ON A PAIRING FOR ALGEBRAIC TORI

A. MERKURJEV

Abstract

Let T be an algebraic torus over a field F. There is a pairing between the groups of torsors for the torus T and its dual with values in the third Galois cohomology group over all field extensions of F. We study the kernel of this pairing.

1. Introduction

For a field F there is a pairing

$$
F^{\times} \otimes \operatorname{Br}(F) \rightarrow H^{3}(F, \mathbb{Q} / \mathbb{Z}(2)), \quad a \otimes v \mapsto a \cup v
$$

where $\operatorname{Br}(F)=H^{2}(F, \mathbb{Q} / \mathbb{Z}(1))$ is the Brauer group of F.
Let L / F be a finite field extension, $x \in L^{\times}$and $v \in \operatorname{Br}(L / F)$ an element of the Brauer group of F that is split by L. By the projection formula,

$$
N_{L / F}(x) \cup v=N_{L / F}\left(x \cup v_{L}\right)=0 \quad \text { in } \quad H^{3}(F, \mathbb{Q} / \mathbb{Z}(2)),
$$

where $N_{L / F}$ is the norm (corestriction) homomorphism.
Conversely, let $a \in F^{\times}$be such that $a \cup v=0$ for all $v \in \operatorname{Br}(L / F)$. Is it true that $a=N_{L / F}(x)$ for some $x \in L^{\times}$? The answer is "no" if, for example, F is a totally imaginary number field since $H^{3}(F, \mathbb{Q} / \mathbb{Z}(2))=0$, but the norm map $N_{L / F}$ is not surjective for a nontrivial field extension L / F.

We can modify the question as follows. Let $a \in F^{\times}$be such that $a \cup v=0$ in $H^{3}(K, \mathbb{Q} / \mathbb{Z}(2))$ for all $v \in \operatorname{Br}(K \otimes L / K)$ and all field extensions K / F. Is it true that a is the norm in the field extension L / F ?

The answer is positive if the extension L / F is so that the relative Brauer group $\operatorname{Br}(K \otimes L / K)$ can be "rationally parameterized". For example, if L / F is cyclic, every element in $\operatorname{Br}(K \otimes L / K)$ is represented by a cyclic simple K-algebra $(K \otimes L / K, t)$, where $t \in K^{\times}$(thus, the group $\operatorname{Br}(K \otimes L / K)$ is parameterized by t). Now take $K=F(t)$ the rational function field in the variable t. If $a \cup(K \otimes L / K, t)=0$ in $H^{3}(K, \mathbb{Q} / \mathbb{Z}(2))$, then taking the residue homomorphism with values in $H^{2}(F, \mathbb{Q} / \mathbb{Z}(1))=\operatorname{Br}(F)$ with respect to the discrete valuation on K given by the parameter t, we get that the class of the cyclic algebra $(L / F, a)$ in $\operatorname{Br}(F)$ is trivial and hence a is the norm in L / F.

For an arbitrary finite field extension L / F we don't know how to answer the question. But if L / F is a Galois field extension, we show in the paper that the answer is positive.

In fact, we will consider a more general problem. Let T be an algebraic torus over F. Write T° for the dual torus. For a field extension K / F, there is a pairing (see [1])

$$
H^{1}\left(K, T^{\circ}\right) \otimes H^{1}(K, T) \rightarrow H^{3}(K, \mathbb{Q} / \mathbb{Z}(2)), \quad u \otimes v \mapsto u \cup v
$$

For example, if $T=R_{L / F}\left(\mathbb{G}_{m, L}\right) / \mathbb{G}_{m}$ for a finite separable field extension L / F (here $R_{L / F}$ is the Weil transfer functor) and $K=F$ we get the pairing between $F^{\times} / N_{L / F}\left(L^{\times}\right)$and $\operatorname{Br}(L / F)$ as above.

The kernel of the pairing is the subgroup of all $u \in H^{1}\left(F, T^{\circ}\right)$ such that $u_{K} \cup v=0$ in $H^{3}(K, \mathbb{Q} / \mathbb{Z}(2))$ for all $v \in H^{1}(K, T)$ and all field extensions K / F. The question is whether the kernel is trivial.

We don't know the answer to this question in general. In the paper we find certain classes of tori T such that the kernel of the pairing is trivial. For example, the kernel is trivial if isomorphism classes of T-torsors over field extensions K / F (i.e., the group $H^{1}(K, T)$) can be "rationally parameterized". This is the case when the classifying space $\mathrm{B} T$ is retract rational (see [8, Theorem 5.8.]). In Corollary 5.4 we show more generally that the kernel of the pairing is trivial if $\mathrm{B} T$ is 2-retract rational (for the definition see [8]). The latter is equivalent to 2-retract rationality of the dual torus T° by Theorem 7.3 .

Let Π be the Galois group of the splitting field E of a torus T over F. The character group \widehat{T} of T over E is a Π-lattice. The torus T is determined by the field extension E / F and the Π-lattice \widehat{T}. In the first part of the paper we define a finite abelian elementary 2 -group $\Phi(\Pi, M)$ for every finite group Π and a Π-lattice M such that for every torus T with character Π-lattice $\widehat{T}=M$ there is a surjective homomorphism from $\Phi(\Pi, M)$ to the kernel of the pairing for T (Proposition 5.1). We also show that for every П-lattice M this surjective map is an isomorphism for a "versal" torus T (Proposition 5.6). Thus the study of the kernel of the pairing reduces to the study of the group $\Phi(\Pi, M)$.

We don't know whether the group $\Phi(\Pi, M)$ can be nontrivial. It is shown in the paper that $\Phi(\Pi, M)$ is zero for certain classes of lattices (see Proposition 2.1). In Section 6 we give several examples of tori T with the trivial kernel of the pairing. Note that in these examples $B T$ is not 2-retract rational.

