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1. Introduction

The concept of quadratic forms can be traced back to ancient civilizations such
as the Babylonians and Greeks. The Greeks, particularly Euclid in his famous
work “Elements,” presented geometric methods for solving quadratic equations. The
Greeks’ focus on geometry and their methods continued to influence mathematicians
for centuries. Rules for quadratic equations were also discussed in ‘The Nine Chap-
ters on the Mathematical Art’ composed in China by 200 BCE. The general formula
for solving a quadratic equation in one variable - equivalent to the modern symbolic
formula - was first stated by the Indian mathematician Brahmagupta in his treatise
Brahmasphutasiddhanta in 628 CE. 1

A quadratic form over a commutative ringR is a homogeneous polynomial
∑
aijxixj

of degree 2 in n variables x1, . . . , xn with coefficients aij in R. In particular, the sum
of squares x21 + x22 + . . .+ x2n is a quadratic form defined over any R.

The problem of representing integers as sums of squares dates back to ancient
times. The Greeks, especially the Pythagoreans, were interested in the properties
of numbers and their geometric interpretations. The concept of sums of squares is
closely related to the Pythagorean theorem, conceived in Mesopotamia (1800 BC),
first stated precisely in the Shulbha Sutra of Baudhayana (800 BC) and a statement
of proof from China.2

In the 7th century, the Indian mathematician Brahmagupta considered what is
now called Pell’s equation, x2 − ay2 = 1, and found a method for its solution.

One of the earliest and most significant results in the area of quadratic forms is
Fermat’s theorem on sums of two squares. In the 17th century, Fermat stated that
an odd prime number p can be expressed as a sum of two squares if and only if p is
congruent to 1 modulo 4.

Another milestone in the study of sums of squares is the Four Square Theorem,
proven by Lagrange in 1770. This theorem states that every positive integer can be
represented as the sum of four squares.

Euler’s Sums of Two Squares Identity

(x21 + x22)(y
2
1 + y22) = (x1y1 − x2y2)2 + (x1y2 + x2y1)

2

1https://en.m.wikipedia.org/wiki/Brahmagupta
2https://m.rediff.com/news/special/did-india-discover-pythogoras-theorem-a-top-

mathematician-answers/20150109.htm
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shows that the set of sums of two squares in a commutative ring is closed under
multiplication; this statement was generalized to the binary quadratic form x2 +ny2

by Brahmagupta. Similar formulas also exist for the sums of 4 and 8 squares.
In the beginning of the 19th century Gauss completed the theory of composition

of binary quadratic forms over the integers. Far-reaching generalizations in the 21st
century are the higher composition laws of Bhargava leading to asymptotics for the
number of number fields with bounded discriminant of degree at most 5 (see [1]).

In the early 20th century, the main focus of the study of quadratic forms is the
arithmetic theory over the rings of algebraic integers and number fields. Witt in
the 30’s laid the foundation of the algebraic theory of quadratic forms that deals
with the study of quadratic forms over arbitrary fields. There was great progress in
this study initiated by Pfister’s theory of multiplicative forms in the 60’s. Several
open questions and conjectures were posed since then, a major one being the Milnor
Conjectures. Since the 80’s, the introduction of powerful techniques from algebraic
geometry transformed the study of quadratic forms, leading to great leaps like a
solution of the Milnor Conjecture.

In this article we trace the progress in the algebraic theory of quadratic forms
over the last four decades. For simplicity we only consider fields of characteristic
different from 2, although the theory of quadratic forms in characteristic 2 is also
well developed. We stay aside from the theory of quadratic forms over commutative
rings such as rings of algebraic integers etc.

In Section 2 we briefly recall basic definitions. In the next section we introduce a
method of the study of quadratic forms in the last four decades based on algebraic
geometry. We introduce the quadric hypersurface (quadric) Xq associated with a
quadratic form q and a tool based on the study of closed subvarieties (algebraic
cycles) on the products of quadrics. In Section 4 we state two theorems on the proof
of Milnor Conjectures that compare the graded Witt ring and the graded mod 2
Galois cohomology via Milnor’s K-theory of fields.

In the next section some discrete invariant of fields (the u-invariant and the
Pythagoras number) that are defined by means of quadratic forms are considered.
Although these invariant were defined a while ago, the newly developed techniques
allowed us to obtain recent results in this direction. There are big open questions
concerning these invariants. The determination of the u-invariant of function fields
of curves over totally imaginary number fields is the ultimate goal while even the
finiteness for Q(

√
−1) remains open. Another big open question is the determination

of the Pythagoras number of rational function fields over the field of real numbers
and the question is open even for R(x1, x2, x3).

