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1. Introduction

In this note, we will outline the arguments used to compute the homotopy of
the spectrum EOf(p−1)(Z/p), providing an essentially complete argument in the
case f = 2. Many of the key features of the full argument are present here: the
use of infinite descent and the use of equivariant methods to produce geometric
differentials. Our primary purpose is to present the basic ideas while we finish
writing the full forms.

2. Group Action

We have the following description of the cohomology of Z/p with coefficients in
the Lubin-Tate ring.

Theorem 1 ([3]). Modulo the image of the transfer map,

H∗(Z/p;E2(p−1)∗) = Fpn [[δ1]][β][∆±1]⊗ E(h1,0, h2,0),

together with a class on the zero line of the form h1,0h2,0/β, where β is the period-
icity generator for H2(Z/p;Z) and has bidegree (−2, 2), ∆−1 is the multiplicative
norm of a distinguished invertible element in degree −2 (essentially u), δ1 is a
multiplicative norm in degree 0, and hi,0 are exterior classes with the usual May
names.

The argument in [3] is stronger than we need in this context. We can use
Ravenel’s “Method of Infinite Descent” to deduce the group cohomology and the
names of the elements [6, Chapter 7]. We summarize these results here.

The formulas of Devinatz and Hopkins [2] on the action of the Morava stabilizer
group on the Lubin-Tate ring allow us to show that Z/p-equivariantly, Ef(p−1)∗T (f)
has a very simple form. Let

R =W(Fpn)[t1, σ(t1), . . . , σp−1(t1), t2, . . . , σp−1(tf )][∆̄− 1
pf−1 ],

where ∆̄ = N(σ(tf )− tf ) · · ·N(σp−1(tf )− tf ), and let S = Fpn [s1, . . . , sf ] (viewed
as an ungraded ring). The ring S becomes a Z/p-algebra by declaring si to be
invariant for i < f , and σ(tf ) = tf + 1. We also get a canonical equivariant map
R → S which sends ti to si, and let I denote the kernel of this map. Devinatz and
Hopkins’ formulas show three things:

(1) S is Z/p-equivariantly isomorphic to Ef(p−1)∗T (f)/m.
(2) R∧I is Z/p-equivariantly isomorphic to Ef(p−1)∗T (f).
(3) R∧I → S is reduction modulo m.
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We pause here to remark about the differences between this and the group action
theorem. This result hinges on finding a copies of the regular representation. If we
reduce modulo p and the square of the maximal ideal m of Ef(p−1)∗, then we see
that ti generates a copy of the regular representation for all i. In particular, since
regular representations are rigid, we conclude R is essentially Ef(p−1)∗T (f).

We can now use Ravenel’s method of descent to convert this information into
group cohomology information for EOf(p−1)∗ [6]. The underlying idea is to pretend
that T (i) is an E∞ ring spectrum and to resolve a T (i)-module by T (i + 1) in
the category of T (i)-modules. More specifically, the idea is to form the usual
cosimplicial Adams resolution of Baker and Lazarev [1]:

M ∧T (i) T (i + 1) ⇒ M ∧T (i) T (i + 1) ∧T (i) T (i + 1) . . . .

In our case, the E2 term for computing the Z/p-cohomology of E2(p−1)∗T (1)
(modulo the image of the transfer map) is given by

Zpn [N(t1)][β][∆±1]⊗ E(h2,0),

since N(t2)pi−1
annihilated h2,i. There is no room for any differentials, so we

conclude that this is E∞.
Repeating this for T (0) = S0 homology, we see that the E2 term for computing

the Z/p-cohomology of E2(p−1)∗ is given by

Zpn [N(σt1 − t1)][β][∆±1]⊗ E(h1,0, h2,0).

For degree reasons, we again conclude that all of the classes present here are per-
manent cycles, and therefore E2 = E∞. This shows that the cohomology of Z/p
with coefficients in E2(p−1)∗ is the action described above. The class N(σt1− t1) is
a ∆ translate of the class δ1 described above.

3. Differentials

3.1. The differentials on β, on ∆, and on h2,0. The key source of differentials
in homotopy fixed point spectral sequences is geometric: find some equivariant
map from a finite spectrum X into En, pass to homotopy fixed points, and analyze
the attaching maps of the cells in XhG. This cellular filtration coincides with the
homotopy fixed point filtration (for X and G sufficiently simple), so we get a map
of spectral sequences which we can readily understand.

