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Abstract

We calculate the η-localization of the motivic stable homotopy ring over C, confirming a
conjecture of Guillou and Isaksen. Our approach is via the motivic Adams-Novikov spectral
sequence. In fact, work of Hu, Kriz and Ormsby implies that it suffices to compute the α1-
localization of the classical Adams-Novikov E2-term, and this is what we do. Guillou and
Isaksen also propose a pattern of differentials in the localized motivic classical Adams spectral
sequence, which we verify using a method first explored by Novikov.

Dedicated to the memory of Goro Nishida (1943-2014)

1 Introduction

The chromatic approach to stable homotopy theory [8] rests on the fact that non-nilpotent graded
endomorphisms of finite complexes can be essentially classified. They always occur in Adams-
Novikov filtration zero, and up to taking pth powers every graded BP∗BP -comodule endomorphism
survives the Adams-Novikov spectral sequence. At the prime 2, for example, the Hopf map η : S1 →
S0 lies in filtration one, and the celebrated nilpotence theorem of Nishida [17] already guarantees
that η is nilpotent; in fact, we know that η4 = 0. On the other hand, the element α1 that detects η
in the Adams-Novikov E2-term E2(S

0;BP ) is non-nilpotent. This immediate failure of the Adams-
Novikov E2-term to accurately reflect 2-primary stable homotopy has lessened its attractiveness
as a tool by which to approach 2-primary stable homotopy theory. One can nevertheless hope to
calculate α−11 E2(S

0;BP ) and discover the range in which the localization map is an isomorphism,
and this is the main result of our paper.

Some α1-free elements have been known for many years. The group E1,2n
2 (S0;BP ) is cyclic for

n ≥ 1, generated by elements αn closely related to the image of J ([18, theorem 11.2], [15, corollary
4.23]). In [15] it was shown that for n 6= 2, αk1αn 6= 0 for all k ≥ 0. The Adams-Novikov differentials
on these classes are also well-known and due to Novikov [18], [19, pg. 171]. In this paper we show
that there are no other α1-free generators and that the localization map

E2(S
0;BP ) −→ α−11 E2(S

0;BP )

is an isomorphism above a line of slope 1/5 when we plot the Adams-Novikov spectral sequence in
the usual manner. This resolves a question raised by Zahler [22] at the dawn of the chromatic era,
in 1972.
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Our approach follows Novikov [18] as interpreted in [14]: we filter the BP cobar construction
by powers of the kernel of the augmentation BP∗ → F2. The resulting spectral sequence has the
form

H∗(P ;Q) =⇒ E2(S
0;BP )

where P is the Hopf subalgebra of squares in the dual Steenrod algebra A and

Q = gr∗BP∗ = F2[q0, q1, . . .].

is the associated graded of BP∗; qn is the class of the Hazewinkel generator vn. In this spectral
sequence the element α1 is represented by the class of [ξ21 ], which, following the notational conven-
tions in force at an odd prime, we denote by h0. We proceed by inverting h0 to obtain a localized
algebraic Novikov spectral sequence converging to α−11 E2(S

0;BP ). Our main result is a complete
description of this spectral sequence.

The E1-page of the localized algebraic Novikov spectral sequence is given by h−10 H∗(P ;Q).
The computation of this object parallels the well-known fact [12,13] that if M is a bounded below
comodule over A then

q−10 H∗(A;M) = H(M ; Sq1)⊗ F2[q
±1
0 ]

where q0 ∈ H∗(A) is the class dual to Sq1. The result we obtain is

h−10 H∗(P ;Q) = F2[h
±1
0 , q21, q2, q3, . . .].

As in [14], the differentials in the localized algebraic Novikov spectral sequence are calculated
by exploiting the connection between E2(S

0;BP ) and the theory of formal groups. The facts we
rely on are easier to obtain than those used in [14] and date back to [16]. We prove that for n ≥ 2

d1qn+1 = q2nh0. (1.1)

This calculation allows us to show that the natural map Z(2)[α1, α3, α4] −→ E2(S
0;BP ) induces

an isomorphism

α−11 E2(S
0;BP ) = F2[α

±1
1 , α3, α4]/(α1α

2
4). (1.2)

Our way of writing (1.2) requires some explanation. In E2(S
0;BP ) we have α1α

2
4 = 0 (by Toda’s

calculation that ησ2 = 0 [20] if for no other reason). We write “α1α
2
4” as opposed to “α2

4” in (1.2)
to remind ourselves that α1α

2
4 = 0 is the relation, which holds before localization. To see why (1.2)

is true we work with the associated graded objects. The images of α3 and α4 in α−11 E2(S
0;BP ) are

detected by q21h0 and q2h0, respectively. This fact, together with the differentials of (1.1), allows us
to see that the E∞-page of the localized algebraic Novikov spectral sequence is F2[h

±1
0 , q21, q2]/(q

2
2).

In fact, for n ≥ 0, the image of α2n+1 in α−11 E2(S
0;BP ) is detected by q2n1 h0 in the localized

algebraic Novikov spectral sequence, and α2n+4 has image detected by q2n1 q2h0, as required by the
fact that they are α1-free elements. It follows, incidentally, that for m,n ≥ 0, α2mα2n is α1-torsion,
and that modulo α1-torsion the classes α2m+1α2n+1 and α2n+1α2m+4 depend only on the sum m+n.

With these results in hand we can analyze the localized Adams-Novikov spectral sequence.
In the unlocalized Adams-Novikov spectral sequence we have d3α3 = α4

1 and this gives the same
differential in the localized spectral sequence. Since α1 is a unit, this differential terminates the
localized spectral sequence.
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None of this is particularly interesting from the perspective of the classical homotopy groups of
spheres because we already know that η4 = 0. However, the advent of motivic homotopy theory
has led to interesting related questions. There is a ground field in motivic homotopy theory, which
for us will be C. It is known that the motivic analogue of η is non-nilpotent, and one may ask
(as Dugger and Isaksen did [5]) to calculate η−1π∗,∗(S

0,0). Hu, Kriz and Ormsby ([9]; see also [5])
study a motivic analogue of the Adams-Novikov spectral sequence and show that its E2-term is
just E2(S

0;BP )[τ ], where τ detects a certain motivic homotopy class θ ∈ π0,−1(S0,0). The classical
Adams-Novikov spectral sequence is recovered by setting τ = 1 and so our calculation allows one to
determine the E2-page and differentials for the localized motivic Adams-Novikov spectral sequence.
The unique nonzero differential is determined by the motivic analogue of d3α3 = α4

1, namely

d3α3 = τα4
1. (1.3)

This calculation allows us to show that the map Z[η, σ, µ9] −→ π∗,∗(S
0,0) induces an isomorphism

η−1π∗,∗(S
0,0) = F2[η

±1, σ, µ9]/(ησ
2). (1.4)

In this equation σ ∈ π7,4(S0,0) is a motivic Hopf invariant one element [5] and µ9 ∈ π9,5(S0,0) is
described by the Toda bracket 〈8σ, 2, η〉; θ acts as 0 on η−1π∗,∗(S

0,0) because θη4 = 0. In π∗,∗(S
0,0)

we have ησ2 = 0 since Toda’s classical result [20] extends to the motivic setting. As before, we have
written equation (1.4) in a way that reminds us that this relation holds before localization. To see
why (1.4) is true we work with the associated graded objects. σ and µ9 are detected by α4 and α5,
respectively, in the motivic Adams-Novikov spectral sequence. Thus, their images in η−1π∗,∗(S

0,0)
are detected by α4 and α5 = α−11 α2

3, respectively, in the localized motivic Adams-Novikov spectral
sequence. This fact, together with the differential of (1.3), allows us to see that the E∞-page of
the localized Adams-Novikov spectral sequence is F2[α

±1
1 , α2

3, α4]/(α1α
2
4). Hu, Kriz, and Ormsby

[9] had shown that the elements in (1.4) occur; we prove that there are no more η-free generators.
Our calculation of η−1π∗,∗(S

0,0) verifies a conjecture due to Guillou and Isaksen [7]. They had
approached this calculation by means of the motivic classical Adams spectral sequence. Using the
motivic May spectral sequence they found that

h−10 E2(S
0,0; (HF2)mot) = F2[h

±1
0 , v41, v2, v3, . . .]. (1.5)

Based on extensive computations they conjectured that differentials in the localized motivic Adams
spectral sequence are given by

d1vn+1 = v2nh0, n ≥ 2. (1.6)

In the last part of this paper we recover (1.5) using a localized Cartan-Eilenberg spectral sequence.
We then proceed to use the methods of [14] to prove the differentials (1.6), up to higher Cartan-
Eilenberg filtration. In fact, the differentials must hold exactly as stated in (1.6), since this is the
only way one can obtain the description of η−1π∗,∗(S

0,0) that we prove (see [7]).

