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ABSTRACT. This paper gives the history and background of one of the oldest problems
in algebraic topology, along with a short summary of our solution to it and a description
of some of the tools we use. More details of the proof are provided in our second paper
in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the
proof. A rigorous account can be found in our preprint The non-existence of elements of
Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has
numerous links to related papers and talks we have given on the subject since announcing
our result in April, 2009.
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Main Theorem. The Arf-Kervaire elements θj ∈ πS2j+1−2 do not exist for j ≥ 7.
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Here πSk denotes the kth stable homotopy group of spheres, which will be defined
shortly.

The kth (for a positive integer k) homotopy group of the topological space X , denoted
by πk(X), is the set of continuous maps to X from the k-sphere Sk, up to continuous
deformation. For technical reasons we require that each map send a specified point in Sk

(called a base point) to a specified point x0 ∈ X . When X is path connected the choice
of these two points is irrelevant, so it is usually omitted from the notation. When X is
not path connected, we get different collections of maps depending on the path connected
component of the base point.

This set has a natural group structure, which is abelian for k > 1. The word natural here
means that a continuous base point preserving map f : X → Y induces a homomorphism
f∗ : πk(X)→ πk(Y ), sometimes denoted by πk(f).

It is known that the group πn+k(Sn) is independent of n for n > k. There is a homo-
morphism E : πn+k(Sn) → πn+k+1(Sn+1) defined as follows. Sn+1 [Sn+k+1] can be
obtained from Sn [Sn+k] by a double cone construction known as suspension. The cone
over Sn is an (n+1)-dimensional ball, and gluing two such balls together along there com-
mon boundary gives and (n+1)-dimensional sphere. A map f : Sn+k → Sn can be canon-
ically extended (by suspending both its source and target) to a mapEf : Sn+k+1 → Sn+1,
and this leads to the suspension homomorphism E. The Freudenthal Suspension Theorem
[Fre38], proved in 1938, says that it is onto for k = n and an isomorphism for n > k. For
this reason the group πn+k(Sn) is said to be stable when n > k, and it is denoted by πSk
and called the stable k-stem.

The Main Theorem above concerns the case k = 2j+1 − 2. The θj in the theorem is a
hypothetical element related a geometric invariant of certain manifolds studied originally
by Pontryagin starting in the 1930s, [Pon38], [Pon50] and [Pon55]. The problem came
into its present form with a theorem of Browder [Bro69] published in 1969. There were
several unsuccessful attempts to solve it in the 1970s. They were all aimed at proving the
opposite of what we have proved, namely that ll of the θj exist.

The θj in the theorem is the name given to a hypothetical map between spheres for
which the Arf-Kervaire invariant is nontrivial. Browder’s theorem says that such things
can exist only in dimensions that are 2 less than a power of 2.

Some homotopy theorists, most notably Mahowald, speculated about what would hap-
pen if θj existed for all j. They derived numerous consequences about homotopy groups
of spheres. The possible nonexistence of the θj for large j was known as the DOOMSDAY
HYPOTHESIS.

After 1980, the problem faded into the background because it was thought to be too
hard. In 2009, just a few weeks before we announced our theorm, Snaith published a book
[Sna09] on the problem “to stem the tide of oblivion.” On the difficulty of the problem, he
wrote

In the light of . . . the failure over fifty years to construct framed manifolds
of Arf-Kervaire invariant one this might turn out to be a book about things
which do not exist. This [is] why the quotations which preface each chap-
ter contain a preponderance of utterances from the pen of Lewis Carroll.

Our proof is two giant steps away from anything that was attempted in the 70s. We now
know that the world of homotopy theory is very different from what they had envisioned
then.
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1. BACKGROUND AND HISTORY

1.1. Pontryagin’s early work on homotopy groups of spheres. The Arf-Kervaire in-
variant problem has its origins in Pontryagin’s early work on a geometric approach to the
homotopy groups of spheres, [Pon38], [Pon50] and [Pon55].

Pontryagin’s approach to maps f : Sn+k → Sn is to assume that f is smooth and that
the base point y0 of the target is a regular value. (Any continuous f can be continuously
deformed to a map with this property.) This means that f−1(y0) is a closed smooth k-
manifold M in Sn+k. Let Dn be the closure of an open ball around y0. If it is sufficiently
small, then V n+k = f−1(Dn) ⊂ Sn+k is an (n+k)-manifold homeomorphic toM ×Dn

with boundary homeomorphic to M × Sn−1. It is also a tubular neighborhood of Mk and
comes equipped with a map p : V n+k →Mk sending each point to the nearest point inM .
For each x ∈ M , p−1(x) is homeomorphic to a closed n-ball Bn. The pair (p, f |V n+k)
defines an explicit homeomorphism

V n+k
(p,f |V n+k)

≈
// Mk ×Dn.

This structure on Mk is called a framing, and M is said to be framed in Rn+k. A choice
of basis of the tangent space at y0 ∈ Sn pulls back to a set of linearly independent normal
vector fields on M ⊂ Rn+k. These will be indicated in Figures 1–3 and 6 below.

Conversely, suppose we have a closed sub-k-manifoldM ⊂ Rn+k with a closed tubular
neighborhood V and a homeomorphism h to M × Dn as above. This is called a framed
sub-k-manifold of Rn+k. Some remarks are in order here.

• The existence of a framing puts some restrictions on the topology of M . All of its
charactersitic classes must vanish. In particular it must be orientable.

• A framing can be twisted by a map g : M → SO(n), where SO(n) denotes the
group of orthogonal n× n matrices with determinant 1. Such matrices act on Dn

in an obvious way. The twisted framing is the composite

V
h // Mk ×Dn // Mk ×Dn

(m,x)
� // (m, g(m)(x)).

We will say more about this later.
• If we drop the assumption that M is framed, then the tubular neighborhood V

is a (possibly nontrivial) disk bundle over M . The map M → y0 needs to be
replaced by a map to the classifying space for such bundles, BO(n). This leads
to unoriented bordism theory, which was analyzed by Thom in [Tho54]. Two
helpful references for this material are the books by Milnor-Stasheff[MS74] and
Stong[Sto68].

Pontryagin constructs a map P (M,h) : Sn+k → Sn as follows. We regard Sn+k as
the one point compactification of Rn+k and Sn as the quotient Dn/∂Dn. This leads to a
diagram

(V, ∂V )� _

��

h // M × (Dn, ∂Dn)
p2 // (Dn, ∂Dn)

��
(Rn+k,Rn+k − intV ) // (Sn+k, Sn+k − intV )

P (M,h) // (Sn, {∞})

Sn+k − intV
� P (M,h) // {∞}
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FIGURE 1. A framed cobordism between M1 = S1
∐
S1 ⊂ R2 and

M2 = S1 ⊂ R3 with N ⊂ [0, 1] × R2. The normal framings on the
circles can be chosen so they extend over N .

The map P (M,h) is the extension of p2h obtained by sending the compliment of V in
Sn+k to the point at infinity in Sn. For n > k, the choice of the embedding (but not the
choice of framing) of M into the Euclidean space is irrelevant. Any two embeddings (with
suitably chosen framings) lead to the same map P (M,h) up to continuous deformation.

To proceed further, we need to be more precise about what we mean by continuous
deformation. Two maps f1, f2 : X → Y are homotopic if there is a continuous map
h : X × [0, 1]→ Y (called a homotopy between f1 and f2) such that

h(x, 0) = f1(x) and h(x, 1) = f2(x).

