
1 Background and Outline

Central to algebraic topology are computations and the techniques to evaluate and interpret them.
These radiate out into modern mathematics, answering questions in geometric topology, algebraic
geometry, and more. They also provide a framework for further analysis and lead to refinements of
previously understood work.

From its inception in Poincaré’s Analysis Situs, algebraic topology has played algebraic data
and techniques against geometric ones. A spectacular example is Pontryagin’s seminar work on
framed bordism, in which he showed framed manifolds up to bordism are the same as homotopy
classes of maps between spheres. He developed the techniques of surgery theory to compute these,
successfully determining the first two stable stems geometrically. He failed in the next dimension
only to recognize that the obstruction to framed surgery, known now as the Kervaire invariant,
need not vanish in dimension 2.

A great deal of work in algebraic topology since has revolved around settling the Kervaire
invariant one problem: when are framed manifolds not frame bordant to spheres. Kervaire described
a generalization of Pontryagin’s work [34], using it to show the existence of a non-smoothable 10-
manifold. Kervaire-Milnor built on this and Milnor’s exotic 7-spheres to link the number of exotic
smooth structures on the n-sphere to the nth stable homotopy group of spheres [42], [35], showing
that the subgroup of the stable stems corresponding to framed homotopy spheres has index at most
two in the stable stems and that the quotient is generated by a manifold of Kervaire invariant one.
This was distilled by Browder to a question of the survival of a particular family of elements in the
Adams spectral sequence [11].

Hopkins, Ravenel, and I recently solved this problem, using techniques and computations in
C8-equivariant homotopy theory [29]. There is a rich and complicated literature on equivariant
homotopy theory for finite and compact Lie groups G. However computations are very difficult
and few are known. The heart of the projects described below is to use the skills, techniques, and
understanding garnered from the solution to broaden our knowledge of equivariant computations
and, by universality of certain maps, of the homotopy groups of spheres.

Equivariant methods have a rich life in the homotopical approaches to algebraic K-theory.
Bökstedt showed that there is a genuine S1-equivariant model for topological Hochschild homology
(THH) [10], and the Dennis trace from the algebraic K-groups to the Hochschild homology refines
to a map of spectra from the K-theory spectrum to THH. Building on this, Bökstedt-Hsiang-
Madsen and Hesselholt-Madsen produced a tower of spectra built out of the fixed points of THH
for finite subgroups of S1 [8], [24]. The trace map lifts to the limit of this tower and serves as a good
approximation to the algebraic K-theory. These methods have produced beautiful results, showing
close connections between the equivariance and algebraic geometry, and they suggest an interplay
between K-theory and chromatic height, dubbed “chromatic red-shift” by Rognes. Projects below
use tools from Hill-Hopkins-Ravenel to produce new models of THH with nice formal properties
and to push further computations.

Kervaire Invariant One Problem and new equivariant tools

Building on our previous collaborative efforts to understand the homotopy groups of the Hopkins-
Miller spectra (a continuation of which is described in Section 3.2), Hopkins, Ravenel, and I proved
the following theorem [29].
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Theorem 1. There are manifolds of Kervaire invariant one only in dimensions 2, 6, 14, 30, 62,
and possibly 126.

To prove this, we lifted Browder’s result to the Adams-Novikov spectral sequence and then
recast it first as a question about the C8-homotopy fixed points of a particular test spectrum ΩO
(which is a convenient stand-in for the Hopkins-Miller spectrum EO4(C8)). This we then rephrased
as a question in genuine equivariant homotopy theory, showing

1. the homotopy group π−2Ω
C8
O is zero,

2. the homotopy groups of ΩhC8
O are 256 periodic, and

3. the natural map ΩC8
O → ΩhC8

O is an equivalence.

Proving these three steps required new tools and approaches, all of which continue to inform my
research and all of the proposed projects. Of these, the most important are the norm functor
(which is used to build ΩO as a C8 commutative ring spectrum) and the slice filtration (elementary
computations in the associated spectral sequence show the remaining results).

The norm

Constructing ΩO required a way to multiplicatively induce an H-spectrum to a G-spectrum. This
is achieved by our norm functor. We begin with the Landweber-Araki Real bordism spectrum
MU R and apply the norm to get a G-spectrum MU (G), the underlying spectrum for which is just
MU ∧(|G|/2). Then ΩO is a localization of MU (C8).

The norm has an algebraic antecedent, the Evens transfer [18], and homotopical versions were
studied by Greenlees-May (where we see that the norm gives rise to equivariant power operations)
[22]. The underlying concept is simple: take an H-spectrum X and smash together G/H (twisted)
copies of X. Thus if X is a representation sphere SV , then NG

HS
V = SIndV .

Since the smash product is the coproduct in commutative ring spectra, it comes as no surprise
that the norm is the left adjoint to the forgetful functor from G commutative ring spectra to H
commutative ring spectra. The properties of a left adjoint were instrumental in producing G-
equivariant families out of H-equivariant maps from spheres, leading, for example, to a method of
killing a G-equivariant collection of homotopy elements.

Actually proving much of what we needed required a more general (and then conceptually
cleaner) description. If we consider symmetric monoidal diagram categories, then we have norms
associated to morphisms of indexing categories analogous to covering spaces. For equivariant spec-
tra, this gives both classical induction (using the symmetric monoidal structure induced by the
wedge) and our norms (using the smash product), and it provides a way to interpret both as an
enrichment of the symmetric monoidal product to G-sets. This extension allows a unified treat-
ment of the constructions, basic computations, and homotopical properties. It also provides a clean
framework for the localization work described in Section 2 and the on-going work on THH described
in Section 4.