Acknowledgements. The first author is particularly grateful to Dan Isaksen and Zhouli Xu
for their talks on the motivic Adams spectral sequence and its relationship with the Adams-Novikov
spectral sequence. These served as the inspiration to start trying to compute the Adams-Novikov
E2-page. We thank Will Perry, who created charts of the algebraic Novikov E1-page. The idea for
the proof of the main theorem came about while he coded computational software for us. We are
indebted to Dan Isaksen for raising these questions about the η-local motivic sphere and for several
useful conversations. We thank him and Bert Guillou for keeping us abreast of their work. We also
thank Kyle Ormsby and Marc Levine for helpful tutorials on motivic matters.
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2 The Adams-Novikov spectral sequence

2.1 The cobar construction

In this paper we follow [15] and work with right comodules. Given a Hopf algebroid (A,Γ) and a
right Γ-comodule M , the cobar construction Ω∗(Γ;M) has Ωs(Γ;M) = M ⊗A Γ ⊗A . . . ⊗A Γ with
s copies of Γ = ker (ε : Γ→ A), and is equipped with a natural differential [15, (1.10)] of degree 1.
H∗(Γ;M) denotes the cohomology of this complex. If Γ and M are graded then H∗(Γ;M) becomes
bigraded; the first index is the cohomological grading and the second is inherited from the gradings
on Γ and M .

Recall (e.g. [16, §2]) the Hopf algebroid given to us by the p-typical factor of complex cobordism:
(BP∗, BP∗BP ). We will work at the prime p = 2 throughout this paper.

The Adams-Novikov spectral sequence takes the following form

Es,u2 = Hs,u(BP∗BP )
s

=⇒ πu−s(S
0)⊗ Z(2), dr : Es,ur −→ Es+r,u+r−1r .

Here S0 denotes the sphere spectrum and Z(2) denotes the integers localized at 2. Computing the
full E2-page of this spectral sequence is not feasible, but some elements can be written down fairly
explicitly.

2.2 A collection of α1-free elements

The coefficient ring of BP is a polynomial algebra Z(2)[v1, v2, . . .]. As in [15], we have a short exact
sequence of BP∗BP -comodules

0 −→ BP∗ −→ 2−1BP∗ −→ BP∗/2
∞ −→ 0,

which gives rise to a connecting homomorphism

δ : H0,∗(BP∗BP ;BP∗/2
∞) −→ H1,∗(BP∗BP ;BP∗).

Following [15] define x = v21−4v−11 v2 ∈ 2−1v−11 BP∗. When s ≥ 2, the image of xs/8s in v−11 BP∗/2
∞

lies in the subgroup BP∗/2
∞. We define

αs =


δ(vs1/2) s ≥ 1 and odd

δ(v21/4) s = 2

δ(xs/2/4s) s 6= 2 and even

Proposition 2.2.1 ([15]). These classes generate H1,∗(BP∗BP ) and are of the same 2-order as
the denominator of the element to which δ was applied.

The element α1 is a permanent cycle detecting η ∈ π1(S0). In lemma 6.2.2 we will show that for
s 6= 2, αs is not killed by any power of α1. This is [15, corollary 4.23], but our proof is different. We
will analyze the images of these elements in α−11 H∗(BP∗BP ), an object we will compute explicitly.
Our approach shows, in addition, that these classes generate α−11 H∗(BP∗BP ) as an F2[α

±1
1 ]-vector

space.
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3 The algebraic Novikov spectral sequence

One of the best tools for gaining information about the E2-page of the Adams-Novikov spectral
sequence is the algebraic Novikov spectral sequence.

As noted above, the E2-page of the Adams-Novikov spectral sequence can be calculated using
the cobar complex Ω∗(BP∗BP ). The coefficient ring

BP∗ = π∗(BP ) = Z(2)[v1, v2, . . .]

admits a filtration by invariant ideals given by powers of I = ker (BP∗ → F2) and this allows us
to filter the cobar construction: F tΩs(BP∗BP ) = ItΩs(BP∗BP ). There is a resulting spectral
sequence and we need to identify the E1-page.

3.1 The E1-page

In this paper we will write A for the dual of the Steenrod algebra. Let P denote the Hopf subalgebra
of squares in A. Write

ζn = ξ
2
n

for the square of the conjugate of the Milnor generator ξn, so that

P = F2[ζ1, ζ2, . . .]

with diagonal

∆ζn =
∑
i+j=n

ζi ⊗ ζ2
i

j .

Write
Q = gr∗BP∗

for the graded algebra associated to the I-adic filtration of BP∗ and qn for the class of vn. Then
Q = F2[q0, q1, . . .] is naturally a graded algebra in P -comodules. The filtration degree t is the
Novikov weight. The element qn has internal degree u given by the degree of vn, namely 2n+1 − 2.
The coaction is determined by

qn 7−→
∑
i+j=n

qi ⊗ ζ2
i

j .

Then [14] on the level of cobar complexes

grtΩs(BP∗BP ) = Ωs(P ;Qt) (3.1.1)

and the algebraic Novikov spectral sequence takes the form

Es,t,u1 = Hs,u(P ;Qt)
t

=⇒ Hs,u(BP∗BP ), dr : Es,t,ur −→ Es+1,t+r,u
r . (3.1.2)

The following elements will be important for us. We write q0 for the element in H0,0(P ;Q1)
represented by q0[ ] and hn for the element in H1,2n+1

(P ;Q0) represented by [ζ2
n

1 ].
There are a number of ways to draw H∗(P ;Q) in two dimensions and we will display two of

them. They are suggested to us by the following fact ([14, 18]): H∗(P ;Q) is not only the E1-page
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for the algebraic Novikov spectral sequence, but also the E2-page for the Cartan-Eilenberg spectral
sequence (3.1.3). This is the spectral sequence associated to the extension of Hopf algebras

P −→ A −→ E,

where E = E[ξ1, ξ2, . . .]; it converges to the E2-page of the Adams spectral sequence:

Es,t,u2 = Hs,u(P ;Qt)
s

=⇒ Hs+t,u+t(A), dr : Es,t,ur −→ Es+r,t−r+1,u+r−1
r . (3.1.3)

Plotting (u − s, s) has the effect of suppressing the filtration grading in the algebraic Novikov
spectral sequence (Novikov weight), while plotting the other gradings in the usual Adams-Novikov
spectral sequence format. In low dimensions, drawing H∗(P ;Q) in this way results in a picture
closely resembling the E2-page of the Adams-Novikov spectral sequence.

Plotting (u−s, s+ t) has the effect of suppressing the filtration grading in the Cartan-Eilenberg
spectral sequence, while plotting the other gradings in the usual Adams spectral sequence format.
In low dimensions, drawing H∗(P ;Q) in this way results in a picture closely resembling the E2-page
of the Adams spectral sequence.

In figure 1 we have plotted Hs,u(P ;Qt) in low dimensions. The first chart uses the coordinates
(u−s, s) and the second uses the coordinates (u−s, s+t). Vertical black lines indicate multiplication
by q0. The vertical blue arrow indicates a q0 tower which continues indefinitely. Black lines of slope
one indicate multiplication by h0. The blue arrows of slope one indicate h0 towers which continue
indefinitely. Green arrows denote algebraic Novikov differentials and red arrows denote Cartan-
Eilenberg differentials. On the first chart square nodes denote multiple basis elements connected
by q0-multiplication; the number to the upper left indicates how many such basis elements.

3.2 Some permanent cycles

One slow method of finding permanent cycles in the algebraic Novikov spectral sequence is to seek
out elements in H∗(BP∗BP ) and ask which elements in H∗(P ;Q) they represent.

In order to provide the reader with the feeling that some low dimensional computations are
possible by hand, we give the following results. These will also be essential for the computation we
make later. Before stating the lemma we need to recall that BP∗BP = BP∗[t1, t2, . . .], where the
degree of tn is equal to the degree of vn.

Lemma 3.2.1. The following elements are cocycles in the cobar construction Ω∗(BP∗BP ):

1. [ ] and [t1];

2. v21[t1] + 2v1[t
2
1] + 4

3 [t31];

3. v2[t1|t1] + v1[t1|t31]− v1[t21|t21] + v1[t
3
1|t1]− 3v1[t1|t2] + 2[t1|t1t2] + 2[t21|t31]− 2[t21|t2] + 2[t1t2|t1].