The kernel of the pairing for a torus T is isomorphic to the torsion subgroup of the second Chow group $\mathrm{CH}^{2}(\mathrm{~B} T)$ of the classifying space of T. Therefore, the triviality of the group $\Phi(\Pi, \widehat{T})$ implies $\mathrm{CH}^{2}(\mathrm{~B} T)_{\text {tors }}=0$.

In the appendix we present some results on p-retract rationality of algebraic tori and their classifying spaces.

The field F in the paper is arbitrary. If $\operatorname{char}(F)=p>0$, the definition of the p-component of the cohomology groups $H^{i+1}(F, \mathbb{Q} / \mathbb{Z}(i))$ requires extra care (see, for instance [5, Part 2, Appendix A]).

Acknowledgment: The author is grateful to Jean-Louis Colliot-Thélène for useful comments.

2. Lattices

Let Π be a finite group acting on a lattice N. Define $\Gamma^{2}(N)$ as the factor group of $N \otimes N$ by the subgroup generated by $x \otimes y+y \otimes x$. We write $x \star y$ for the coset of $x \otimes y$. There is an exact sequence of Π-modules

$$
\begin{equation*}
0 \rightarrow N / 2 \rightarrow \Gamma^{2}(N) \rightarrow \Lambda^{2}(N) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where $\Lambda^{2}(N)$ is the second exterior power of N, the first map takes x to $x \star x$ and the second map takes $x \star y$ to $x \wedge y$.

Write

$$
\alpha_{N}: H^{1}\left(\Pi, \Lambda^{2}(N)\right) \rightarrow H^{2}(\Pi, N / 2)
$$

for the connecting homomorphism for the exact sequence (2.1).
If P is a permutation Π-lattice with \mathbb{Z}-basis X, then the homomorphism $\Gamma^{2}(P) \rightarrow P / 2$ taking $x \star x^{\prime}$ to 0 if $x \neq x^{\prime}$ and $x \star x$ to $x+2 P$ for $x, x^{\prime} \in X$, is a splitting of the sequence (2.1) with $N=P$. In particular, $\alpha_{P}=0$.

If N^{\prime} is another ח-lattice, we have $\Lambda^{2}\left(N \oplus N^{\prime}\right)=\Lambda^{2}(N) \oplus\left(N \otimes N^{\prime}\right) \oplus \Lambda^{2}\left(N^{\prime}\right)$ and a similar formula holds for $\Gamma^{2}\left(N \oplus N^{\prime}\right)$. It follows that

$$
\alpha_{N \oplus N^{\prime}}=\alpha_{N} \oplus 0 \oplus \alpha_{N^{\prime}} .
$$

In particular, $\operatorname{Im}\left(\alpha_{N \oplus N^{\prime}}\right)=\operatorname{Im}\left(\alpha_{N}\right) \oplus \operatorname{Im}\left(\alpha_{N^{\prime}}\right)$. If P is a permutation lattice, then $\operatorname{Im}\left(\alpha_{N \oplus P}\right)=\operatorname{Im}\left(\alpha_{N}\right)$.

Recall that two lattices N and N^{\prime} are stably equivalent if $N \oplus P \simeq N^{\prime} \oplus P^{\prime}$ for some permutation lattices P and P^{\prime}. If N and N^{\prime} are stably equivalent, then $\operatorname{Im}\left(\alpha_{N}\right) \simeq \operatorname{Im}\left(\alpha_{N^{\prime}}\right)$.

Let M be a Π-lattice. Consider a coflasque resolution

$$
\begin{equation*}
0 \rightarrow N \rightarrow P \rightarrow M \rightarrow 0 \tag{2.2}
\end{equation*}
$$

of M, where P is a permutation lattice and N is a coflasque lattice, i.e., $H^{1}(\Gamma, N)=0$ for every subgroup $\Gamma \subset \Pi$ (see [2, Lemme 3]). Recall that N is uniquely determined by M up to stable equivalence by [2, Lemme 5]. It follows that the group $\operatorname{Im}\left(\alpha_{N}\right)$ is independent up to canonical isomorphism of the choice of the resolution of M. We set

$$
\Phi(\Pi, M):=\operatorname{Im}\left(\alpha_{N}\right)
$$

It is still unclear whether the group $\Phi(\Pi, M)$ is always trivial. Below we collect some properties of this group. A Π-lattice N is 2 -invertible if there is an odd integer n such that the endomorphism of N of multiplication by n factors as $N \rightarrow P \rightarrow N$ for a permutation lattice P (see Appendix).

Proposition 2.1. Let M be a Π-lattice. Then $\Phi(\Pi, M)$ is a finite group such that $2 \cdot \Phi(\Pi, M)=0$. The group $\Phi(\Pi, M)$ is trivial in the following cases:
(1) The lattice N in the coflasque resolution (2.2) is 2-invertible,
(2) Sylow 2-subgroups of Π are cyclic or Klein four-groups.

Proof. The first statement follows from the fact that the group $H^{2}(\Pi, N / 2)$ is finite and 2 -torsion. If N is 2-invertible, then $n \alpha_{N}=0$ for an odd integer n, hence $\alpha_{N}=0$. If Π is a cyclic group, $\Phi(\Pi, M)$ is trivial since every
coflasque lattice is invertible (a direct summand of a permutation lattice) by [2, Proposition 2] and hence is 2-invertible. If $\Pi^{\prime} \subset \Pi$ is a subgroup, we have the restriction and corestriction homomorphisms

$$
\Phi(\Pi, M) \xrightarrow{\text { res }} \Phi\left(\Pi^{\prime}, M\right) \xrightarrow{\text { cor }} \Phi(\Pi, M)
$$

with the composition multiplication by the index $\left[\Pi: \Pi^{\prime}\right]$. Therefore, if $\left[\Pi: \Pi^{\prime}\right]$ is odd, the restriction homomorphism is injective. Taking for Π^{\prime} a Sylow 2subgroup of Π, we see that $\Phi(\Pi, M)$ is trivial if Π^{\prime} is cyclic. The case when Π^{\prime} is a Klein four-group will be considered in Example 4.3.