Now suppose X = Sn+k, Y = Sn, and the map h (and hence f1 and f2) is smooth with
y0 as a regular value. Then h−1(y0) is a framed (k+1)-manifoldN whose boundary is the
disjoint union of M1 = f−1(y0) and M2 = g−1(y0). This N is called a framed cobordism
between M1 and M2, and when it exists the two closed manifolds are said to be framed
cobordant. An example is shown in Figure 1.

Let Ωfr
k,n denote the cobordism group of framed k-manifolds in Rn+k. The above

construction leads to Pontryagin’s isomorphism

Ωfr
k,n

≈ // πn+k(Sn).

First consider the case k = 0. Here the 0-dimensional manifold M is a finite set of
points in Rn. Each comes with a framing which can be obtained from a standard one by an
element in the orthogonal group O(n). We attach a sign to each point corresponding to the
sign of the associated determinant. With these signs we can count the points algebraically
and get an integer called the degree of f . Two framed 0-manifolds are cobordant iff they
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Sidebar 1 The Hopf-Whitehead J-homomorphism

Suppose our framed manifold is Sk with a framing that extends to a Dk+1. This will
lead to the trivial element in πn+k(Sn), but twisting the framing can lead to nontriv-
ial elements. The twist is determined up to homotopy by an element in πk(SO(n)).
Pontryagin’s construction thus leads to the homomorphism

πk(SO(n))
J // πn+k(Sn)

introduced by Hopf [Hop35] and Whitehead [Whi42]. Both source and target known
to be independent of n for n > k + 1. In this case the source group for each k (de-
noted simply by πk(SO) since n is irrelevant) was determined by Bott [Bot59] in his
remarkable periodicity theorem. He showed

πk(SO) =

 Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

Here is a table showing these groups for k ≤ 10.
k 1 2 3 4 5 6 7 8 9 10

πk(SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0
In each case where the group is nontrivial, its the image under J of its generator is
known to generate a direct summand. In the jth case we denote this image by βj and
its dimension by φ(j), which is roughly 2j. The first three of these are the Hopf maps
η ∈ πS1 , ν ∈ πS3 and σ ∈ πS7 . After that we have β4 ∈ πS8 , β5 ∈ πS9 , β6 ∈ πS11 and so
on.
For the case π4m−1(SO) = Z, the image under J is known to be a cyclic group whose
order am is the denominator of Bm/4m, where Bm is the mth Bernoulli number. De-
tails can be found in [Ada66] and [MS74]. Here is a table showing these values for
m ≤ 10.

m 1 2 3 4 5 6 7 8 9 10
am 24 240 504 480 264 65,520 24 16,320 28,728 13,200

have the same degree. Figure 2 shows a cobordism between the empty set and a pair of
points with opposite signs.

Now consider the case k = 1. M is a closed 1-manifold, i.e., a disjoint union of circles.
Two framings on a single circle differ by a map from S1 to the group SO(n), and it is
known that

π1(SO(n)) =

 0 for n = 1
Z for n = 2
Z/2 for n > 2.

Figure 2 illustrates the two different framings on S1 for n = 2. It turns about that any
disjoint union of framed circles is cobordant to a single framed circle. This can be used to
show that

πn+1(Sn) =

 0 for n = 1
Z for n = 2
Z/2 for n > 2.
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FIGURE 2. The cases k = 0 and k = 1. The indicated 0-manifold (two
points in R with opposite signs) is framed cobordant (via the yellow
line) to the empty set. For k = 1, the two circles are framed in R3. One
normal field on each is in the plane of the picture as indicated, and the
second (not shown) is pointing out of the plane of the picture toward the
reader. Which of these two framings extends to a disk in R3?

The case k = 2 is more subtle. As in the 1-dimensional case we have a complete
classification of closed 2-manifolds, and it is only necessary to consider path connected
ones. The existence of a framing implies that the surface is orientable, so it is characterized
by its genus.

If the genus is zero, namely if M = S2, then there is a framing which extends to a
3-dimensional ball. This makes M cobordant to the empty set, which means that the map
is null homotopic (or, more briefly, null), meaning that it is homotopic to a constant map.
Any two framings on S2 differ by an element in π2(SO(n)). This group is known to
vanish, so any two framings on S2 are equivalent, and the map f : Sn+2 → Sn is null.

Now suppose the genus is one, as shown in Figure 3. Suppose we can find an embedded
arc as shown on which the framing extends to a disk. Then there is a cobordism which
effectively cuts along the arc and attaches two disks as shown. This process is called
framed surgery. If we can do this, then we have converted the torus to a 2-sphere and
shown that the map f : Sn+2 → Sn is null.

When can we find such a closed curve in M? It must represent a generator of H1(M)
and carry a trivial framing. This leads to a map

(1) ϕ : H1(M ;Z/2)→ Z/2

defined as follows. Each class in H1 can be represented by a closed curve which is framed
either trivially or nontrivially. It can be shown that homologous curves have the same
framing invariant, so ϕ is well defined. At this point Pontryagin made a famous mistake
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FIGURE 3. The case k = 2 and genus 1. If the framing on the embedded
arc extends to a disk, then there is a cobordism (called a framed surgery)
that converts the torus to a 2-sphere as shown.

which went undedected for over a decade: HE ASSUMED THAT ϕ WAS A HOMOMOR-
PHISM. We now know this is not the case, and we will say more about it below in §1.3.
This nonlinearity is illustrated in Figure 4.

On that basis he argued that ϕ must have a nontrivial kernel, since the source group
is (Z/2)2. Therefore there is a closed curve along which we can do the surgery shown
in Figure 3. It follows that M can be surgered into a 2-sphere, leading to the erroneous
conclusion that πn+2(Sn) = 0 for all n. Freudenthal [Fre38] and later George Whitehead
[Whi50] both proved that it is Z/2 for n ≥ 2. Pontryagin corrected his mistake in [Pon50],
and in [Pon55] he gave a complete account of the relation between framed cobordism and
homotopy groups of spheres.
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FIGURE 4. The nonlinearity of ϕ. Even if the framing on the torus is
such that its restrictions to the longitudinal and latitudinal circles each
extends to a disk, the resulting framing on their sum does not.

1.2. Our main result. Our main theorem can be stated in three different but equivalent
ways:

• Manifold formulation: It says that a certain geometrically defined invariant Φ(M)
(the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always
zero.

• Stable homotopy theoretic formulation: It says that certain long sought hypotheti-
cal maps between high dimensional spheres do not exist.

• Unstable homotopy theoretic formulation: It says something about the EHP se-
quence (to be defined below), which has to do with unstable homotopy groups of
spheres.

The problem solved by our theorem is nearly 50 years old. There were several unsuc-
cessful attempts to solve it in the 1970s. They were all aimed at proving the opposite of
what we have proved.

Here again is the stable homotopy theoretic formulation.

Main Theorem. The Arf-Kervaire elements θj ∈ πS2j+1−2 do not exist for j ≥ 7.

1.3. The manifold formulation. Let λ be a nonsingular anti-symmetric bilinear form on
a free abelian group H of rank 2n with mod 2 reduction H . It is known that H has a basis
of the form {ai, bi : 1 ≤ i ≤ n} with

λ(ai, ai′) = 0 λ(bj , bj′) = 0 and λ(ai, bj) = δi,j .
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In other words, H has a basis for which the bilinear form’s matrix has the symplectic
form 

0 1
1 0

0 1
1 0

. . .
0 1
1 0


.

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x+ y) = q(x) + q(y) + λ(x, y)

Its Arf invariant is

Arf(q) =

n∑
i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf [Arf41] proved that this invariant (along with the number n) determines the
isomorphism type of q.