The slice filtration

The slice filtration is an equivariant filtration generalizing work of Dugger for G = C2 and loosely
modeled on the motivic analogue due to Voevodsky [15], [50, 52, 51]. The C2-equivariant version
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was studied by Hu-Kriz in their analysis of MU R [32], and they provide a nice connection between
it and the motivic version [33].

The construction mirrors the classical Postnikov tower. To form the stages of the Postnikov
tower, we nullify all maps from spheres of some fixed connectivity. In the equivariant case, we
kill the G-space of all maps from spheres of a fixed connectivity, which is equivalent to nullifying
all induced spheres of that connectivity. For the slice tower, we use a new kind of connectivity
(building on the larger number of spheres in the equivariant context). We declare that the spectra
G+ ∧H SkρH−ε are n-slice connected whenever k|H| − ε > n (here and henceforth, ρH denotes the
regular representation of H, while ε is either 0 or 1). The slice tower is the associated nullification
tower.

One important way that this differs from the Postnikov tower is that if k is non-negative, then
G+ ∧H SkρH−ε, while slice (k|H| − ε− 1)-connected, is only (k− ε− 1)-connected as an equivariant
spectrum. This means that nullification tower for slice n-connected things can change homotopy
groups below dimension n, and the slice tower spreads each homotopy group over several layers.

For a general G and X, we know almost nothing about the slices of X or the associated slice
spectral sequence. With the exception of slices in dimensions congruent to 0 or −1 modulo the
order of G (which are equivalent to full subcategories of the category of Mackey functors), we know
little about the categories of n-slices. The slice primer described in Section 3.1 explores this in
more detail. Nevertheless, for MU (G), we determined all of the slices, showing that the odd slices
are contractible and the even slices are wedges of spectra of the form G+ ∧H SkρH ∧ HZ. The
number of summands and the isotropy are all determined combinatorially by the structure of the
underlying homotopy as a G-module.

It is immediate that the same result is true for ΩO, from which we see the vanishing result
already on the E2-page of the slice spectral sequence. A basic understanding of the differentials
gave the needed periodicity and showed that the fixed and homotopy fixed points agree. One of
the projects described below is to complete these computations and apply them to Hopkins-Miller
spectra.

Outline

In Sections 2 through 4, I will describe the major projects I intend to work on. Particular goals
will be listed, both as “goals” and as “conjectures”. Section 2 describes work with Hopkins on
equivariant localizations and questions related thereto. Section 3 begins with a discussion of my slice
primer and continues with problems related to determining the homotopy groups of the higher real
K-theories and MU (G). Section 4 explores the impact of norm and slice machinery on computations
in topological Hochschild homology.

I will discuss the broader impacts of the project in Section 5. The final section documents my
prior support and the publications that resulted from it.

2 Equivariant Localizations and GL1

While working to reconcile the natural connections between G/N -spectra and G spectra with the
obvious symmetric monoidal structures, I discovered that localizations of equivariant commutative
ring spectra need not be commutative ring spectra. This was wildly unsettling! However, it became
clear that this should not be expected; even in the algebraic context of Green functors, arbitrary
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localizations do not preserve Tambara functors (the algebraic structure exhibited by equivariant
commutative rings [12]). On the other hand, inverting norms from the trivial group does.

Hopkins and I built on this algebraic understanding, recognizing that the key issue is that an
arbitrary localization need not preserve norms. With this insight, it was easy to see a sufficient
condition which would allow copying the standard proof that localization preserves commutative
rings found in Elmendorf-Kriz-Mandell-May [16].

Theorem 2. If the norm of an acyclic spectrum is acyclic, then the localization preserves commu-
tative rings.

The cleanest argument for this actually works for enriched symmetric monoidal categories.
Equivariant commutative ring spectra are tensored over G-sets (and therefore G-spaces), and this
tensoring operation actually arises from an enriched tensor product on G-spectra. Hopkins and my
result can now be reformulated in a more general way: if the category of acyclics is a symmetric
monoidal category enriched over G-sets, then localization preserves commutative rings.

Along the way, we noticed that there is a hierarchy of notions of “commutative” in the equiv-
ariant context. These are the multiplicative analogue of the various notions of equivariant spectra,
interpolating between naive and genuine and modeled on the representations by which we can
desuspend. There is a straightforward, operadic definition of these forms of commutative algebras:
algebras over the operad L(U) = L(Un, U), the linear isometries operad based on a G universe
U . This is an operad in G-spaces, and all of the spaces in it are underlain by an E∞ operad.
The key fact is that a non-trivial G-action on L(U) can produce fixed points in the algebras over
the operad. The two extreme examples are U the trivial universe, which gives us no new fixed
points (so in particular the free algebra over this on G+ has no geometric fixed points) and U a
complete universe, the algebras over which are commutative algebras (and these have interesting
fixed points).

These notions have an intuitive formulation using the enriched symmetric monoidal structure
or equivalently using the norm. If G/H embeds in U and R is an L(U)-algebra, then we have a
map NG

H (R)→ R. This approach then gives a refinement of the earlier stated result.

Theorem 3. If R is a genuine G-commutative ring spectrum, and if NG
H preserves acyclics for all

H such that G/H embeds in U , then the localization of R is a L(U)-algebra.

In particular, since NG
G is the identity, we see that at the very worst, localization takes G-

commutative ring spectra to algebras over the trivial linear isometries operad. Building on this
requires relatively straightforward result that must be known to experts.

Conjecture 2.1. There are symmetric monoidal category structures on genuine equivariant spectra
for which L(U)-algebras are the commutative algebras, just as for S-modules.

This is similar to Elmendorf-May’s work on commutative rings in equivariant spectra indexed by a
universe U [17]. They key difference is that here there is a different universe indexing the additive
and multiplicative structures.