3. A filtration on $H^{1}(\Pi, M / 2)$

Let M be a Π-lattice with a coflasque resolution (2.2). We define a two-term filtration on $H^{1}(\Pi, M / 2)$ as follows. Set

$$
\begin{aligned}
H^{1}(\Pi, M / 2)^{(1)}: & =\operatorname{Ker}\left[H^{1}(\Pi, M / 2) \rightarrow H^{2}(\Pi, N / 2)\right] \\
& =\operatorname{Im}\left[H^{1}(\Pi, P / 2) \rightarrow H^{1}(\Pi, M / 2)\right]
\end{aligned}
$$

The following is an intrinsic description of $H^{1}(\Pi, M / 2)^{(1)}$ showing that it does not depend on the choice of the resolution.

Lemma 3.1. The subgroup $H^{1}(\Pi, M / 2)^{(1)}$ is generated by the images of the compositions

$$
M^{\Gamma} \otimes H^{1}(\Gamma, \mathbb{Z} / 2) \xrightarrow{\cup} H^{1}(\Gamma, M / 2) \xrightarrow{\text { cor }} H^{1}(\Pi, M / 2)
$$

over all subgroups $\Gamma \subset \Pi$.
Proof. The permutation module P is a direct sum of modules of the form $\mathbb{Z}[\Pi / \Gamma]$, where Γ is a subgroup of Π. A homomorphism $\mathbb{Z}[\Pi / \Gamma] \rightarrow M$ of Π modules is determined by the image $m \in M^{\Gamma}$ of the coset of 1 . The image of the induced homomorphism

$$
H^{1}(\Gamma, \mathbb{Z} / 2)=H^{1}(\Pi, \mathbb{Z} / 2[\Pi / \Gamma]) \rightarrow H^{1}(\Pi, M / 2)
$$

takes $x \in H^{1}(\Gamma, \mathbb{Z} / 2)$ to the image of $m \otimes x$ under the composition in the statement of the lemma.

Conversely, every Π-module homomorphism $\mathbb{Z}[\Pi / \Gamma] \rightarrow M$ factors into a composition $\mathbb{Z}[\Pi / \Gamma] \rightarrow P \rightarrow M$ since $\operatorname{Ext}_{\Pi}^{1}(\mathbb{Z}[\Pi / \Gamma], N)=H^{1}(\Gamma, N)=0$ as N is coflasque.

Recall that the choice of a permutation \mathbb{Z}-basis $\left\{x_{i}\right\}$ of P yields a homomorphism $\Gamma^{2}(P) \rightarrow P / 2$ and hence its restriction $j: \Gamma^{2}(N) \rightarrow P / 2$. We claim that the composition $N / 2 \rightarrow \Gamma^{2}(N) \xrightarrow{j} P / 2$ coincides with the natural embedding. Indeed, the composition takes $\sum a_{i} x_{i}$ to

$$
j\left[\left(\sum a_{i} x_{i}\right) \star\left(\sum a_{i} x_{i}\right)\right]=\sum a_{i}^{2} x_{i}=\sum a_{i} x_{i} .
$$

We get a commutative diagram

Note that k depends on the choice of a basis in P.
It follows that the homomorphism α_{N} factors as follows:

$$
\alpha_{N}: H^{1}\left(\Pi, \Lambda^{2}(N)\right) \xrightarrow{\beta_{N}} H^{1}(\Pi, M / 2) \rightarrow H^{2}(\Pi, N / 2)
$$

where $\beta_{N}=k^{*}$. The kernel of the last homomorphism is equal to $H^{1}(\Pi, M / 2)^{(1)}$.
Let $M^{\circ}=\operatorname{Hom}(M, \mathbb{Z})$ be the dual lattice.
Denote by $H^{1}(\Pi, M / 2)^{(2)}$ the subgroup of all elements $u \in H^{1}(\Pi, M / 2)$ such that $\operatorname{res}_{\Pi / \Gamma}(u) \cup y=0$ in $H^{2}(\Gamma, \mathbb{Z} / 2)$ for all $y \in H^{1}\left(\Gamma, M^{\circ}\right)$ and all subgroups $\Gamma \subset \Pi$. The cup-product is taken for the pairing

$$
H^{1}(\Gamma, M / 2) \otimes H^{1}\left(\Gamma, M^{\circ}\right) \rightarrow H^{2}(\Gamma, \mathbb{Z} / 2)
$$

For a subgroup $\Gamma \subset \Pi$, the connecting homomorphism

$$
\partial:\left(N^{\circ}\right)^{\Gamma}=H^{0}\left(\Gamma, N^{\circ}\right) \rightarrow H^{1}\left(\Gamma, M^{\circ}\right)
$$

induced by the exact sequence

$$
0 \rightarrow M^{\circ} \rightarrow P^{\circ} \rightarrow N^{\circ} \rightarrow 0
$$

is surjective since $H^{1}\left(\Pi, P^{\circ}\right)=0$. For an element $y \in H^{1}\left(\Gamma, M^{\circ}\right)$ choose an $x \in\left(N^{\circ}\right)^{\Gamma}$ such that $y=\partial(x)$. The composition

$$
H^{1}(\Gamma, M / 2) \rightarrow H^{2}(\Gamma, N / 2) \xrightarrow{x^{*}} H^{2}(\Gamma, \mathbb{Z} / 2)
$$

is given by the cup-product with $y \in H^{1}\left(\Gamma, M^{\circ}\right)$. It follows that

$$
H^{1}(\Pi, M / 2)^{(1)} \subset H^{1}(\Pi, M / 2)^{(2)}
$$

We also have a commutative diagram

As $\Lambda^{2}(\mathbb{Z})=0$, the composition $x^{*} \circ \alpha_{N}$ is trivial.
Recall that α_{N} is the composition of β_{N} and the connecting homomorphism $H^{1}(\Pi, M / 2) \rightarrow H^{2}(\Pi, N / 2)$. We have proved:
Proposition 3.2. The image of the homomorphism $\beta_{N}: H^{1}\left(\Pi, \Lambda^{2}(N)\right) \rightarrow$ $H^{1}(\Pi, M / 2)$ is contained in $H^{1}(\Pi, M / 2)^{(2)}$.