An equivalent definition is the “democratic invariant” of Browder. The elements of H
“vote” for either 0 or 1 by the function q. The winner of the election (which is never a tie)
is Arf(q). Here is a table illustrating this for three possible refinements q, q′ and q′′ when
H has rank 2.

x 0 a b a+ b Arf invariant
q(x) 0 0 0 1 0
q′(x) 0 1 1 1 1
q′′(x) 0 1 0 0 0

The value each refinement on a+b is determined by those on a and b, and q′′ is isomorphic
to q . Thus the vote is three to one in each case. When H has rank 4, it is 10 to 6.

Let M be a 2m-connected smooth closed manifold of dimension 4m+ 2 with a framed
embedding in R4m+2+n. We saw above that this leads to a map f : Sn+4m+2 → Sn and
hence an element in πn+4m+2(Sn).

Let H = H2m+1(M ;Z), the homology group in the middle dimension. Each x ∈ H is
represented by an immersion ix : S2m+1 #M with a stably trivialized normal bundle. H
has an antisymmetric bilinear form λ defined in terms of intersection numbers.

In 1960 Kervaire [Ker60] defined a quadratic refinement q on its mod 2 reduction in
terms of the trivialization of each sphere’s normal bundle. The Kervaire invariant Φ(M) is
defined to be the Arf invariant of q. In the casem = 0, when the dimension of the manifold
is 2, Kervaire’s q is Pontryagin’s map ϕ of (1).

What can we say about Φ(M)?
• Kervaire [Ker60] showed it must vanish when k = 2. This enabled him to con-

struct the first example of a topological manifold (of dimension 10) without a
smooth structure. This is illustrated in Figure 5. N is a smooth 10-manifold
with boundary given as the union of two copies of the tangnent disk bundle of
S5. The boundary is homeomorphic to S9. Thus we can get a closed topological
manifold X by gluing on a 10-ball along its common boundary with n, or equiva-
lently collapsing ∂N to a point. X then has nontrivial Kervaire invariant. On the
other hand, Kervaire proved that any smooth framed manifold must have trivial
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FIGURE 5. Kervaire’s example of a nonsmoothable 10-manifold. The
manifold N is a smooth 10-manifold with boundary homeomorphic to
S9. The manifold X obtained by collapsing the boundary to a point
would have Φ(X) = 1 and is therefore not smooth.

Kervaire invariant. Therefore the topological framed manifold X cannot have a
smooth structure. Equivalently, the boundary ∂N cannot be diffeomorphic to S9.
It must be an exotic 9-sphere.

• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4 with nontrivial Kervaire
invariant. Pontryagin used it in [Pon50] (after some false starts in the 30s) to show
πn+2(Sn) = Z/2 for all n ≥ 2. It is illustrated in Figure 6. That picture shows
a torus immersed in R3. This immersion is the linear image of an embedding in
R4.

• There are similar constructions for k = 1 and k = 3, where the framed manifolds
are S3×S3 and S7×S7 respectively. Like S1, S3 and S7 are both parallelizable,
meaning that their trivial tangent bundles are trivial. The framings can be twisted
in such a way as to yield a nontrivial Kervaire invariant.

• Brown-Peterson [BP66] showed that it vanishes for all positive even k. This means
that apart from the 2-dimensioanl case, any smooth framed manifold with non-
trivail Kervaire invariant must a dimension congruent to 6 modulo 8.

• Browder [Bro69] showed that it can be nontrivial only if k = 2j−1 − 1 for some
positive integer j. This happens iff the element h2j is a permanent cycle in the
Adams spectral sequence, which was originally introduced in [Ada58]. (More
information about it can be found below in §3.7) in [Rav86] and[Rav04].) The
corresponding element in πSn+2j+1−2 is θj , the subject of our theorem. This is the
stable homotopy theoretic formulation of the problem.
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FIGURE 6. A framing on the torus with nontrivial Kervaire invariant.
The immersion shown in R3 is the linear image of an embedding in R4.
This framing on the torus does not exted to any manifold bounded by it.

• θj is known to exist for 1 ≤ j ≤ 3, i.e., in dimensions 2, 6, and 14. In these
cases the relevant framed manifold is S2j−1 × S2j−1 with a twisted framing as
discussed above. The framings on S2j−1 represent the elements hj in the Adams
spectral sequence. The Hopf invariant one theorem of Adams [Ada60] says that
for j > 3, hj is not a permanent cycle in the Adams spectral sequence because
it supports a nontrivial differential. (His original proof was not written in this
language, but had to do with secondary cohomlogy operations.) This means that
for j > 3, a smooth framed manifold representing θj (i.e., having a nontrivial
Kervaire invariant) cannot have the form S2j−1 × S2j−1.

• θj is also known to exist for j = 4 and j = 5, i.e., in dimensions 30 and 62.
In both cases the existence was first established by purely homotopy theoretic
means, without constructing a suitable framed manifold. For j = 4 this was
done by Barratt, Mahowald and Tangora in [MT67] and [BMT70]. A framed 30-
manifold with nontrivial Kervaire invariant was later constructed by Jones [Jon78].
For j = 5 the homotopy theory was done in 1985 by Barratt-Jones-Mahowald in
[BJM84].

• Our theorem says θj does not exist for j ≥ 7. The case j = 6 is still open.
Figure 7 illustrates Kervaire’s construction of a framed (4k+2)-manifold with nontrivial

Kervaire invariant. In all cases except k = 0, 1 or 3, any framing of this manifold will do
because the tangent bundle of S2k+1 is nontrivial and leads to a nontrivial invariant. What
the picture does not tell us is whether the bounding sphere S4k+1 is diffeomorphic to the
standard sphere. If it is, then attaching a (4k + 2)-disk to it will produce a smooth framed
manifold with nontrival Kervaire invariant. If it is not, then we have an exotic (4k + 1)-
sphere bounding a framed manifold and hence not detected by framed cobordism.
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FIGURE 7. Kervaire’s example for general k. N is a smooth framed
(4k + 2)-manifold whose boundary is homeomorphic to S4k+1. If ∂N
is diffeomorphic to S4k+1, then X is a closed smooth framed (4k + 2)-
manifold with nontrivial Kervaire invariant. We now know this is the
case only when k = 0, 1, 3, 7, 15 and possibly 31. Otherwise ∂N is an
exotic (4k + 1)-sphere that is a framed boundary.

1.4. The unstable formulation. Assume all spaces in sight are localized and the prime
2. For each n > 0 there is a fiber sequence (see §3.1) due to James, [Jam55], [Jam56a],
[Jam56b] and [Jam57]

(2) Sn
E // ΩSn+1 H // ΩS2n+1.

Here ΩX = Ω1X where ΩkX denotes the space of continuous base point preserving maps
to X from the k-sphere Sk, known as the kth loop space of X . This leads to a long exact
sequence of homotopy groups

. . . // πm+n(Sn)
E // πm+n+1(Sn+1)

H // πm+n+1(S2n+1)
P // πm+n−1(Sn) // . . .

Here
• E stands for Einhängung, the German word for suspension.
• H stands for Hopf invariant.
• P stands forWhitehead product.

Assembling these for fixed m and various n leads to a diagram

πm+n+1(S2n−1)

P��
πm+n+2(S2n+1)

P��

πm+n+3(S2n+3)

P��
. . . E // πm+n−1(Sn−1)

E //

H��

πm+n(Sn)
E //

H��
πm+n+1(Sn+1)

E //

H��

. . .

πm+n−1(S2n−3) πm+n(S2n−1) πm+n+1(S2n+1)

where
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• Sequences of arrows labeled H , P , E, H (or any subset thereof) in that order are
exact.