The localization result and the companion results about the norm interlace the various sym-
metric monoidal structures. One exciting application of this work is the different versions of GL1

in the equivariant context. In the case of G a finite group (the only case we consider), GL1 of an
L(U)-algebra is again an algebra over L(U), and these are simply equivariant spectra indexed on
U rather than on a complete G-universe. The norm maps seem to give rise to the needed transfer
maps on GL1.
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Goal 2.2. Understand the interplay between the multiplicative structure with its norms and the
additive structure of GL1 with its transfers.

3 Equivariant computations, EOn(G), and MU (G)

3.1 Slice Filtration Primer

There are very few equivariant computations in the literature. Since the slice spectral sequence
provides a fantastic tool for approaching these, I wrote a self-contained introduction [26]. It began
with a review of the salient features from the Hill-Hopkins-Ravenel paper, and then it answered
several questions posed to me at various talks on the slice filtration. In particular, I showed several
criteria which allow a direct comparison of “slice dimension” and CW-dimension, building a large
number of spaces and spectra for which the slice dimension is known. For example, if X is the
k-skeleton of an n-dimensional CW -spectrum Y such that the slice dimension of Y is at least n,
then the slice dimension of X is at least k. Similarly, if V = R ·X is the permutation representation
associated to a G-set X, then the slice dimension of SV is at least |X|.

Using these slice dimension results, I turned to Mackey functors and the Burnside ring. For the
groups Cpn , I showed that the topological slice filtration of the spectrum HM for a Mackey functor
M coincides with a natural algebraic filtration based on the kernels of restrictions to subgroups.
This is a very natural algebraic condition, leading to the following conjecture.

Conjecture 3.1. The natural filtration by kernels of restriction maps on M coincides with the
effect in homotopy of the slice filtration on HM for all finite G.

In fact, the proof given in the paper applies to any group for which all subgroups are normal.
The proof of the equivalence of the two natural filtrations on HM relied on an understanding

of the interplay of the slices of G/N -spectra and the slices of G-spectra. There is a natural “pull-
back” map which embeds G/N -spectra into G-spectra [38]. Natural adjunctions similar to those
in Greenlees-May give bounds on the relative slice dimensions [21].

Theorem 4. If k is 0 or 1 modulo |G/N |, then (k−1)-slices for G/N pull back to (k|N |−1)-slices
for G.

For Eilenberg-Mac Lane spectra HM , this was sufficient to show that the slice filtration on HM
and the algebraic filtration on M agree, since all of the resulting filtration quotients are pulled-
back 0-slices. However, for other dimensions, I could only provide bounds on the slice dimensions
of pulled-back slices.

Conjecture 3.2. The (k − 1)-slices for G/N pull back to (k|N | − 1)-slices for G for all k.

On particularly nice application for the previous theorem is when N = G. In this case, every
integer is zero or one modulo |G/N |. The slice tower for G/G-spectra is just the ordinary Postnikov
tower. Since the slice tower then pulls back to the slice tower, we see that for spectra whose H-fixed
points are contractible for proper subgroups H, the slice tower is simply a reindexed form of the
Postnikov tower. All equivariant spectra have a filtration which carves out these geometric fixed
point pieces (this is the isotropy separation sequence), and the slice tower for a general spectrum
then reassembles these sheared Postnikov towers for the various geometric fixed points.
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3.2 The homotopy groups of Hopkins-Miller higher real K-theories

Fix a perfect field k of characteristic p > 0, and let F be a formal group over k. Then there is a
complex orientable spectrum E(k, F ) whose associated formal group is the universal deformation
of F , the coefficients of which are

π∗E(k, F ) ∼= W(k)[[u1, . . . , un−1]][u
±1],

where n is the height of the formal group and W is the Witt vector functor.
The Hopkins-Miller theorem says that E(−,−) is actually a functor from perfect fields and

formal groups of finite height to E∞-ring spectra [48, 20], and if k = Fpn and F is the Honda
formal group law of height n, then we denote E(k, F ) by En and call it the Lubin-Tate spectrum.
By the Hopkins-Miller theorem, this is an E∞-ring spectrum on which the Morava stabilizer group
acts by E∞-ring maps. In particular, for finite subgroups G, we can define the “higher real K-theory
spectra” EOn(G) as

EOn(G) = EhGn .

These are again E∞-ring spectra. Work of Adams-Baird, Ravenel, Behrens, Goerss-Henn-Mahowald-
Rezk, and Behrens-Lawson has shown that the spectra EOn(G) for various G serve as nice approx-
imations to the K(n)-local sphere, assembling into diagrams that approximate or directly produce
this localization [47], [5], [19], [6].

For p = 2, many of these spectra have more familiar names. For n = 1 and G = C2, EO1(C2) is
the 2-completion of KO, and for n = 2 and G = Q8oC3, the semi-direct product of the quaternions
with C3, EO2(G) is the 2-completion of TMF , the periodic spectrum of topological modular forms.
Finally, for any n and G = C2, Averett has shown that EOn(C2) is the K(n)-localization of the
fixed points of the Real Johnson-Wilson spectrum ER(n) [4].

The spectra EOn(G) have the added advantage of being relatively computable. The Adams-
Novikov spectral sequence for EOn(G) is the homotopy fixed point spectral sequence

Es,t2 = Hs
(
G;πt(En)

)
⇒ πt−sEOn(G).

The Nilpotence Theorem shows that although this spectral sequence is an upper-half plane spectral
sequence, it converges strongly with a horizontal vanishing line [14]. In particular, there are only
finitely many differentials to determine. These are very difficult to determine in practice.