Another discrete invariant, the dimension of a quadratic form, is discussed in
Section 6. One of the old intriguing questions on the determination of all possible
splitting patterns of quadratic forms of given dimension is still unsolved.

In the last section we introduce the Chow Motives technique. Indecomposable
direct summands of the motives of quadrics can be visualized in the diagrams defined
in this section.
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2. Definitions

Basic references are [13] and [2].
Let F be a field of characteristic not 2, that is 1 + 1 6= 0 in F . We write F× for

the multiplicative group of nonzero elements in F .
A quadratic form on a finite dimensional vector space V over F is a map q : V → F

such that
1) q(xv) = x2q(v) for all x ∈ F and v ∈ V and
2) the map bq : V ×V → F defined by the formula bq(v, v

′) = 1
2
[q(v+v′)−q(v)−q(v′)]

is a (symmetric) bilinear form.
Note that the bilinear form bq reconstructs q by the equality q(v) = bq(v, v). Thus,

to give a quadratic form on a vector space V is the same as to give a symmetric
bilinear form on V .

The integer n = dim(V ) is called the dimension of the form q. Let {v1, v2, . . . , vn}
be a basis for V . If v =

∑
xivi with xi ∈ F is an arbitrary vector in V , we have

q(v) =
∑
i,j

aijxixj,

where aij = aji = bq(vi, vj). Thus q is given by a quadratic homogeneous polynomial
over F . We say that q is nondegenerate if the (symmetric) n × n matrix A = (aij)
is nondegenerate. This is equivalent to the nondegeneracy of the bilinear form bq.
Below we will consider nondegenerate quadratic forms only.

The determinant of A is well defined modulo the subgroup F×2 of squares in F×.

The discriminant of q is (−1)
n(n−1)

2 det(A) in F×/F×2.
Two quadratic forms q : V → F and q′ : V ′ → F are isomorphic if there is an

F -linear isomorphism f : V → V ′ such that q(v) = q′(f(v)) for all v ∈ V . The
forms q and q′ are isomorphic if and only if they are given by the same quadratic
polynomial in some bases for V and V ′.

Let a1, a2, . . . , an be nonzero elements in F . We write 〈a1, a2, . . . , an〉 for the
quadratic form

∑
aix

2
i on the space of n-columns V = F n. It is called the diagonal

form and it has a diagonal matrix in the standard basis for F n. Every quadratic
form over F is isomorphic to a diagonal form 〈a1, a2, . . . , an〉 for some (not uniquely
determined) ai ∈ F×.

If q : V → F is a quadratic from over F and L/F is a field extension, one can
define a quadratic form qL on the L-space L⊗F V over L with the associated bilinear
form b on L ⊗F V defined by b(x ⊗ v, x′ ⊗ v′) = xx′bq(v, v

′) for all x, x′ ∈ L and
v, v′ ∈ V .

The orthogonal sum of two forms q : V → F and q′ : V ′ → F is the quadratic
form q ⊥ q′ on V ⊕ V ′ defined by (q ⊥ q′)(v, v′) = q(v) + q′(v′).

The form H = 〈1,−1〉 is the hyperbolic plane. A quadratic form is hyperbolic if it
is isomorphic to the orthogonal sum nH of n > 0 copies of H.
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A quadratic form q : V → F is called isotropic if there is a nonzero vector v ∈ V
such that q(v) = 0; otherwise, q is called anisotropic. Every form q is isomorphic
to qan ⊥ kH, where qan is an anisotropic form and k > 0. The integer w(q) = k is
called the Witt index of q. It is equal to 0 if and only if q is anisotropic.

Two quadratic forms q and q′ are Witt equivalent if the forms qan and q′an are
isomorphic. The set W (F ) of equivalence classes of quadratic forms over F is the
Witt ring of F with respect to the orthogonal sum and tensor product of forms. For
example, W (R) is isomorphic to Z: an integer n > 0 corresponds to the form n〈1〉
under the isomorphism.

One of the most important properties of the Witt ring: two quadratic forms q
and q′ are isomorphic if and only if q = q′ in W (F ) and dim(q) = dim(q′).