Proof. Do the calculation by hand or with the aid of a computer: http://math.mit.edu/~mjandr/
bpcobar.jar

Corollary 3.2.2. The following elements are cocycles in the cobar construction Ω∗(P ;Q):

1. [ ] and [ζ1];

2. q21[ζ1] + q0q1[ζ
2
1 ] + q20[ζ31 ];
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Figure 1: H∗(P ;Q) in Novikov and classical Adams projections. Green arrows are algebraic Novikov
differentials and red arrows are Cartan-Eilenberg differentials.
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3. q2[ζ1|ζ1]+q1[ζ1|ζ31 ]+q1[ζ
2
1 |ζ21 ]+q1[ζ

3
1 |ζ1]+q1[ζ1|ζ2]+q0[ζ1|ζ1ζ2]+q0[ζ21 |ζ31 ]+q0[ζ

2
1 |ζ2]+q0[ζ1ζ2|ζ1].

Moreover, these elements define the classes 1, h0, 〈h1, q20, h0〉 and 〈h0, q0, h21〉 in H∗(P ;Q) and they
are permanent cycles in the algebraic Novikov spectral sequence.

Proof. Checking the first Massey product is straightforward. The second stops being difficult once
one realizes that d(q2[ζ1] + q1[ζ2 + ζ31 ] + q0[ζ1ζ2]) = q0[ζ

2
1 |ζ21 ].

3.3 Vanishing Lines

We wish to localize the algebraic Novikov spectral sequence by inverting h0. In order to identify the
resulting E1-page and check convergence of the spectral sequence we require some basic vanishing
lines. The diagrams in figure 1 suggest the following two vanishing lines. Both are proved using
the observation that if M is a P -comodule with Mu = 0 for u < m, then

Ωs,u(P ;M) =
(
P
⊗s ⊗M

)
u

= 0

for u < m+ 2s (because P u = 0 for u < 2).

Lemma 3.3.1. Hs,u(P ;Qt) = 0 when u− s < s.

Proof. For any t, Qt,u = 0 for u < 0. Thus Ωs,u(P ;Qt) = 0 for u < 2s.

Lemma 3.3.2. Hs,u(P ;Qt) = 0 when 0 < u− s < s+ t.

Proof. Suppose from the offset that 0 < u− s and define an algebra map ϕ : Q −→ P by sending
qn to ζn (so q0 maps to 1). If t < 0 then Hs,u(P ;Qt) = 0 so fix a t ≥ 0. We have a short exact
sequence of right P -comodules

0 // Qt
ϕ|Qt

// P // P/Qt // 0

and the associated long exact sequence gives a surjection Hs−1,u(P ;P/Qt) −→ Hs,u(P ;Qt). We
see that (P/Qt)u = 0 if u < 2(t+ 1), since the first element not in the image of ϕ|Qt is ζt+1

1 . Thus
Hs−1,u(P ;P/Qt) is zero provided that u < 2(s− 1) + 2(t+ 1) = 2s+ 2t. Since t ≥ 0, u− s < s+ t
implies u < 2s+ 2t.

4 Some localization results

We begin with a well-known localization theorem, dealing with comodules over the dual Steenrod
algebra A. Write q0 for the class of [ξ1] in H1,1(A). It acts on H∗(A;M) for any A-comodule M .
Write E for the quotient Hopf algebra

E = A/(ξ21 , ξ2, ξ3, . . .)

It is the exterior algebra generated by the image of ξ1. Any A-comodule M becomes an E-comodule
and an E-comodule structure on M is equivalent to a degree one differential Sq1 on M by

x 7−→ x⊗ 1 + Sq1x⊗ ξ1.
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Proposition 4.1. Let M be an A-comodule such that Mu = 0 whenever u < 0, and consider the
following diagram.

H(A;M) //

��

H(E;M)

��
q−10 H(A;M) // q−10 H(E;M)

The top map is surjective in bidegrees (s, u) with u− s < 2s− 2 and an isomorphism in bidegrees
with u − s < 2s − 5, i.e. above a line of slope 1/2 in the usual (u − s, s) plot. The bottom map is
an isomorphism and the right map is an isomorphism for bidegrees (s, u) with s > 0. Moreover,

q−10 H(E;M) = H(M ; Sq1)⊗ F2[q
±1
0 ].

Proof. The cotensor productM�EA is a submodule ofM⊗A. Since the coaction mapM −→M⊗A
is coassociative, it factors through a map i : M −→M�EA. Define L by the following short exact
sequence of right A-comodules.

0 //M
i //M�EA // L // 0. (4.2)

We claim that Hs,u(A;L) = 0 whenever u− s < 2s− 2.
If M = F2, the middle comodule F2�EA is the homology of the integral Eilenberg-Mac Lane

spectrum. It is well known, in that case, that the map i induces an isomorphism in Sq1-homology.
(One way to see this is to think about the dual: left multiplication by Sq1 gives a bijection between
the Cartan-Serre basis elements for H∗(HZ) with even leading entry and those with odd leading
entry, with the exception of the basis element 1 in dimension 0.) Filtering the general comodule M
by dimension shows that the same is true in general. We deduce that L is Sq1-acyclic and so we
can apply [1, theorem 2.1] or [2, theorem 1.1] to give the claimed vanishing line for H∗(A;L).

Under the identification H∗(A;M�EA) = H∗(E;M), the map induced by applying H(A;−) to
i is the top map in the proposition statement and so the first statement in the proposition follows
from the cohomology long exact sequence associated to (4.2) and the vanishing line just proved.

Since q0 acts vertically in (u−s, s) coordinates we find that the bottom map is an isomorphism.
The remaining statements follow from the indentification

H(E;M) =
ker (Sq1)⊗ F2[q0]

im(Sq1)⊗ (q0)
.

Thus the localization of the Adams E2-page coincides with the E2-page of the Bockstein spectral
sequence. In fact [12,14] the two spectral sequences coincide from E2 onwards, giving a qualitative
strengthening of Serre’s observation that π∗(X)⊗Q ∼= H∗(X;Q).

By doubling degrees we obtain a parallel result for the Hopf subalgebra P of A. Now E will be
the quotient Hopf algebra P/(ζ21 , ζ2, . . .). Any P -comodule M becomes an E-comodule and just as
we wrtoe Sq1 above, we may write P 1 for the operator on a right E-comodule corresponding to ζ1.
A P -comodule splits naturally into even and odd parts, which one can handle separately to prove
the following result.
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Proposition 4.3. Let M be a P -comodule such that Mu = 0 whenever u < 0, and consider the
following diagram.

H(P ;M) //

��

H(E;M)

��
h−10 H(P ;M) // h−10 H(E;M)

The top map is surjective in bidegrees (s, u) with u− s < 5s− 4 and an isomorphism in bidegrees
with u− s < 5s− 10, i.e. above a line of slope 1/5 in the usual (u− s, s) plot. The bottom map is
an isomorphism and the right map is an isomorphism for bidegrees (s, u) with s > 0. Moreover,

h−10 H(E;M) = H(M ;P 1)⊗ F2[h
±1
0 ].

As an application, we obtain a calculation of the h0-localization of the E1-page of the algebraic
Novikov spectral sequence together with the range in which the localization map is an isomorphism.

Corollary 4.4. For any t, the localization map H∗(P ;Qt) −→ h−10 H∗(P ;Qt) is injective in bide-
grees (s, u) with u− s < 5s− 4 and an isomorphism in bidegrees with u− s < 5s− 4. Moreover,

h−10 H(P ;Q) = F2[h
±1
0 , q21, q2, q3, . . .].

Proof. It is enough to note that P 1q1 = q0, kerP 1 = F2[q0, q
2
1, q2, q3, . . .] and imP 1 = (q0).

5 The localized algebraic Novikov spectral sequence

The algebraic Novikov spectral sequence is multiplicative since it is obtained by filtering the DG
algebra Ω∗(BP∗BP ) by powers of a differential ideal. The class h0 ∈ E1,0,2

1 is a permanent cycle
and so multiplication by h0 defines a map of spectral sequences. Since forming homology commutes
with filtered colimits, we may localize the spectral sequence by inverting the class h0 page by page.

In forming this localization we may lose convergence; this is the issue at stake in the “telescope
conjecture” of chromatic homotopy theory. Here we are lucky, however. Convergence is preserved
because, as was the case in [14], the operator we are inverting acts parallel to a vanishing line. This
vanishing line is visible in the lower diagram in figure 1 and is the content of proposition 3.3.2.

The vanishing line has the following two implications.

1. Suppose given an element x ∈ H∗(BP∗BP ). The vanishing line ensures that there is an n ∈ N
such that the algebraic Novikov filtration (possibly ∞) of αn1x and αn+m1 x coincide for all
m ≥ 0. Thus, if x is α1-free,

F = {algebraic Novikov filtration of αm1 x : m ≥ 0}

is bounded above and the image of x in α−11 H∗(BP∗BP ) is detected by the localized algebraic
Novikov spectral sequence in filtration (maxF ).

