by
defining the maps on cofibers

Ks =
∨

i+j=s

Ii ∧ Jj −→
∨

i+j=s

I ′i ∧ J ′j = K ′s

to be the ones given by smashing together the maps Ii −→ I ′i and Jj −→ J ′j .
Regarding this last point we omit some details. However, we note that this is where the second

row in the diagram of lemma 2.3.8 becomes useful. An argument like the one in the proof of
5.2.1 in [24] shows that the map B(∗, Es+1, F j) −→ B(∗, E ′s, F ) is a cofibration between cofibrant
objects. Thus the diagram induced by taking the strict cofiber of the map from the right column
to the middle column has its top vertical map a weak equivalence; this diagram defines a map in
the homotopy category, the induced map on homotopy cofibers. The collection of all such maps
on cofibers gives a map of towers. One needs to check this coincides with the map described
above and this is where we leave some details to the reader. The key point is that the cofiber
of B(∗, Es+1, F j) −→ B(∗, E ′s, F ) receives a weak equivalence from a wedge of a smash product of
cones, a fattening of ∨

i+j=s

Ii ∧ Jj .

By using QN, lifting, and applying the telescope functor Tel we may assume, in the statement
of propostion 2.4.7, that X, X ′, Y, Y ′ ∈ S N. In fact, by fixing choices for lifts (using the axiom of
choice) we can obtain a functor ∧ : T O × T O −→ T O, where T O denotes the category of towers
in S . As remarked in the motivational subsection this is more than we need; we don’t elaborate
further and we conclude our abstract pointset discussions.

We note that the results above can be applied to bounded below sequences and towers, sequences
and towers indexed by Z, which become constant below some S ∈ Z.

Finally, we also note that the results of the discussion above are well-known to experts in the
field. For instance, these sort of issues are addressed in section 3 of [23].

2.5 Quotienting towers using a pointset model

Proof of lemma II.3.4.7. The idea is straightforward: we find a strict model for the map of towers
in corollary II.3.4.6 up to the (2n − 1)th position and collapse from the nth position onwards. In
order to avoid having to delve into any true pointset level discussion of spectra we use the Quillen
adjunction with spaces which we black-boxed in section 2.2.

Firstly, we construct a pointset model for ΣY :

ΣS ΣS
poo ΣS

poo . . . .
poo

We recall that the material of subsection 2.3 applies to Top∗ so that we have a symmetric monoidal
product ⊗ on sequences in Top∗ (definition 2.3.3) and a telescope functor (definition 2.3.6). View
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S1 as {z ∈ C : |z| = 1}, let

Ŷ = (S1 S1z 7−→zpoo S1z 7−→zpoo . . .) ∈ Top
Z≥0
∗

z 7−→zpoo

(note that this is levelwise cofibrant) and let Ỹ = Tel(Ŷ ).

Sc ∧ Ỹ = Sc ∧ Tel(Ŷ ) = Tel(Sc ∧ Ŷ ) ∈ SpecZ≥0

is a model for ΣY . A model for (ΣY ) ∧ (ΣY ) is given by (Sc ∧ Ỹ )⊗ (Sc ∧ Ỹ ), which has sth term
given by

colimi+j≥s
0≤i,j≤s

(Sc ∧ Ỹi) ∧ (Sc ∧ Ỹj) = colimi+j≥s
0≤i,j≤s

(Sc ∧ Sc) ∧ (Ỹi ∧ Ỹj) = (Sc ∧ Sc) ∧ (Ỹ ⊗ Ỹ )s

and the weak equivalence Sc ∧Sc −→ S ∧Sc = Sc gives a weak equivalence (Sc ∧Sc)∧ (Ỹ ⊗ Ỹ ) −→
Sc ∧ (Ỹ ⊗ Ỹ ).

The map of towers (Y, J)∧ (Y, J) −→ (Y, J) restricts to a map of sequences and and suspending
twice gives us a map of sequences Sc ∧ (Ỹ ⊗ Ỹ ) −→ Sc ∧ (ΣỸ ) in the stable homotopy category.
Since everything in sight is bifibrant we have a diagram of maps which commutes up to homotopy.