The ideal I(F ) of even dimensional forms in W (F ) is called the fundamental
ideal. The quotient W (F )/I(F ) is isomorphic to Z/2Z. The powers In(F ) of the
fundamental ideal form a filtration on W (F ). The discriminant yields an isomor-
phism between I(F )/I2(F ) and F×/F×2. The determination of all the quotients
In(F )/In+1(F ) is one of the fundamental problems of the algebraic theory of qua-
dratic forms (see Section 4 below).

Let a1, a2, . . . , an ∈ F×. The 2n-dimensional quadratic form

〈〈a1, a2, . . . , an〉〉 = 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗ · · · ⊗ 〈1,−an〉
is called an n-fold Pfister form. The nth power In(F ) of the fundamental ideal in
the Witt ring is generated by the n-fold Pfister forms as an abelian group. An n-fold
Pfister form is either anisotropic or hyperbolic.

Example 2.1. 1) Let K = F (a1/2) be a quadratic field extension of F . The norm
form q : K → F defined by q(x+ ya1/2) = x2 − ay2 is the 1-fold Pfister form 〈〈a〉〉.
2) Let a, b ∈ F× and let Q be a quaternion 4-dimensional (associative noncommu-
tative) F -algebra with basis {1, i, j, k} and multiplication table i2 = a, j2 = b and
k = ij = −ji. The reduced norm form q : Q→ F defined by q(x + yi + zj + tk) =
x2 − ay2 − bz2 + abt2 is the 2-fold Pfister form 〈〈a, b〉〉.
3) For a triple of elements a, b, c ∈ F× there is an octonian (nonassociative noncom-
mutative) 8-dimensional algebra C that admits a norm quadratic form q : C → F
that is the 3-fold Pfister form 〈〈a, b, c〉〉.

Note that norm forms q in all the examples are multiplicative, i.e., the product
of two values of q is a value of q. By the Hurwitz Theorem, there are no algebras
of dimensions not 1, 2, 4 and 8 with the multiplicative norm. Nevertheless, the set
of nonzero values of an n-fold Pfister form is closed under multiplication for every
n. In particular, the sum of 2n squares is a multiplicative quadratic form over any
field.

3. Algebro-geometric methods

During the last three decades the methods of algebraic geometry interfaced al-
gebraic theory of quadratic forms. One can associate to every quadratic form
q : V → F over F the quadric hypersurface Xq (simply called the quadric of q)
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given by the equation q(v) = 0 in the projective space P(V ). The quadric Xq has
dimension dim(q) − 2 and it is smooth if q is nondegenerate. The variety Xq is
integral if dim(q) > 3. By definition, Xq has a point over F if and only if the form
q is isotropic. More generally, Xq has a point over a field extension L/F if and only
if q is isotropic over L. For example, the quadric Xq, where q = x2 + y2 + z2, has
no points over R, but it has points over C.

The two quadrics Xq and Xh are isomorphic if and only if the quadratic forms q
and h are similar, that is each of the forms q and h is an F -multiple of the other.

We write F (q) for the function field F (Xq). Note that q is isotropic over F (q).
Indeed, if x1, x2, . . . , xn are homogeneous coordinates in P(V ), we can view the
rational functions xi/x1 as the elements in F (q)× satisfying q(1, x2/x1, . . . , xn/x1) =
0 in F (q). Thus, the equation q(v) = 0 has a nonzero solution over the field F (q).

The field F (q) is a generic splitting field of q: the form q is isotropic over a field
extension L/F if and only if there is an F -place from F (q) to L, that is an F -algebra
homomorphism of a valuation F -subalgebra R ⊂ F (q) to L.

Consider the following example of an application of the theory of algebraic cycles.
Let q be an anisotropic quadratic form over F and let L/F be a field extension.
We would like to know when q is isotropic over L, i.e., the equation q(v) = 0 has a
nonzero solution over L. Typically, the extension L/F is finitely generated, so we
can choose an integral variety Y over F such that L is isomorphic to the function
field F (Y ) of Y over F . By the main property of the quadric, Xq has a point over
L = F (Y ) if and only if there is a morphism Spec(L)→ Y or, equivalently, a rational
morphism Y 99K Xq defined on a nonempty open subset U ⊂ Y . The closure of the
graph of U → Xq in the product Y ×Xq yields a cycle class of dimension d = dim(Y )
in the Chow group CHd(Y ×Xq) of rational equivalence classes of cycles of dimension
d on Y ×Xq.