When n = (p− 1) and G = Cp, Hopkins and Miller computed the differentials in this spectral
sequence, determining the torsion in the homotopy groups of EOp−1(Cp) [31]. This computation
provides an initial connection to the Kervaire problem and was instrumental to our thinking, since
it provides a rigidification of (and correction to) Ravenel’s original approach to the odd-primary
Kervaire invariant one problem [46]. In an earlier collaborative effort, Hopkins, Ravenel, and I
worked out the homotopy fixed point differentials for EOf(p−1)(Cp), but we had little success for
larger groups G.

Goal 3.3. Use the new equivariant approaches and machinery to revisit the homotopy of EOn(G),
deriving differentials in the homotopy fixed point spectral sequence and determining extensions.

Since the slice filtration is one of equivariant spectra, we must first take En as a naive spectrum
with G-action and produce a genuine one. This is easily accomplished by simply pushing it forward
to genuine spectra (or equivalently, smashing with the genuine S0). The Nilpotence Theorem shows
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that for all non-trivial subgroups H of G, the Tate spectrum EtHn is contractible. This means we
can actually produce a G-commutative ring spectrum for which the fixed and homotopy fixed points
agree and are EOn(G).

While conceptually similar, the existence of MU R shows that the approaches are very different
for p = 2 and for p > 2. All of this work will be joint with Hopkins and Ravenel.

3.2.1 EOn(G) at 2 and the equivariant homotopy groups of MU (G)

One way to express Averett’s result is that there is a Real orientation of En viewed as a C2-spectrum.

Conjecture 3.4. Averett’s orientation can be refined to a C2-equivariant commutative ring map
MU R → En.

Since the norm is the left adjoint to the forgetful functor on equivariant commutative rings, if
C2m acts on En (which simply requires that 2m−1 divides n), then there is an equivariant commu-
tative ring map

NC2m

C2
MU R → En.

This means we can make tremendous progress by computing the equivariant homotopy groups of
MU (G), and this is accessible through the slice filtration. For G = C2, the slice differentials also
recover all of the homotopy fixed point differentials, and for larger groups, we will have similar
results by the connection between the slice and homotopy fixed point spectral sequences.

In Hill-Hopkins-Ravenel, we determined a large family of differentials based only on elementary
considerations of the geometric fixed points. This completely determined the orientability of sign
representation spheres and their norms for MU (G)-modules, and the differentials were sufficient
to determine the required 256-fold periodicity by explicitly producing permanent cycles. However,
even for C4, we did not completely determine all differentials and extensions in the spectral sequence.

Goal 3.5. Determine the remaining differentials and the Mackey functor homotopy groups of
MU (G).

In particular, there is a natural subgoal of particular interest.

Goal 3.6. Compute π126Ω
hC8
O and see if it settles the remaining Kervaire case.

I have several observations and conjectures about what happens in the slice filtration, and these
make me optimistic that we can completely understand the slice spectral sequence for MU (G).

On the computational front, the fact that this is a spectral sequence of Mackey functors imposes
tremendous constraints. The underlying homotopy is just that of an (|G|/2)-fold smash product
of MU , and the homotopy groups of the C2-fixed points were essentially determined by Araki and
Hu-Kriz [3], [32]. In particular, the Hurewicz image in π∗MUC2

R contains η, ν, and σ, but with the
exception of η, none occur in the “expected” slice filtration of 1. The fact that ν occurs in filtration
3 for the C2 fixed points shows, for example, that in the C4 fixed points, ν is detected in filtration
1 and that 2ν is a non-zero filtration 3 element. Similar, though trickier, computations show that
for G = C8, σ is detected on the 1-line and 4σ is a non-zero element (of filtration 7). Thus the
filtration on which an element is detected can drop as the order of the group increases.

While increasing the order of the group does increase the possible orders which appear on torsion
elements (transfer arguments showing that the order of the group is an absolute upper bound on
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the torsion exponent of any torsion element), the connection seems to weaken as we approach the
order of key elements. For example, it seems that all of the low dimensional differentials, for any
cyclic 2-group G, conspire to ensure that η3 = 4ν is always zero in the G-fixed points. Similarly,
conjectural computations show that 8σ is also always zero (which in turn means that we have an
element v41 in the G-fixed points for all G).

Conjecture 3.7. For elements in the Hurewicz image, the order they have when they first appear
in their expected (the Adams-Novikov) filtration is the largest order they ever achieve.

As |G| increases, so should the Hurewicz image, and we therefore have a pro-system of com-
mutative rings under π∗S

0 (in fact, a pro-system of homotopy groups of commutative ring spectra,
meaning we have compatibility with power operations). The inverse limit is therefore an interesting
(and at least in low degrees very approachable) quotient of the stable homotopy groups of spheres.
Since, the Hurewicz image for the G-fixed points serves as an upper bound for the Hurewicz image
for EOn(G), this limit (and its finite stages) provides essential input for the EOn(G) computations.

There is another, more direct connection, at this point supported only by toy models. The
underlying homotopy of MU (G) is polynomial on (|G|/2)-classes in every even dimension. For
easy of notation, we will denote the (|G|/2) generators in degree 2i by G · ri. There are also
identical versions built out of BP , though these are not known to be E∞. The classes ri refine to
C2-equivariant maps r̄i : S

iρ2 → MU (G), and similarly for BP (G). As described in Hill-Hopkins-
Ravenel, we can form MU (G)-module spectra

BP 〈f〉(G) = BP (G)/(G · r̄2j−1, j > f).

If G = C2, then BP 〈f〉(G) is the Real Johnson-Wilson theory BP 〈f〉R constructed by Hu-Kriz
and studied Kitchloo-Wilson [32], [36], [37]. For G larger than C2, then the spectrum BP 〈f〉(G) is
not underlain by BP 〈f〉 but rather by an algebraic extension of BP 〈f · |G|/2〉, and hence it sees
increasingly more chromatic phenomena as |G| increases.