Sc ∧ (Ỹ ⊗ Ỹ )0

��

Sc ∧ (Ỹ ⊗ Ỹ )1
oo

��

. . .oo Sc ∧ (Ỹ ⊗ Ỹ )soo

��

Sc ∧ (Ỹ ⊗ Ỹ )s+1
oo

��

. . .oo

Sc ∧ ΣỸ0 Sc ∧ ΣỸ1
oo . . .oo Sc ∧ ΣỸsoo Sc ∧ ΣỸs+1

oo . . .oo

The ‘homotopy extension property’ says we can make any of the squares strictly commute at the
cost of changing the left map to a homotopic one. Thus, by starting at the (2n− 1)th position, we
may suppose that we have a strictly commutative diagram consisting of the top two rows.

Sc ∧ (Ỹ ⊗ Ỹ )0

��

Sc ∧ (Ỹ ⊗ Ỹ )1
oo

��

. . .oo Sc ∧ (Ỹ ⊗ Ỹ )2n−2
oo

��

Sc ∧ (Ỹ ⊗ Ỹ )2n−1
oo

��

Sc ∧ ΣỸ0

��

Sc ∧ ΣỸ1
oo

��

. . .oo Sc ∧ ΣỸ2n−2
oo

��

Sc ∧ ΣỸ2n−1
oo

��
Sc ∧ Σ(Ỹ0/Ỹn) Sc ∧ Σ(Ỹ1/Ỹn)oo . . .oo Sc ∧ Σ(Ỹ2n−2/Ỹmax{n,2n−2})oo Sc ∧ Σ(∗) = ∗oo

Applying Sc ∧ Σ(−) to the map, which collapses out Ỹn we obtain the map down to the bottom
row. Since (Ỹ0 ∧ Ỹn) ∪ (Ỹn ∧ Ỹ0) ⊂ (Ỹ ⊗ Ỹ )n we see that Sc ∧ ((Ỹ0 ∧ Ỹn) ∪ (Ỹn ∧ Ỹ0)) is mapped
to ∗. Using the fact that Sc ∧ (−) preserves colimits, or by using the tensor adjunction, arguing in
spaces and using the tensor adjunction again, we obtain a map

Sc ∧ (Ỹ (n)⊗ Ỹ (n)) −→ Sc ∧ (ΣỸ (n))

where Ỹ (n) = Ỹ /Ỹ (n) (see definition 2.4.6). Since Sc ∧ Ỹ (n) gives a model for ΣY (n)

ΣS/pn ΣS/pn−1poo . . .
poo ΣS/p

poo ∗oo . . .oo
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and Sc∧(Ỹ (n)⊗ Ỹ (n)) gives a model for ΣY (n)∧ΣY (n) we obtain a map Y (n)∧Y (n) −→ Y (n) by
desuspending. One should check that the induced map on cofibers is what we want it to be. This
is the case because one way to construct an induced map on cofibers is by a strictification process
like the one used above (actually, we are going the opposite direction; the induced map tells us
which homotopy we should extend when strictifying) and because the multiplication in the cochain
complex Σ•J(n)• is induced by the multiplication on the cochain complex Σ•J• by collapsing.

2.6 A pointset level construction of S/p∞

We use maps between Moore spectra extensively and in the bulk of the text we did not feel it was
necessary to mention how such maps are constructed; they are well known to the expert. Many
of the maps can be constructed using fillers for a distinguished triangle but this can cause concern
due to the nonuniquness of such fillers. Here, we note that our Prüfer sphere has a good pointset
model and the construction should make it clear that we could be very precise about all of the
maps we use at the pointset level, if necessary.

Definition 2.6.1. Write p : S1 −→ S1 for the map z 7−→ zp. Then p−1S1 ∈ Top∗ is the colimit of
the following diagram

S1 ⊗∆1 S1 ⊗∆0

S1⊗[1]
oo p⊗∆0

// S1 ⊗∆0

S1⊗[0]

ss
S1 ⊗∆1 S1 ⊗∆0

S1⊗[1]
oo p⊗∆0

// S1 ⊗∆0

S1⊗[0]

ss
S1 ⊗∆1 . . .oo . . .

