PROBLEM SET \#1: DUE THURSDAY, FEBRUARY $7^{\text {TH }}$

Book Problems

Chapter 1: 3, 13, 18, 20, 21, 22, 25

Other Problems

(1) Let A, B, and C be sets. Assume we are also given maps $f: A \rightarrow C$ and $g: B \rightarrow C$. We define the fiber product $A \times_{C} B$ as the subset of $A \times B$ given by

$$
A \times_{C} B=\{(a, b) \mid f(a)=g(b)\}
$$

We note that as a subset of the product, we still have natural maps

$$
\pi_{A}: A \times_{C} B \rightarrow A, \text { and } \pi_{B}: A \times_{C} B \rightarrow B
$$

Show that the fiber product has the following universal property: given any D together with maps $h: D \rightarrow A$ and $k: D \rightarrow B$ such that $f \circ h=g \circ k$, there is a unique map $H: D \rightarrow A \times_{C} B$ such that $h=\pi_{A} \circ H$ and $k=\pi_{B} \circ H$. Better said, there is an H making the following diagram commute:

In other words, if we filled in the partial square we had in Lecture \#1 to a square, then we get the same basic universal property.