2. Suppose x is a fixed h0-free element in the E1-page of the algebraic Novikov spectral sequence.
The vanishing line shows that the length of a non-trivial differential on hm0 x is bounded above
by an integer depending only on x. Thus, if each hm0 x supports a nontrivial differential, then
there exists an n ∈ N, together with a non-trivial differential drh

n
0x = y such that, for m ≥ 0,

each differential drh
n+m
0 x = hm0 y is non-trivial, and in this case the image of x in the localized

algebraic Novikov spectral sequence supports a non-trivial dr.

10



The first fact tells us that we detect everything we are supposed to; the second fact tells us that
we do not detect more than we are supposed to. A more thorough account of similar convergence
issues may be found in [3].

Coupled with the isomorphism range in corollary 4.4, the natural map of spectral sequences
from the algebraic Novikov spectral sequence to its localized counterpart implies an isomorphism
range for the α1-localization of the Adams-Novikov E2-page for the sphere. Recall that the class
α1 ∈ H1,2(BP∗BP ) is detected by h0 ∈ H1,2(P ;Q0).

Proposition 5.1. The localization map

H∗(BP∗BP ) −→ α−11 H∗(BP∗BP )

is surjective in bidegrees (s, u) for which u− s < 5s− 4 and an isomorphism in bidegrees for which
u− s < 5s− 10, i.e. above a line of slope 1/5 in the usual (u− s, s) plot.

Proof. We use the natural map of spectral sequences from the algebraic Novikov spectral sequence
to its localized counterpart. Both spectral sequences converge but, for our argument, we must show
that the filtration is finite in each bidegree (s, u) under consideration (those for which u−s < 5s−4).

For the unlocalized spectral sequence there are three cases. If u−s < 0, then Hs,u(BP∗BP ) = 0;
if u− s = 0, then s > 4

5 and Hs,u(BP∗BP ) = 0; if u− s > 0, then lemma 3.3.2 implies that Es,t,u1

is potentially nonzero only when 0 ≤ t ≤ u − 2s. In the localized case lemma 3.3.2 extends, since
multiplication by h0 acts along the vanishing line, to tell us that Es,t,u1 is potentially nonzero only
when 0 ≤ t ≤ u− 2s. In any case, the filtration is finite.

From these observations it is enough to show that, at the E∞-page, the map of spectral sequences
is surjective in bidegrees (s, u) for which u− s < 5s− 4 and an isomorphism in bidegrees for which
u− s < 5s− 10. We know this to be true at the E1-page by proposition 4.3; suppose it is true for
the Er-page. A dr-differential in the algebraic Novikov spectral sequence has (s, u) bidegree (1, 0).
Because u−s < 5s−4 if and only if u− (s+1) < 5(s+1)−10, it has source in the surjective region
if and only if it has target in the isomorphism region. Thus, we can deduce the result for the Er+1-
page using the following simple observation: if a map of cochain complexes is a surjection in degree
n and an isomorphism in higher degrees, then the same is true of the map induced in cohomology.
Using the vanishing line of lemma 3.3.2 and the computation of the localized algebraic Novikov
spectral sequence in the next section we see that for a fixed (s, u) bigrading we have Er = E∞ for
some large r and so the proof is complete by induction.

6 Computing the localized algebraic Novikov spectral sequence

6.1 Differentials in the localized algebraic Novikov spectral sequence

The main result of this section is the following proposition, which completely describes the localized
algebraic Novikov spectral sequence.

Proposition 6.1.1. In the localized algebraic Novikov spectral sequence 1, h0, q21 and q2 are per-
manent cycles, while d1qn+1 = q2nh0 for n ≥ 2.

Proof. The images in Ω∗(E[ζ1];Q) of the elements in corollary 3.2.2 are [ ], [ζ1], q
2
1[ζ1], q2[ζ1|ζ1],

respectively. So there are permanent cycles in the algebraic Novikov spectral sequence mapping to

11



1, h0, q
2
1h0, and q2h

2
0 in the localized algebraic Novikov spectral sequence. We are left to prove the

differential, so suppose that n ≥ 2 and write E for E[ζ1].
By proposition 4.3, there exists an N ≥ 0 such that qn+1h

N
0 is in the image of H∗(P ;Q) →

H∗(E;Q). Pick an X in HN,∗(P ;Q1) mapping to qn+1h
N
0 . To complete the proof of the proposition

it is enough to calculate d1X in the unlocalized algebraic Novikov spectral and check that its image
under H∗(P ;Q)→ H∗(E;Q) is q2nh

N+1
0 .

Since Ω∗(P ;Q) → Ω∗(E;Q) is surjective, we can find a cocycle in Ω∗(P ;Q) representing X,
which maps to qn+1[ζ1]

N in Ω∗(E;Q). We find that all elements of the monomial basis for Ω∗(P ;Q)
that include a tensor factor containing some monomial in P other than ζ1 map to zero in Ω∗(E;Q).
This means that when we write our cocycle in this monomial basis it must contain the term
qn+1[ζ1]

N . We write the cocyle representing X as qn+1[ζ1]
N + x, where x is a linear combination

of other basis elements.
By (3.1.1) we have a surjection

IΩ∗(BP∗BP ) −→ Ω∗(P ;Q1).

To be specific, we choose the set-theoretic splitting that in each term of a linear combination of
monomial basis elements, replaces each ζi by ti and each qi by vi. (Remember that v0 = 2; this
map is not linear.) With this choice of splitting, vn+1[t1]

N + y is selected to map to our cocycle
representing X, where y is a linear combination of terms, each of which involves, as a tensor factor,
some monomial in the ti’s other than the monomial t1, and such that each nonzero coefficient is vi
for some i.

Since qn+1[ζ1]
N + x ∈ Ω∗(P ;Q) is a cocycle, d(vn+1[t1]

N + y) ∈ I2Ω∗(BP∗BP ). Mapping to
gr2Ω∗(BP∗BP ) = Ω∗(P ;Q2) gives an element representing d1X ∈ H∗(P ;Q). As explained at the
start of the proof, we wish to understand the image of this element in H∗(E;Q).

To do this we will consider the BP∗-basis of the cobar construction given by placing a monomial
in the ti’s in each tensor factor. Any element of I2Ω∗(BP∗BP ) is uniquely a linear combination of
these elements with coefficients in I2. Of these terms, only those of the form α[t1]

j with α /∈ I3
map nontrivially to Ω∗(E;Q2). d(vn+1[t1]

N ) and dy are linear combinations of these basis elements
with coefficients in BP∗. Since qn+1[ζ1]

N is not a cocycle, neither set of coefficients by themselves
need to lie in I2, though their sums do. First, we look at the contribution from d(vn+1[t1]

N ).

Lemma 6.1.2. For n ≥ 1, the coefficient of [t1]
N+1 in d(vn+1[t1]

N ) is v2n mod I3.

Proof. Because t1 is primitive it is enough to investigate the coefficient of t1 in ηRvn+1. Since the
elements ηRvn+1 and vn+1 = ηLvn+1 have the same augmentation we have

ηR(vn+1) ≡ vn+1 + ct1 mod (t21, t2, t3, . . .)

for some c ∈ BP2(2n+1−2). The only monomial in the vi’s of this degree that is not in I3 is v2n.
Moreover, 2v2nt1 ∈ I3 so that

ηR(vn+1) = vn+1 + bv2nt1 mod I3 + (t21, t2, t3, . . .)

where b = 0 or 1. Since [16, 5.1]

ηR(vn+1) ≡ vn+1 + vnt
2n

1 − v2nt1 mod (2, v1, . . . , vn−1)

we must have b = 1.

12



Mapping v2n[t1]
N+1 ∈ I2Ω∗(BP∗BP ) to gr2Ω∗(BP∗BP ) = Ω∗(P ;Q2) gives q2n[ζ1]

N+1. Mapping
further to Ω∗(E;Q), gives a cocycle representing q2nh

N+1
0 . In order to complete the proof it suffices

to show that the coefficient of [t1]
N+1 in dy is zero.

Recall that y is a linear combination of terms, each of which involves, as a tensor factor, some
monomial in the ti’s other than the monomial t1. The differential in the cobar complex makes use
of the right unit and the diagonal map in BP∗BP . When evaluating dy, the right unit is used on
the coefficients of the terms in y. This cannot lead to a BP∗ multiple of [t1]

N+1 arising. Thus, we
just need to consider terms coming from the diagonal map. The following simple lemma is crucial.

Lemma 6.1.3. The only monomials in the ti’s that contain a BP∗-multiple of t1 ⊗ t1 in their
diagonal are t21 and t2.