Empirical evidence suggests that the conjectured equivariant map MU (G) → En actually factors
through BP 〈f〉(G) if n = f · |G|/2. Moreover, the passage from BP 〈f〉(G) to En seems to be a
composite of two functors: invert the norm of r2f−1, thereby passing to E(f)(G), and then K(n)-
localize. Thus BP 〈f〉(G) serves as a connective, global G-equivariant approximation to En. As an
added advantage, the slices of BP 〈f〉(G) are readily determined by those of MU (G), and the slice
differentials follow immediately from those on MU (G). The chief downside to this approach is that
the passage from MU (G) to BP 〈f〉(G) is not the killing of a regular sequence, and we therefore do
not even know that BP 〈f〉(G) is A∞.

Goal 3.8. Determine when an RO(G)-graded sequence of homotopy elements in a commutative
ring spectrum is sufficiently “regular” to conclude that the quotient is associative.

Our toy computations again show no obvious obstructions, and for G = C2 and C4 and for
f = 1, the resulting spectrum is actually E∞.

3.3 The Odd Primary Slice Filtration

At odd primes, the situation is much harder. The chief difficulty is a lack of odd-primary analogue
for MU R.
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Goal 3.9. Build an odd-primary analogue of MU R, unlocking many of the tools described at 2 and
for the Kervaire problem.

An immediate application would be the resolution of the 3-primary Kervaire invariant one problem:
the survival of the β3i/3i family.

There is a great deal of anecdotal evidence supporting understanding the slice spectral sequence
for EOn(G) at an odd prime.

In earlier, unpublished work, Hopkins, Ravenel and I showed that the homotopy of En admitted
a particularly simple description as a G-algebra. The key fact was that for n = pk(p − 1) and
G = Cpk+1 , the homotopy looks like a completion of a localization of a polynomial algebra on

pk(p − 1) generators, all of which are essentially permuted by the group (for larger n divisible by
this choice, we simply tensor together several copies), a description exactly analogous to the one
just described for p = 2. The first piece of evidence supporting such a simple story is that there is
an equivariant spectrum W such that the underlying homotopy type is a wedge of pk(p−1) spheres
of dimension exactly the dimension of the polynomial generators, and upon smashing W with HZ,
we get a slice of the appropriate dimension (just as at the prime 2).

Building on this, Hopkins, Ravenel, and I have a toy model for something like the slice spectral
sequence, together with all of the differentials. This guess is formally similar to the case of p = 2,
in that it comes from a global version and the geometric fixed points have a prescribed form. The
second piece of evidence is that based only on these two assumptions, we recover all differentials
we worked out for G = Cp and n = f(p − 1). This analysis only uses equivariant machinery and
language, so in particular, the methods used give an upper bound on the vanishing lines in the
odd-primary homotopy fixed point spectral sequences for EOn(G). We believe this gives a coarse
upper bound for the analogous 3-primary Kervaire invariant one problem.

All progress is hampered by a lack of a “complex orienting” spectrum. With an odd primary
MU R, much of what happens at 2 could simply be copied. Ideally, we could use geometry to
produce a nice, commutative model, but sadly, the obvious guesses all have the wrong equivariant
homotopy type. One approach to this problem is to build the relevant analogue of MU R by hand.
Here there is tremendous support from formal group data. If we forgot about manifolds, then MU R
is classifying a formal group law together with an automorphism (the [−1]-series). The passage to
geometric fixed points amounts the quotient by the group action, and here that results in imposing
a relation [2](x) = 0 on the formal group. This yields Quillen’s description of the formal group
carried by MO [45, 44]. These should be redoable for an odd prime. For p > 2, we want a collection
of (p − 1)-formal groups and isomorphisms between them which are in some sense traceless (one
way to impose this is to look at higher dimensional formal groups which non-canonically split
into 1-dimensional ones). The underlying spectrum is then MU ∧(p−1) with a curious Cp-action.
The geometric fixed points are now the spectrum carrying the universal formal group in which
[p] is zero, and just as for p = 2, this is a wedge of Eilenberg-Mac Lane spectra (indexed by the
non-vi-generators of MU ).

This description gives us another, possibly more direct, construction. We need only find a naive
Cp-action on MU ∧(p−1) or more easily on BP∧(p−1). Since Cp has only two subgroups, it is easy
to describe a Cp equivariant spectrum: the isotropy separation sequence shows us that we need
only specify a naive Cp spectrum, the desired geometric fixed points, and a “completion map” from
the desired geometric fixed points to the Tate spectrum of the naive Cp-spectrum. For BP∧(p−1),
we want the geometric fixed points to be HFp, and so we need a Cp action for which the Tate
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spectrum is an HFp-module. It is not difficult to write out a Tate spectral sequence on BP∧(p−1)

together with a pattern of differentials which produces HFp (and in fact, the differentials then again
imply all of the homotopy fixed point differentials for EOf(p−1)(Cp) for all f), but this requires a
Cp-action which is at the very least correct on homotopy groups.

Goal 3.10. Produce a Cp-action on BP∧(p−1) for which the Tate spectrum is HFp.

4 New Approaches in Topological Hochschild Homology

4.1 Topological Hochschild Homology and the norm

Angeltveit, Blumberg, Gerhardt, Lawson, and I are using the Hill-Hopkins-Ravenel norm technology
to produce a new, conceptually simpler model for topological Hochschild homology. The model
arose from a simple observation: when viewed H-equivariantly, the standard cyclic bar model for
THH(R) is built out of NH

e (R). This lead to a fairly straightforward definition for THH(R) as an
S1-equivariant spectrum: the left adjoint to the forgetful functor from S1-equivariant commutative
rings to ordinary commutative rings. For sake of comparison, let T (−) denote this left adjoint.