Thus, $\Phi(\Pi, M)$ is the image of the composition

$$
H^{1}\left(\Pi, \Lambda^{2}(N)\right) \rightarrow H^{1}(\Pi, M / 2)^{(2 / 1)} \hookrightarrow H^{2}(\Pi, N / 2) .
$$

Note that although β_{N} does depend on the choice of a basis in P, the first map in the composition is independent of the choice as is the composition.

Corollary 3.3. If $H^{1}(\Pi, M / 2)^{(1)}=H^{1}(\Pi, M / 2)^{(2)}$, then $\Phi(\Pi, M)=0$.

4. Examples

In this section we consider several classes of Π-lattices M with $\Phi(\Pi, M)=0$.
Let a finite group Π act on a finite set X and let I be the kernel of the augmentation map $\mathbb{Z}[X] \rightarrow \mathbb{Z}$ taking every x in X to 1 . The exact sequence

$$
0 \rightarrow I / 2 \rightarrow(\mathbb{Z} / 2)[X] \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$

yields a connecting homomorphism $\partial: \mathbb{Z} / 2 \rightarrow H^{1}(\Pi, I / 2)$. Write

$$
t_{X}:=\partial(1+2 \mathbb{Z}) \in H^{1}(\Pi, I / 2)
$$

Lemma 4.1. If t_{X} is not trivial and there is an element $\sigma \in \Pi$ of order 2 without fixed points in X then $t_{X} \notin H^{1}(\Pi, I / 2)^{(2)}$.

Proof. Let Γ be cyclic subgroup of Π (of order 2) generated by σ. The exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}[X] \rightarrow I^{\circ} \rightarrow 0
$$

yields an exact sequence

$$
0=H^{1}(\Gamma, \mathbb{Z}[X]) \rightarrow H^{1}\left(\Gamma, I^{\circ}\right) \xrightarrow{\lambda} H^{2}(\Gamma, \mathbb{Z}) \rightarrow H^{2}(\Gamma, \mathbb{Z}[X]) .
$$

By assumption, $\mathbb{Z}[X]$ is a free Γ-module, hence $H^{2}(\Gamma, \mathbb{Z}[X])=0$. Therefore, the map λ is an isomorphism. We have the following diagram of cup-product maps:

Let $y \in H^{1}\left(\Gamma, I^{\circ}\right)$ be (the only) nonzero element. Then the element

$$
\operatorname{res}\left(t_{X}\right) \cup y=\overline{1} \cup \lambda(y)
$$

is the image of nonzero $\lambda(y)$ under the isomorphism $H^{2}(\Gamma, \mathbb{Z}) \simeq H^{2}(\Gamma, \mathbb{Z} / 2)$ hence $\operatorname{res}\left(t_{X}\right) \cup y \neq 0$. It follows that $t_{X} \notin H^{1}(\Pi, I / 2)^{(2)}$.

Example 4.2. Let I be the kernel of the augmentation map $\mathbb{Z}[\Pi] \rightarrow \mathbb{Z}$. We claim that the group $H^{1}(\Pi, I / 2)^{(2)}$ is trivial, in particular $\Phi(\Pi, I)=0$ by Proposition 3.2. We may assume that the order of Π is even. Let $\sigma \in \Pi$ be an element of order 2. As σ act without fixed points by left translations on $X=\Pi$, by the Lemma 4.1, $t_{X} \notin H^{1}(\Pi, I / 2)^{(2)}$. On the other hand, the group $H^{1}(\Pi, I / 2) \simeq \mathbb{Z} / 2$ is generated by t_{X}. It follows that $H^{1}(\Pi, I / 2)^{(2)}$ is trivial.

Example 4.3. Let Π be the Klein group of order 4 . We show that $\Phi(\Pi, M)=0$ for every Π-lattice M. In Example 4.2 we proved that $\Phi(\Pi, I)=0$, where I is the augmentation ideal in $\mathbb{Z}[\Pi]$. Let N be a coflasque module in a coflasque resolution of I. Then the map α_{N} is trivial.

By a theorem of Kunyavskiĭ [6], every coflasque Π-module is stably equivalent to the direct sum of several copies of N. Therefore, $\alpha_{N^{\prime}}=0$ for every coflasque N^{\prime} and hence $\Phi(\Pi, M)=0$ for every Π-lattice M.

Example 4.4. Let Π be an elementary abelian 2 -group of order 2^{n}. Choose subgroups $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{n}$ in Π of index 2 with zero intersection. The group Π acts naturally on the set X the disjoint union of Π / Π_{i} over all i. Let I be the kernel of $\mathbb{Z}[X] \rightarrow \mathbb{Z}$ as in Lemma 4.1. We claim that $\Phi(\Pi, I)=0$.