Conversely, a prime algebraic cycle on Y × Xq of dimension d that is birational
when projecting to Y yields a rational morphism Y 99K Xq and therefore a point of
Xq over L.

Thus, one can use the machinery of algebraic cycles. In particular, one can obtain
new cycles by intersecting with other cycles (for example, with the Chern classes
of the vector bundles such as the tangent bundle), by considering pull-backs and
push-forwards with respect to certain morphisms and also applying the Steenrod
operations modulo 2.

4. Milnor Conjectures

The most spectacular achievement in the algebraic theory of quadratic forms is
the solution of the Milnor Conjectures.

The Milnor K-theory KM
∗ (F ) of a field F is the (graded) quotient ring of the tensor

Z-algebra of the multiplicative group F× by the ideal generated by the tensors a⊗b,
where a, b ∈ F× with a+ b = 1. In particular, KM

0 (F ) = Z and KM
1 (F ) = F×. The

group KM
n (F ) is generated by the symbols {a1, a2, . . . , an}, where ai ∈ F×, that are

multiplicative with respect to every variable (when the other variables are fixed)
and satisfy the Steinberg relation {a1, a2, . . . , an} = 0 if ai + aj = 1 for some i 6= j.



6 ALEXANDER MERKURJEV AND RAMAN PARIMALA

The assignment
{a1, a2, . . . , an} 7→ 〈〈a1, a2, . . . , an〉〉

yields a well defined graded ring homomorphism

sF : KM
∗ (F )→ I∗(F )/I∗+1(F ).

Let ΓF be the absolute Galois group of a field F , i.e., ΓF is the Galois group of a
separable closure of F over F . We write H∗(F ) for the graded cohomology ring of ΓF

with coefficients in Z/2Z. The multiplication in H∗(F ) is given by the cup-product
∪. In particular, H0(F ) = Z/2Z and H1(F ) = F×/F×2. For every a ∈ F× write
(a) for the corresponding cohomology class in H1(F ). The assignment

{a1, a2, . . . , an} 7→ (a1) ∪ (a2) ∪ . . . ∪ (an)

yields a well defined graded ring homomorphism

hF : KM
∗ (F )→ H∗(F )

called the norm residue homomorphism modulo 2. Thus, we have the following
diagram of graded ring homomorphisms

KM
∗ (F )/2KM

∗ (F )
sF

uu

hF

''
I∗(F )/I∗+1(F ) H∗(F )

Milnor has conjectured in the 70’s that both maps sF and hF are isomorphisms for
all fields. This conjecture for n = 2 was settled by the first author in the 80’s leading
to a solution of the longstanding question on the generation of the 2-torsion in the
Brauer group of a field by quaternion algebras.

Voevodsky in [24] proved one of the Milnor Conjectures.

Theorem 4.1. The graded ring homomorphism hF is always an isomorphism.

In the proof Voevodsky introduces a number of revolutionary ideas and tools.
The main tool is the motivic cohomology defined by Voevodsky. Another tool is
the motivic Steenrod operations defined by Voevodsky in analogy with the classical
topological operations. The motivic analogs of some of the basic operations, the
Milnor operations, played an essential role in the proof.

Enriching Voevodsky’s methods, Orlov, Vishik and Voevodsky proved in [16] an-
other Milnor Conjecture.

Theorem 4.2. The graded ring homomorphism sF is always an isomorphism.

In particular, for every n > 0, we get a group isomorphism

cnF = hnF ◦ (snF )−1 : In(F )/In+1(F )→ Hn(F ).

We can call the maps cnF the cohomological invariants of quadratic forms. These
invariants determine anisotropic quadratic forms up to isomorphism as follows. Sup-
pose we are given two anisotropic quadratic forms f and g and we want to decide
whether f and g are isomorphic, or, equivalently, that the form q = f ⊥ (−g) is
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hyperbolic. We compute the cohomological invariants cnF of q one by one starting
with n = 0. Note that the next invariant is defined if the previous one vanishes.