We have a map S1 −→ p−1S1 given by

S1 ⊗∆0 S1⊗[0] // S1 ⊗∆1 // p−1S1

where the last map includes the first term in the colimit.

S1/p∞ ∈ Top∗ is the strict cofiber of the map S1 −→ p−1S1. We have a cofibration sequence
in Ho(Top∗): S

1 −→ p−1S1 −→ S1/p∞. Applying Sc ∧ (−) and desuspending gives a cofibration
sequence in S :

S −→ p−1S −→ S/p∞.

S/p∞ is called the Prüfer sphere.

We see that we can obtain the cofibration sequence above by taking homotopy colimits of the
rows in the following diagram (the above definition explains how to obtain a good pointset model
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for such a diagram even though this is not strictly necessary).

S
= //

=

��

S
= //

p

��

S
= //

p2

��

S
= //

p3

��

. . .

S
p //

��

S
p //

��

S
p //

��

S
p //

��

. . .

∗ // S/p
p // S/p2 p // S/p3 p // . . .
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Chapter IV

Miscellaneous results

This chapter contains results that will not appear in the thesis. This chapter is not proof-read and
is probably only readable by me!

1 Relations between Adams spectral sequences (Miller’s theorem)

In this section we give a different proof of [17, theorem 6.1].

We have a map a ring spectra BP −→ H and the canonical BP -resolution for the mod p Moore
spectrum X satisfies the hypothesis required for the May type SS. Thus we have a diagram of
spectral sequences

RsBPR
t−s
H πu(X)

MAH
s

+3

MAY t
��

RtHπu(X)

H-ASSt

��
RsBPπu+s−t(X)

BP -ASS
s

+3 πu−t(X)

Suppose given z ∈ F sMAHR
t
Hπu(X) detected in the Mahowald spectral sequence by a ∈ RsBPR

t−s
H πu(X);

then dMAY
2 a ∈ Rs+1

BP R
t−s+1
H πu+1(X).

Theorem 1.1 (Haynes Miller). dH2 z ∈ F
s+1
MAHR

t+2
H πu+1(X) and is detected by ±dMAY

2 a.

Proof. Let

X0

��

X1
oo

��

X2
oo

��

· · ·oo Xs
oo

��

Xs+1
oo

��

· · ·oo

I0

99

I1

99

I2

99

Is

88

Is+1

88

be the canonical BP -resolution for X and let

Y0

��

Y1
oo

��

Y2
oo

��

· · ·oo Ysoo

��

Ys+1
oo

��

· · ·oo

J0

99

J1

99

J2

99

Js

99

Js+1

88
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be any H-resolution for S0. Then we have

RtHπu(X0) Rt−sH πu−s(Xs)oo

��

z z̃�oo
_

��
Rt−sH πu−s(Is) a′

and a = [a′] ∈ RsBPR
t−s
H πu(X).

Since Xs+1 −→ Xs is BP -null, it is H-null and we obtain

X0 ∧ Y0

X0 ∧ Y1

OO

X1 ∧ Y0
oo

X0 ∧ Y2

OO

X1 ∧ Y1
oo

OO

X2 ∧ Y0
oo

...

OO

...

OO

...

OO

X0 ∧ Yt

OO

X1 ∧ Yt−1

OO

oo X2 ∧ Yt−2

OO

oo · · ·oo Xs−1 ∧ Yt−s+1
oo Xs ∧ Yt−soo Xs+1 ∧ Yt−s−1

oo

X0 ∧ Yt+1

OO

X1 ∧ Yt

OO

oo X2 ∧ Yt−1

OO

oo · · ·oo Xs−1 ∧ Yt−s+2
oo

OO

Xs ∧ Yt−s+1
oo

OO

Xs+1 ∧ Yt−soo

OO

X0 ∧ Yt+2

OO

X1 ∧ Yt+1

OO

oo X2 ∧ Yt

OO

oo · · ·oo Xs−1 ∧ Yt−s+3
oo

OO

Xs ∧ Yt−s+2
oo

OO

Xs+1 ∧ Yt−s+1
oo

OO

By picking a representative z̃′ ∈ πu−t(Xs∧Jt−s) for z̃ we determine representatives z′ ∈ πu−t(X0∧Jt)
and a′′ ∈ πu−t(Is ∧ Jt−s) for z and a′, respectively: all are cycles relative to the differential on J
and z̃′ is mapped to z′ under the maps induced by taking cofibers vertically in the above diagram.