Proof. Recall that we have an inclusion BP∗ ⊂ H∗(BP ) = Z(2)[m1,m2, . . .] given by the Hurewicz
homomorphism. Thus, we can compute in H∗(BP ∧ BP ) = H∗(BP )[t1, t2, . . .] and there we have
(see [16]) an inductive formula for the diagonal of tn.

∆tn =
∑

i+j+k=n

mit
2i

j ⊗ t2
i+j

k −
n∑
i=1

mi(∆tn−i)
2i

The first sum does not contain a term t1 ⊗ t1. Moreover, the only terms in ∆tn−i with a 1 on one
side or the other are tn−i ⊗ 1 and 1⊗ tn−i. Thus, in the expression of (∆tn−i)

2i , the only way one
can achieve t1 ⊗ t1 is with i = 1 and n− i = 1 so that n = 2.

The diagonal is multiplicative and so one can achieve t1⊗ t1 in the diagonal of a monomial only
in the cases t2 and t21.

Now consider a tensor product of monomials, a basis element in the cobar construction. The
differential is computed by applying the reduced diagonal to each factor and taking the alternating
sum. One receives a term, which is a BP∗-multiple of [t1]

N+1 only by starting with a tensor product
of monomials in which all but one term is t1, and the remaining term is either t21 or t2.

We should call attention to a subtlety here. When the reduced diagonal is applied to a monomial,
the result is a BP∗-linear combination of monomials. Given a basis element of the cobar complex,
to express the value of the differential on it as a BP∗-linear combination of tensor products of such
monomials, one needs to pull coefficients outside the tensor products. This operation is nontrivial
since the tensor products, while formed over BP∗, use the left and right actions on the right and left
factors, respectively. In particular, t⊗ vt′ = ηR(v)t⊗ t′. ηR(v) will itself be a linear combination of
monomials in the ti’s (where we now include 1 as t0) so if the expression involves more than [t1]’s
before this manoeuvre, it will continue to involve more than [t1]’s afterwards as well.

Now recall that y has internal dimension 2(2n+1 − 1) + 2N . The internal dimensions of

[t1]
N−i[t21][t1]

i−1 and [t1]
N−i[t2][t1]

i−1

are 2(N + 1) and 2(N + 2), respectively and so the coefficients of these basis elements in y must
have internal dimensions 2(2n+1 − 2) and 2(2n+1 − 3), respectively. But recall that the coefficient
of each term appearing in y is a vi. The first dimension does not occur as the dimension of a vi,
and the second occurs only for n = 1. Since we assumed n ≥ 2, this completes the proof.

We note that this n = 1 issue was already apparent in lemma 3.2.1, where the third cocycle
contains the terms v2[t1|t1] and −3v1[t1|t2]. These provide two cancelling v21[t1|t1|t1] terms. Of
course, this is how we saw q2h

2
0 was a permanent cycle.
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We see immediately from the proposition that the E2-page of the localized algebraic Novikov
spectral sequence consists of permanent cycles and so we obtain the following corollary.

Corollary 6.1.4. The E∞-page of the localized algebraic Novikov sepctral sequence is

F2[h
±1
0 , q21, q2]/(q2).

6.2 What happens to αs?

We now return to the elements αs of section 2.2. In order to say what happens to them under the
localization map it is convenient to consider the mod 2 Moore spectrum analogues of our results
for S0, which are of interest in their own right. We write S/2 for the mod 2 Moore spectrum. In
complete analogy with what we have done above we can prove the following proposition.

Proposition 6.2.1. There is a spectral sequence

Es,t,u1 = Hs,u(P ; [Q/(q0)]
t)

t
=⇒ Hs,u(BP∗BP ;BP∗/2), dr : Es,t,ur −→ Es+1,t+r,u

r ,

an “algebraic Novikov spectral sequence,” for computing the E2-page of the Adams-Novikov spectral
sequence for π∗(S/2). We may invert h0 to obtain a convergent “localized algebraic Novikov spectral
sequence.” The E1-page is given by

h−10 H∗(P ;Q/(q0)) = F2[h
±1
0 , q1, q2, . . .].

q1 and q2 are permanent cycles in this spectral sequence and we have d1qn+1 = q2nh0 for n ≥ 2. The
map S0 −→ S/2 induces a map between the localized algebraic Novikov spectral sequences. At the
E1-page, the map is given by the inclusion

F2[h
±1
0 , q21, q2, q3, . . .] −→ F2[h

±1
0 , q1, q2, . . .].

At the E∞-page, it is given by the inclusion F2[h
±1
0 , q21, q2]/(q2) −→ F2[h

±1
0 , q1, q2]/(q2).

Lemma 6.2.2. For s 6= 2, αs is α1-free and its image in α−11 H∗(BP∗BP ) is detected by qs−11 h0
when s is odd and qs−41 q2h0 when s is even.

Proof. When s is odd αs has a cocycle representative with leading term svs−11 [t1]. All other terms
have the same filtration and involve higher powers of t1. Thus, αs is detected by qs−11 h0.

Suppose s 6= 2 is even. Because the map induced by S0 → S/2 between our localized algebraic
Novikov spectral sequences is injective at each page, it suffices to check the result for the image of
αs in H∗(BP∗BP ;BP∗/2). For s > 4 one can find (see [19, 4.4.35], for instance) an explicit cocycle
representative for this element

vs−41 v2[t1] + vs−31 [t2] + vs−31 [t31].

This element is detected by qs−41 q2h0 in the localized algebraic Novikov spectral sequence.
For s = 4 one finds, by direct computation, an explicit cocycle respresentative for α4.

[t41] + v2[t1] + v1[t2] + v1[t
3
1] + v21[t21].

Upon multiplying by α3
1 we have leading term [t41|t1|t1|t1]. It is classical that h30h2 = 0 in H∗(P ).

Find y ∈ Ω3P with dy = [ζ41 |ζ1|ζ1|ζ1]. Then obtain y′ ∈ Ω3(BP∗BP ) by replacing ζ’s by t’s. Using
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lemma 6.1.3 we see that dy′ cannot contain v2[t1|t1|t1|t1]. Thus, picking off the elements of filtration
1 with only single powers of t1’s appearing in(

[t41] + v2[t1] + v1[t2] + v1[t
3
1] + v21[t21]

)
· [t1|t1|t1] + dy′

gives v2[t1|t1|t1|t1]. We deduce that α3
1α4 is detected by q2h

4
0 in the localized algebraic Novikov

spectral sequence.

We can now obtain an explicit description of the localized Adams-Novikov E2-page, in terms of
elements which exist before localizing.

Corollary 6.2.3. α−11 H∗(BP∗BP ) = F2[α
±1
1 , α3, α4]/(α1α

2
4).

Proof. Consider the natural map Z(2)[α1, α3, α4] −→ H∗(BP∗BP ). Because ησ2 = 0 [20] in π∗(S
0),

we have α1α
2
4 = 0 in H∗(BP∗BP ); we also have 2α1 = 0. Thus, the map above factors through a

map
Z(2)[α1, α3, α4]/(2α1, α1α

2
4) −→ H∗(BP∗BP ).

Inverting α1 gives a map f : F2[α
±1
1 , α3, α4]/(α1α

2
4) −→ α−11 H∗(BP∗BP ).

We have shown that α3 and α4 have images in α−11 H∗(BP∗BP ) detected by q21h0 and q2h0, re-
spectively. The E∞-page of the localized algebraic Novikov spectral sequence is F2[h

±1
0 , q21, q2]/(q2);

for each bidegree (s, u) there is only one t such that Es,t,u∞ 6= 0 and so the filtration is locally finite.
These facts, together with convergence of the localized algebraic Novikov spectral sequence, allow
one to check that f is injective and surjective.

7 The localized motivic Adams-Novikov spectral sequence

We briefly recall the theorems of Voevodsky [9, 21] concerning mod 2 motivic homology (over an
algebraically closed field of characteristic 0) and the motivic Steenrod algebra. The coefficient ring
of motivic homology is M2 = F2[τ ]. Motivic homology is bigraded by dimension and weight and
|τ | = (0,−1). The motivic dual Steenrod algebra is the Hopf algebra over M2 given by

AMot = M2[τ0, τ1, . . . , ξ1, ξ2, . . .]/(τ
2
n = τξn+1),

|τn| = (2n+1 − 1, 2n − 1), |ξn| = (2n+1 − 2, 2n − 1)

The diagonal is given precisely by the analogue, with p = 2, of Milnor’s formula for the diagonal
at an odd prime.

Various other grading conventions are available. For example, from a topological perspective
it is more natural to grade using the dimension and “Chow” (or “Novikov”) degree [6]; it satisfies
dimension = Chow + 2 ·weight, so Chow τ = 2, Chow τn = 1 and Chow ξn = 0. We will use the
standard grading.