• The groups in the top and bottom rows are inductively known, and we can compute
those in the middle row by induction on n.

• The groups in the top and bottom rows vanish for large n, making E an isomor-
phism.

• An element in the middle row has trivial suspension (is killed by E) iff it is in the
image of P .

• It desusupends (is in the image of E) iff its Hopf invariant (image under H) is
trivial.

When m = n− 1 this diagram is

π2n+1(Sn+1)

H��
π2n(S2n−1)

P��
Z

P��

0

P��
. . . E // π2n−2(Sn−1)

E //

H��

π2n−1(Sn)
E //

H��

π2n(Sn+1)
E //

H��

. . .

π2n−2(S2n−3) Z 0

The image under P of the generator of the upper Z is denoted by wn ∈ π2n−1(Sn) and
is called the Whitehead square.

• When n is even, H(wn) = 2 and wn has infinite order.
• wn is trivial for n = 1, 3 and 7. In those cases the generator of the upper Z is the

Hopf invariant (image under H) of one of the three Hopf maps in π2n+1(Sn+1),

S3
η // S2, S7 ν // S4 and S15 σ // S8.

• For other odd values of n, twice the generator of the upper Z is H(wn+1), so wn
has order 2.

• It turns out that wn is divisible by 2 iff n = 2j+1 − 1 and θj exists, in which case
wn = 2θj .

• Each Whitehead square w2n+1 ∈ π4n+1(S2n+1) (except the cases n = 0, 1 and
3) desuspends to a lower sphere until we get an element with a nontrivial Hopf
invariant, which is always some βj (see Sidebar 1). More precisely we have

H(w(2s+1)2j−1) = βj

for each j > 0 and s ≥ 0. This result is essentially Adams’ 1962 solution to the
vector field problem [Ada62].

Recall the EHP sequence

. . . // πm+n(Sn)
E // πm+n+1(Sn+1)

H // πm+n+1(S2n+1)
P // πm+n−1(Sn) // . . .

Given some βj ∈ πφ(j)+2n+1(S2n+1) for φ(j) < 2n, one can ask about the Hopf
invariant of its image under P , which vanishes when βj is in the image of H . In most
cases the answer is known and is due to Mahowald, [Mah67] and [Mah82]. The remaining
cases have to do with θj . The answer that he had hoped for is the following, which can
be found in [Mah67]. (To our knowledge, Mahowald never referred to this as the World
Without End Hypothesis. We chose that term to emphasize its contrast with the Doomsday
Hypothesis.)
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World Without End Hypothesis (Mahowald 1967).
• The Arf-Kervaire element θj ∈ πS2j+1−2 exists for all j > 0.

• It desuspends to S2j+1−1−φ(j) and its Hopf invariant is βj .
• Let j, s > 0 and suppose that m = 2j+2(s+ 1)− 4− φ(j) and
n = 2j+1(s+ 1)− 2− φ(j). Then P (βj) has Hopf invariant θj .

This describes the systematic behavior in the EHP sequence of elements related to the
image of J , and the θj are an essential part of the picture. Because of our theorem, we now
know that this hypothesis is incorrect.

1.5. Questions raised by our theorem.

EHP sequence formulation. The World Without End Hypothesis was the nicest possible
statement of its kind given all that was known prior to our theorem. Now we know it cannot
be true since θj does not exist for j ≥ 7. This means the behavior of the indicated elements
P (βj) for j ≥ 7 is a mystery.

Adams spectral sequence formulation. (See §3.7.) We now know that the h2j for j ≥ 7
are not permanent cycles, so they have to support nontrivial differentials. We have no idea
what their targets are.

Manifold formulation. Here our result does not lead to any obvious new questions. It
appears rather to be the final page in the story.

Our method of proof offers a new tool for studying the stable homotopy groups of
spheres. We look forward to learning more with it in the future.

2. OUR STRATEGY

2.1. Ingredients of the proof. Our proof has several ingredients.
• It uses methods of stable homotopy theory, which means it uses spectra instead of

topological spaces. For more information about this see §4. Recall that a space
X has a homotopy group πk(X) for each positive integer k. A spectrum X has
an abelian homotopy group πk(X) defined for every integer k. For the sphere
spectrum S0, πk(S0) is the stable k-stem homotopy group πSk . The hypothetical
θj is an element of this group for k = 2j+1 − 2.

• It uses complex cobordism theory. This is a branch of algebraic topology hav-
ing deep connections with algebraic geometry and number theory. It includes
some highly developed computational techniques that began with work by Mil-
nor [Mil60], Novikov ([Nov60], [Nov62] and [Nov67]) and Quillen [Qui69] in
the 60s. A pivotal tool in the subject is the theory of formal group laws. On this
subject the definitive reference is Hazewinkel’s book [Haz78]. A much briefer
account covering the most relevant aspects of the subject can be found in [Rav86,
Appendix 2].

• It also makes use of newer less familiar methods from equivariant stable homo-
topy theory. A helpful introduction to this subject is the paper of Greenlees-May
[GM95]. This means there is a finite group G (a cyclic 2-group) acting on all
spaces in sight, and all maps are required to commute with these actions. When
we pass to spectra, we get homotopy groups indexed not just by the integers Z,
but by RO(G), the orthogonal representation ring of G. Our calculations make
use of this richer structure.
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2.2. The spectrum Ω. We will produce a map S0 → Ω, where Ω is a nonconnective
spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative di-
mensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a de-
vice for calculating homotopy groups) in which the image of each θj is nontrivial.
This means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω) depends only on the
reduction of k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is our zinger. Its proof
involves a new tool we call the slice spectral sequence.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in π254(Ω). On the other
hand, (ii) and (iii) imply that π254(Ω) = 0, so θ7 cannot exist. The argument for θj for
larger j is similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.

2.3. How we construct Ω. Our spectrum Ω will be the fixed point spectrum for the action
of C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum MU . It can be thought
of as the set of complex points of an algebraic variety defined over the real numbers. This
means that it has an action of C2 defined by complex conjugation. The fixed point set of
this action is the set of real points, known to topologists as MO, the unoriented cobordism
spectrum. In this notation, U and O stand for the unitary and orthogonal groups.

To get a C8-spectrum, we use the following general construction for getting from a
space or spectrumX acted on by a groupH to one acted on by a larger groupG containing
H as a subgroup. Let

Y = MapH(G,X),

the space (or spectrum) of H-equivariant maps from G to X . Here the action of H on G is
by right multiplication, and the resulting object has an action of G by left multiplication.
As a set, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A general element of G
permutes these factors, each of which is left invariant by the subgroup H .

In particular we get a C8-spectrum

MU (4) = MapC2
(C8,MU).

This spectrum is not periodic, but it has a close relative Ω̃ which is.

3. SOME CLASSICAL ALGEBRAIC TOPOLOGY.

3.1. Fibrations. A map p : E → B is a fibration (sometimes called a Hurewicz fibration
[Hur35][Hur36]) if the following commutuative diagram can always be completed:

(3) x_

��

X

i

��

f̃0 // E

p

��
(x, 0) X × I

f //

f̃

99rrrrrr
B,

where I denotes the closed unit interval [0, 1]. In other words, given maps f and f̃0 as
shown, one can always find a map f̃ such that f̃ i = f̃0 and pf̃ = f . This is called the



16 MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL

homotopy lifting property because it says that if one end of the homotopy f can be lifted
from B to E via f̃0, then we can find a liftingf̃ of the entire homotopy.