Consider the following exact sequence of cohomology groups:

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} / 2 \rightarrow H^{1}(\Pi, I / 2) \xrightarrow{\theta} \coprod_{i=1}^{n} H^{1}\left(\Pi,(\mathbb{Z} / 2)\left[\Pi / \Pi_{i}\right]\right) . \tag{4.1}
\end{equation*}
$$

Let x_{i} be a generator of the infinite cyclic group $\mathbb{Z}\left[\Pi / \Pi_{i}\right]^{\Pi}$. We have an exact sequence

$$
0 \rightarrow I^{\Pi} \rightarrow \coprod_{i=1}^{n} \mathbb{Z}\left[\Pi / \Pi_{i}\right]^{\Pi} \rightarrow \mathbb{Z} \rightarrow 0
$$

where the image of every x_{i} is equal to 1 . Therefore, there is a commutative diagram with the exact row:

where α takes a character $\chi: \Pi / \Pi_{i} \rightarrow \mathbb{Z} / 2$ to $x_{i} \otimes \chi^{\prime}$, where χ^{\prime} is the composition of $\Pi \rightarrow \Pi / \Pi_{i}$ and χ. If we identify $H^{1}\left(\Pi,(\mathbb{Z} / 2)\left[\Pi / \Pi_{i}\right]\right)$ with $\widehat{\Pi}_{i}$, the map β takes $x_{i} \otimes \chi$ to the restriction of χ to Π_{i}. It follows that the column in the diagram is exact.

As the map $\amalg \widehat{\Pi / \Pi}_{i} \rightarrow \widehat{\Pi}$ is an isomorphism, by diagram chase, the other diagonal map in the diagram is also isomorphism. It follows that the restriction of the map θ in (4.1) on $H^{1}(\Pi, I / 2)^{(1)}$ is surjective. Therefore, the group $H^{1}(\Pi, I / 2)$ is generated by $H^{1}(\Pi, I / 2)^{(1)}$ and the image t of $1+2 \mathbb{Z}$ under the map $\mathbb{Z} / 2 \rightarrow H^{1}(\Pi, I / 2)$.

Let $\sigma \in \Pi$ be (the only) element that is not contained in Π_{i} for all i. Then σ acts without fixed points on each set Π / Π_{i}. By Lemma 4.1, $t \notin$ $H^{1}(\Pi, I / 2)^{(2)}$. It follows that $H^{1}(\Pi, I / 2)^{(1)}=H^{1}(\Pi, I / 2)^{(2)}$. In view of Corollary $3.3, \Phi(\Pi, I)=0$.

5. Algebraic tori

Let T be an algebraic torus over a field F, let E / F be a splitting field of T and $\Pi=\operatorname{Gal}(L / F)$. Write \widehat{T} for the character Π-lattice of T over E.

Denote by T° the dual torus. The character lattice of T° is dual to \widehat{T}.
For a field extension K / F, there is a pairing (see [1]):

$$
\begin{equation*}
H^{1}\left(K, T^{\circ}\right) \otimes H^{1}(K, T) \rightarrow H^{3}(K, \mathbb{Q} / \mathbb{Z}(2)), \quad u \otimes v \mapsto u \cup v \tag{5.1}
\end{equation*}
$$

The kernel of the pairing is the subgroup of all $u \in H^{1}\left(F, T^{\circ}\right)$ such that $u_{K} \cup v=0$ in $H^{3}(K, \mathbb{Q} / \mathbb{Z}(2))$ for all $v \in H^{1}(K, T)$ and all field extensions K / F.

There are two descriptions of the kernel of the pairing. First, the kernel is canonically isomorphic to the torsion part of $\mathrm{CH}^{2}(\mathrm{~B} T)$, where $\mathrm{B} T$ is the classifying space of T (see [1, Theorem B]).

The second description is as follows.
Proposition 5.1. There is a natural homomorphism $\Phi(\Pi, \widehat{T}) \rightarrow H^{1}\left(F, T^{\circ}\right)$ with image the kernel of the pairing (5.1) for the torus T.

Proof. For any torus S split by E denote by q_{S} the homomorphism

$$
\widehat{S} / 2 \rightarrow \widehat{S} \otimes E^{\times}=S^{\circ}(E)
$$

taking x to $x \otimes(-1)$.
Every character $x \in \widehat{S}$ can be viewed as an invertible function on S which we denote by e^{x}.

Let

$$
1 \rightarrow T \rightarrow R \rightarrow Q \rightarrow 1
$$

be a coflasque resolution for T of tori that are split by E.
For any point $x \in Q_{E}:=Q \times_{F} \operatorname{Spec}(E)$ of codimension 1, there is residue homomorphism

$$
\partial_{x}: K_{2}(E(Q)) \rightarrow E(x)^{\times}
$$

from Milnor's K_{2}-group of the function field of Q over E to the multiplicative group of the residue field $E(x)$. We write $\bar{A}^{0}\left(Q_{E}, \mathcal{K}_{2}\right)$ for the factor group of the intersection of the kernels of ∂_{x} over all points $x \in Q_{E}$ of codimension 1 by the subgroup $K_{2}(E)$. There is an exact sequence (see [5, §5.7])

$$
0 \rightarrow Q^{\circ}(E) \rightarrow \bar{A}^{0}\left(Q_{E}, \mathcal{K}_{2}\right) \rightarrow \Lambda^{2}(\widehat{Q}) \rightarrow 0
$$

The first map takes $x \otimes a \in \widehat{Q} \otimes E^{\times}=Q^{\circ}(E)$ to the symbol $\left\{e^{x}, a\right\}$ and the second map takes a symbol $\left\{e^{x}, e^{y}\right\}$ to $x \wedge y$.