The simplicity of this picture was extended by Hu, Kriz, and Ormsby, to the motivic analogue
of the Brown-Peterson spectrum. They constructed the motivic Adams-Novikov spectral sequence,
at the prime 2 [9, (36)] (see also [5]). They showed that the motivic analogue of the Hopf algebroid
(BP∗, BP∗BP ) is simply the classical one tensored with Z[τ ]. It follows that both the E2-page of
the motivic Adams-Novikov spectral sequence and the corresponding algebraic Novikov spectral
sequence are obtained by adjoining τ . Thus, our work above has the following consequence.
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Corollary 7.1. Over an algebraically closed field of charateristic zero, the motivic Adams-Novikov
E2-page localizes to give α−11 E2(S

0,0;BPMot) = F2[τ, α
±1
1 , α3, α4]/(α1α

2
4).

The motivic Adams-Novikov spectral sequence takes the form

Es,u,w2 = H∗(BP∗BP )[τ ]s,u,w
s

=⇒ πu−s,w(S0,0), dr : Es,u,wr −→ Es+r,u+r−1,wr .

If x ∈ Hs,u(BP∗BP ) is nonzero then u is even and τnx defines an element ofH∗(BP∗BP )[τ ]s,u,u/2−n.
We can recover the classical Adams-Novikov spectral sequence by forgetting the weight and setting
τ = 1.

The motivic Adams-Novikov spectral sequence converges 2-locally [5, 9]. Moreover, powers of
α1 constitute the vanishing line in this spectral sequence. Since 2η = 0 the telescope η−1S0,0 is
killed by 2 and so the localized spectral sequence converges. We obtain the following theorem.

Theorem 7.2. The homotopy of the η-localized motivic sphere spectrum η−1S0,0 is

η−1π∗,∗(S
0,0) = F2[η

±1, σ, µ9]/(ησ
2),

where η ∈ π1,1(S0,0) and σ ∈ π7,4(S0,0) are the motivic Hopf invariant one elements described in [6]
and µ9 ∈ π9,5(S0,0) is the unique class in the Toda bracket 〈8σ, 2, η〉. The element θ ∈ π0,−1(S0,0)
detected by τ acts trivially on η−1π∗,∗(S

0,0).

Proof. Classically, η, σ, µ9 and ηµ9 = µ10 are detected by α1, α4, α5 and α1α5 = α2
3, respectively,

in the Adams-Novikov spectral sequence and we have a differential d3α3 = α4
1.

We have shown that the E2-page of the localized motivic Adams-Novikov spectral sequence is
given by F2[τ, α

±1
1 , α3, α4]/(α1α

2
4) and the classical differential just referenced gives d3α3 = τα4

1 in
this context. Moreover, α2

3 and α4 are permanent cycles because they are classically. The E∞-page
is

F2[α
±1
1 , α2

3, α4]/(α1α
2
4) = F2[α

±1
1 , α4, α5]/(α1α

2
4);

for each stem d and weight w there is only one Adams-Novikov filtration s such that Es,d+s,w∞ 6= 0.
Consider the natural map Z[η, σ, µ9] → π∗,∗(S

0,0). ησ2 = 0 in π∗,∗(S
0), since this holds classi-

cally [20] and there are no “exotic” classes in the 15-stem with weight 9 [10]. We also have 2η = 0.
So the map above factors through a map Z[η, σ, µ9]/(2η, ησ

2) −→ π∗,∗(S
0,0) and inverting η gives a

map F2[η
±1, σ, µ9]/(ησ

2) −→ η−1π∗,∗(S
0,0). Motivically, we still have that η, σ and µ9 are detected

by α1, α4 and α5, respectively, and so using the convergence of the localized motivic Adams-Novikov
spectral sequence together with the facts above, we see that this map is an isomorphism.

The proof is completed by observing that θη4 = 0 [10].

8 A comparison of spectral sequences

8.1 The diagram

In this final section, we complete the calculation of a square of spectral sequences, a localized
version of the following square.

H∗(P ;Q)[τ ]
CESS +3

alg-Nov-SS[τ ]

��

E2(S
0,0; (HF2)Mot)

MASS
��

E2(S
0,0;BPMot)

MANSS +3 π∗,∗(S
0,0)
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The right spectral sequence is the motivic Adams spectral sequence as studied in [5,9]. The bottom
spectral sequence is the motivic Adams-Novikov spectral sequence described above, which was first
studied in [9]. The left spectral sequence is the motivic algebraic Novikov spectral sequence, obtained
by filtering π∗(BPMot) = BP∗[τ ] by powers of the kernel of the augmentation π∗(BPMot) −→ F2[τ ].
By the results of Hu, Kriz, and Ormsby [9] this is simply the algebraic Novikov spectral sequence
described in section 3 extended by τ . The grading of H∗(P ;Q)[τ ] follows that of H∗(BP∗BP )[τ ].
If x ∈ Hs,u(P ;Qt) is nonzero then u is even and τnx defines an element of H∗(P ;Q)[τ ]s,t,u,u/2−n.
The top spectral sequence is the Cartan-Eilenberg spectral sequence associated to the extension of
Hopf algebras

M2 ⊗ P −→ AMot −→M2 ⊗ E. (8.1.1)

This motivic Cartan-Eilenberg spectral sequence is indexed just as in (3.1.3), but with the additional
weight grading that is preserved by differentials. The vanishing lines of 3.3.1 and 3.3.2 ensure that
we can localize all the spectral sequences to obtain a square of convergent spectral sequences. The
behavior of these spectral sequences is summarized in the following diagram.

F2[τ, h
±1
0 , q21, q2, q3, . . .]

d3q21=τh
3
0 +3

d1qn+1=q2nh0, n≥2
��

F2[h
±1
0 , v41, v2, v3, . . .]

d2vn+1≡v2nh0, n≥2
��

F2[τ, α
±1
1 , α3, α4]/(α1α

2
4)

d3α3=τα4
1 +3 F2[η

±1, σ, µ9]/(ησ
2)

We have calculated the left spectral sequence and the bottom one in the earlier sections of this
paper. Guillou and Isaksen calculated the E2-page of the localized motivic Adams spectral sequence
in [7]. In the next section, we will give a different proof of their result by calculating the top spectral
sequence. In the final section, we will use the techniques of [14] to determine the differentials in the
localized motivic Adams spectral sequence, verifying another conjecture of Guillou and Isaksen [7].

8.2 The localized Cartan-Eilenberg spectral sequence

The extension of Hopf algebras (8.1.1) gives rise to a Cartan-Eilenberg spectral sequence, which we
may localize by inverting h0 ∈ H(P ;Q)[τ ]1,0,2,1.

Lemma 8.2.1. In the localized Cartan-Eilenberg spectral sequence we have d3q
2
1 = τh30. The classes

q41 and qn for n ≥ 2 are permanent cycles and so

E∞ = F2[h
±1
0 , q41, q2, q3, . . .].

Proof. The differential d3q
2
1 = τh30 follows from the unlocalized differential d3〈h1, q20, h0〉 = τh40 and

this is forced on us by our limited knowledge of H(AMot). Degree considerations show that q41, and
qn for n ≥ 2, are permanent cycles.

We can now prove the following result of Guillou and Isaksen [7]. We note that they follow the
conventions at p = 2, which hold classically and denote by h1 the class which we call h0.

Corollary 8.2.2. h−10 E2(S
0,0; (HF2)Mot) = F2[h

±1
0 , v41, v2, v3, . . .] for some classes v41, v2, v3, . . .

Proof. We choose a representative for q41, which we call v41, and for n ≥ 2 we choose representatives
for qn, which we call vn. Since the associated graded algebra is free on the classes of these generators,
the result follows.
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8.3 Comparing Adams spectral sequences

In this section we will complete the calculation of the localized motivic Adams spectral sequence.
By finding representatives, one sees that in the localized motivic Adams spectral sequence for the
η-local sphere spectrum the elements v41 and v2 are permanent cycles. For the other generators, we
have the following proposition, which follows from the techniques of [14].

Proposition 8.3.1. For n ≥ 2, we have d2vn+1 = v2nh0 up to higher Cartan-Eilenberg filtration.

We will give an improvement, due to the first author, of the statement and the proof of the
comparison result of [14] (which, in turn, followed ideas from [18]). The second author is eager to
use this opportunity to clarify the proof given in [14], and to fill a gap: lemma 6.7 is not correct
as stated there. What follows is a correct statement that serves the purpose in [14], and which
will be used in the proof presented here as well. This lemma relates to the comparison of two
boundary maps, and its importance cannot be overstated. It deals with the following situation.
Let A −→ B −→ C and X −→ Y −→ Z be cofiber sequences. Smash them together to form the
followign commutative diagram of cofiber sequences.