The invariant c0F takes q to its dimension modulo 2 in Z/2Z = H0(F ). If this
invariant vanishes, i.e., q has even dimension, then q ∈ I(F ). The invariant c1F (q)
is equal to the discriminant of q in F×/F×2 = H1(F ). If the discriminant of q is
trivial, the form q belongs to I2(F ) and we can compute c2F (q). This is the class of
the Clifford algebra of q in the subgroup Br(F )[2] = H2(F ) of the Brauer group of
classes of exponent 2. If this vanishes, then q ∈ I3(F ) and so on. If cnF (q) = 0, i.e.,
q ∈ In+1(F ) and dim(q) < 2n+1, then q is hyperbolic ([19, p. 33]) and the form f
and g are isomorphic.

5. Field Invariants

We discuss two integer invariants of fields associated to quadratic forms, namely
the u-invariant and the Pythagoras numbers.

5.1. u-invariant. The u-invariant u(F ) of a field F is the largest dimension of
an anisotropic quadratic form over F . For example u(R) = ∞ and u(C) = 1.
The u-invariant of a finite field is 2. The u-invariant of a local field is equal to 4.
The Hasse-Minkowski Theorem implies that the u-invariant of a totally imaginary
number field is 4. The formula u(F ((t))) = 2u(F ) shows that every power of 2 is the
u-invariant of some field. Breaking the myth that all invariants of fields associated
to quadratic forms are a power of 2, it was shown in [15], that every even integer is
the u-invariant of some field. On the other hand, it is known that the u-invariant is
not equal to 3,5 or 7 ([19, Proposition 1.3, p. 111]). It is expected that every odd
integer > 9 is the value of the u-invariant. Izhboldin has shown in [7] that there are
fields of u-invariant 9. In [22] Vishik proved that every integer of the form 2m + 1
for m > 3 can be the u-invariant of a field.

The behavior of the u-invariant of finite field extensions has been studied exten-
sively. We have the following theorem of Leep for finite field extensions.

Theorem 5.1. ([19, Theorem 3.1, p. 120]) Let L/F be an extension of degree n.
Then u(L) 6 n+1

2
u(F ).

There may be bounds for the u-invariants of finite extensions independent of the
degree of the extensions.

The behavior of the u-invariant under rational function field extensions is not well
understood.

Question 5.2. If u(F ) <∞, is u(F (t)) <∞?.

If this question has an affirmative answer, then it follows that there are bounds
independent of the degree for the u-invariant of finite field extensions. In fact the
above question is wide open if F is a totally imaginary number field. Even for
the function fields of p-adic curves, the question remained open until the late 90’s
when the first finiteness results emerged from Merkurjev and Hoffmann-Van Geel.
A theorem of Saltman on bounding indices of elements in the 2-torsion of the Brauer
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group was pivotal to this theorem. We have the following theorem for function fields
of p-adic curves.

Theorem 5.3. ([17], [18]) Let K be a p-adic field and F the function field of a
curve over K. Then u(F ) = 8.

We have the following more general extension of the above theorem which funda-
mentally uses a theorem of Heath-Brown on the zeros of systems of p-adic quadratic
forms.

Theorem 5.4. ([14]) Let K be a p-adic field and F the function field of a variety
of dimension d over K. Then u(F ) = 2d+2.

We also have the following theorem extending to general complete discretely val-
ued fields, which uses the patching techniques of Harbater-Hartmann-Krashen.

Theorem 5.5. ([4]) Let K be a complete discretely valued field with residue field
κ. Let F be the function field of a curve over K. Suppose that char(κ) 6= 2 and
there exists an integer d such that u(L) 6 n for all finitely generated extensions of
κ of transcendence degree at most 1. Then u(F ) 6 2n.

5.2. Pythagoras number. The Pythagoras number p(F ) of a field F is the smallest
integer n such that every sum of squares in F is a sum of at most n squares in F .

For example p(R) = p(C) = 1. If F is a real number field, then 3 6 p(F ) 6 4 (cf.
[19, p. 95]). The study of the Pythagoras number of fields which are formally real,
i.e., −1 is not a sum of squares in the field, is interesting. The following theorem
answers a question of Pfister.

Theorem 5.6. ([6]) Every positive integer n > 1 is the Pythagoras number of a
formally real field.

The determination of Pythagoras numbers of rational function fields R(x1, · · ·xn)
has a long history. Pfister theory leads to p(R(x1, · · · , xn)) 6 2n (cf. [19, p. 95]).
We have p(R(x)) = 2 and p(R(x1, x2)) = 4 ([19, p. 96]). We have bounds n + 2 6
p(R(x1, · · · , xn)) 6 2n ([19, p. 97]). One has the following sharper bound for
p(F ) if F is a formally real field of transcendence degree d over a subfield, namely
p(F ) > d+ 1 ([3]).