We also have a homomorphism

$$
p: \Gamma^{2}(\widehat{Q}) \rightarrow \bar{A}^{0}\left(Q_{E}, \mathcal{K}_{2}\right),
$$

taking $x \star y$ to the symbol $\left\{e^{x}, e^{y}\right\}$.
We have the following commutative diagram with the exact rows:

where j and k were defined in Section 3. Therefore, the following diagram

is commutative and the composition

$$
H^{1}\left(\Pi, \Lambda^{2}(\widehat{Q})\right) \rightarrow H^{1}\left(\Pi, T^{\circ}(E)\right) \hookrightarrow H^{2}\left(\Pi, Q^{\circ}(E)\right)
$$

is the connecting map for the top exact sequence in the diagram above. Note that the second map in the composition is injective since $H^{1}\left(\Pi, R^{\circ}(E)\right)=0$ as R is a quasi-split torus.

It was proven in [1, Theorem 4.7] that the image of the composition and the image in $H^{2}\left(\Pi, Q^{\circ}(E)\right)$ of the kernel of the pairing coincide. Note that although the map k depends on the choice of a basis in \widehat{R}, the composition does not. Therefore, the homomorphism $H^{1}\left(\Pi, \Lambda^{2}(\widehat{Q})\right) \rightarrow H^{1}\left(\Pi, T^{\circ}(E)\right)$ also does not depend on the choice of a basis. Finally, the latter homomorphism factors into a composition of the natural surjection $H^{1}\left(\Pi, \Lambda^{2}(\widehat{Q})\right) \rightarrow \Phi(\Pi, \widehat{T})$ and the map $\Phi(\Pi, \widehat{T}) \rightarrow H^{1}\left(\Pi, T^{\circ}(E)\right)=H^{1}\left(F, T^{\circ}\right)$ with image the kernel of the pairing.

Corollary 5.2. The group $\mathrm{CH}^{2}(\mathrm{~B} T)_{\text {tors }}$ is canonically isomorphic to a factor group of $\Phi(\Pi, \widehat{T})$.

Corollary 5.3. If $\Phi(\Pi, \widehat{T})=0$, then $\mathrm{CH}^{2}(\mathrm{~B} T)_{\text {tors }}=0$ and the kernel of the pairing (5.1) is trivial.

The following corollary is a consequence of Proposition 2.1, Corollary 5.3 and Theorem 7.3.

Corollary 5.4. If $\mathrm{B} T$ is 2-retract rational, then $\mathrm{CH}^{2}(\mathrm{~B} T)_{\text {tors }}=0$ and the kernel of the pairing (5.1) is trivial.

Corollary 5.5. If $\operatorname{char}(F)=2$, then $\mathrm{CH}^{2}(\mathrm{~B} T)_{\text {tors }}=0$ and the kernel of the pairing (5.1) is trivial.

Proof. The map $q_{Q}: \widehat{Q} / 2 \rightarrow Q^{\circ}(E)$ in the proof of the proposition is trivial as $-1=1$.

Proposition 5.1 shows that size of the kernel of the pairing is bounded by the size of the group $\Phi(\Pi, \widehat{T})$. We show that this bound is exact. In fact, for a "versal" torus T with the splitting group Π the homomorphism

$$
\Phi(\Pi, \widehat{T}) \rightarrow H^{1}\left(F, T^{\circ}\right)
$$

in Proposition 5.1 is injective. Indeed, consider a faithful representation $\Pi \rightarrow$ $\mathrm{GL}(V)$ over \mathbb{Q} and a versal Galois Π-extension $E:=\mathbb{Q}(V)$ over the field $F:=\mathbb{Q}(V)^{\Pi}$.

Proposition 5.6. Let M be a Π-lattice and let T be a torus over $F=\mathbb{Q}(V)^{\Pi}$ with splitting field E and character lattice $\widehat{T}=M$. Then the homomorphism $\Phi(\Pi, \widehat{T}) \rightarrow H^{1}\left(F, T^{\circ}\right)$ is injective. In particular, the kernel of the pairing (5.1) for T is isomorphic to $\Phi(\Pi, \widehat{T})$.

Proof. Consider a coflasque resolution (2.2) for M and a torus Q over F with splitting field E and character group N. In particular,

$$
Q^{\circ}(E)=N \otimes \mathbb{Q}(V)^{\times} .
$$

Tensoring with N the exact sequence

$$
1 \rightarrow \mathbb{Q}^{\times} \rightarrow \mathbb{Q}(V)^{\times} \rightarrow D \rightarrow 0,
$$

where D is the divisor Π-module of the affine space of V over \mathbb{Q}, we get an exact sequence of Π-modules:

$$
1 \rightarrow N \otimes \mathbb{Q}^{\times} \rightarrow Q^{\circ}(E) \rightarrow N \otimes D \rightarrow 0
$$

As D is a permutation Π-module and N is coflasque, we have

$$
H^{1}(\Pi, N \otimes D)=0 .
$$

It follows that the natural homomorphism

$$
H^{2}\left(\Pi, N \otimes \mathbb{Q}^{\times}\right) \rightarrow H^{2}\left(\Pi, Q^{\circ}(E)\right) \hookrightarrow H^{2}\left(F, Q^{\circ}\right)
$$

is injective. As μ_{2} is a direct factor of \mathbb{Q}^{\times}, the map

$$
H^{2}(\Pi, N / 2) \rightarrow H^{2}\left(\Pi, N \otimes \mathbb{Q}^{\times}\right)
$$

is also injective. The statement follows the commutativity of the diagram (5.2) as $\Phi(\Pi, \widehat{T})$ is a subgroup of $H^{2}(\Pi, N / 2)$.

6. ExAMPLES OF PAIRINGS

In this section we consider two applications.
Let L / F be a finite Galois field extension with Galois group Π and $T=$ $R_{L / F}\left(\mathbb{G}_{m, L}\right) / \mathbb{G}_{m}$. Then $T^{\circ}=R^{(1)}\left(\mathbb{G}_{m, L}\right)$ is the torus of norm 1 elements in L. For a field extension K / F,

$$
H^{1}(K, T)=\operatorname{Br}(K L / L) \quad \text { and } \quad H^{1}\left(K, T^{\circ}\right)=K^{\times} / N_{K L / K}\left(K L^{\times}\right)
$$

where $K L:=K \otimes L$.
The character lattice \widehat{T} is the kernel I of the augmentation map $\mathbb{Z}[\Pi] \rightarrow \mathbb{Z}$. By Example 4.2, $\Phi(\Pi, I)=0$. Therefore, Corollary 5.3 yields the following proposition.