A ∧X

��

// A ∧ Y

��

// A ∧ Z

��
B ∧X

��

// B ∧ Y

��

// B ∧ Z

��
C ∧X // C ∧ Y // C ∧ Z

Let b be an element of πn(B∧Y ) that maps to 0 in πn(C∧Z). Then there is an element a ∈ πn(A∧Z)
mapping to the image of b in πn(B ∧Z), and an element c ∈ πn(C ∧X) mapping to the image of b
in πn(C ∧ Y ).

Lemma 8.3.2 (May [11]). The elements a and c can be chosen so that they have the same image
(up to a conventional sign) in πn−1(A ∧ X) under the boundary maps associated to the cofiber
sequences along the top and the left edge of the diagram.

This statement is a small part of an elaborate structure enriching the displayed 3× 3 diagram.
This structure is described in detail and proved by May in [11]. In the founding days of the theory
of triangulated categories, Verdier [4] showed that a 2×2 diagram can always be extended to a 3×3
diagram of cofiber sequences. An analysis of his proof reveals that it actually produces precisely
the structure verified by May for the specific case in which the 3× 3 diagram occurs by smashing
together two cofiber sequences.

For clarity, we will work in the non-motivic context, and in the specific case of BP and HF2,
and the sphere spectrum. We will then indicate the general setting under which the result holds and
this will prove the proposition just stated. Write H for the mod 2 Eilenberg Mac Lane spectrum.

So we have the following square of spectral sequences. The initial two are the algebraic Novikov
spectral sequence (3.1.2) and the Cartan-Eilenberg spectral sequence (3.1.3).

Hs,u(P ;Qt)
CESS +3

alg-Nov-SS

��

Es+t,u+t2 (S0;H)

ASS

��
Es,u2 (S0;BP )

ANSS +3 πu−s(S
0)
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Theorem 8.3.3. Suppose x ∈ F sCEE
s+t,u+t
2 (S0;H). Then the Cartan-Eilenberg filtration of dASS

2 x
is higher:

dASS
2 x ∈ F s+1

CE Es+t+2,u+t+1
2 (S0;H).

Moreover, if x is detected in the Cartan-Eilenberg spectral sequence by a ∈ Hs,u(P ;Qt) then dASS
2 x

is detected by dalg-Nov
1 a ∈ Hs+1,u(P ;Qt+1).

Proof. The proof hinges on geometric constructions of the two algebraically defined spectral se-
quences. Both arise from the canonical BP -resolution of S0 and so we recall how this resolution is
constructed. From the unit map of the ring spectrum BP we can construct a cofiber sequence

S0 −→ BP −→ BP. (8.3.4)

Smashing this cofiber sequence with various smash-powers of BP gives the canonical BP -resolution
of S0.

S0

��

BP

��

|oo . . .|oo BP
∧s

��

|oo BP
∧(s+1)

��

|oo . . .|oo

BP [0] BP [1] BP [s] BP [s+1]

(8.3.5)

Here BP [s] = BP ∧BP∧s and the marked arrows indicate that they map from a desuspension.
First, we set up the Cartan-Eilenberg spectral sequence. Smashing (8.3.4) with a spectrum X

and applying mod 2 homology gives a short exact sequence

0 −→ H∗(X) −→ H∗(BP ∧X) −→ H∗(BP ∧X) −→ 0

and thus a long exact sequence

· · · −→ Et,u2 (X;H) −→ Et,u2 (BP ∧X;H) −→ Et,u2 (BP ∧X;H)
δ−→ Et+1,u

2 (X;H) −→ · · · .

This means that applying E2(−;H) to (8.3.5) gives an exact couple and hence a spectral sequence.
We index the spectral sequence so that

Es,t,u1 = Et,u+t2 (BP [s];H)
s

=⇒ Es+t,u+t2 (S0;H).

We see that Et,u+t2 (BP [s];H) can be identified with (Qt⊗P⊗s)u so that our E1-term is isomorphic,
as a complex, to Ω∗(P ;Q); so Es,t,u2 = Hs,u(P ;Qt). This spectral sequence is, in fact, the Cartan-
Eilenberg spectral sequence of (3.1.3). The Cartan-Eilenberg filtration of E2(S

0;H) is given by

F sCEE
s+t,u+t
2 (S0;H) = im

(
δs : Et,u+t2 (BP

∧s
;H) −→ Es+t,u+t2 (S0;H)

)
. (8.3.6)

If x = δsz then x is detected in the Cartan-Eilenberg E1-page by the image of z under the map
Et,u+t2 (BP

∧s
;H) −→ Et,u+t2 (BP [s];H).

We turn to the first part of the theorem statement: that Adams d2-differentials increase Cartan-
Eilenberg filtration. For this we need to recall a construction of the Adams spectral sequence for a
spectrum X. We also need to recall the geometric boundary theorem to give a geometric description
of δ, the connecting homomorphism appearing in (8.3.6).
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Again we have a cofiber sequence S0 −→ H −→ H and we define, similarly to before but with
a transposition, H [t] = H

∧t ∧H. The cofiber sequences

H
∧(t+1) ∧X | // H

∧t ∧X // H [t] ∧X

link together as in (8.3.5) and the Adams spectral sequence for X is obtained by applying π∗(−).
We have Et,u1 = πu(H [t]∧X) and Et,u2 = Ht,u(A;H∗(X)). We note that H∗(X) is a left A-comodule
here.

The map of ring spectra BP −→ H descends to a map BP −→ H. This provides us with maps

H
∧t ∧BP ∧X −→ H

∧(t+1) ∧X (8.3.7)

for any spectrum X. Moreover, since

Σ−1H ∧BP //

��

S0 ∧H
=

��
H ∧ S0 = // H

commutes, the maps of (8.3.7) descend to maps H [t] ∧ BP ∧ X −→ H [t+1] ∧ X. The geometric
boundary theorem (or a short calculation) says that πu(H [t]∧BP ∧X) −→ πu(H [t+1]∧X) induces

δ : Et,u2 (BP ∧X;H) −→ Et+1,u
2 (X;H).

Suppose that x ∈ F sCEE
s+t,u+t
2 (S0;H) so that x = δsz for some z ∈ Et,u+t2 (BP

∧s
;H). Since δ

is a map of spectral sequences we see that dASS
2 x = δs(dASS

2 z). Thus, in order to show that

dASS
2 x ∈ F s+1

CE Es+t+2,u+t+1
2 (S0;H)

it is enough to find an element mapping to dASS
2 z under

δ : Et+1,u+t+1
2 (BP

∧(s+1)
;H) −→ Et+2,u+t+1

2 (BP
∧s

;H).

z is represented by an element z′ ∈ πu+t(H [t]∧BP∧s) and we claim that ∂z′ ∈ πu+t(H
∧(t+1)∧BP∧s)

lifts (see (8.3.10)) to

y0 ∈ πu+t+1(H
∧(t+1) ∧BP∧(s+1)

). (8.3.8)

Well, z′ maps to an element a′ ∈ πu+t(H [t] ∧ BP [s]), which represents a class in Et,u+t2 (BP [s];H).
Since the Adams spectral sequence for BP [s] degenerates at the E2-page, a′ lifts to

y1 ∈ πu+t(H
∧t ∧BP [s]). (8.3.9)

By considering the following diagram in which the bottom row and right column is exact we obtain
y0.

πu+t(H
∧t ∧BP∧(s+1)

) πu+t(H
∧t ∧BP [s])

��

∂hoo

πu+t(H
[t] ∧BP∧s) //

∂
��

πu+t(H
[t] ∧BP [s])

��

πu+t+1(H
∧(t+1) ∧BP∧(s+1)

) //

∂v

OO

πu+t(H
∧(t+1) ∧BP∧s) // πu+t(H

∧(t+1) ∧BP [s])

(8.3.10)
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To compute a representative for dASS
2 z we chase z′ through the zig-zag in the exact couple defining

the Adams spectral sequence, displayed in the following diagram (the wavey arrow indicates that
we do not have function, but a correspondence).

πu+t(H
∧(t+1) ∧BP∧s) πu+t+1(H

∧(t+2) ∧BP∧s)oo

��

πu+t+1(H
∧(t+1) ∧BP∧(s+1)

)oo

��

πu+t(H
[t] ∧BP∧s)

∂

OO

d2 // πu+t+1(H
[t+2] ∧BP∧s) πu+t+1(H

[t+1] ∧BP∧(s+1)
)oo

Since ∂z′ lifts to y0 ∈ πu+t+1(H
∧(t+1) ∧BP∧(s+1)

) we find that dASS
2 z = δy0, where

y0 ∈ E
t+1,u+t+1
2 (BP

∧(s+1)
;H) (8.3.11)

is represented by the image of y0 under the map

πu+t+1(H
∧(t+1) ∧BP∧(s+1)

) −→ πu+t+1(H
[t+1] ∧BP∧(s+1)

).