Goal 4.1. Show that T (R) is equivalent to THH(R) as a cyclotomic spectrum and explore the
computational and theoretical applications.

The unit map R → THH(R) is a commutative ring map, and therefore corresponds to an S1-
equivariant map T (R) → THH(R). It is not difficult to show that this map is an H-equivariant
equivalence for all finite H. The key step here is that “multiplication by h” is an H commutative
ring map NHR → NHR and this gives rise to a “tensor product over H”. The Bökstedt-Madsen
model then has

THH(R) = S1 ⊗H NH
e (R),

and it is not difficult to compare this to the left adjoint. This model is also visibly cyclotomic,
and the identifications with the Bökstedt-Madsen model respect this structure [9]. The Bökstedt-
Hsiang-Madsen TC and the Hesselholt-Madsen TR-tower care not about the actual S1-equivariant
homotopy type but rather about a “compatible Cn-homotopy type for all n”. From this perspective,
our model of THH is interchangable with the Bökstedt-Madsen one.

In fact, we do not know if the S1-fixed points (or equivalently, the S1-geometric fixed points)
for this version of THH agree with those of the Bökstedt-Madsen model. We suspect that general
properties of this left adjoint construction show that the S1-geometric fixed points of THH(R) are
just R, which differs from the standard constructions. This inequivalence of S1-fixed points implies
that T (R) is not S1-equivariantly equivalent to Bökstedt’s THH(R).

Being a left adjoint, T (R) has very nice formal properties. A useful application of this new model
is a genuine S1-equivariant model for THH of a Thom spectrum Mf generalizing the Blumberg-
Cohen-Schlichtkrull non-equivariant model and generalizing the Madsen model for suspension spec-
tra [7], [41].

Goal 4.2. Describe a new model for THH of a Thom spectrum as a cyclotomic spectrum.

This suggests that it will have similar computational benefits for approaching the algebraic K-
theory of Thom spectra. Additional applications are two natural relative versions described below
of both THH and the TR tower.
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4.2 Computations with equivariant THH and Thom Spectra

One of the most exciting aspects of the joint project with Angeltveit, Blumberg, Gerhardt, and
Lawson on a new equivariant model for THH is the possibility for various flavors of relative versions.
In particular, we can perform two kinds of constructions:

1. THHG for G-equivariant ring spectra, where G is a subgroup of S1, and

2. THHR in the category of R-modules for a fixed commutative ring spectrum R.

The aim of this project (joint with the above named collaborators) is to explore both aspects.

4.2.1 THHC2(MU R)

Since MU is a Thom spectrum, our joint work provides an S1-equivariant description of THH(MU )
analogous to the Blumberg-Cohen-Schlichtkrull one [7]. The spectrum THH(MU ) provides a fan-
tastic and important initial example for all complex orientable theories (and probably recording
essentially complete information for Landweber exact homology theories). However, even with our
description the homotopy groups of the fixed points will be difficult to determine. For example, if
H ⊂ S1 is a finite subgroup, then there is a natural H-equivariant map

NH
e MU → THH(MU ),

which generalizes the non-equivariant unit map MU → THH(MU ). Even in π0 do complications
arise: π0(N

H
e MU ) is the Burnside Mackey functor for H. This suggests that the fixed points will

become increasingly difficult to compute.
If we replace MU with MU R and replace THH with a relative version, then we have a less

universal example which is still very interesting. The relative model for THH here is THHC2 , the
“left adjoint to the forgetful functor from commutative S1-ring spectra to commutative C2-ring
spectra”. We want to think of THHC2(MU R) as S1 ⊗C2 MU R to THH(MU )’s S1 ⊗ MU . The
canonical C2 equivariant map NC2

e MU → MU R induces a natural S1-equivariant map

THH(MU ) = S1 ⊗C2 N
C2

{e}MU R → S1 ⊗C2 MU R,

and the natural map from THH(MU ) to THH(R) for R a Real oriented theory will descend to this
relative form. Since many naturally occurring spectra are Real oriented, this provides a potentially
simpler intermediary.

Goal 4.3. Determine the equivariant homotopy groups of THHC2(MU R).

This relative version will be much more computable than the absolute version. In particular,
the unit map from NH

e MU is replaced with a map

NH
C2

MU R → S1 ⊗C2 MU R.

Even on π0 the story is much simpler: π0MU (H) is the constant Mackey functor Z rather than the
Burnside ring. Thus for this relative THH all transfer maps automatically act as multiplication by
the index of one subgroup in another.
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This equivariant unit map also allows us to apply our slice spectral sequence computations for
the spectra MU (H), immediately giving information about the homotopy groups of THHC2(MU R).
In particular, we know that the Hurewicz image for the H-fixed points factors through that of
MU (H). This means that the Hurewicz image of a spectrum closely related to the relative TR(MU ),
the spectrum TF (MU R) (defined just as in the absolute case), will factor through the inverse limit
described above.

Moreover, I suspect that the computation will be accessible via slice-theoretic methods.

Conjecture 4.4. The slices of THHC2(MU R) are as simple as those of the norms of MU R.

While they will no longer be concentrated in even dimensions, they should all be induced regular
representation spheres from finite subgroups of S1. In both the case of MU (H) and this relative
THH, the key issues for computing the slices are a control of the underlying homotopy and of π0.
A slice filtration of this form would make computations very straightforward.

4.2.2 Relative THH

The second flavor of relative THH is THH in a category of R-modules for a fixed R algebra. This
project is very promising but much more speculative than the previous ones. As described above,
the norm functor really requires only a symmetric monoidal category, arising from the interplay of
indexing categories for diagram categories.

Goal 4.5. Form an S1-equivariant model of THH in the category of R-algebras.

We already know the underlying homotopy type that we want. The cyclic bar construction used
by Bökstedt to define THH applies equally well to define THHR on the category of R-algebras. The
problem is that this does not work well with the S1-equivariance. In particular, we have no way to
apply this sort of approach to a relative TC a la Bökstedt-Hsiang-Madsen.

The norm machinery seems to provide a way around this. The most obvious approach is to
simply use the norm in H-spectra (forgetting for the time being the R-module structure). Being
a symmetric monoidal functor, this takes R-modules to NG

H (R)-modules. Ignoring for the mo-
ment issues of cofibrancy, this construction has the desired interaction with geometric fixed points
(potentially resulting in a cyclotomic spectrum). This, however, has replaced R-modules with a
different category since we have neglected structure. To get the functor we want, we must return
to R-modules while remembering the equivariance.

The norm will of course always change categories: it takes an H-indexed diagram category
to a G-indexed diagram category. This approach is more in line with what we want: H-indexed
diagrams in R-modules should yield G-indexed diagrams in R-modules. For universal reasons,
the basic example to understand is R as an R-algebra. The simplest example is G = C2. Here
the symmetric monoidal product is smash over R, and the norm from the trivial group to C2 is
underlain by R ∧R R. The C2 action flips the two factors, and we see that as a commutative C2

ring spectrum, we are looking at R ∧ S0.
For a general G, the same will be true for the norm of R in the category of R-modules, and

thus the norm is a functor from R-modules to G-equivariant (R ∧ S0)-modules. Again ignoring
cofibrancy issues, these two norms explain how to determine the relative one. Since R ∧ S0 is a
G-commutative ring spectrum, it receives a map NG

e R→ R ∧ S0. Base-changing NG
e M along this

map realizes the norm in R-modules.
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Verifying the homotopical properties will allow us to mirror our construction of THH in this
relative context. Thus our THH will be the left-adjoint to the forgetful functor from S1-equivariant
R ∧ S0-algebras to R-algebras, and for finite subgroups H of S1, this will be identified with
S1 ⊗H NH

e (−) (where our tensoring operation takes place in R-algebras). The formal properties
of the interaction of the norm and geometric fixed points will ensure that the resulting spectrum
is cyclotomic, and we can therefore copy the TR and TC machinery to produce R-module spectra
TRR(A) and TCR(A). These will be approximations to the yet unconstructed relative K-theory
spectrum, and this will help provide intuition for how to understand this relative K-theory.

An illuminating example will be to work in the category of HZ-algebras. This category is
algebraic, and an understanding of the relative norm in this category should produce interesting
computations. We hope that my student Kristen Mazur’s on-going work determining the homotopy
groups of NG

H (R) for an H-spectrum R will make this an approachable computation.

4.3 Equivariant THH and Red-shift

Angeltveit and Gerhardt, generalizing work of Hesselholt-Madsen, computed the RO(S1)-graded
equivariant homotopy groups of THH(Fp) [1], [25]. Since RO(S1) is the natural indexing set
for equivariant homotopy, the eventual goal is to find an algebraic description of these groups,
similar to the Hesselholt-Madsen deRham-Witt vector formulation for the integer graded homotopy.
My recent work with equivariant computations has given me facility with computing equivariant
homology and cohomology with coefficients in a general Mackey functor, and Gerhardt and I decided
to apply this to reassess the Angeltveit-Gerhardt result via the equivariant Atiyah-Hirzebruch
spectral sequence.

The computation is actually surprisingly simple: the Mackey functor homotopy groups of
THH(Fp) and the linear ordering of subgroups of Cpk conspire to produce a very sparse result
for any representation sphere. Taking as input the Hesselholt computations of TC of truncated
polynomial algebras [23], we produced a family of d3 differentials and companion extensions. These
are exactly the same as the extensions and differentials observed in the non-equivariant Atiyah-
Hirzebruch spectral sequence for the topological K-theory of spectra like RPn! This observation
recovers Rognes’s results about chromatic red shift in algebraic K-theory (since it means the k-
invariant is Q1 mod pn), but it is unclear exactly how THH is producing the v1 elements. In
general, it is difficult to find naturally occurring commutative ring spectra of finite chromatic
heights greater than 2. Rognes’s red shift immediately produces whole families simply by iterating
algebraic K-theory or by analyzing THH.

Our approach also provides a foil to the more traditional approaches to computing the RO(S1)-
graded homotopy, in that it provides a direct connection between the geometric, isotropy separation
methods employed by Angeltveit-Gerhardt and homotopical data from the Postnikov tower as
recorded by differentials in the Atiyah-Hirzebruch spectral sequence. Gerhardt and I intend to
continue exploring this interplay.

Goal 4.6. Sketch analogues of these results for HZ and `, and then attempt ko and tmf .

The RO(G)-graded equivariant homotopy groups of THH(HZ) and THH(`) were also deter-
mined, with finite coefficients, by Angeltveit-Gerhardt, and for ko and tmf , the starting points are
computations of Angeltveit-Hill-Lawson and Bruner-Rognes [2], [13].

The chief difficulty of this approach is that we do not have even a rudimentary understanding
of the Steenrod algebra for Mackey functors which are not fields in the sense of Lewis [39]. For
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Mackey fields, Oruç has shown that the Steenrod algebra in this case is the ordinary one twisted
by the endomorphisms of the Mackey functor [43]. Sadly, the Mackey functors which arise in THH
are not Mackey fields, and the resolution of them by fields is difficult. For G a cyclic 2 group, the
spectrum BP 〈0〉(G) described above is HZ, and this provides a method for computing HZ ∧HZ
and from this HF2 ∧HF2, recovering the result of Hu-Kriz for G = C2 [32], but for larger groups,
this gives a difficult to use description at best.