Proposition 6.1. Let L / F be a finite Galois field extension. Suppose that for an element $a \in F^{\times}$we have $a \cup v=0$ in $H^{3}(K, \mathbb{Q} / \mathbb{Z}(2))$ for all $v \in \operatorname{Br}(K L / K)$ and all field extensions K / F. Then a is the norm in the extension L / F.

Note that the torus T° (equivalently, $\mathrm{B} T$) is 2-retract rational if and only if Sylow 2-subgroups of Π are metacyclic (see [4] or [10, §4.8, Theorem 3]).

Let $L_{1}, L_{2}, \ldots, L_{n}$ be linearly disjoint separable quadratic field extension of a field F. Write L for the composite of all L_{i} and set $\Pi:=\operatorname{Gal}(L / F)$.

Let T be the cokernel of the diagonal embedding

$$
\mathbb{G}_{m} \hookrightarrow \prod_{i=1}^{n} R_{L_{i} / F}\left(\mathbb{G}_{m, L_{i}}\right)
$$

Let $\Pi_{i}:=\operatorname{Gal}\left(L / L_{i}\right)$ and let X be the disjoint union of $n \Pi$-sets Π / Π_{i}. Then $\widehat{T}=I$ in the notation of Example 4.4. It was proved in that example that $\Phi(\Pi, I)=0$.

For a field extension K / F, we have

$$
H^{1}(K, T)=\bigcap_{i=1}^{n} \operatorname{Br}\left(K L_{i} / K\right)
$$

From the exact sequence for the dual torus T° :

$$
1 \rightarrow T^{\circ} \rightarrow \prod_{i=1}^{n} R_{L_{i} / F}\left(\mathbb{G}_{m, L_{i}}\right) \rightarrow \mathbb{G}_{m} \rightarrow 1
$$

we get

$$
H^{1}\left(F, T^{\circ}\right)=F^{\times} / \prod N_{L_{i} / F}\left(L_{i}^{\times}\right)
$$

Then Corollary 5.3 yields:
Proposition 6.2. Let $L_{1}, L_{2}, \ldots, L_{n}$ be linearly disjoint separable quadratic field extension of a field F. Suppose that for an element $a \in F^{\times}$we have $a \cup v=$ 0 in $H^{3}(K, \mathbb{Q} / \mathbb{Z}(2))$ for and all $v \in \bigcap \operatorname{Br}\left(K L_{i} / K\right)$ and all field extensions K / F. Then a is the product of norms in the extensions L_{i} / F.

Note that the torus T° (equivalently, BT) is not 2-retract rational for $n \geq 3$.

7. Appendix

Let p be a prime integer. A Π-lattice M is called p-invertible if there is an integer n prime to p such that the endomorphism of multiplication by n of M can be factored as $M \rightarrow P \rightarrow M$, where P is a permutation lattice.

The following statement was proved in [9, Proposition 3.1]. For completeness, we give a slightly shorter prove below. For the definition of p-retract rationality see [8].

Proposition 7.1. Let T be a torus over F, p a prime integer and $1 \rightarrow S \rightarrow$ $R \rightarrow T \rightarrow 1$ a flasque resolution of T. Then T is p-retract rational over F if and only if \widehat{S} is p-invertible.

Proof. \Rightarrow : Let E / F be a splitting field of T with Galois group Π. For a smooth variety X over F set

$$
U(X):=E[X]^{\times} / E^{\times}
$$

Then $U(X)$ is a Π-lattice. For example, $U(T)=\widehat{T}$ (see [2, §2]).
If $\operatorname{Pic}\left(X_{E}\right)=0$ and $W \subset X$ is a dense open subset, there is an exact sequence

$$
0 \rightarrow U(X) \rightarrow U(W) \rightarrow P \rightarrow 0
$$

for a permutation Π-lattice P (see [2, Proposition 5]).
As T is p-retract rational, there is a composition of morphisms of integral varieties $f: Z \rightarrow V \rightarrow W$, where V is an open subset of an affine space, W is an open subset of T and f is dominant of degree n prime to p. Shrinking the varieties we may assume that f is finite flat. We have a push-out commutative diagram of lattices

with the exact rows and columns with P a permutation lattice. As \widehat{R} is permutation, the middle vertical sequence is split, hence P^{\prime} is also permutation.

The push-forward (norm) homomorphism given by f yields a composition $U(W) \xrightarrow{f^{*}} U(Z) \xrightarrow{f_{*}} U(W)$ that is multiplication by n. Since the map f^{*} : $U(W) \rightarrow U(Z)$ factors through the permutation lattice $U(V)$, so does the endomorphism of $U(W)$ of multiplication by n. As \widehat{S} is flasque, we have $\operatorname{Ext}_{\Pi}^{1}(\widehat{S}, U(V))=0$. It follows that the $\operatorname{group}_{\operatorname{Ext}}^{\Pi}{ }_{\Pi}^{1}(\widehat{S}, U(W))$ is n-periodic.

Hence there is a diagram

i.e., \widehat{S} is p-invertible.
\Leftarrow : By assumption, the map $n: \widehat{S} \rightarrow \widehat{S}$ factors through a permutation lattice P for some n prime to p. As $H^{1}(F(T), P)=1$, the group $H^{1}(F(T), S)$ is n torsion, hence the pull-back of the sequence in the statement of the proposition with respect to the homomorphism $T \rightarrow T$ taking t to t^{n} is split generically, i.e., we have a commutative diagram

with $W \subset T$ a nonempty open subset. It follow that T is p-retract rational as R is a rational variety (see also [8, Remark 2.1]).