πu−t(X0 ∧ Jt) πu−t(Xs ∧ Jt−s)oo

��

z′ z̃′�oo
_

��
πu−t(Is ∧ Jt−s) a′′

We now smash together the cofiber sequences Xs+1 −→ Xs −→ Is and Yt−s −→ Jt−s −→ ΣYt−s+1
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to obtain a Verdier system.

Xs+1 ∧ Yt−s+1

��

Xs+1 ∧ Jt−soo

��

Xs+1 ∧ Yt−soo

��
Xs ∧ Yt−s+1

��

Xs ∧ Jt−soo

��

Xs ∧ Yt−soo

��
Is ∧ Yt−s+1 Is ∧ Jt−soo Is ∧ Yt−soo

x̃
)

∂̃

**
_

��

•

x_

��

z̃′�oo
_

��
0 a′′�oo •�oo

N

∂

WW

z̃′ determines an element x and a′′ is mapped to 0 because

1. it is a cycle relative to the differential on J ;

2. the H-ASS for Is collapses at E2;

3. there is no convergence issue since all spectra in sight are p-complete.

Thus we can choose x̃ and the •’s compatibly (up to a sign which we will ignore from now on).
We redraw some of this information as follows where (dMAY

2 a)′′ represents an element representing
dMAY

2 a ∈ Rs+1
BP R

t−s+1
H πu+1(X) and d2z̃

′ is just the element it has to be.

Xs ∧ Jt−s

��
Is ∧ Jt−s Is ∧ Yt−soo

��
Xs+1 ∧ Yt−s

��

Xs+1 ∧ Yt−s+1
oo //

��

Xs+1 ∧ Jt−s+1

��
Is+1 ∧ Yt−s Is+1 ∧ Yt−s+1

oo // Is+1 ∧ Jt−s+1
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z̃′_

��
a′′ •�oo

_

∂

��
•_

��

x̃�∂̃oo � //
_

��

d2z̃
′

_

��
• •�oo � // (dMAY

2 a)′′

We also have the following commutative diagram.

Xs ∧ Yt−s+1 Xs ∧ Yt−s+2

��

oo

Xs ∧ Jt−s

66

Xs+1 ∧ Yt−s+1

55

��

OO

Xs ∧ Jt−s+2

Xs+1 ∧ Jt−s+1

55

Thus x̃ determines the lower parallelogram,

x •_

��

�oo

z̃′
(

33

x̃
'

33

_

��

_

OO

(dH2 z̃)
′

d2z̃
′ (

33

where (dH2 z̃)
′ is a representative for dH2 z̃ in the H-ASS for Xs. Using the map of SSs determined

by the first huge diagram we drew we see that

πu−t−1(X0 ∧ Jt+2) πu−t−1(Xs ∧ Jt−s+2)oo πu−t−1(Xs+1 ∧ Jt−s+1)oo

��
πu−t−1(Is+1 ∧ Jt−s+1)

(dH2 z)
′ (dH2 z̃)

′�oo d2z̃
′�oo

_

��
(dMAY

2 a)′′

126



and so
Rt+2
H πu+1(X0) Rt−s+2

H πu−s+1(Xs)oo Rt−s+1
H πu−s(Xs+1)oo

��
Rt−s+1
H πu−s(Is+1)

dH2 z dH2 z̃
�oo •�oo

_

��
(dMAY

2 a)′

which says that dH2 z ∈ F
s+1
MAHR

t+2
H πu+1(X) and is detected by dMAY

2 a = [(dMAY
2 a)′].

2 p = 2

In this section we examine whether our methods are applicable when p = 2.