Goal 4.7. Identify and construct in an elementary way natural elements corresponding to the
Milnor primitives Qi.

5 Broader Impact

The broader impact of my project centers around three major foci: working with early-career
mathematicians and underrepresented groups, providing opportunities for mathematical discussion
through major conference organization, and exploring new technology to help reach people outside
of my field, including non-mathematical audiences.

My collaborators come from all different stages of their careers, including many who are starting
their careers. Tyler Lawson received his PhD in 2004, Vigleik Angeltveit received his PhD in 2006,
and Teena Gerhardt received her PhD in 2007. Additionally, I have three graduate students:
Kristen Mazur, Calder Wishne, and Carolyn Yarnall. I have very much enjoyed the experience
of advising and intend to continue working directly with graduate students over the course of the
project. My work with my two female graduate students, Kristen and Carolyn, also underscores
my commitment to underrepresented groups in math. I directly mentor them as their advisor, but
cognizant of my limitations helping them navigate the waters of being women in mathematics, I
have striven to introduce them to more senior women in the field.

While at UVA, I have run working groups and seminars to help introduce graduate students and
undergraduates to some of the approaches to computational homotopy theory. I taught a graduate
course on spectral sequences in algebraic topology, posting notes and recorded lectures online for
anyone to access, and I have corresponded with a number of people who have used these with their
own students or for their own research. I intend to supplement this with additional short notes
covering basic topics in the field, building a small library of freely accessible material running the
gamut of computational techniques in algebraic topology.

Since taking over as the primary organizer for the topology seminar at UVA, I have transformed
it into an active forum for outside speakers. We have especially stressed inviting early-career
mathematicians, especially ones who are on the job market. For the last three semesters, we have
averaged about 5 young speakers (about a third of whom are women), and we have a large number
signed-up for next semester. This influx of outside speakers benefits everyone: the speaker, the local
graduate students, and the topology faculty have all greatly enjoyed speaking about new ideas.

During the next three years, I am co-organizing three international conferences: one at Banff
in February 2012 (“Algebraic K-theory and Equivariant Homotopy Theory”), one at UVA in June
2012, and the first semester long program in algebraic topology in 25 years at MSRI in Spring 2014.
These programs will be fantastic opportunities for broader dissemination of mathematical concepts
(both directly related to my proposal and in the entire field), and they will undoubtedly result in
new working relationships and collaborations. We have also worked diligently with both Banff and
MSRI to ensure the participation of underrepresented groups, and with MSRI, we have crafted
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explicit plans for a workshop for women and for recruiting from institutions historically associated
with people of color.

MSRI also presents an opportunity to merge my conference organizing with my work with early
career mathematicians. Teena Gerhardt and I intend to run a “graduate student retreat” at MSRI.
This will help students (and early career post-docs) navigate the confusing waters of applying for
jobs, transitioning from graduate school, and writing grants. Gerhardt and I will co-facilitate,
bringing together more senior people in the field to work with panels and small groups, answering
questions and providing advice.

Finally, I am also interested in ways to reach a broader audience. After we announced the
solution to the Kervaire problem, Hopkins, Ravenel, and I met with Dana Mackenzie, a freelance
mathematical writer who described our work for a mathematically savvy audience in “What’s
Happening in the Mathematical Sciences” [40]. This discussion stressed for me the importance
and difficulty of explaining results to lay audiences. Finding appropriate toy models which allowed
people to understand metaphorically or metonymically the work we did was challenging but also
forced us to fit our work into a broader tapestry of mathematics. I intend to continue this, writing
and recording as video podcasts advanced mathematical concepts for an audience of non-specialists.
Technology like iTunesU and YouTube make distribution of recordings, PDFs, and videos easy, and I
think both interested non-mathematicians and working researchers could benefit from this material.

6 Results from Prior NSF Support

The research described below was all supported by NSF grant DMS0906285: Computations in
Classical Chromatic Homotopy Theory, Algebraic K-Theory, and Motivic Homotopy for $100,886.
The grant runs from June 2009 through the end of May, 2012. The first three Kervaire papers
below were also supported by a post-doc from 2009-2010, sponsored by the Chas-Hopkins-Stoltz-
Sullivan-Teichner FRG, NSF grant DMS-0757293: “FRG: Collaborative Research: How the Alge-
braic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory ”. I received
$60,000 and health insurance.

During this grant, all of the papers related to the Hill-Hopkins-Ravenel solution to the Kervaire
invariant one problem were written. While our solution was announced prior to the receipt of
the grant, the write-up required substantial new mathematics, all of which was done during the
period covered by the grant [29]. Additionally, two survey articles, one covering the history and
one covering the proof, were written for Harvard’s “Current Developments in Mathematics” lecture
series [30], [28]. The article about the proof also included several independent arguments for
key parts of the solution, providing additional intuition and other approaches. The Slice Primer
described in Section 3.1 was also worked out, written, and submitted during this time [26].

I also wrote and published my paper computing Ext over the motivic analogue of the subalgebra
A(1) of the Steenrod algebra over the field R [27]. This introduced my “ρ-Bockstein spectral
sequence” used extensively now by Isaksen in his computations with the motivic Adams spectral
sequence. The computation also provides a close connection to the motivic image of J (and K(1)-
local phenomena), and it recovers the computation of Suslin on the algebraic K-theory of R [49].

While supported by these grants, I gave 14 talks domestically. I also gave 10 talks at in-
ternational conferences, including a series of 3 lectures at the Oberwolfach topology meeting in
September 2010.

15