A major open question in this area is the following.

Question 5.7. What is p(R(x1, x2, x3))?

More on the arithmetic side, interesting questions arise concerning the Pythagoras
number of a formally real function field over the field of rational numbers. The
inequality p(Q(x)) 6 8 goes back to Landau (1906) and we have p(k(x)) = p(k)+1 6
5 for real number fields k ([19, Theorem 1.9, p. 100]). Conjecturally for a function
field F in one variable over a number field, p(F ) 6 5 ([19, Conjecture 1.10, p. 100]).
The estimate p(F ) 6 7 is due to Colliot-Thélène and a sharper estimate p(F ) 6 6
is due to Pop ([20]). One has the following general result for a function field F
in d variables over a number field, namely p(F ) 6 2d+1 (cf. [19, p. 100/101]).
This combines the Milnor conjecture and a local-global principle for the Galois
cohomology of higher dimensional function fields due to Jannsen in [8].
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6. Dimensions of quadratic forms

In this section we discuss results on the dimension of quadratic forms satisfying
certain conditions.

6.1. Possible dimensions of anisotropic quadratic forms in In(F ). An aniso-
tropic n-fold Pfister form over F belongs to In(F ) and has dimension 2n. By an
Arason-Pfister theorem, every nonzero anisotropic form in In(F ) is of dimension at
least 2n. Are there other restrictions on the dimensions of anisotropic quadratic
forms in In(F )?

Karpenko proved in [11] the following general result.

Theorem 6.1. Let q be an anisotropic quadratic form such that q ∈ In(F ) for some
n > 1. If dim(q) < 2n+1, then dim(q) = 2n+1 − 2i+1 for some i ∈ {0, 1, . . . , n}. All
other even degrees at least 2n+1 are possible.

For example, the possible dimensions of anisotropic quadratic forms in I4(F ) are

0, 16, 24, 28, 30, 32, 34, 36, . . . .

6.2. Hoffmann’s Separation Theorem. Let q and h be two anisotropic quadratic
forms over F . When is q isotropic over the field F (h)? Equivalently, is there a
rational morphism Xh 99K Xq? If q is hyperbolic over F (h), then dim(q) > dim(h)
([13, Ch. X, Theorem 4.5]). This inequality does not hold in general if q is just
isotropic over F (h).

Example 6.2. Let h be a general n-fold Pfister form (i.e., h is similar to an n-fold
Pfister form) and q a subform of h of dimension > 1

2
dim(h). Over the field F (h)

the Pfister form h is isotropic and hence hyperbolic. Therefore, q is isotropic over
F (h).

Note that the numbers dim(q) and dim(h) in the example are not separated by a
power of 2. The following result proved by Hoffmann in [5] (known as the separation
theorem) explains this observation.

Theorem 6.3. Let q and h be two anisotropic quadratic forms over F . Suppose
that dim(q) 6 2n < dim(h) for some n > 0. Then q is anisotropic over F (h).

6.3. The first Witt index. Let q be an anisotropic quadratic form of dimension at
least 2 over F . The form qF (q) is isotropic. Its Witt index is then positive, denoted
i1(q), and is called the first Witt index of q. The “typical” value of the first Witt
index is equal to 1. If q is a “generic” form, e.g., q = 〈x1, x2, . . . , xn〉 over the field
F (x1, x2, . . . , xn) of rational functions, then i1(q) = 1. On the other hand, if q is an
anisotropic m-fold Pfister form, then i1(q) = 2m−1 since q is hyperbolic over F (q).

All possible values of the first Witt index of all quadratic forms of given dimension
n were determined by Karpenko in [9].

Theorem 6.4. Let q be an anisotropic quadratic form of dimension n. Write n− 1
in base 2:

n− 1 = 2k1 + 2k2 + · · ·+ 2kr
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with 0 6 k1 < k2 < · · · < kr. Then

i1(q)− 1 = 2k1 + 2k2 + · · ·+ 2ks

for some s = 0, 1, . . . , r − 1.

In other words, i1(ϕ)−1 is the remainder upon dividing dim(q)−1 by some power
of 2 less than dim(q). In fact, all values of i1(q) given in the theorem are attained by
some forms over appropriate fields. In particular, the number of possible values of
i1(q) is equal to the number of 1’s in the base 2 expression of the integer dim(q)−1.

Example 6.5. 1) If dim(q) = 2m + 1, then i1(q) = 1. This can also be deduced
from Hoffmann’s Separation Theorem.

2) All possible values of the first Witt index of an anisotropic form of dimension 2m

are the 2-powers 1, 2, 22, . . . , 2m−1. The largest value 2m−1 is the first Witt index of
an m-fold Pfister form.

6.4. Splitting patterns of quadratic forms. Let q be a quadratic form of di-
mension n over F and let

i0 < i1 < · · · < ih−1 < ih = [n/2]

denote all Witt indices of quadratic forms qL over all field extensions of L/F . The
tuple SP(q) = (i0, i1, . . . , ih−1, ih) of strictly increasing integers is called the splitting
pattern of q. The smallest integer i0 is the Witt index of q. If q is anisotropic, i.e.,
i0 = 0, the integer i1 is the first Witt index i1(q).

All possible splitting patterns of quadratic forms of small dimension are deter-
mined by Vishik in [21]. For example, the splitting patterns of anisotropic 9-
dimensional forms are (0, 1, 4) and (0, 1, 2, 3, 4). For arbitrary n, it is unknown
which splitting patterns of n-dimensional forms occur.

Example 6.6. (Excellent form) We employ the following inductive definition. An
anisotropic quadratic form q of dimension n is called excellent if either q = 0 or there
is an excellent form q′ such that dim(q′) < dim(q) and q ⊥ q′ is a general Pfister
form. Quadratic forms of dimension up to 3 are excellent. A form of dimension
4 is excellent if and only if it has trivial discriminant. The splitting pattern of an
excellent form is determined inductively as follows: if in the definition, dim(q) +
dim(q′) = 2m, then

SP(q) = {0} ∪ (SP(q′) + n− 2m−1).

In particular, the splitting pattern of an excellent form q depends just on the
dimension of q. For example, if q is an excellent form of dimension 25, then
SP(q) = {0, 9, 12}.
6.5. Izhboldin dimension. Let q be a quadratic form over F . Izhboldin defined
an integer associated with the quadric Xq, called the Izhboldin dimension:

dimIzh(Xq) = dim(Xq)− i1(q) + 1 = dim(q)− i1(q)− 1,

where i1(q) is the first Witt index of q.

Example 6.7. Let h and q be as in Example 6.2. Then dimIzh(Xh) = dimIzh(Xq) =
2n−1 − 1. Note that q is isotropic over F (h) and h is isotropic over F (q).
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Theorem 6.8. ([10]) Let q be a quadratic form and let Y be a complete (possibly
singular) algebraic variety over F with all closed points of even degree and such that
Y has a closed point of odd degree over F (q) (this holds, for example, if Y has a
point over F (q)). Then dimIzh(Xq) 6 dim(Y ) and in the case dimIzh(Xq) = dim(Y )
the form q is isotropic over F (Y ).

The following corollary can be viewed as a variant of the Separation Theorem.

Corollary 6.9. Let h and q be anisotropic quadratic forms. If h is isotropic over
F (q), then dimIzh(Xq) 6 dimIzh(Xh) and in the case dimIzh(Xq) = dimIzh(Xh) the
form q is isotropic over F (h).

7. Chow motives of quadrics

The constructions and results in this section are due to Vishik (see [21]). There is
a functor from the category of smooth projective varieties to the additive category of
Chow Motives taking a variety X to its motive M(X) and a morphism f : X → Y of
varieties to the class of the graph of f in the Chow group of the classes of algebraic
cycles in X × Y . The motive of the projective space Pn decomposes into a direct
sum Z⊕ Z(1)⊕ · · · ⊕ Z(n), where Z(i) are the Tate motives.

Let X be a quadric of dimension n over an algebraically closed field. Then

M(X) '
{

Z⊕ Z(1)⊕ · · · ⊕ Z(n) = M(Pn), if n is odd;
Z⊕ Z(1)⊕ · · · ⊕ Z(k − 1)⊕ Z(k)⊕ Z(k)⊕ Z(k + 1)⊕ · · · ⊕ Z(n), if n = 2k,

Note that the motive Z(k) appears in the decomposition twice if n = 2k.
We introduce the set of symbols

Λ(X) = Λ(n) = {0, 1, . . . , k, k̄, . . . , 1̄, 0̄},

where k = [n/2] and a bijection between Λ(X) and the set of Tate motives in the
decomposition of M(X) as follows: i↔ Z(i) and ī↔ Z(n− i) for i = 0, 1, . . . , k.

Over an arbitrary field the motive M(X) is a direct sum M1 ⊕M2 ⊕ · · ·Ms of
indecomposable motives. The collection of indecomposable motives Mi in the direct
sum is unique up to isomorphism. Over an algebraic closure of F , every motive Mi

is the sum of certain Tate motives. Thus, the set Λ(X) is the disjoint union of s
subsets Λ1,Λ2, . . . ,Λs so that for every i the elements of Λi correspond to the Tate
motives in the decomposition of Mi over an algebraic closure. The motive M(X) is
indecomposable if and only if s = 1.

We will consider the diagrams (graphs) with vertices given by the set Λ(X). A
connection is an edge in the diagram such that both ends of the edge belong to
the same subset Λi. (But we don’t necessarily connect every two vertices in the
same subset Λi.) We will draw vertices horizontally in the order they appear in the
definition of Λ(X) with one exception: if n is even we draw the vertices k and k̄
one under the other to indicate that they correspond to the same Tate motive Z(k).
Below are the diagrams for a 6-dimensional hyperbolic (respectively, 7-dimensional
generic) quadrics:
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•
• • • • • •

•
• • • • • • • •

Example 7.1. Let q be a subform of dimension 2m−1 + 1 of a general anisotropic
m-fold Pfister form h. Rost proved that there is a direct summand M of the motive
M(Xq) such that over an algebraic closure M is isomorphic to Z ⊕ Z(2m−1 − 1).
This motive depends on h only (not on the choice of q), it is called the Rost motive
of h and denoted Mh.

The motive of the Pfister quadric M(Xh) is isomorphic to Mh ⊕Mh(1) ⊕ · · · ⊕
Mh(2m−1 − 1). For example, if m = 3, the diagram of M(Xh) looks as follows:

•
• • • • • •

•

Example 7.2. Let q be an excellent quadratic form of dimension > 2. The motive
M(Xq) is a direct sum of twists of Rost motives of the general Pfister forms appearing
in the definition of an excellent form. For example, the diagram of the motive of
the 11-dimensional excellent form 〈〈a, b, c〉〉 ⊥ d〈a, b,−ab〉 is as follows:

• • • • • • • • • •

The shape of the diagram depends only on dim(q). All connections in the diagram
for an excellent form are called the excellent connections.

Let q be an anisotropic form with the splitting pattern (i0 = 0, i1, . . . , ih−1, ih)
and X = Xq, n = dim(X). There are the following standard connections in the
diagram of X.

Proposition 7.3. Let i, j = 0, 1, . . . , [n/2] be such that ir−1 6 i, j < ir, where
1 6 r 6 h, and i+ j = ir−1 + ir − 1. Then the symbols i and j̄ are connected in the
diagram of X.

The standard connections for an excellent form coincide with excellent connec-
tions. Vishik proved in [23] that for an arbitrary form excellent connections also
appear in the diagram:

Theorem 7.4. Let q be an anisotropic quadratic form of dimension at least 2 and
let f be an excellent form of the same dimension. Identify canonically Λ(Xq) and
Λ(Xf ). If two symbols are connected in Λ(Xf ), then they are also connected in
Λ(Xq).
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The theorem shows that the diagram of Xf is contained in the diagram of Xq.
In particular, the diagram of an excellent form contains the smallest number of
connections among the diagram of forms of the same dimension.

Example 7.5. Let q be an anisotropic Albert form, i.e., q is a 6-dimensional qua-
dratic form with trivial discriminant. Its splitting pattern is (0, 1, 3). Below are the
two diagrams with the standard and excellent connections respectively.

•
• • • •

•

•
• • • •

•
Combining these diagrams we see that all vertices are connected, hence the motive
M(Xq) is indecomposable.

Indecomposability of the motive of a quadric is used in the following application
due to Izhboldin and Karpenko in [12].

Theorem 7.6. Let q and h be two anisotropic quadratic forms of the same odd
dimension. Suppose that q is isotropic over F (h) and h is isotropic over F (q). If in
addition at least one of the two motives M(Xq) and M(Xh) is indecomposable, then
the forms q and h are similar.
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