2.1 v1 ∈ CotorA(H∗(End(S/2 ∧ S/η)))

Let A denote the dual of the Steenrod algebra at the prime 2, so as an algebra A = F2[ξ1, ξ2, . . .].
Recall H∗(S/2∧S/η) = F2〈1, ξ1, ξ

2
1 , ξ

3
1〉 so that H∗(End(S/2∧S/η)) = End(H∗(S/2∧S/η)) consists

of 4×4 matrices. The degree of the matrix Ei,j is i−j and using the identification End(S/2∧S/η) =

(S/2∧S/η)∧Σ−3(S/2∧S/η) together with the Kunneth formula Eij corresponds to ξi1⊗σ−3ξ3−j
1 ,

where we index the matrix using {0, 1, 2, 3}2. Consider the three matrices

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , J =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , K =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

We see that I and K are A-comodule primitives and that J 7−→ ξ1 ⊗ I + 1 ⊗ J + ξ4
1 ⊗ K. Let

x ∈ Ω(A;H∗(End(S/2 ∧ S/η))) be the element

[ξ2|I] + [ξ2
1 |J ] + [ξ2

2 |K].

x is a cocycle representing an element we call v1. We claim v1 generates a polynomial algebra F2[v1]
in CotorA(H∗(End(H∗(S/2 ∧ S/η)))). Thus CotorA(H∗(S/2 ∧ S/η)) is a module over F2[v1].

2.2 v−1
1 CotorA(H∗(S/2 ∧ S/η))

Let B = A/(ξ4
1 , ξ

4
2 , . . .) and C = B/(ξ1) = A/(ξ1, ξ

4
2 , ξ

4
3 . . .). The map A −→ B induces a map

CotorA(H∗(S/2 ∧ S/η)) −→ CotorB(H∗(S/2 ∧ S/η)).

The square
H∗(S/2 ∧ S/η) //

��

B ⊗H∗(S/2 ∧ S/η)

��
F2

// C ⊗ F2
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induces a map
CotorB(H∗(S/2 ∧ S/η)) −→ CotorC(F2),

(which is an isomorphism). Thus we obtain a map (which we call ϕ)

CotorA(H∗(S/2 ∧ S/η)) −→ CotorC(F2) = F2[hj,0, hj,1 : j ≥ 2] −→ F2[h2,0]⊗ F2[hj,1 : j ≥ 2]

mapping v1 · 1 to h2,0. [In fact, one can see that vn1 · 1 is mapped to hn2,0, proving that v1 generates
a polynomial algebra.] We claim that after inverting v1 we obtain an isomorphism:

v−1
1 CotorA(H∗(S/2 ∧ S/η)) = F2[v1, v

−1
1 ]⊗ F2[hj,1 : j ≥ 2].

2.3 The h1-BSS

Let X be H∗(S/2) = F2〈1, ξ〉 and Y be H∗(S/2 ∧ S/η) = F2〈1, ξ, ξ2, ξ3〉. Applying H∗(−) to the
Puppe sequence

S/2 ∧ S1 1∧η // S/2 ∧ S0 // S/2 ∧ S/η // S/2 ∧ S2

gives the SES

0 // X // Y // Σ2X // 0

1, ξ1
� // 1, ξ1

ξ2
1 , ξ

3
1

� // 1, ξ

Applying CotorA(−) gives the h1-BSS. To check the connecting homomorphism is (−) ·h1 we draw

Ω(A;X) // Ω(A;Y ) // Ω(A;X)

x̃_

��

� // x_

��
x · [ξ2

1 |1] � // x · [ξ2
1 |1] 0

where x̃ is defined by multiplying elements in the comodule variable of x by ξ2
1 . Notice that we are

using the right action of Ω(A; k) on Ω(A;X) and Ω(A;Y ).

2.4 Structure of the h1-BSS with respect to v4
1-mulitplication

We have v1 ∈ CotorA(H∗(End(S/2∧S/η)) and we have a map End(S/2) −→ End(S/2∧S/η) given
by smashing with the identity S/η −→ S/η. Formally this is adjoint to the map

End(S/2, S/2) ∧ (S/2 ∧ S/η) = (End(S/2, S/2) ∧ S/2) ∧ S/η ev∧1 // S/2 ∧ S/η.