This completes the proof of the first part of the theorem.
Now we interpret the algebraic Novikov spectral sequence geometrically by recalling that the

Adams-Novikov spectral sequence is obtained from (8.3.5) by applying π∗(−), so that we have an
E1-page given by Es,u1 = πu(BP [s]). Moreover, we have an identification πu(BP [s]) = Ωs(BP∗BP )u
so that our E1-term is isomorphic, as a complex, to the cobar complex Ω∗(BP∗BP ). The algebraic
Novikov spectral sequence is constructed by filtering Ω∗(BP∗BP ) by powers of the kernel of the
augmentation BP∗ → F2. This kernel consists of the elements in BP∗ of Adams filtration greater
than or equal to 1; the algebraic Novikov spectral sequence is obtained by filtering π∗(BP

[∗]) using
the Adams filtration and

Es,t,u0 = F tAdamsπu(BP [s])/F t+1
Adamsπu(BP [s]).

Let us turn to the calculation of d1 in the algebraic Novikov spectral sequence. It is captured
by the bottom line of the following diagram.

πu+t(H
∧t ∧BP∧(s+1)

)

��

πu+t+1(H
∧(t+1) ∧BP∧(s+1)

)

��

∂voo

πu+t(H
∧t ∧BP [s]) //

����

∂h
44

πu+t(H
∧t ∧BP [s+1])

����

πu+t+1(H
∧(t+1) ∧BP [s+1])oo

����
F tAdamsπu(BP [s])

d // F tAdamsπu(BP [s+1]) F t+1
Adamsπu(BP [s+1])? _oo

(8.3.12)

Start with a ∈ Es,t,u1 (alg-Nov). This element is represented by some ã ∈ F tAdamsπu(BP [s]). Because
ã represents an element of E1(alg-Nov), dã lies in higher Adams filtration dã ∈ F t+1

Adamsπu(BP [s+1]).

dã represents dalg-Nov
1 a ∈ Es+1,t+1,u

1 (alg-Nov). The various filtrations are witnessed by the middle
row of (8.3.12).
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Since the Adams spectral sequence for BP [s] is degenerate we have the following commutative
diagram (the wavy arrow indicates that there is no function, but that elements of Et,u+t2 (BP [s];H)
are represented by elements in πu+t(H

[t] ∧BP [s])).

πu+t(H
∧t ∧BP [s]) // //

����uu

F tAdamsπu(BP [s])

����
πu+t(H

[t] ∧BP [s]) // Et,u+t2 (BP [s];H)
∼= // F tAdamsπu(BP [s])/F t+1

Adamsπu(BP [s])

(8.3.13)

We turn to the final statement of the theorem.
Suppose that x ∈ F sCEE2(S

0;H) is detected by a ∈ Hs,u(P ;Qt) in the Cartan-Eilenberg spectral
sequence. Referring back to the elements in the first part of the proof, this means that we can
assume that z maps to an element â ∈ Et,u+t2 (BP [s];H) = (Qt⊗P⊗s)u representing a in the cobar
construction. Moreover, choosing z′ determines a′, which represents â, and choosing y1 (8.3.9) leads
to a preferred choice of ã. These elements fit into the diagram of (8.3.13).

y1
� //

_

��

6

zz

ã_

��
a′ � // â � ∼= // â

To compute dalg-Nov
1 a, we refer to (8.3.12). We find that it is enough to lift ∂hy1 along ∂v.

However, we already have the element y0 of (8.3.8) and we would like for ∂vy0 to be equal to ∂hy1.
We assume this for now. In the following diagram y0 is mapped down to dã and right to y0 (8.3.11).
(Again, wavey arrows indicate where representing elements live.)

πu+t+1(H
∧(t+1) ∧BP∧(s+1)

) //

��

πu+t+1(H
[t+1] ∧BP∧(s+1)

) //

��

Et+1,u+t+1
2 (BP

∧(s+1)
;H)

��
πu+t+1(H

∧(t+1) ∧BP [s+1])

��

// πu+t+1(H
[t+1] ∧BP [s+1]) // Et+1,u+t+1

2 (BP [s+1];H)

F t+1
Adamsπu(BP [s+1])

Thus, using (8.3.13) with s and t replaced by (s+ 1) and (t+ 1), respectively, we see that dalg-Nov
1 a

is represented by the image of y0 in Et+1,u+t+1
2 (BP [s+1];H). Recalling that dASS

2 x = δs(dASS
2 z) =

δs+1y0, we conclude that dASS
2 x is detected by dalg-Nov

1 a in the Cartan-Eilenberg spectral sequence.
We are left to show the compatibility

∂vy0 = ∂hy1.

This follows directly from May’s lemma 8.3.2 applied to the following cofiber sequences.

H
∧t // H [t] // H

∧(t+1)

Σ−1BP
∧(s+1) // BP

∧s // BP [s]

We start with z′ ∈ πu+t(H [t] ∧BP∧s); see (8.3.10).
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This proof works in much greater generality. As in [14], the square of spectral sequences can be
set up for any map of ring spectra A −→ B and any spectrum X for which the B-Adams spectral
sequence

E2(A ∧A
∧s ∧X;B) =⇒ π∗(A ∧A

∧s ∧X)

converges and collapses at the E2-page for all s. The proof holds whenever B1(B ∧A) = 0.
In particular, the proof works in the motivic context. Thus, the differentials constructed in

proposition 6.1.1 produce the following differentials in the motivic Adams spectral sequence:

d2vn+1 ≡ v2nh0, n ≥ 2

modulo terms of higher Cartan-Eilenberg filtration. We have

h0 ∈ E1,2,1
2 (S0,0; (HF2)mot), vn ∈ E1,2n+1−1,2n−1

2 (S0,0; (HF2)mot).

Recalling that Chow = t− 2w = 1 we see Chow(h0) = 0 and Chow(vn) = 1. Thus v2nh0 has Chow
degree 2 and Adams filtration 3 and any other such element must be of the form vivjh0. We find
that

v2nh0 ∈ E
3,2n+2,2n+1−1
2 (S0,0; (HF2)mot)

is the only element in its trigrading so, in fact, our calculation has no indeterminancy. This is our
last theorem.

Theorem 8.3.14. In the η-localized motivic Adams spectral sequence,

d2vn+1 = v2nh0, n ≥ 2.
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[5] D. Dugger and D. C. Isaksen, The motivic Adams spectral sequence, Geom. Topol 14 (2010),
no. 2, 967–1014.

[6] , Motivic Hopf elements and relations, New York J. Math 19 (2013), 823–871.

[7] B. J. Guillou and D. C. Isaksen, The η-local motivic sphere, arXiv preprint arXiv:1406.7733
(2014).

[8] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory II, Annals of mathe-
matics (1998), 1–49.

23

http://math.mit.edu/~mjandr/Thesis.pdf


[9] P. Hu, I. Kriz, and K. Ormsby, Remarks on motivic homotopy theory over algebraically closed
fields, Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology
7 (2011), no. 01, 55–89.

[10] D. C. Isaksen, Stable stems, arXiv preprint arXiv:1407.8418 (2014).

[11] J. P. May, The additivity of traces in triangulated categories, Advances in Mathematics 163
(2001), no. 1, 34–73.

[12] J. P. May and R. J. Milgram, The Bockstein and the Adams spectral sequences, Proceedings
of the American Mathematical Society (1981), 128–130.

[13] H. R. Miller, A localization theorem in homological algebra, Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 84, Cambridge Univ Press, 1978, pp. 73–84.

[14] , On relations between Adams spectral sequences, with an application to the stable ho-
motopy of a Moore space, Journal of Pure and Applied Algebra 20 (1981), no. 3, 287–312.

[15] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov
spectral sequence, Annals of Mathematics (1977), 469–516.

[16] H. R. Miller and W. S. Wilson, On Novikov’s Ext1 modulo an invariant prime ideal, Topology
15 (1976), no. 2, 131–141.

[17] G. Nishida, The nilpotency of elements of the stable homotopy groups of spheres, Journal of
the Mathematical Society of Japan 25 (1973), no. 4, 707–732.

[18] S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theory, Math-
ematics of the USSR-Izvestiya 1 (1967), no. 4, 827.

[19] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, American Mathe-
matical Soc., 2004.

[20] H. Toda, Composition methods in homotopy groups of spheres, vol. 49, Princeton University
Press, 1963.

[21] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes
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