As an easy, immediate example, the unit map S0 → En is an equivariant map
(for any subgroup of the Morava stabilizer group). If we take G = Z/p, then this
map induces a map of homotopy fixed points S0hZ/p → EOn. Since S0 has a trivial
Z/p action, the source of this map is the Spanier-Whitehead dual of BZ/p+, and
the top cell, which is unattached, goes in via 1.

In the map of homotopy fixed point spectral sequences, the fundamental class of
the (−2k)-cell hits βk · 1 (and this is essentially generic). Now we use the cellular
structure of the source to conclude our first differential. Milnor showed that the
class b ∈ H2(BZ/p) has completed A∗-coaction given by

b 7→
∞∑

i=0

ξi ⊗ bpi

,

where ξi is the usual Milnor generator of A∗ [4]. In particular, we see that bp and
b are linked by a ξ1-coaction. The class ξpj

i detects by hi,j , by definition, so we
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conclude that there is a differential in the homotopy fixed point spectral sequence
for S0 of the form

d2p−1(b) = h1,0b
p.

The equivariant unit map then produces for us our first homotopy fixed point
differential.

Theorem 2. There is a d2p−1-differential on β:

d2p−1(β) = h1,0β
p.

This geometric argument shows much more, actually. We see that that there is
a kind of “total differential” on β of the form

d∗(β) =
∞∑

i=1

hi,0β
pi

.

The differential visible in any homotopy fixed point spectral sequence built out of
EOn will then see the first non-vanishing term of this, and the target is necessarily
a permanent cycle. In fact, this argument is a universal one: for any E∞ ring spec-
trum on which Z/p acts via E∞ self-maps, there is a differential on the periodicity
generator of this form.

We can apply a very similar argument to get differentials on classes which are
multiplicative norms and on classes which are in H1. Let N be the multiplicative
norm of a class u of dimension 2k. The class u represents a map S2k → En, so N
represents a Z/p-equivariant map

Skρ → En,

where ρ is the complex regular representation of Z/p. Passing to homotopy fixed
points produces yields a map of filtered spectra

SkρhZ/p → EOn.

The homotopy fixed point spectrum of Skρ is the Spanier-Whitehead dual of the
Thom spectrum of −kρ×Z/p EZ/p over BZ/p. To understand the differentials on
∆, we have to understand how the top cell of this dual Thom spectrum attaches to
lower cells. We do so by looking at the Thom class.

Since we are working over C, the representation ρ splits into a sum of 1-dimensional
representations:

ρ = 1⊕ λ⊕ λ2 ⊕ · · · ⊕ λp−1,

where λ is the inclusion Z/p = µp ⊂ C∗. When we form the associated vector
bundle, we conclude that

kρ×Z/p EZ/p =
k⊕ (

1⊕ L⊕ · · · ⊕ Lp−1
)
,

where L is the canonical line bundle on BZ/p. We can also determine how the top
cell in this dual Thom spectrum by considering a trick similar to Milnor’s. In the
Thom spectrum for the canonical bundle, we have that the coaction on the Thom
class is given by

1⊗m +
∑

ξi ⊗ bpi−1m.

The Thom class is multiplicative, and Lj corresponds to pulling back along the
multiplication by j map. Since this sends b to jb, and since jpi−1 = 1 working
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modulo p, we conclude that if m is the Thom class of kρ, then the completed
A∗-coaction on m is given by

(
1⊗ 1 +

∑
ξi ⊗ bpi−1

)−k(p−1)

m.

Just as with β, this gives us the differentials on ∆.

Theorem 3. There is a d2p−1 differential on ∆ of the form

d2p−1(∆) = h1,0β
p−1∆.

Proof. Let bi denote the fundamental class of the (−2i)-cell in the homotopy fixed
point spectral sequence for Skρ. Under the map of homotopy fixed point spectral
sequences, bi 7→ βi∆. In completed A∗-coaction shows us that the Thom class
supports a P1, and this shows that in the homotopy fixed point spectral sequence
for Skρ, we have a differential

d(b0) = h1,0bp−1.

