PROBLEM SET #1: DUE THURSDAY, FEBRUARY 7TH

BOOK PROBLEMS

Chapter 1: 3, 13, 18, 20, 21, 22, 25

OTHER PROBLEMS

(1) Let A, B, and C be sets. Assume we are also given maps $f: A \to C$ and $g: B \to C$. We define the **fiber product** $A \times_C B$ as the subset of $A \times B$ given by

$$A \times_C B = \{(a, b) | f(a) = g(b)\}.$$

We note that as a subset of the product, we still have natural maps

$$\pi_A \colon A \times_C B \to A$$
, and $\pi_B \colon A \times_C B \to B$.

Show that the fiber product has the following universal property: given any D together with maps $h\colon D\to A$ and $k\colon D\to B$ such that $f\circ h=g\circ k$, there is a unique map $H\colon D\to A\times_C B$ such that $h=\pi_A\circ H$ and $k=\pi_B\circ H$. Better said, there is an H making the following diagram commute:

In other words, if we filled in the partial square we had in Lecture #1 to a square, then we get the same basic universal property.

1