
ON A PAIRING FOR ALGEBRAIC TORI

A. MERKURJEV

Abstract. Let T be an algebraic torus over a field F . There is a pairing
between the groups of torsors for the torus T and its dual with values in
the third Galois cohomology group over all field extensions of F . We study
the kernel of this pairing.

1. Introduction

For a field F there is a pairing

F× ⊗ Br(F ) → H3(F,Q/Z(2)), a⊗ v 7→ a ∪ v

where Br(F ) = H2(F,Q/Z(1)) is the Brauer group of F .
Let L/F be a finite field extension, x ∈ L× and v ∈ Br(L/F ) an element of

the Brauer group of F that is split by L. By the projection formula,

NL/F (x) ∪ v = NL/F (x ∪ vL) = 0 in H3(F,Q/Z(2)),

where NL/F is the norm (corestriction) homomorphism.
Conversely, let a ∈ F× be such that a∪ v = 0 for all v ∈ Br(L/F ). Is it true

that a = NL/F (x) for some x ∈ L×? The answer is “no” if, for example, F is
a totally imaginary number field since H3(F,Q/Z(2)) = 0, but the norm map
NL/F is not surjective for a nontrivial field extension L/F .

We can modify the question as follows. Let a ∈ F× be such that a ∪ v = 0
in H3(K,Q/Z(2)) for all v ∈ Br(K ⊗L/K) and all field extensions K/F . Is it
true that a is the norm in the field extension L/F?

The answer is positive if the extension L/F is so that the relative Brauer
group Br(K ⊗ L/K) can be “rationally parameterized”. For example, if L/F
is cyclic, every element in Br(K ⊗ L/K) is represented by a cyclic simple
K-algebra (K ⊗ L/K, t), where t ∈ K× (thus, the group Br(K ⊗ L/K) is
parameterized by t). Now take K = F (t) the rational function field in the
variable t. If a ∪ (K ⊗ L/K, t) = 0 in H3(K,Q/Z(2)), then taking the residue
homomorphism with values in H2(F,Q/Z(1)) = Br(F ) with respect to the
discrete valuation on K given by the parameter t, we get that the class of the
cyclic algebra (L/F, a) in Br(F ) is trivial and hence a is the norm in L/F .

For an arbitrary finite field extension L/F we don’t know how to answer the
question. But if L/F is a Galois field extension, we show in the paper that
the answer is positive.
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In fact, we will consider a more general problem. Let T be an algebraic
torus over F . Write T ◦ for the dual torus. For a field extension K/F , there is
a pairing (see [1])

H1(K,T ◦)⊗H1(K,T ) → H3(K,Q/Z(2)), u⊗ v 7→ u ∪ v.

For example, if T = RL/F (Gm,L)/Gm for a finite separable field extension L/F
(here RL/F is the Weil transfer functor) and K = F we get the pairing between
F×/NL/F (L

×) and Br(L/F ) as above.
The kernel of the pairing is the subgroup of all u ∈ H1(F, T ◦) such that

uK ∪ v = 0 in H3(K,Q/Z(2)) for all v ∈ H1(K,T ) and all field extensions
K/F . The question is whether the kernel is trivial.

We don’t know the answer to this question in general. In the paper we
find certain classes of tori T such that the kernel of the pairing is trivial.
For example, the kernel is trivial if isomorphism classes of T -torsors over field
extensions K/F (i.e., the group H1(K,T )) can be “rationally parameterized”.
This is the case when the classifying space BT is retract rational (see [8,
Theorem 5.8.]). In Corollary 5.4 we show more generally that the kernel of
the pairing is trivial if BT is 2-retract rational (for the definition see [8]). The
latter is equivalent to 2-retract rationality of the dual torus T ◦ by Theorem
7.3.

Let Π be the Galois group of the splitting field E of a torus T over F . The

character group T̂ of T over E is a Π-lattice. The torus T is determined by

the field extension E/F and the Π-lattice T̂ . In the first part of the paper
we define a finite abelian elementary 2-group Φ(Π,M) for every finite group
Π and a Π-lattice M such that for every torus T with character Π-lattice

T̂ = M there is a surjective homomorphism from Φ(Π,M) to the kernel of
the pairing for T (Proposition 5.1). We also show that for every Π-lattice M
this surjective map is an isomorphism for a “versal” torus T (Proposition 5.6).
Thus the study of the kernel of the pairing reduces to the study of the group
Φ(Π,M).