Naturality then implies that we have the desired differential on ∆:

d2p−1(∆) = h1,0β
p−1∆. ¤

We remark that just as with β, there is an underlying total differential involving
terms of the form hi,0β

pi−1∆.
The final case is to understand the differentials on h2,0. The argument is almost

exactly the same as for ∆ and β. The main difference is the complex we map in.
Let Sk → Sk∧S0[Z/p+] = Sk∧Z/p+ denote the transfer map, and let Sk[ρ̄] denote
the equivariant cofiber.

If we have an element u ∈ πkE, then we get a natural equivariant map

Sk ∧ S0[Z/p+] → E.

If Tr(u) = 0, then we know that this equivariant map factors through Sk[ρ̄]. We
therefore get a map of homotopy fixed point spectra

Sk[ρ̄]hZ/p → EhZ/p,

and an associated map of homotopy fixed point spectral sequences. At this point,
the argument is exactly like the argument for β or for ∆.

Theorem 4. There is a d2p−1-differential on h2,0 of the form

d2p−1(h2,0) = h1,0β
p−1h2,0.

We close this subsection with a remark about ∆ translates of β. Any power of
∆ is a norm, so we can apply the same argument. In particular, we can analyze
the “total” differential on ∆ and on any of its β multiples. Degree considerations
then show us the following.

Proposition 1. The class β∆1/(p−1) is a permanent cycle.

Since ∆ has no roots, some explanation is required. This expression simply
means that if ∆pk

is a permanent cycle, then β∆−1−p−···−pk−1
is also. Let b denote

the corresponding permanent cycle. In the course of the computation, we will see
exactly what power of ∆ is needed.



THE HOMOTOPY OF EO2(p−1) 5

3.2. The differential on δ1. We quickly show that δ1 (and in fact, all classes
which are norms of degree zero classes) is a permanent cycle. In fact, the argument
is essentially the same as showing that the unit map is a permanent cycle.

Theorem 5. If Nu is a multiplicative norm in degree 0, then Nu is a non-bounding
permanent cycle in the homotopy fixed point spectral sequence.

Proof. The norm argument produces an equivariant map of the form

S0ρ = S0 → E.

Passing to homotopy fixed points yields a map

D(BZ/p+) = (S0)hZ/p → EhZ/p,

and the norm map is carried by the 0-cell. Since this is the disjoint base point,
we conclude that it is a permanent cycle in the homotopy fixed point spectral
sequence for (S0)hZ/p, and therefore a permanent cycle in the homotopy fixed point
for EOp−1. ¤

In particular, we conclude that any element like δ1 (so any element of the form
N(ui) in the higher homotopy fixed point spectral sequences) is a permanent cycle.

3.3. The differential on ∆p. The previous discussion of the geometric differen-
tials shows that the leading term of the differential on ∆p has the form

d(∆p) = h1,1β
p2−p∆p.

However, h1,1 is not present on the 1-line. We can identify this with elements
of higher filtration, using a cohomological version of the EO2(p−1) based Atiyah-
Hirzebruch spectral sequence for T (1). The spectrum T (1) has the property that
BP∗T (1) = BP∗[t1], and the class tp

i

1 is attached to the bottom cell by h1,i. There
is therefore an algebraic Atiyah-Hirzebruch spectral sequence of the form

E1 = H∗(Z/p; E2(p−1)∗)[t1] =⇒ H∗(Z/p;E2(p−1)∗T (1)).

The d1-differential on t1 is given by d1(t1) = h1,0, since t1 detects h1,0. For degree
reasons, the algebraic spectral sequence then collapses, giving us the homotopy fixed
point spectral sequence E2 term for the homotopy of EO2(p−1) ∧T (1) (modulo the
image of the transfer):

E2 = E(h2,0)⊗ Fpn [β, ∆±1, tp1].

Ravenel has shown that h2,0b
p
2,0 = 0 in the homotopy of T (1) [5]. This means

that we must have an identical relation in the EO2(p−1)-homology of T (1). From
the above discussion, we know that

d2p−1(∆) = h1,0β
p−1∆ = 0,

and ∆ therefore survives through the E2p-page. For degree reasons, we therefore
must have a differential on tp1.

