Computations towards K(ko)

V. Angeltveit¹, M. Hill², T. Lawson³

¹University of Chicago

²University of Virginia

³University of Minnesota

AMS Sectional Meeting, 2007

Outline

Motivation

- The Goal: Chromatic Red Shift
- Previous Work

2 Our Results

- Main Results
- Ideas and Goals

The Goal: Chromatic Red Shift Previous Work

Basic Setup

- *K*(-) is a functor from commutative rings / commutative *S*-algebras to commutative *S*-algebras.
- *K*(-) is *very* hard to compute but has wide-ranging applications.
- Basic step: Approximate K(A) by $THH(A) = Tor^{A \otimes A^{op}}(A, A)$.

The Goal: Chromatic Red Shift Previous Work

From THH to K

- THH(A) has a natural action of S¹
- There is a natural map K(A) → THH(A) that factors through the S¹ fixed points.
- At p, the S^1 fixed points are essentially TC(A).
- For connective A, $K(A) \rightarrow TC(A)$ is almost an equivalence.

The Goal: Chromatic Red Shift Previous Work

Chromatic Red Shift

Conjecture

If A is a ring spectrum of type n, then K(A) has type n + 1.

Examples of type *n* ring spectra:

- *H*ℚ (n=0)
- ℓ (n=1)
- $BP\langle n\rangle$.

 Bökstedt / McClure-Staffeldt: Computed H_{*}THH(l), effectively also giving the V(1)-homology:

$$V(1)_*THH(\ell) = E(\lambda_1, \lambda_2) \otimes \mathbb{F}_p[\mu_2].$$

- McClure & Staffeldt: Computed the V(0)-homology: Everything but λ₁ is v₁-torsion.
- Angeltveit & Rognes: Extended these results to all primes.

The Goal: Chromatic Red Shift Previous Work

The V(1) Homology of $K(\ell)$

- Ausoni & Rognes: Computed the V(1) homotopy of K(ℓ) for p > 3 in several steps:
 - Calculate $V(1)_* THH(\ell)^{C_{p^n}}$ and the Tate analogue.
 - Use this to calculate $V(1)_* TC(\ell)$.
 - Used the trace map V(1)_{*}K(ℓ) → V(1)_{*}TC(ℓ) to understand V(1)_{*}K(ℓ).
- Extended by Ausoni to p = 3 and to ku.

Main Results Ideas and Goals

$THH_*(\ell)$ and $THH_*(ko)$

Theorem

p-locally,
$$\overline{\mathsf{THH}}_*(\ell) = \mathsf{F} \oplus \mathsf{T}$$

- *F* is *p*-torsion free and v_1 becomes increasingly *p* divisible.
- T is p and v_1 -torsion and is a sum of self-dual modules.

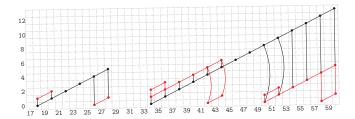
Theorem

$$0
ightarrow F_{ko}
ightarrow \overline{THH}_*(ko)
ightarrow T_{ko}
ightarrow 0$$

- F_{ko} is η^2 -torsion and v_1^4 becomes increasingly 2 divisible.
- *T_{ko}* is 2, η, and *v*⁴₁ torsion and is a sum of self-dual modules.

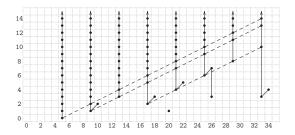
Main Results Ideas and Goals

A Picture of 2-torsion in $THH_*(ku)$



Main Results Ideas and Goals

A Picture of *THH*_{*}(*ko*)



Main Results Ideas and Goals

Proving These Results

- THH(-) has a relative version THH(A; M).
- ℓ has 4 natural bimodules: ℓ, ℓ/p, HZ_(p), and HF_p.
- These give Bockstein spectral sequences for adding in p or v₁.
- The end results must be the same.
- *ko* has one extra bimodule: *ku*.

Main Results Ideas and Goals

Lifting Beyond V(1)

• There is an associative ring spectrum Y₂ such that

$$H_*(Y_2) = \mathbb{F}_{\rho}[\xi_1,\xi_2] \otimes E(\tau_0,\tau_1).$$

- $Y_{2*}(THH(\ell)) = \mathbb{F}_{\rho}[\xi_1, \xi_2, \mu_2] \otimes E(\lambda_1, \lambda_2)$
- For big enough values of *p*, Y₂ is filtered by V(1)⇒ Can play a similar game to understand homotopy and Tate fixed points.

Main Results Ideas and Goals

Future Work

- Replace "magical" and subtle theorem used by Rognes and Ausoni to understand all homotopy fixed points.
- Compute $Y_{2*}(THH(\ell)^{hS^1})$ and $Y_{2*}TC(\ell)$.
- Run the Y_2 -based Adams spectral sequence to get $TC_*(\ell)$.

- Can understand $THH(\ell)$ and THH(ko).
- Can use a special spectra Y_2 to try to compute TC(-).