We don’t know whether the group Φ(Π,M) can be nontrivial. It is shown in
the paper that Φ(Π,M) is zero for certain classes of lattices (see Proposition
2.1). In Section 6 we give several examples of tori T with the trivial kernel of
the pairing. Note that in these examples BT is not 2-retract rational.

The kernel of the pairing for a torus T is isomorphic to the torsion subgroup
of the second Chow group CH2(BT ) of the classifying space of T . Therefore,

the triviality of the group Φ(Π, T̂ ) implies CH2(BT )tors = 0.
In the appendix we present some results on p-retract rationality of algebraic

tori and their classifying spaces.
The field F in the paper is arbitrary. If char(F ) = p > 0, the definition

of the p-component of the cohomology groups H i+1(F,Q/Z(i)) requires extra
care (see, for instance [5, Part 2, Appendix A]).

Acknowledgment: The author is grateful to Jean-Louis Colliot-Thélène for
useful comments.
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2. Lattices

Let Π be a finite group acting on a lattice N . Define Γ 2(N) as the factor
group of N ⊗N by the subgroup generated by x⊗ y + y ⊗ x. We write x ⋆ y
for the coset of x⊗ y. There is an exact sequence of Π-modules

(2.1) 0 → N/2 → Γ 2(N) → Λ2(N) → 0,

where Λ2(N) is the second exterior power of N , the first map takes x to x ⋆ x
and the second map takes x ⋆ y to x ∧ y.

Write
αN : H1(Π,Λ2(N)) → H2(Π, N/2)

for the connecting homomorphism for the exact sequence (2.1).
If P is a permutation Π-lattice with Z-basis X, then the homomorphism

Γ 2(P ) → P/2 taking x ⋆ x′ to 0 if x ̸= x′ and x ⋆ x to x+ 2P for x, x′ ∈ X, is
a splitting of the sequence (2.1) with N = P . In particular, αP = 0.

If N ′ is another Π-lattice, we have Λ2(N⊕N ′) = Λ2(N)⊕ (N⊗N ′)⊕Λ2(N ′)
and a similar formula holds for Γ 2(N ⊕N ′). It follows that

αN⊕N ′ = αN ⊕ 0⊕ αN ′ .

In particular, Im(αN⊕N ′) = Im(αN)⊕ Im(αN ′). If P is a permutation lattice,
then Im(αN⊕P ) = Im(αN).

Recall that two lattices N and N ′ are stably equivalent if N ⊕ P ≃ N ′ ⊕ P ′

for some permutation lattices P and P ′. If N and N ′ are stably equivalent,
then Im(αN) ≃ Im(αN ′).

Let M be a Π-lattice. Consider a coflasque resolution

(2.2) 0 → N → P → M → 0

of M , where P is a permutation lattice and N is a coflasque lattice, i.e.,
H1(Γ, N) = 0 for every subgroup Γ ⊂ Π (see [2, Lemme 3]). Recall that N
is uniquely determined by M up to stable equivalence by [2, Lemme 5]. It
follows that the group Im(αN) is independent up to canonical isomorphism of
the choice of the resolution of M . We set

Φ(Π,M) := Im(αN).

It is still unclear whether the group Φ(Π,M) is always trivial. Below we collect
some properties of this group. A Π-lattice N is 2-invertible if there is an odd
integer n such that the endomorphism of N of multiplication by n factors as
N → P → N for a permutation lattice P (see Appendix).

Proposition 2.1. Let M be a Π-lattice. Then Φ(Π,M) is a finite group such
that 2 · Φ(Π,M) = 0. The group Φ(Π,M) is trivial in the following cases:

(1) The lattice N in the coflasque resolution (2.2) is 2-invertible,
(2) Sylow 2-subgroups of Π are cyclic or Klein four-groups.

Proof. The first statement follows from the fact that the group H2(Π, N/2)
is finite and 2-torsion. If N is 2-invertible, then nαN = 0 for an odd inte-
ger n, hence αN = 0. If Π is a cyclic group, Φ(Π,M) is trivial since every
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coflasque lattice is invertible (a direct summand of a permutation lattice) by
[2, Proposition 2] and hence is 2-invertible. If Π′ ⊂ Π is a subgroup, we have
the restriction and corestriction homomorphisms

Φ(Π,M)
res−→ Φ(Π′,M)

cor−→ Φ(Π,M)

with the composition multiplication by the index [Π : Π′]. Therefore, if [Π : Π′]
is odd, the restriction homomorphism is injective. Taking for Π′ a Sylow 2-
subgroup of Π, we see that Φ(Π,M) is trivial if Π′ is cyclic. The case when Π′

is a Klein four-group will be considered in Example 4.3. �

3. A filtration on H1(Π,M/2)

Let M be a Π-lattice with a coflasque resolution (2.2). We define a two-term
filtration on H1(Π,M/2) as follows. Set

H1(Π,M/2)(1) : = Ker [H1(Π,M/2) → H2(Π, N/2)]

= Im [H1(Π, P/2) → H1(Π,M/2)].

The following is an intrinsic description of H1(Π,M/2)(1) showing that it does
not depend on the choice of the resolution.

Lemma 3.1. The subgroup H1(Π,M/2)(1) is generated by the images of the
compositions

MΓ ⊗H1(Γ,Z/2) ∪−→ H1(Γ,M/2)
cor−→ H1(Π,M/2)

over all subgroups Γ ⊂ Π.

Proof. The permutation module P is a direct sum of modules of the form
Z[Π/Γ], where Γ is a subgroup of Π. A homomorphism Z[Π/Γ] → M of Π-
modules is determined by the image m ∈ MΓ of the coset of 1. The image of
the induced homomorphism

H1(Γ,Z/2) = H1(Π,Z/2[Π/Γ]) → H1(Π,M/2)

takes x ∈ H1(Γ,Z/2) to the image of m ⊗ x under the composition in the
statement of the lemma.

Conversely, every Π-module homomorphism Z[Π/Γ] → M factors into a
composition Z[Π/Γ] → P → M since Ext1Π(Z[Π/Γ], N) = H1(Γ, N) = 0 as N
is coflasque. �

Recall that the choice of a permutation Z-basis {xi} of P yields a homo-
morphism Γ 2(P ) → P/2 and hence its restriction j : Γ 2(N) → P/2. We

claim that the composition N/2 → Γ 2(N)
j−→ P/2 coincides with the natural

embedding. Indeed, the composition takes
∑

aixi to

j
[(∑

aixi

)
⋆
(∑

aixi

)]
=

∑
a2ixi =

∑
aixi.
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We get a commutative diagram

0 // N/2 // Γ 2(N)

j

��

// Λ2(N)

k
��

// 0

0 // N/2 // P/2 // M/2 // 0.

Note that k depends on the choice of a basis in P .
It follows that the homomorphism αN factors as follows:

αN : H1(Π,Λ2(N))
βN−→ H1(Π,M/2) → H2(Π, N/2),

where βN = k∗. The kernel of the last homomorphism is equal toH1(Π,M/2)(1).
Let M◦ = Hom(M,Z) be the dual lattice.

Denote by H1(Π,M/2)(2) the subgroup of all elements u ∈ H1(Π,M/2) such
that resΠ/Γ(u) ∪ y = 0 in H2(Γ,Z/2) for all y ∈ H1(Γ,M◦) and all subgroups
Γ ⊂ Π. The cup-product is taken for the pairing

H1(Γ,M/2)⊗H1(Γ,M◦) → H2(Γ,Z/2).

For a subgroup Γ ⊂ Π, the connecting homomorphism

∂ : (N◦)Γ = H0(Γ, N◦) → H1(Γ,M◦)

induced by the exact sequence

0 → M◦ → P ◦ → N◦ → 0

is surjective since H1(Π, P ◦) = 0. For an element y ∈ H1(Γ,M◦) choose an
x ∈ (N◦)Γ such that y = ∂(x). The composition

H1(Γ,M/2) → H2(Γ, N/2)
x∗
−→ H2(Γ,Z/2)

is given by the cup-product with y ∈ H1(Γ,M◦). It follows that

H1(Π,M/2)(1) ⊂ H1(Π,M/2)(2).

We also have a commutative diagram

H1(Γ,Λ2(N))

x∗

��

αN // H2(Γ, N/2)

x∗

��
H1(Γ,Λ2(Z)) αZ // H2(Γ,Z/2).

As Λ2(Z) = 0, the composition x∗ ◦ αN is trivial.
Recall that αN is the composition of βN and the connecting homomorphism

H1(Π,M/2) → H2(Π, N/2). We have proved:

Proposition 3.2. The image of the homomorphism βN : H1(Π,Λ2(N)) →
H1(Π,M/2) is contained in H1(Π,M/2)(2).
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Thus, Φ(Π,M) is the image of the composition

H1(Π,Λ2(N)) → H1(Π,M/2)(2/1) ↪→ H2(Π, N/2).

Note that although βN does depend on the choice of a basis in P , the first map
in the composition is independent of the choice as is the composition.

Corollary 3.3. If H1(Π,M/2)(1) = H1(Π,M/2)(2), then Φ(Π,M) = 0.

4. Examples

In this section we consider several classes of Π-lattices M with Φ(Π,M) = 0.
Let a finite group Π act on a finite set X and let I be the kernel of the

augmentation map Z[X] → Z taking every x in X to 1. The exact sequence

0 → I/2 → (Z/2)[X] → Z/2 → 0

yields a connecting homomorphism ∂ : Z/2 → H1(Π, I/2). Write

tX := ∂(1 + 2Z) ∈ H1(Π, I/2).

Lemma 4.1. If tX is not trivial and there is an element σ ∈ Π of order 2
without fixed points in X then tX /∈ H1(Π, I/2)(2).

Proof. Let Γ be cyclic subgroup of Π (of order 2) generated by σ. The exact
sequence

0 → Z → Z[X] → I◦ → 0

yields an exact sequence

0 = H1(Γ,Z[X]) → H1(Γ, I◦)
λ−→ H2(Γ,Z) → H2(Γ,Z[X]).

By assumption, Z[X] is a free Γ-module, hence H2(Γ,Z[X]) = 0. Therefore,
the map λ is an isomorphism. We have the following diagram of cup-product
maps: [

Z/2

res ◦∂
��

⊗ H2(Γ,Z)
] ∪ // H2(Γ,Z/2)

[
H1(Γ, I/2) ⊗ H1(Γ, I◦)

]≀λ

OO

∪ // H2(Γ,Z/2)

Let y ∈ H1(Γ, I◦) be (the only) nonzero element. Then the element

res(tX) ∪ y = 1̄ ∪ λ(y)

is the image of nonzero λ(y) under the isomorphism H2(Γ,Z) ≃ H2(Γ,Z/2)
hence res(tX) ∪ y ̸= 0. It follows that tX /∈ H1(Π, I/2)(2). �
Example 4.2. Let I be the kernel of the augmentation map Z[Π] → Z. We
claim that the group H1(Π, I/2)(2) is trivial, in particular Φ(Π, I) = 0 by
Proposition 3.2. We may assume that the order of Π is even. Let σ ∈ Π be
an element of order 2. As σ act without fixed points by left translations on
X = Π, by the Lemma 4.1, tX /∈ H1(Π, I/2)(2). On the other hand, the group
H1(Π, I/2) ≃ Z/2 is generated by tX . It follows that H

1(Π, I/2)(2) is trivial.
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Example 4.3. Let Π be the Klein group of order 4. We show that Φ(Π,M) = 0
for every Π-lattice M . In Example 4.2 we proved that Φ(Π, I) = 0, where I is
the augmentation ideal in Z[Π]. Let N be a coflasque module in a coflasque
resolution of I. Then the map αN is trivial.

By a theorem of Kunyavskĭı [6], every coflasque Π-module is stably equiv-
alent to the direct sum of several copies of N . Therefore, αN ′ = 0 for every
coflasque N ′ and hence Φ(Π,M) = 0 for every Π-lattice M .

Example 4.4. Let Π be an elementary abelian 2-group of order 2n. Choose
subgroups Π1,Π2, . . . ,Πn in Π of index 2 with zero intersection. The group Π
acts naturally on the set X the disjoint union of Π/Πi over all i. Let I be the
kernel of Z[X] → Z as in Lemma 4.1. We claim that Φ(Π, I) = 0.

Consider the following exact sequence of cohomology groups:

(4.1) 0 → Z/2 → H1(Π, I/2)
θ−→

⨿n
i=1H

1(Π, (Z/2)[Π/Πi]).

Let xi be a generator of the infinite cyclic group Z[Π/Πi]
Π. We have an

exact sequence

0 → IΠ →
⨿n

i=1Z[Π/Πi]
Π → Z → 0,

where the image of every xi is equal to 1. Therefore, there is a commutative
diagram with the exact row:

⨿
Π̂/Πi� _

α
��

''OO
OOO

OOO
OOO

OOO
O

IΠ ⊗ Π̂

∪
�� ))SSS

SSSS
SSSS

SSSS
S
� � //

⨿
Z[Π/Πi]

Π ⊗ Π̂

∪β
����

// // Π̂

H1(Π, I/2)
θ //

⨿
H1(Π, (Z/2)[Π/Πi]),

where α takes a character χ : Π/Πi → Z/2 to xi⊗χ′, where χ′ is the composi-

tion of Π → Π/Πi and χ. If we identify H1(Π, (Z/2)[Π/Πi]) with Π̂i, the map
β takes xi ⊗ χ to the restriction of χ to Πi. It follows that the column in the
diagram is exact.

As the map
⨿

Π̂/Πi → Π̂ is an isomorphism, by diagram chase, the other
diagonal map in the diagram is also isomorphism. It follows that the restriction
of the map θ in (4.1) on H1(Π, I/2)(1) is surjective. Therefore, the group
H1(Π, I/2) is generated by H1(Π, I/2)(1) and the image t of 1 + 2Z under the
map Z/2 → H1(Π, I/2).

Let σ ∈ Π be (the only) element that is not contained in Πi for all i.
Then σ acts without fixed points on each set Π/Πi. By Lemma 4.1, t /∈
H1(Π, I/2)(2). It follows that H1(Π, I/2)(1) = H1(Π, I/2)(2). In view of Corol-
lary 3.3, Φ(Π, I) = 0.
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5. Algebraic tori

Let T be an algebraic torus over a field F , let E/F be a splitting field of T

and Π = Gal(L/F ). Write T̂ for the character Π-lattice of T over E.

Denote by T ◦ the dual torus. The character lattice of T ◦ is dual to T̂ .
For a field extension K/F , there is a pairing (see [1]):

(5.1) H1(K,T ◦)⊗H1(K,T ) → H3(K,Q/Z(2)), u⊗ v 7→ u ∪ v.

The kernel of the pairing is the subgroup of all u ∈ H1(F, T ◦) such that
uK ∪ v = 0 in H3(K,Q/Z(2)) for all v ∈ H1(K,T ) and all field extensions
K/F .

There are two descriptions of the kernel of the pairing. First, the kernel
is canonically isomorphic to the torsion part of CH2(BT ), where BT is the
classifying space of T (see [1, Theorem B]).

The second description is as follows.

Proposition 5.1. There is a natural homomorphism Φ(Π, T̂ ) → H1(F, T ◦)
with image the kernel of the pairing (5.1) for the torus T .

Proof. For any torus S split by E denote by qS the homomorphism

Ŝ/2 → Ŝ ⊗ E× = S◦(E),

taking x to x⊗ (−1).

Every character x ∈ Ŝ can be viewed as an invertible function on S which
we denote by ex.

Let

1 → T → R → Q → 1

be a coflasque resolution for T of tori that are split by E.
For any point x ∈ QE := Q ×F Spec(E) of codimension 1, there is residue

homomorphism

∂x : K2(E(Q)) → E(x)×

from Milnor’s K2-group of the function field of Q over E to the multiplicative

group of the residue field E(x). We write A
0
(QE,K2) for the factor group of

the intersection of the kernels of ∂x over all points x ∈ QE of codimension 1
by the subgroup K2(E). There is an exact sequence (see [5, §5.7])

0 → Q◦(E) → A
0
(QE,K2) → Λ2(Q̂) → 0.

The first map takes x ⊗ a ∈ Q̂ ⊗ E× = Q◦(E) to the symbol {ex, a} and the
second map takes a symbol {ex, ey} to x ∧ y.

We also have a homomorphism

p : Γ 2(Q̂) → A
0
(QE,K2),

taking x ⋆ y to the symbol {ex, ey}.
We have the following commutative diagram with the exact rows:
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Q◦(E) // A
0
(QE,K2) // Λ2(Q̂)

Q̂/2

qQ

OO

// Γ 2(Q̂) //

p

OO

j
��

Λ2(Q̂)

k
��

Q̂/2

qQ

��

// R̂/2

qR

��

// T̂ /2

qT

��
Q◦(E) // R◦(E) // T ◦(E),

where j and k were defined in Section 3. Therefore, the following diagram

(5.2) H1(Π,Λ2(Q̂))

((QQ
QQQ

QQQ
QQQ

QQ

β
Q̂ // H1(Π, T̂ /2)

q∗T
��

// H2(Π, Q̂/2)

q∗Q
��

H1(Π, T ◦(E)) �
� // H2(Π, Q◦(E)),

is commutative and the composition

H1(Π,Λ2(Q̂)) → H1(Π, T ◦(E)) ↪→ H2(Π, Q◦(E))

is the connecting map for the top exact sequence in the diagram above. Note
that the second map in the composition is injective since H1(Π, R◦(E)) = 0
as R is a quasi-split torus.

It was proven in [1, Theorem 4.7] that the image of the composition and
the image in H2(Π, Q◦(E)) of the kernel of the pairing coincide. Note that

although the map k depends on the choice of a basis in R̂, the composition

does not. Therefore, the homomorphism H1(Π,Λ2(Q̂)) → H1(Π, T ◦(E)) also
does not depend on the choice of a basis. Finally, the latter homomorphism

factors into a composition of the natural surjection H1(Π,Λ2(Q̂)) → Φ(Π, T̂ )

and the map Φ(Π, T̂ ) → H1(Π, T ◦(E)) = H1(F, T ◦) with image the kernel of
the pairing. �

Corollary 5.2. The group CH2(BT )tors is canonically isomorphic to a factor

group of Φ(Π, T̂ ).

Corollary 5.3. If Φ(Π, T̂ ) = 0, then CH2(BT )tors = 0 and the kernel of the
pairing (5.1) is trivial.

The following corollary is a consequence of Proposition 2.1, Corollary 5.3
and Theorem 7.3.

Corollary 5.4. If BT is 2-retract rational, then CH2(BT )tors = 0 and the
kernel of the pairing (5.1) is trivial.
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Corollary 5.5. If char(F ) = 2, then CH2(BT )tors = 0 and the kernel of the
pairing (5.1) is trivial.

Proof. The map qQ : Q̂/2 → Q◦(E) in the proof of the proposition is trivial as
−1 = 1. �

Proposition 5.1 shows that size of the kernel of the pairing is bounded by

the size of the group Φ(Π, T̂ ). We show that this bound is exact. In fact, for
a “versal” torus T with the splitting group Π the homomorphism

Φ(Π, T̂ ) → H1(F, T ◦)

in Proposition 5.1 is injective. Indeed, consider a faithful representation Π →
GL(V ) over Q and a versal Galois Π-extension E := Q(V ) over the field
F := Q(V )Π.

Proposition 5.6. Let M be a Π-lattice and let T be a torus over F = Q(V )Π

with splitting field E and character lattice T̂ = M . Then the homomorphism

Φ(Π, T̂ ) → H1(F, T ◦) is injective. In particular, the kernel of the pairing (5.1)

for T is isomorphic to Φ(Π, T̂ ).

Proof. Consider a coflasque resolution (2.2) for M and a torus Q over F with
splitting field E and character group N . In particular,

Q◦(E) = N ⊗Q(V )×.

Tensoring with N the exact sequence

1 → Q× → Q(V )× → D → 0,

where D is the divisor Π-module of the affine space of V over Q, we get an
exact sequence of Π-modules:

1 → N ⊗Q× → Q◦(E) → N ⊗D → 0.

As D is a permutation Π-module and N is coflasque, we have

H1(Π, N ⊗D) = 0.

It follows that the natural homomorphism

H2(Π, N ⊗Q×) → H2(Π, Q◦(E)) ↪→ H2(F,Q◦)

is injective. As µ2 is a direct factor of Q×, the map

H2(Π, N/2) → H2(Π, N ⊗Q×)

is also injective. The statement follows the commutativity of the diagram (5.2)

as Φ(Π, T̂ ) is a subgroup of H2(Π, N/2). �
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6. Examples of pairings

In this section we consider two applications.
Let L/F be a finite Galois field extension with Galois group Π and T =

RL/F (Gm,L)/Gm. Then T ◦ = R(1)(Gm,L) is the torus of norm 1 elements in L.
For a field extension K/F ,

H1(K,T ) = Br(KL/L) and H1(K,T ◦) = K×/NKL/K(KL×),

where KL := K ⊗ L.
The character lattice T̂ is the kernel I of the augmentation map Z[Π] → Z.

By Example 4.2, Φ(Π, I) = 0. Therefore, Corollary 5.3 yields the following
proposition.

Proposition 6.1. Let L/F be a finite Galois field extension. Suppose that for
an element a ∈ F× we have a∪v = 0 in H3(K,Q/Z(2)) for all v ∈ Br(KL/K)
and all field extensions K/F . Then a is the norm in the extension L/F . �

Note that the torus T ◦ (equivalently, BT ) is 2-retract rational if and only if
Sylow 2-subgroups of Π are metacyclic (see [4] or [10, §4.8, Theorem 3]).

Let L1, L2, . . . , Ln be linearly disjoint separable quadratic field extension of
a field F . Write L for the composite of all Li and set Π := Gal(L/F ).

Let T be the cokernel of the diagonal embedding

Gm ↪→
∏n

i=1RLi/F (Gm,Li
).

Let Πi := Gal(L/Li) and let X be the disjoint union of n Π-sets Π/Πi. Then

T̂ = I in the notation of Example 4.4. It was proved in that example that
Φ(Π, I) = 0.

For a field extension K/F , we have

H1(K,T ) =
n∩

i=1

Br(KLi/K).

From the exact sequence for the dual torus T ◦:

1 → T ◦ →
∏n

i=1RLi/F (Gm,Li
) → Gm → 1

we get

H1(F, T ◦) = F×/
∏
NLi/F (L

×
i ).

Then Corollary 5.3 yields:

Proposition 6.2. Let L1, L2, . . . , Ln be linearly disjoint separable quadratic
field extension of a field F . Suppose that for an element a ∈ F× we have a∪v =
0 in H3(K,Q/Z(2)) for and all v ∈

∩
Br(KLi/K) and all field extensions

K/F . Then a is the product of norms in the extensions Li/F . �

Note that the torus T ◦ (equivalently, BT ) is not 2-retract rational for n ≥ 3.
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7. Appendix

Let p be a prime integer. A Π-lattice M is called p-invertible if there is an
integer n prime to p such that the endomorphism of multiplication by n of M
can be factored as M → P → M , where P is a permutation lattice.

The following statement was proved in [9, Proposition 3.1]. For complete-
ness, we give a slightly shorter prove below. For the definition of p-retract
rationality see [8].

Proposition 7.1. Let T be a torus over F , p a prime integer and 1 → S →
R → T → 1 a flasque resolution of T . Then T is p-retract rational over F if

and only if Ŝ is p-invertible.

Proof. ⇒: Let E/F be a splitting field of T with Galois group Π. For a smooth
variety X over F set

U(X) := E[X]×/E×.

Then U(X) is a Π-lattice. For example, U(T ) = T̂ (see [2, §2]).
If Pic(XE) = 0 andW ⊂ X is a dense open subset, there is an exact sequence

0 → U(X) → U(W ) → P → 0

for a permutation Π-lattice P (see [2, Proposition 5]).
As T is p-retract rational, there is a composition of morphisms of integral

varieties f : Z → V → W , where V is an open subset of an affine space, W is
an open subset of T and f is dominant of degree n prime to p. Shrinking the
varieties we may assume that f is finite flat. We have a push-out commutative
diagram of lattices

T̂ � � //
� _

��

R̂� _

��

// // Ŝ

U(W )

����

� � // P ′

����

// // Ŝ

P P

with the exact rows and columns with P a permutation lattice. As R̂ is
permutation, the middle vertical sequence is split, hence P ′ is also permutation.

The push-forward (norm) homomorphism given by f yields a composition

U(W )
f∗
−→ U(Z)

f∗−→ U(W ) that is multiplication by n. Since the map f ∗ :
U(W ) → U(Z) factors through the permutation lattice U(V ), so does the

endomorphism of U(W ) of multiplication by n. As Ŝ is flasque, we have

Ext1Π(Ŝ,U(V )) = 0. It follows that the group Ext1Π(Ŝ,U(W )) is n-periodic.
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Hence there is a diagram

Ŝ

n
������

��
��
��

0 // U(W ) // P ′ // Ŝ // 0,

i.e., Ŝ is p-invertible.

⇐: By assumption, the map n : Ŝ → Ŝ factors through a permutation lattice
P for some n prime to p. As H1(F (T ), P ) = 1, the group H1(F (T ), S) is n-
torsion, hence the pull-back of the sequence in the statement of the proposition
with respect to the homomorphism T → T taking t to tn is split generically,
i.e., we have a commutative diagram

W

n
��~~~~

~~
~~
~~

0 // S // R // T // 0,

with W ⊂ T a nonempty open subset. It follow that T is p-retract rational as
R is a rational variety (see also [8, Remark 2.1]). �

The following statement is a p-local analog of [3, Proposition 7.4].

Proposition 7.2. Let S be a torus over F and p a prime integer. Then Ŝ
is p-invertible if and only if H1(K,S) has no element of order p for all field
extensions K/F .

Proof. ⇒: There is an integer n prime to p such that the homomorphism S →
S taking s to sn factors through a quasi-split torus R′. Since H1(K,R′) = 1,
the group H1(K,S) is n-periodic.

⇐: The order n of the generic S-torsor is prime to p. By [7, Theorem 2.2], there

are subgroups Πi ⊂ Π, i = 1, 2, . . . ,m, characters xi ∈ ŜΠi and co-characters

yi ∈ HomΠi
(Ŝ,Z) such that∑

i corΠ/Πi
(φi) = n · 1Ŝ,

where φi is an endomorphism of Ŝ defined by φi(z) = yi(z)xi.
Let P =

⨿
i Z[Π/Πi]. The elements xi and yi determine homomorphisms

f : P → Ŝ and g : Ŝ → P such that f ◦ g = n · 1Ŝ. By definition, Ŝ is
p-invertible. �

Let T be an algebraic torus over F . Let

(7.1) 1 → T → R → Q → 1

be an exact sequence of tori with R a quasi-split torus. We have R =
RC/F (Gm,C) for an étale F -algebra C. Therefore, the variety of R is an open
subscheme of the affine space A(C) where the torus T acts linearly. We can
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view Q as an “approximation” of the classifying space BT . The p-retract ra-
tional type of Q is independent of the choice of the coflasque resolution of T .
We say that BT is p-retract rational if so is Q.

The next statement is a p-local analog of [9, Proposirion 6.1].

Theorem 7.3. Let T be a torus over F and p a prime integer. The following
are equivalent:

(1) BT is p-retract rational,
(2) T ◦ is p-retract rational,
(3) The group of R -equivalence classes T ◦(K)/R (see [2, §5]) has no ele-

ment of order p for all field extensions K/F ,
(4) If 1 → T → R → Q → 1 is a coflasque resolution of T , then the lattice

Q̂ is p-invertible.

Proof. The equivalence of (2) and (4) is proved in Proposition 7.1 (with T
replaced by T ◦).

(1) ⇒ (4): As Q is an approximation of BT , the torus Q is p-retract rational.
Choose a flasque resolution 1 → S → R′ → Q → 1 of Q. In view of Propo-

sition 7.1 applied to Q, the lattice Ŝ is p-invertible. It follows that the group

Ext1Π(Ŝ, Q̂) is n-torsion for some integer n prime to p. Therefore we have a
commutative diagram

Q̂

0 // Q̂ //

n

OO

R̂′

^^========

// Ŝ // 0,

hence Q̂ is p-invertible.

(4) ⇒ (1): There is an integer n prime to p such that the map n : Q̂ → Q̂

factors through R̂′ for a quasi-split torus R′. thus we have a diagram

Q

n

��~~~~
~~
~~
~~

R′ // Q.

It follows that Q and hence BT is p-retract rational as R′ is a rational variety.

(3) ⇔ (4): Dualising (7.1), we get a flasque resolution

1 → Q◦ → R◦ → T ◦ → 1

of Q◦. By [2, Theorem 2], T ◦(K)/R ≃ H1(K,Q◦). In view of Proposition 7.2,

(3) is equivalent to p-invertibility of Q̂◦ and therefore of Q̂. �
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