We claim that v4
1 lifts to CotorA(H∗(End(S/2))) and that this is a permanent cycle in the ASS

detecting an element A ∈ π8(End(S/2)). Thus

Σ8S/2 ∧ S0 //

A∧1
��

Σ8S/2 ∧ S/η //

A∧1
��

Σ8S/2 ∧ S2

A∧1
��

S/2 ∧ S0 // S/2 ∧ S/η // S/2 ∧ S2
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shows that v4
1 · (−) commutes with the maps

CotorA(X) −→ CotorA(Y ) −→ CotorA(Σ2X).

Since

Σ8S/2 ∧ S1 1∧η //

A∧1
��

Σ8S/2 ∧ S0

A∧1
��

S/2 ∧ S1 1∧η // S/2 ∧ S0

commutes v4
1 · (−) commutes with (−) ·h1. This is also evident since they are left and right actions,

respectively. We deduce that drx = y =⇒ drv
4
1 · x = v4

1 · y.

2.5 Some differentials in the h1-BSS

We note that v1 · 1 ∈ Cotor1,3
A (Y ) is represented by [ξ2|1] + [ξ2

1 |ξ1] and this element lifts to ṽ1 · 1 ∈
Cotor1,3

A (X). We compute v2
1:(

[ξ2|ξ2|I] + [ξ2|ξ2
1 |J ] + [ξ2|ξ2

2 |K]

)
+

(
[ξ2

1 |ξ1ξ2|I] + [ξ2
1 |ξ2|J ] + [ξ2

1 |ξ4
1ξ2|K]

)
+

(
[ξ2

1 |ξ3
1 |J ] + [ξ2

1 |ξ2
1 |J2] + [ξ2

1 |ξ6
1 |KJ ]

)
+

(
[ξ2

1 |ξ1ξ2
2 |K] + [ξ2

1 |ξ2
2 |JK]

)
+

(
[ξ2

2 |ξ2|K] + [ξ2
2 |ξ

2
1 |KJ ]

)
.

i.e. (
[ξ2|ξ2|I] + [ξ2

1 |ξ1ξ2|I]

)
+

(
[ξ2|ξ2

1 |J ] + [ξ2
1 |ξ2|J ] + [ξ2

1 |ξ3
1 |J ]

)
+ [ξ2

1 |ξ2
1 |J2]+(

[ξ2|ξ2
2 |K] + [ξ2

2 |ξ2|K] + [ξ2
1 |ξ4

1ξ2 + ξ1ξ2
2 |K]

)
+ [ξ2

1 |ξ2
2 |JK] +

(
[ξ2

1 |ξ6
1 |KJ ] + [ξ2

2 |ξ
2
1 |KJ ]

)
.

Thus v2
1 · 1 ∈ Cotor2,6

A (Y ) is represented by

[ξ2|ξ2|1] + [ξ2
1 |ξ1ξ2|1] + [ξ2|ξ2

1 |ξ1] + [ξ2
1 |ξ2|ξ1] + [ξ2

1 |ξ3
1 |ξ1] + [ξ2

1 |ξ2
1 |ξ2

1 ].

The image in Cotor2,4
A (X) is 1 · h2

1; we see that d3v
2
1 · 1 = 1.

We compute v3
1, only recording terms involving the matrices

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 and


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 :

[ξ2|ξ2
1 |ξ2

1 |J2] +

(
[ξ2

1 |ξ3
1 |ξ2

1 |J2] + [ξ2
1 |ξ2

1 |ξ3
1 |J2]

)
+(

[ξ2
1 |ξ2|ξ2

1 |J2] + [ξ2
1 |ξ2

1 |ξ2|J2] + [ξ2
1 |ξ2

1 |ξ3
1 |J2]

)
+ [ξ2

1 |ξ2
1 |ξ2

1 |J3].
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Thus we see that the image of v3
1 · 1 ∈ Cotor3,9

A (Y ) in Cotor3,7
A (X) is represented by

[ξ2|ξ2
1 |ξ2

1 |1] + [ξ2
1 |ξ3

1 |ξ2
1 |1] +

(
[ξ2

1 |ξ2|ξ2
1 |1] + [ξ2

1 |ξ2
1 |ξ2|1]

)
+ [ξ2

1 |ξ2
1 |ξ2

1 |ξ1] =

((
[ξ2|1] + [ξ2

1 |ξ1]
)
· [ξ2

1 |ξ2
1 |1]

)
+

(
[ξ2

1 |ξ2
1 |ξ3

1 |1] + [ξ2
1 |ξ2|ξ2

1 |1] + [ξ2
1 |ξ2

1 |ξ2|1]

)
The first term represents (̃v1 · 1) ·h2

1 and the second term lifts to an element x ∈ Cotor3,7
A (F2). x/h1

is represented by [ξ2
1 |ξ3

1 ]+ [ξ2|ξ2
1 ]+ [ξ2

1 |ξ2]. Adding d[ξ1ξ2] gives [ξ4
1 |ξ1], which represents h0h2. Thus

x = h0h1h2 = 0 and the image of v3
1 · 1 in Cotor3,7

A (X) is

(̃v1 · 1) · h2
1.

We conclude that d3(v3
1 · 1) = v1 · 1.

We have an element in y ∈ Cotor2,6(Y ) represented by [ξ2
2 |1] + [ξ4

1 |ξ2
1 ] and we see that ϕy = h2,1.

We can describe v3
1 · y if we multiply. Anyway, by looking at the tables we see that we could prove

d3v
3
1 · y = v1 · y and d3v

4
1 · y = v2

1 · y.

In a localised h1-BSS, after inverting v4
1, this would give

d3v
3
1h2,1 = v1h2,1 and d3v

4
1h2,1 = v2

1h2,1.

2.6 Some formulae

For reference we note the coactions

J2 7−→ 1⊗ J2 + ξ2
1 ⊗ I + ξ4

1 ⊗ (JK +KJ),

JK 7−→ 1⊗ JK + ξ1 ⊗K, KJ 7−→ 1⊗KJ + ξ1 ⊗K.

and that v1 · y is represented by[
[ξ2|I] + [ξ2

1 |J ]

]
·
[
[ξ2

2 |1] + [ξ4
1 |ξ2

1 ]

]
=

[ξ2|ξ2
2 |1] + [ξ2|ξ4

1 |ξ2
1 ] + [ξ2

1 |ξ1ξ
2
2 |1] + [ξ2

1 |ξ2
2 |ξ1] + [ξ2

1 |ξ5
1 |ξ2

1 ] + [ξ2
1 |ξ4

1 |ξ3
1 ].

In Ω(A;H∗(End(S/2))) we have

d

[[
ξ1|
(

0 0
1 0

)]
+

[
ξ2|
(

0 1
0 0

)]]
= [ξ1|ξ1|I]

which shows algebraically that multpilication by 4 is zero on S/2.
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2.7 π∗(v
−1
1 S/2 ∧ S/η)

We claim that v1 ∈ CotorA(H∗(End(S/2 ∧ S/η))) is a permanent cycle in the ASS detecting a
map v1 : S/2 ∧ S/η −→ Σ−2S/2 ∧ S/η. We form the mapping telescope v−1

1 S/2 ∧ S/η. Because
CotorA(Y ) has a vanishing line of slope parallel to that given by v1 we can calculate the homotopy
using a localised ASS:

v−1
1 CotorA(H∗(S/2 ∧ S/η)) =⇒ π∗(v

−1
1 S/2 ∧ S/η).

We saw that v−1
1 CotorA(H∗(S/2 ∧ S/η)) = F2[v1, v

−1
1 ] ⊗ F2[hj,1 : j ≥ 2]. We claim that d2v1 =

d2h2,1 = 0, that d2hj,1 = v1h
2
j−1,1 for j > 2 and that the spectral sequence is multiplicative so that

π∗(v
−1
1 S/2 ∧ S/η) = F2[v1, v

−1
1 ]⊗ E[h2,1].

To justify the multiplicativity maybe we can prove that v−1
1 S/2 ∧ S/η is a ring. Alternatively, we

might use the map which Mahowald and Davis talk of: Y ∧ Y −→ Y ′.

2.8 π∗(A
−1S/2)

We have a cofiber sequences

S/2 ∧ S1 1∧η // S/2 ∧ S0 // S/2 ∧ S/η

A−1S/2 ∧ S1 1∧η // A−1S/2 ∧ S0 // A−1S/2 ∧ S/η

and of course, A−1S/2 ∧ S/η = v−1
1 S/2 ∧ S/η. Thus we have Bockstein SSs

π∗(S/2 ∧ S/η) =⇒ π∗(S/2), π∗(v
−1
1 S/2 ∧ S/η) =⇒ π∗(A

−1S/2).

Recall that we have classes 1, ṽ1 · 1, ṽ1 · y, ṽ2
1 · y ∈ CotorA(X), which are nonzero under (−) · h2

1.
We immediately see from the charts that all the elements just considered are permanent cycles in
the ASS and are not boundaries; the non-h1-powers detect elements mapping to 1, v1, v1h2,1 and
v2

1h2,1 in π∗(v
−1
1 S/2 ∧ S/η). In π∗(S

0), η3 = 4ν and so because multiplication by 4 is zero on S/2
we have (−) · η3 = 0 on π∗(S/2). Thus 1, v1 · 1, v1 · y, v2

1 · y are targets of d3’s but not d2’s and
in the localised SS the 1, v1, v1h2,1, v

2
1h2,1 are targets of d3’s. Looking at the charts we deduce the

first and fourth of the following differentials.

d3v
2
1 · 1 = 1, d3v

3
1 · 1 = v1 · 1, d3v

3
1 · y = v1 · y, d3v

4
1 · y = v2

1 · y.

Since (ṽ1 · 1) · h2
1 lies in highest possible filtration we deduce the second differential from the corre-

sponding differential in the algebraic setting; however, the third differential might be false. Mapping
into the localised SS gives the following differentials except, perhaps, the third.

d3v
2
1 = 1, d3v

3
1 = v1, d3v

3
1h2,1 = v1h2,1, d3v

4
1h2,1 = v2

1h2,1.

We know v1h2,1 is the target of a d3 but perhaps d30 = v1h2,1. We need to discount

d1v
2
1h2,1 = v1h2,1, d2v

5
1 = v1h2,1.
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Well, d3v
4
1h2,1 = v2

1h2,1 =⇒ d1v
2
1h2,1 = 0 and d3v

3
1 = v1 =⇒ d2v1 = 0 =⇒ d2v

5
1 = 0.

So, in fact, all the differentials above in the localised SS are true. These differentials are
nontrivial, since after multiplication by powers of v4

1 the sources and targets run through a basis of
π∗(v

−1
1 S/2∧S/η). We conclude that the associated graded of π∗(A

−1S/2) with the 2-adic filtration
is:

F2[A,A−1]⊗ F2[η]/(η3)⊗ F2〈1, v1, v1h2,1, v
2
1h2,1〉.

We’d like to recover the fact that 2v1 = η2 and 2v2
1h2,1 = v1h2,1. One checks directly that

(ṽ1 · 1) · h0 = 1 · h2
1 :

[
[ξ2|1] + [ξ2

1 |ξ1]

]
· [ξ1|1] = [ξ2|ξ1|1] + [ξ2

1 |ξ1|ξ1] + [ξ2
1 |ξ2

1 |1] = d[ξ2|ξ1] + [ξ2
1 |ξ2

1 |1].

Similarly, we can check the other relation. Thus,

π∗(A
−1S/2) =

Z/4[A,A−1]⊗ Z/4[η]/(η3)⊗ Z/4〈1, v1, v1h2,1, v
2
1h2,1〉

(2 · 1 = 0, 2v1 = η2, 2v1h2,1 = 0, 2v2
1h2,1 = v1η2h2,1, 2η = 0)

.
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