Theorem 6. There is a d2p−1-differential on tp1 of the form

d2p−1(t
p
1) = h2,0β

p−1.
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This differential is morally similar to the differentials on ∆, β, and h2,0. Part of
the proof of the general theorem involves a generalization of this: in the homotopy
fixed point spectral sequence for T (i)∧EOf(p−1), there is a differential of the form

d2p−1(t
p
i ) = hi+1,0β

p−1.

This is closely tied to the failure of T (i) to be an E∞-ring spectrum.
There is a corresponding Toda-style differential:

d(h2,0t
p(p−1)
1 ) = b2,0β

(p−1)2 .

Since b2,0 is a ∆-translate of β, this produces a horizontal vanishing line in the
spectral sequence and the spectral sequence collapses.

Corollary 1. In the homotopy fixed point spectral sequence for EO2(p−1),

h1,1 = h2,0β
p−1.

Corollary 2. There is a d2p2−1-differential on ∆p:

d2p2−1(∆p) = h2,0β
p2−1∆p.

This allows us to fully compute the homotopy of EO2(p−1).

4. Computation of the Homotopy

Since all of the algebraic generators with the exception of δ1 support differentials,
we will write everything in terms of permanent cycles we will deduce from the
differentials on ∆ and ∆p.

Since the differentials on ∆ and h2,0 have the same sign, the Leibnitz rule shows
that the class a2 = h2,0∆−1 is a cycle through at least d2p−1. We also already saw
that b = β∆1+p and δ1 are cycles (though b only through the range ∆p2

is). This
lets us rewrite the E2-term (as always, modulo the image of the transfer) as

E(h1,0, a2)⊗ Fp[b]⊗ Fp[[δ1]][∆±1].

The d2p−1 differential is

d2p−1(∆) = h1,0β
p−1∆ = h1,0b

p−1∆p2
.

Every term on the right-hand side is a permanent cycle, and we can apply a
Toda style argument to see that

d2(p−1)2+1(h1,0∆p−1) = b1,0b
(p−1)2∆p2(p−1),

where
b1,0 = 〈h1,0, . . . , h1,0︸ ︷︷ ︸

p

〉 = δ1β∆p−1.

This last expression reduces to δ1b∆2p, so we conclude that the differential is

d2(p−1)2+1(h1,0∆p−1) = δ1b
(p−1)2+1∆p2(p−1)+2p.

This leaves a large collection of cycles: δ1, ∆p, b, a2, and h1,0∆i for 0 ≤ i ≤ p−2.
We now consider the differential on ∆p:

d2p2−1(∆p) = h2,0β
p2−1∆p = a2b

p2−1∆p3+p2
.

All of the terms with the exception of a2 are visibly cycles, so we conclude that a2

must be as well (the b-torsion at this stage was controlled by differentials for which
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a2 was known to be a cycle). We could actually conclude this from an argument
similar to that of β∆1/(p−1) being a permanent cycle: were such a thing to make
sense, h2,0β

−1 is a permanent cycle. Thus

h2,0β
p−1 = h2,0b

p−1∆p2−1 = a2b
p−1∆p2

is a cycle for as long as βp is (in fact, we get much more, since the differential on
βp is essentially that of ∆p and the target is h2,0-torsion). In particular, we see
that there could not be any lower differentials.

Since bp2−1h1,0 = 0, we conclude that all of the ∆p multiples of the classes
h1,0∆i survive. Since δ1b

p2−1 = 0, we also conclude that the ∆p multiples of δ1

also survive.
There is a Toda style differential originating from this differential:

d2(p2−1)(p−1)+1(a2∆p(p−1)) = b2b
(p2−1)(p−1)∆p2(p2−1),

where again
b2 = 〈a2, . . . , a2︸ ︷︷ ︸

p

〉 = ∆−pβ∆p2−1 = b∆p2
.

This shows that the higher differential has the form

d2(p2−1)(p−1)+1(a2∆p(p−1)) = b1+(p2−1)(p−1)∆p4
.

In particular, we conclude that the spectral sequence has a horizontal vanishing
line at s = 2 + 2(p− 1)(p2 − 1), and Es = E∞.
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