Experience has shown that it often suffices to assume (3) holds only in the case where
X is an n-dimensional disk Dn for any n. In this case p is called a Serre fibration [Ser51].
It is enough to establish the long exact sequence of homotopy groups (4).

One example of a fibration is a fiber bundle [Ste99], a map for which
(i) the preimage p−1(b) for each b ∈ B is homeomorphic to a space F called the fiber

of p and
(ii) each b ∈ B has a neighborhood U such that p−1(U) is homeomorphic to U×F in

such a way that the composition of p with the homeomorphism is projection onto
U .

In this case there is a long exact sequence of homotopy groups

(4) · · · // πn(F )
i∗ // πn(E)

p∗ // πn(B)
∂ // πn−1(F ) // · · ·

where i : F → E is the inclusion of the fiber and ∂ is a certain boundary homomorphism.
More details can be found in any textbook on algebraic topology, such as Hatcher [Hat02],
May [May99] or Gray [Gra75].

There is a way to replace any map p : E → B by a fibration between homotopy
equivalent spaces and construct a homotopy theoretic fiber. First we replace B by the
mapping cylinder B̃ = Mp, which is the quotient of the disjoint union

(E × I)
⋃
B

obtained by identifying (e, 1) ∈ E×I with p(e) ∈ B. For technical reasons it is convenient
to assume thatE andB have base points e0 and b0 with p(e0) = b0, and to collapse {e0}×I
to a point which becomes the base point in B̃. The inclusion of B into B̃ is a homotopy
equivalence.

Next we replace E by the space Ẽ of paths (continuous maps from the unit interval I)
in B̃ that begin in E × {0}. The inclusion of E into Ẽ via paths of the form t 7→ (e, t)

is again a homotopy equivalence. Finally we define p̃ : Ẽ → B̃ by sending a path to its
endpoint. Then the diagram

E

p

��

' // Ẽ

p̃

��
B

' // B̃

commutes, the horizontal maps are homotopy equivalences, and p̃ is a fibration.
Now let F̃ ⊂ Ẽ be the space of paths starting in E × {0} and ending at the base point;

we denote the inclusion map by ĩ. This is the homotopy theoretic fiber of p and there is a
long exact sequence similar to (4),

· · · // πn(F̃ )
ĩ∗ // πn(Ẽ)

p̃∗ // πn(B̃)
∂̃ // πn−1(F̃ ) // · · ·

A fiber sequence (such as (2)) is any composite

W
f // X

g // Y

where f is equivalent to the inclusion of the homotopy theoretic fiber of g.
When the map p is inclusion of the base point b0 of B, we find that
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Sidebar 2 CW complexes

A CW-complex (first introduced by Henry Whitehead in [Whi49]) X is a space con-
structed as a union of skeleta Xn defined as follows. X0 is a discrete set. Xn is
obtained from Xn−1 by attaching a collection of n-disks {Dn

α} by identifying points on
their boundaries with points in Xn−1 using maps fα : ∂Dn

α → Xn−1 called attaching
maps. Xn is the cofiber (see §3.2) of the map to Xn−1 from the disjoint union of the
(n− 1)-spheres ∂Dn

α. The n-disks are called n-cells. A CW-complex is said to be finite
if its has only a finite number of cells altogether, and to have finite type if it has only
finitely many in each dimension.

This collection of spaces is general enough to include all manifolds and all real and com-
plex algebraic varieties. Indeed most homotopy theorists never have to deal with spaces
that are not at least homotopy equivalent to CW-complexes. They have the following
convenient properties:

• The product of two CW-complexes is a CW-complex.
• A map f : X → Y of CW-complexes is a homotopy equivalence (which means

there is a map g : Y → X such that fg and gf are homotopic to the identi-
ties maps on Y and X) iff it is a weak homotopy equivalence, meaning that it
induces an isomorphism in all homotopy groups.

• Any such map is homotopic to one that sends Xn to Y n for all n.
• The space of maps X → Y , while not a CW-complex itself in general, always

has the homotopy type of one by a theorem of Milnor [Mil59]. The same holds
if one requires that certain subcomplexes of X map to certain subcomplexes of
Y . For example, ΩSn+1 is equivalent to a CW-complex with a single cell in
each dimension divisible by n, and no others.

• H∗(X) can be computed in terms of a cellular chain complex C∗(X) in which
the nth chain group Cn(X) is free abelian on the n-cells of X .

• B̃ = B,
• Ẽ = PB, the space of paths in B starting at b0, which is contractible, and
• F̃ = ΩB, the space of closed path starting and ending at b0, which is called the

loop space of B.

This is called the path fibration of B. The long exact sequence in this case gives an iso-
morphism

πn(ΩB) ≈ πn+1(B).

When we apply this constuction to the map d̃, we find that its homotopy theoretic fiber
is equivalent to ΩB. The homotopy theoretic fiber of the map ΩB → F̃ is equivalent to
ΩE, and so on.
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3.2. Cofibrations. A cofibration is a map i : A → X satisfying a diagram dual to (3),
namely

(5) ω(0) Y X
f̃

zzu
u

u
u

u
f̃0oo

ω
_

OO

Y I

p0

OO

A
foo

i

OO

Here Y I denotes the space of maps ω : I → Y , i.e., all paths in Y . The map f : A→ Y I

is formally equivalent to a homotopy A × I → Y . f̃0 is an extension of one end of it to
X and the hypothetical f̃ is an extension of all of it to X , so this is called the homotopy
extension property.

The inclusion i of a subcomplex A into a CW-complex X (see Sidebar 2) is always a
cofibration. It has a cofiber Ci (also know as the mapping cone), which, like the mapping
cylinder above, is the quotient of the disjoint union

(A× I)
⋃
X

obtained by identifying (a, 1) ∈ A× I with i(a) ∈ X (as in the mapping cylinder) and by
collapsing all of A×{0} to a point. As before, if a base point is desired, it can be obtained
by collapsing the path along the base point of A to a point. We denote the inclusion map
X → Ci by j .

Then the reduced homology H∗(Ci) of the cofiber is the same as the relative homology
H∗(X,A). There is a long exact sequence

(6) · · · // Hn(A)
i∗ // Hn(X)

j∗ // Hn(Ci)
∂ // Hn−1(A) // · · ·

The procedure for replacing an arbitrary map i : A → X by a homotopy equivalent
cofibration is easier here than it was for fibrations above. All we have to do is replaceX by
the mapping cylinder X̃ = Mi. This makes the evident inclusion ĩ : A→ X̃ a cofibration,
and the mapping cone Ci is its cofiber. The simplicity of this construction renders the term
“homotopy theoretic cofiber” unnecessary. Ci is called the simply the cofiber of the map i.
The cofiber of the map j : Mi → Ci is easily seen to be the suspension ΣA.

A cofiber sequence is any composite

W
f // X

g // Y

where g is equivalent to the map j toCf . One has similar notions in the category of spectra,
to be defined in §4. In that world fiber sequence and cofiber sequences are the same: W is
equivalent to the fiber of g iff Y is equivalent to the cofiber of f . This means we have long
exact sequences in both homotopy and homology.

3.3. Eilenberg-Mac Lane spaces and cohomology operations.

Theorem 1. Eilenberg-Mac Lane spaces and cohomology. For any CW-complex X ,
positive integer n and discrete abelian groupA, there is a natural isomorphism between the
cohomology group Hn(X;A) and the group of homotopy classes of maps [X,K(A,n)],

(7) Hn(X;A) ≈ [X,K(A,n)]

where K(A,n) is the Eilenberg-Mac Lane space constructed in Sidebar 3.
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The group structure on the set of homotopy classes arises from a map K(A,n) ×
K(A,n) → K(A,n) with suitable properties. This isomorphism holds if X is also an
Eilenberg-Mac Lane space. When it is K(A,n), we get the identity map on the right
corresponds to a canonical element ιn on the left called the fundamental class.

Let θ ∈ Hn+k(K(A,n);A′) and x ∈ Hn(X;A) for k ≥ 0. (The case k < 0 is
uninteresting because the cohomology group is trivial.) Using (7), these correspond to
maps

X
x // K(A,n)

θ // K(A′, n+ k),

so the composite θx corresponds to an element inHn+k(X;A′). Hence θ gives us a natural
transformation from the functor Hn(·;A) to Hn+k(·;A′) called a cohomology operation.
It may or may not be a group homomorphism. When it is, we say it is additive.

Now assume that all cohomology groups have coefficients in Z/2 and letKn = K(Z/2, n).
Let sn : ΣKn → Kn+1 be adjoint to the equivalence Kn → ΩKn+1. It induces a homo-
morphism

Hn+k+1(Kn+1)
s∗n // Hn+k+1(ΣKn) Hn+k(Kn) 3 θ

It is known that θ is additive iff it is in the image of s∗n. In that case it is also in the image
of a similar map from Hn+k+t(Kn+t) for any t > 0, and there is a way to choose these
preimages canonically. Such an operation θ is said to be stable.

3.4. The Steenrod algebra. Here is an important example of a mod 2 stabel operation.
Let θ = ι2n ∈ H2n(Kn). The corresponding cohomology operation sends x to x2, which
is additive since we are working mod 2. Since it is additive, it is stable and we have similar
operations

Hn+t(X)
Sqn // H2n+t(X)

for all t ≥ 0. This is called the nth Steenrod squaring operation [Ste62]. These operations
have been studied extensively and it is known that any mod 2 stable operation can be
expressed in terms of them. They have the following properties:

Theorem 2. Properties of mod 2 Steenrod operations
(i) Sq0 is the identity map.

(ii) CARTAN FORMULA.

Sqn(xy) =
∑

0≤i≤n

Sqi(x)Sqn−i(y).

(iii) ADEM RELATION. For 0 < a < 2b,

SqaSqb =

j=[a/2]∏
j=0

(
b− i− 2j

a− 2j

)
Sqa+b−jSqj .

(iv) UNSTABLE CONDITION. Sqn(x) = x2 for x ∈ Hn and Sqn(x) = 0 for x ∈ Hi

with i < n.

For n > 0, the Adem relation gives Sq2n+1 = Sq1Sq2n and

Sq(2n+1)2k+1

= Sq2
k+1

Sq2
k+2n + Sq2

k+2n+2kSq2
k

for k ≥ 0,

so Sqi is decomposable unless i is a power of 2.
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A monomial SqI = Sqi1Sqi2 · · ·Sqim is admissible if

(8) i1 ≥ 2i2, i2 ≥ 2i3, . . . , im−1 ≥ 2im.

Repeated use of the Adem relation will convert any monomial to a sum of admissible ones.
The mod 2 Steenrod algebraA is the algebra of all mod 2 stable cohomology operations.

It is the associative algebra generated by the Sqn for n > 0 and subject to the Adem
relation. The admissible monomials form a basis for it (the Adem basis) and it is generated
as an algebra by the elements Sq2

j

for j ≥ 0.
For any spaceX ,H∗(X) is anA-module subject to the Cartan formula and the unstable

condition. For a spectrum X , these restrictions are vacuous, so we just get an A-module.
We will now describe H∗(Kn) for all n. The excess of an admissible monomial SqI as

in (8) is

e(I) = (i1 − 2i2) + (i2 − 2i3) + · · ·+ (im−1 − 2im) = i1 − i2 − i3 − · · · − im.

Theorem 3. Mod 2 cohomology of mod 2 Eilenberg-Mac Lane spaces.

H∗(Kn) = Z/2[SqIιn : e(I) < n, I admissible].

The only admissible monomial with excess 0 is 1, so the theorem says

H∗(K1) = Z/2[ι1],

which is consistent with the fact that K1 = RP∞.
The set of admissible monomials with excess 1 is{

Sq1, Sq2Sq1, Sq4Sq2Sq1, Sq8Sq4Sq2Sq1, . . .
}
,

which leads to
H∗(K2) = Z/2[x2, x3, . . . , x1+2k , . . . ]

where x2 = ι2 and x1+2k+1 = Sq2
k

x1+2k .
This entire discussion has an odd primary analog, but we do not need it here.

3.5. Milnor’s formulation. The results of this section are due to Milnor [Mil58].
The Cartan formula (Theorem 2 (ii)) leads to a coproduct

A // A⊗A

Sqn � //
∑

0≤i≤n Sq
i ⊗ Sqn−i

which is an algebra map and is cocommutative. This leads to a commutative algebra struc-
ture on the dual

A∗ = HomZ/2(A,Z/2).

The noncommutative product on A, which is a map A⊗A → A, translates to a noncom-
mutative coproduct on A∗ which we denote by ∆.

Theorem 4. The structure of the dual Steenrod algebra. As an algebra,

A∗ = Z/2[ξ1, ξ2, . . . ]

where the dimension of ξj is 2j − 1. The coproduct is

∆(ξn) =
∑

0≤i≤n

ξ2
i

n−i ⊗ ξi where ξ0 = 1.

This coproduct formula is equivalent to (and much easier to remember than) the Adem
relation, but proving this explicitly is difficult.
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3.6. Serre’s method of computing homotopy groups. Let X be a (n − 1)-connected
space for n > 1 with πn(X), nontrivial, and let L0 = K(πn(X), n). The Hurewicz
theorem [Hur35] [Hur36] says that πn(X) is isomorphic to Hn(X;Z), and Theorem 1
then implies there is a map f0 : X → L0 inducing an isomorphism in πn. Let X1 be its
fiber as explained in 3.1. The the long exact sequence of homotopy groups (4) implies that

πi(X1) =

{
0 for i ≤ n
πi(X) otherwise

The Serre spectral sequence of [Ser51] is a device for computing the homology of one of
the spaces in a fiber sequence in terms of the other two. In theory we can use it to find
the homology of X1 and hence its first nontrivial homotopy group, which lies somewhere
above dimension n. Then we can treat X1 the same way we treated X and find a map
f1 : X1 → L1 where L1 is the appropriate Eilenberg-Mac Lane space. Then we could use
the Serre spectral sequence to find the homology of the fiber X2, and so on. Continuing in
this manner we could get a diagram

(9) X

f0

��

X1

f1

��

g0
oo X2

f2

��

g1
oo X3

f3

��

g2
oo · · ·

g3
oo

L0 L1 L2 L3

where
(i) each Li is an Eilenberg-Mac Lane space,

(ii) fi induces an isomorphism in the first nontrivial homotopy group of Xi and
(ii) Xi+1 is the fiber of fi.

This method requires knowing the homology of all spaces in sight, at least through the
range of dimensions in which one hopes to compute. It was used with brilliant effect by
Serre in [Ser51] to calculate many previously unknown homotopy groups of spheres, but a
few years later Adams found a better method [Ada58] for doing this.

Before turning to it, we need to make one observation about the Serre spectral sequence.
In each of the fiber sequences in (9), below dimension 2n it simplifies to a long exact
sequence

(10) · · · // Hi(Xs+1)
(gs+1)∗ // Hi(Xs)

fs∗ // Hi(Ls)
∂ // Hi−1(Xs+1) // · · ·

3.7. The Adams spectral sequence. In this section we return to our convention that all
cohomology groups are reduced and have coefficients in Z/2.

We modify Serre’s diagram (9) below dimension 2n in the following ways:
(i) Each Ls is a product of mod 2 Eilenberg-Mac Lane spaces Km, with possibly

different values of m (all at least n) for the various factors. Theorem 3 implies
that in our range H∗(Km) = ΣmA, the mth suspension of the Steenrod algebra.

(ii) Ls and fs are chosen so that the induced map in cohomology is onto. This can
always be done, but not uniquely. Choose a set of elements in H∗(Xs) which
generate it as an A-module. Each one corresponds to a map to some Km, so
collectively they give a map to the product of Kms, which is Ls.

A diagram of the form (9) having these two properties is called a mod 2 Adams resolu-
tion for X . When X is a CW-complex of finite type, it leads to a method for computing
π∗(X) modulo odd primary torsion below dimension 2n.
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The requirement on H∗(fs) means that H∗(gs+1) is trivial, and the cohomological
analog of (10) reduces to a short exact sequence of A-modules

0 // H∗(ΣXs+1) // H∗(Ls)
f∗s // H∗(Xs) // 0

where H∗(Ls) is free. These can be spliced together for various s, giving us a long exact
sequence

(11) 0 H∗(X)oo H∗(L0)oo H∗(ΣL1)oo H∗(Σ2L2)oo · · ·oo

This is a free A-resolution of H∗(X). We can recover π∗(Ls) from its cohomology by
applying the functor HomA(·,Z/2). Doing this to (11) gives us a cochain complex

(12) π∗(L0) // π∗(ΣL1) // π∗(Σ2L2) // · · ·

Theorem 5. The Adams spectral sequence. For an (n − 1)-connected space X , in
dimensons less than 2n the cohomology of (12) is independent of the choices of the Ls, and
is by definition ExtA (H∗(X),Z/2). This is the E2-term of the Adams spectral sequence,
which converges to π∗(X) modulo odd torsion. More specifically,

Es,t2 = Exts,tA (H∗(X),Z/2) ,

dr : Es,tr → Es+r,t+r−1r , and Es,t∞ is a subquotient of πt−s(X).

This theorem is crying out to be reformulated in term of spectra (to be defined in the
next section), which is how it is usually stated. Then the caveats about n can be eliminated,
provided X is connective and of finite type.

The example of interest to us is the sphere spectrum, for whichE∗,∗2 = Ext∗,∗A (Z/2,Z/2).
This group is difficult to compute but has been studied extensively, and we will abbreviate
it simply by Ext∗,∗. Here is the first stage of the free resolution of (11) in this case.

0 Z/2oo Aεoo A{xj : j ≥ 0}oo · · ·oo

Sq2
j xj�oo

We know that ker ε is generated as an A-module by {xj : j ≥ 0} because these elements
generate A as an algebra.

This leads to elements hj ∈ Ext1,2
j

, and they are known to form a basis of Ext1. The
group Ext has a ring structure, and the following set forms a basis of Ext2:

{hjhk : 0 ≤ j ≤ k, k 6= j + 1} .

The following facts are known about these elements.

• The hj for 0 ≤ j ≤ 3 are nontrivial permanent cycles, meaning that they detects
elements in πS∗ . h0 detects the degree 2 map in πS0 , and the other three detect maps
constructed by Hopf in [Hop30] and [Hop35].

• Adams [Ada60] showed that the hj for j > 3 do not detect homotopy elements.
Instead they support nontrivial differentials, namely d2(hj) = h0h

2
j−1.

• Browder’s theorem [Bro69] says there is a framed manifold with non trivial Ker-
vaire invariant in dimension 2j+1 − 2 iff h2j is a permanent cycle, in which case it
detects the corresponding homotopy element, θj .
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Here is a chart showing Exts,t for t− s ≤ 20.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

ι

h0 h1 h2 h3

c0

Ph1 Ph2

h23

d0

h4

Pc0

e0

P 2h1

f0

P 2h2

c1

g

Here lines going up and to the right indicate multiplication by h0, h1 and h2, and lines
going up and to the left lines indicate differentials. For more information we refer the
reader to [Rav86].

4. SPECTRA AND EQUIVARIANT SPECTRA

In this section we will define ordinary and equivariant spectra, the objects of study in
stable homotopy theory and equivariant stable homotopy theory.

4.1. An informal definition of spectra. Informally, a prespectrum D is a collection of
pointed spaces (spaces equipped with base points that are preserved by all maps in sight)
{Dn : n� 0} with structure maps ΣDn → Dn+1. Here ΣX denotes the suspension or
double cone on X , wth the cone line through the basepoint x0 ∈ X collapsed to be the
base point of ΣX . Then we can define

πi(D) = lim
→
πn+i(Dn) and Hi(D) = lim

→
Hn+i(Dn).

A map ΣX → Y is equivalent (adjoint) to a map X → ΩY , where ΩY is the loop
space of Y , the space of base point preserving map to Y from the circle S1.

Thus the adjoint of the structure map is a map Dn → ΩDn+1. A spectrum is a prespec-
trum for which this map is a homeomorphism for each n. We can always get a spectrum
E = {En : n ∈ Z} from the prespectrum D by defining

En = lim
→
k

ΩkDn+k

This makes En = ΩEn+1 and infinite loop space. The evident map D → E does not alter
homotopy or homology and is thus a weak homotopy equivalence.

A spectrum E can be suspended or desuspended by defining

(ΣjE)n = Ej+n for any integer j,

and we have

πk(ΣjE) = πn−j(E) and Hk(ΣjE) = Hn−j(E).
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We can make similar statements about looping, defining

(ΩjE)n = ΩjEn = En−j ,

so ΩjE = Σ−jE. Hence a spectrum can be desuspended or delooped any number of
times.

Here are two examples:
(i) For a given pointed space X , let Dn = ΣnX , the nth iterated suspension of

X . Then D is the suspension prespectrum of X , denoted by Σ∞X or (abusively
but commonly) simply by X . The homology of Σ∞X is the reduced homology
the space X . Converting to a spectrum as described above does not change its
homotopy or homology. When the space X is S0, we get the sphere spectrum,
whose kth homotopy group is πSk .

(ii) For an abelian groupA, letK(A,n) be the Eilenberg-Mac Lane space (see Sidebar
3) characterized (up to homotopy equivalence) by

πk(K(A,n)) =

{
A for k = n
0 otherwise.

Then K(A,n) is equivalent to ΩK(A,n+ 1). We define a spectrum D by Dn =
K(A,n) with structure map ΣK(A,n) → K(A,n + 1) being the adjoint of this
equivalence. In this case En is equivalent to Dn. The resulting spectrum is de-
noted by HA, the Eilenberg-Mac Lane spectrum for A.

4.2. Orthogonal spectra. Let T denote the category of compactly generated [ML71,
VII.8] weak Hausdorff [McC69, §2] pointed topological spaces. Compactly generated
means that a subset is closed iff its intersection with every compact subspace is closed.
Weak Hausdorff means that the continuous image of every compact space is closed. These
are technical conditions designed to keep us out of trouble, as explained in the references
cited.

Following [May80, §5] we define an orthogonal spectrum to be a functor to this category
from an indexing category I . Its objects are are finite dimensional real inner product
spaces V . When V ⊂ W , we will denote the orthogonal compliment of V in W by
W − V .

The category I is enriched over T [Kel82] , which means that the “set” I (V,W ) of
morphisms from V toW is actually a pointed topological space, to be defined shortly. T is
enriched over itself; the set of continuous pointed mapsX → Y can be given the compact-
open topology with the constant map as base point. A functor of enriched categories D :
I → T is required to induce a continuous pointed map from I (V,W ) → T (DV , DW )
for each V and W in I .

To define I (V,W ), letO(V,W ) be the (possibly empty) Stiefel manifold of orthogonal
embeddings f : V →W . The space

{(f, w) ∈ O(V,W )×W : w ∈W − f(V )}

is a vector bundle over O(V,W ), and I (V,W ) is defined to be its one point compactifi-
cation or Thom space. As a set it is

(13) I (V,W ) =
∨

f∈O(V,W )

SW−f(V )

where SV denotes the one point compactification of V .
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In particular, I (V, V ) = O(V )+, the orthogonal group of V with a disjoint base point.
Hence the functor D gives a base point preserving action of O(V ) on the pointed space
DV . If V and W have the same dimension, then a choice of isomorphism between them
leads to identifications of I (V,W ) and I (W,V ) with O(V )+ and to homeomorphisms
between DV and DW . Hence the topology of the pointed space DV depends only on the
dimension of V .

If V ⊂W is a proper subspace, then I (V,W ) ⊃ SW−V by (13), and we get a structure
map SW−V ∧DV → DW as in 4.1.

4.3. Equivariant orthogonal spectra. Here we define equivariant orthogonal spectra fol-
lowing [MM02].

For a group G, let TG denote the category of compactly generated weak Hausdorff
pointed topological G-spaces, i.e., spaces with an action of G by base point preserving
maps. The base point is always fixed by G. When we encounter a G-space X without a
fixed point, we adjoin a disjoint base point and denote it by X+. The groups we will be
concerned with in this paper are finite cyclic 2-groups C2n .

Like T , TG is enriched over itself. The space TG(X,Y ) = Map∗(X,Y ) of all pointed
maps X → Y (not just the equivariant ones) is itself a pointed G-space, with the constant
map as base point and the action of a group element γ ∈ G on a map f : X → Y is given
by (γf)(x) = γf(γ−1x). The fixed point set TG(X,Y )G is the space of equivariant maps.

One could define another category with the same objects as TG but enriched instead over
T in which the morphism space is TG(X,Y )G. Both enriched categories have underlying
ordinary categories in which the spaces of morphisms are replaced by the corresponding
sets.

We will use an indexing category I G whose objects are finite dimensional orthogonal
representations V of G. There is an obvious forgetful functor I G → I . We define
I G(V,W ) to be the space I (V,W ) equipped with the evident G-action. Its fixed point
space is

I G(V,W )G = I (V G,WG) ∧O(V ⊥,W⊥)G+,

where V ⊥ denotes the orthogonal compliment of the invariant subspace V G of V .
We define an equivariant orthogonal G-spectrum to be a functor

E : I G → TG

enriched over G-spaces and equivariant maps. This means that for each representation
V we get a pointed G-space EV , and for each V and W we get a continuous pointed
equivariant map

I G(V,W )→ TG(EV , EW ).

As before we have structure maps

SV ∧ EW → EV+W

which are equivariant. Here SV is the one point compactification of the representation V ,
which has its own action of G determined by the representation.

We denote the category of equivariant orthogonal G-spectra by SG. It is an enriched
functor category [ML71, II.4] in which objects are continuous functors I G → TG as de-
scribed above, and morphisms are natural transformations. Thus a morphism of equivariant
orthogonalG-spectra g : D → E consists of continuous equivariant maps gV : DV → EV
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Sidebar 3 Classifying spaces

The join X ∗Y of topological spaces X and Y is the topological quotient of X × I ×Y
obtained by identifying (x, 0, y) with (x′, 0, y) and (x, 1, y) with (x, 1, y′) for x, x′ ∈ X
and y, y′ ∈ Y . (meaning that its homotopy groups vanish below dimension m) and Y
is n-connected, then X ∗ Y is (m + n)-connected, e.g. Sm ∗ Sn = Sm+n+1. This
construction can be iterated, namely it is possible to define the n-fold join

X0 ∗X1 ∗ · · · ∗Xn

as a quotient of the space((t0, . . . , tn), (x0, . . . , xn)) ∈ In+1 ×
∏

0≤i≤n

Xi :
∑

0≤i≤n

ti = 1

 .

When ti = 0, the coordinate xi is irrelevant. The set of points with tn = 0 is the
(n− 1)-fold join X0 ∗ · · · ∗Xn−1.

For a topological group G, let EnG be the n-fold join of G with itself. It is (n − 1)-
connected, even if G itself is not path connected. It is also a G-space, with G acting
by left multiplication on the coordinates in G. This action is free; no point is left fixed
by any nontrivial element of G. Using the inclusion maps EnG → En+1G (which
commute with the G-action) we can let n go to ∞ and obtain a contractible free G-
space EG. Its orbit space is denoted by BG and is called the classifying space of G.
This construction is due to Milnor [Mil56]. It has the following properties.

(i) BG is path connected and G is homotopy equivalent to ΩBG, which means
that πi(G) = πi+1(BG). If G is discrete, then

πi(BG) =

{
G for i = 1
0 otherwise.

(ii) BG is functorial in G, meaning the a group homomorphism φ : G → H
induces a map Bφ : BG → BH . If A is a abelian group, the multiplication
map A × A → A is a homomorphism leading to a map BA × BA → BA.
It is known that this makes BA itself into a topological abelian group, so the
classifying space construction can be iterated. If A is discrete, then

πi(B
nA) =

{
A for i = n
0 otherwise,

so BnA is the Eilenberg-Mac Lane space K(A,n).
(iii) Let G be the n-dimensional orthogonal group O(n) or the n-dimensional uni-

tary group U(n). There is an n-dimensional real [complex] vector bundle ξnR
over BO(n) [ξnC over BU(n)] with the following universal property: any such
bundle over a paracompact space X is induced by a unique (up to homotopy)
from X to the classifying space, and the bundles over X induced by two such
maps are isomorphic iff the maps are homotopic. Details can be found in
[MS74].

for each V ∈ I G such that for each V,W ∈ I G the following diagram commutes

I G(V,W )

E

��

D // TG(DV , DW )

TG(DV ,gW )

��
TG(EV , EW )

TG(gV ,EW ) // TG(DV , EW ).
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Here the vertical and horizontal arrows pointing toward TG(DV , EW ) are respectively
composition with gW and precomposition with gV .

For each virtual representation U −W there is a spectrum SU−W defined by

(SU−W )V = T (SW , SU+V ).

The group of homotopy classes of equivariant maps πGV−W (X) = [SV−W , X] depends
only on the isomorphism class of V −W , which is an element in the orthogonal repre-
sentation ring RO(G). Thus we get homotopy groups graded over RO(G) rather than the
integers. These groups are collectively denoted by πG? (X), with the five pointed star ? in
place of the usual six pointed asterisk ∗.

For any subgroup H ⊂ G, there is a restriction functor iGH : SG → SH , so we also
have homotopy groups πH? (X) graded over RO(H). In the case of the trivial subgroup
we denote this by πu∗ (X), the homotopy of the underlying (nonequivariant) spectrum of
X . For each subgroup H , when the subscript is an ordinary integer (meaning a trivial
representation of H), we are looking at H-equivariant maps from spheres fixed by H , so
we have

πH∗ (X) = π∗(X
H)

where XH is the fixed point spectrum of H .
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[Tho54] René Thom. Quelques propriétés globales des variétés différentiables. Comment. Math. Helv., 28:17–
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