The following statement is a p-local analog of [3, Proposition 7.4].
Proposition 7.2. Let S be a torus over F and p a prime integer. Then \widehat{S} is p-invertible if and only if $H^{1}(K, S)$ has no element of order p for all field extensions K / F.

Proof. \Rightarrow : There is an integer n prime to p such that the homomorphism $S \rightarrow$ S taking s to s^{n} factors through a quasi-split torus R^{\prime}. Since $H^{1}\left(K, R^{\prime}\right)=1$, the group $H^{1}(K, S)$ is n-periodic.
\Leftarrow : The order n of the generic S-torsor is prime to p. By [7, Theorem 2.2], there are subgroups $\Pi_{i} \subset \Pi, i=1,2, \ldots, m$, characters $x_{i} \in \widehat{S}^{\Pi_{i}}$ and co-characters $y_{i} \in \operatorname{Hom}_{\Pi_{i}}(\widehat{S}, \mathbb{Z})$ such that

$$
\sum_{i} \operatorname{cor}_{\Pi / \Pi_{i}}\left(\varphi_{i}\right)=n \cdot 1_{\widehat{S}},
$$

where φ_{i} is an endomorphism of \widehat{S} defined by $\varphi_{i}(z)=y_{i}(z) x_{i}$.
Let $P=\coprod_{i} \mathbb{Z}\left[\Pi / \Pi_{i}\right]$. The elements x_{i} and y_{i} determine homomorphisms $f: P \rightarrow \widehat{S}$ and $g: \widehat{S} \rightarrow P$ such that $f \circ g=n \cdot 1_{\widehat{S}}$. By definition, \widehat{S} is p-invertible.

Let T be an algebraic torus over F. Let

$$
\begin{equation*}
1 \rightarrow T \rightarrow R \rightarrow Q \rightarrow 1 \tag{7.1}
\end{equation*}
$$

be an exact sequence of tori with R a quasi-split torus. We have $R=$ $R_{C / F}\left(\mathbb{G}_{m, C}\right)$ for an étale F-algebra C. Therefore, the variety of R is an open subscheme of the affine space $\mathbb{A}(C)$ where the torus T acts linearly. We can
view Q as an "approximation" of the classifying space $\mathrm{B} T$. The p-retract rational type of Q is independent of the choice of the coflasque resolution of T. We say that $\mathrm{B} T$ is p-retract rational if so is Q.

The next statement is a p-local analog of [9, Proposirion 6.1].
Theorem 7.3. Let T be a torus over F and p a prime integer. The following are equivalent:
(1) $\mathrm{B} T$ is p-retract rational,
(2) T° is p-retract rational,
(3) The group of R-equivalence classes $T^{\circ}(K) / R$ (see [2, §5]) has no element of order p for all field extensions K / F,
(4) If $1 \rightarrow T \rightarrow R \rightarrow Q \rightarrow 1$ is a coflasque resolution of T, then the lattice \widehat{Q} is p-invertible.

Proof. The equivalence of (2) and (4) is proved in Proposition 7.1 (with T replaced by T°).
$(1) \Rightarrow(4)$: As Q is an approximation of $\mathrm{B} T$, the torus Q is p-retract rational. Choose a flasque resolution $1 \rightarrow S \rightarrow R^{\prime} \rightarrow Q \rightarrow 1$ of Q. In view of Proposition 7.1 applied to Q, the lattice \widehat{S} is p-invertible. It follows that the group $\operatorname{Ext}_{\Pi}^{1}(\widehat{S}, \widehat{Q})$ is n-torsion for some integer n prime to p. Therefore we have a commutative diagram

hence \widehat{Q} is p-invertible.
$(4) \Rightarrow(1):$ There is an integer n prime to p such that the map $n: \widehat{Q} \rightarrow \widehat{Q}$ factors through \widehat{R}^{\prime} for a quasi-split torus R^{\prime}. thus we have a diagram

It follows that Q and hence $\mathrm{B} T$ is p-retract rational as R^{\prime} is a rational variety. $(3) \Leftrightarrow(4)$: Dualising (7.1), we get a flasque resolution

$$
1 \rightarrow Q^{\circ} \rightarrow R^{\circ} \rightarrow T^{\circ} \rightarrow 1
$$

of Q°. By [2, Theorem 2], $T^{\circ}(K) / R \simeq H^{1}\left(K, Q^{\circ}\right)$. In view of Proposition 7.2, (3) is equivalent to p-invertibility of \widehat{Q}° and therefore of \widehat{Q}.

References

[1] S. Blinstein and A. Merkurjev, Cohomological invariants of algebraic tori, Algebra Number Theory 7 (2013), no. 7, 1643-1684.
[2] J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175-229.
[3] J.-L. Colliot-Thélène and J.-J. Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), no. 1, 148-205.
[4] S. Endô and T. Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), 85-104.
[5] R. Garibaldi, A. Merkurjev, and Serre J.-P., Cohomological invariants in galois cohomology, American Mathematical Society, Providence, RI, 2003.
[6] B. È. Kunjavskiĭ, Tori with a biquadratic splitting field, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 580-587.
[7] A. S. Merkurjev, Periods of principal homogeneous spaces of algebraic tori, Vestnik St. Petersburg Univ. Math. 43 (2010), no. 1, 39-43.
[8] A. Merkurjev, Versal torsors and retracts, To appear in Transformation Groups.
[9] F. Scavia, Retract rationality and algebraic tori, arXiv:1810.08682v1 (2018), 12 pages.
[10] V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998, Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavski1].

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu

