ON A PAIRING FOR ALGEBRAIC TORI

A. MERKURJEV

ABSTRACT. Let T be an algebraic torus over a field F. There is a pairing between the groups of torsors for the torus T and its dual with values in the third Galois cohomology group over all field extensions of F. We study the kernel of this pairing.

1. INTRODUCTION

For a field F there is a pairing

$$F^{\times} \otimes \operatorname{Br}(F) \to H^3(F, \mathbb{Q}/\mathbb{Z}(2)), \quad a \otimes v \mapsto a \cup v$$

where $Br(F) = H^2(F, \mathbb{Q}/\mathbb{Z}(1))$ is the Brauer group of F.

Let L/F be a finite field extension, $x \in L^{\times}$ and $v \in Br(L/F)$ an element of the Brauer group of F that is split by L. By the projection formula,

$$N_{L/F}(x) \cup v = N_{L/F}(x \cup v_L) = 0$$
 in $H^3(F, \mathbb{Q}/\mathbb{Z}(2)),$

where $N_{L/F}$ is the norm (corestriction) homomorphism.

Conversely, let $a \in F^{\times}$ be such that $a \cup v = 0$ for all $v \in Br(L/F)$. Is it true that $a = N_{L/F}(x)$ for some $x \in L^{\times}$? The answer is "no" if, for example, F is a totally imaginary number field since $H^3(F, \mathbb{Q}/\mathbb{Z}(2)) = 0$, but the norm map $N_{L/F}$ is not surjective for a nontrivial field extension L/F.

We can modify the question as follows. Let $a \in F^{\times}$ be such that $a \cup v = 0$ in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$ for all $v \in Br(K \otimes L/K)$ and all field extensions K/F. Is it true that a is the norm in the field extension L/F?

The answer is positive if the extension L/F is so that the relative Brauer group $\operatorname{Br}(K \otimes L/K)$ can be "rationally parameterized". For example, if L/Fis cyclic, every element in $\operatorname{Br}(K \otimes L/K)$ is represented by a cyclic simple K-algebra $(K \otimes L/K, t)$, where $t \in K^{\times}$ (thus, the group $\operatorname{Br}(K \otimes L/K)$ is parameterized by t). Now take K = F(t) the rational function field in the variable t. If $a \cup (K \otimes L/K, t) = 0$ in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$, then taking the residue homomorphism with values in $H^2(F, \mathbb{Q}/\mathbb{Z}(1)) = \operatorname{Br}(F)$ with respect to the discrete valuation on K given by the parameter t, we get that the class of the cyclic algebra (L/F, a) in $\operatorname{Br}(F)$ is trivial and hence a is the norm in L/F.

For an arbitrary finite field extension L/F we don't know how to answer the question. But if L/F is a Galois field extension, we show in the paper that the answer is positive.

The work has been supported by the NSF grant DMS #1801530.

In fact, we will consider a more general problem. Let T be an algebraic torus over F. Write T° for the dual torus. For a field extension K/F, there is a pairing (see [1])

$$H^1(K, T^{\circ}) \otimes H^1(K, T) \to H^3(K, \mathbb{Q}/\mathbb{Z}(2)), \quad u \otimes v \mapsto u \cup v.$$

For example, if $T = R_{L/F}(\mathbb{G}_{m,L})/\mathbb{G}_m$ for a finite separable field extension L/F (here $R_{L/F}$ is the Weil transfer functor) and K = F we get the pairing between $F^{\times}/N_{L/F}(L^{\times})$ and $\operatorname{Br}(L/F)$ as above.

The *kernel* of the pairing is the subgroup of all $u \in H^1(F, T^\circ)$ such that $u_K \cup v = 0$ in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$ for all $v \in H^1(K, T)$ and all field extensions K/F. The question is whether the kernel is trivial.

We don't know the answer to this question in general. In the paper we find certain classes of tori T such that the kernel of the pairing is trivial. For example, the kernel is trivial if isomorphism classes of T-torsors over field extensions K/F (i.e., the group $H^1(K,T)$) can be "rationally parameterized". This is the case when the classifying space BT is retract rational (see [8, Theorem 5.8.]). In Corollary 5.4 we show more generally that the kernel of the pairing is trivial if BT is 2-retract rational (for the definition see [8]). The latter is equivalent to 2-retract rationality of the dual torus T° by Theorem 7.3.

Let Π be the Galois group of the splitting field E of a torus T over F. The character group \hat{T} of T over E is a Π -lattice. The torus T is determined by the field extension E/F and the Π -lattice \hat{T} . In the first part of the paper we define a finite abelian elementary 2-group $\Phi(\Pi, M)$ for every finite group Π and a Π -lattice M such that for every torus T with character Π -lattice $\hat{T} = M$ there is a surjective homomorphism from $\Phi(\Pi, M)$ to the kernel of the pairing for T (Proposition 5.1). We also show that for every Π -lattice M this surjective map is an isomorphism for a "versal" torus T (Proposition 5.6). Thus the study of the kernel of the pairing reduces to the study of the group $\Phi(\Pi, M)$.

We don't know whether the group $\Phi(\Pi, M)$ can be nontrivial. It is shown in the paper that $\Phi(\Pi, M)$ is zero for certain classes of lattices (see Proposition 2.1). In Section 6 we give several examples of tori T with the trivial kernel of the pairing. Note that in these examples BT is not 2-retract rational.

The kernel of the pairing for a torus T is isomorphic to the torsion subgroup of the second Chow group $\operatorname{CH}^2(\operatorname{B} T)$ of the classifying space of T. Therefore, the triviality of the group $\Phi(\Pi, \widehat{T})$ implies $\operatorname{CH}^2(\operatorname{B} T)_{\operatorname{tors}} = 0$.

In the appendix we present some results on p-retract rationality of algebraic tori and their classifying spaces.

The field F in the paper is arbitrary. If $\operatorname{char}(F) = p > 0$, the definition of the *p*-component of the cohomology groups $H^{i+1}(F, \mathbb{Q}/\mathbb{Z}(i))$ requires extra care (see, for instance [5, Part 2, Appendix A]).

Acknowledgment: The author is grateful to Jean-Louis Colliot-Thélène for useful comments.

2. LATTICES

Let Π be a finite group acting on a lattice N. Define $\Gamma^2(N)$ as the factor group of $N \otimes N$ by the subgroup generated by $x \otimes y + y \otimes x$. We write $x \star y$ for the coset of $x \otimes y$. There is an exact sequence of Π -modules

(2.1)
$$0 \to N/2 \to \Gamma^2(N) \to \Lambda^2(N) \to 0,$$

where $\Lambda^2(N)$ is the second exterior power of N, the first map takes x to $x \star x$ and the second map takes $x \star y$ to $x \wedge y$.

Write

$$\alpha_N: H^1(\Pi, \Lambda^2(N)) \to H^2(\Pi, N/2)$$

for the connecting homomorphism for the exact sequence (2.1).

If P is a permutation Π -lattice with \mathbb{Z} -basis X, then the homomorphism $\Gamma^2(P) \to P/2$ taking $x \star x'$ to 0 if $x \neq x'$ and $x \star x$ to x + 2P for $x, x' \in X$, is a splitting of the sequence (2.1) with N = P. In particular, $\alpha_P = 0$.

If N' is another Π -lattice, we have $\Lambda^2(N \oplus N') = \Lambda^2(N) \oplus (N \otimes N') \oplus \Lambda^2(N')$ and a similar formula holds for $\Gamma^2(N \oplus N')$. It follows that

$$\alpha_{N\oplus N'} = \alpha_N \oplus 0 \oplus \alpha_{N'}.$$

In particular, $\operatorname{Im}(\alpha_{N\oplus N'}) = \operatorname{Im}(\alpha_N) \oplus \operatorname{Im}(\alpha_{N'})$. If P is a permutation lattice, then $\operatorname{Im}(\alpha_{N\oplus P}) = \operatorname{Im}(\alpha_N)$.

Recall that two lattices N and N' are stably equivalent if $N \oplus P \simeq N' \oplus P'$ for some permutation lattices P and P'. If N and N' are stably equivalent, then $\operatorname{Im}(\alpha_N) \simeq \operatorname{Im}(\alpha_{N'})$.

Let M be a Π -lattice. Consider a coflasque resolution

$$(2.2) 0 \to N \to P \to M \to 0$$

of M, where P is a permutation lattice and N is a coflasque lattice, i.e., $H^1(\Gamma, N) = 0$ for every subgroup $\Gamma \subset \Pi$ (see [2, Lemme 3]). Recall that N is uniquely determined by M up to stable equivalence by [2, Lemme 5]. It follows that the group $\operatorname{Im}(\alpha_N)$ is independent up to canonical isomorphism of the choice of the resolution of M. We set

$$\Phi(\Pi, M) := \operatorname{Im}(\alpha_N).$$

It is still unclear whether the group $\Phi(\Pi, M)$ is always trivial. Below we collect some properties of this group. A Π -lattice N is 2-invertible if there is an odd integer n such that the endomorphism of N of multiplication by n factors as $N \to P \to N$ for a permutation lattice P (see Appendix).

Proposition 2.1. Let M be a Π -lattice. Then $\Phi(\Pi, M)$ is a finite group such that $2 \cdot \Phi(\Pi, M) = 0$. The group $\Phi(\Pi, M)$ is trivial in the following cases:

- (1) The lattice N in the coflasque resolution (2.2) is 2-invertible,
- (2) Sylow 2-subgroups of Π are cyclic or Klein four-groups.

Proof. The first statement follows from the fact that the group $H^2(\Pi, N/2)$ is finite and 2-torsion. If N is 2-invertible, then $n\alpha_N = 0$ for an odd integer n, hence $\alpha_N = 0$. If Π is a cyclic group, $\Phi(\Pi, M)$ is trivial since every

coflasque lattice is invertible (a direct summand of a permutation lattice) by [2, Proposition 2] and hence is 2-invertible. If $\Pi' \subset \Pi$ is a subgroup, we have the restriction and corestriction homomorphisms

$$\Phi(\Pi, M) \xrightarrow{\operatorname{res}} \Phi(\Pi', M) \xrightarrow{\operatorname{cor}} \Phi(\Pi, M)$$

with the composition multiplication by the index $[\Pi : \Pi']$. Therefore, if $[\Pi : \Pi']$ is odd, the restriction homomorphism is injective. Taking for Π' a Sylow 2-subgroup of Π , we see that $\Phi(\Pi, M)$ is trivial if Π' is cyclic. The case when Π' is a Klein four-group will be considered in Example 4.3.

3. A filtration on $H^1(\Pi, M/2)$

Let M be a Π -lattice with a coflasque resolution (2.2). We define a two-term filtration on $H^1(\Pi, M/2)$ as follows. Set

$$H^{1}(\Pi, M/2)^{(1)} := \text{Ker} [H^{1}(\Pi, M/2) \to H^{2}(\Pi, N/2)]$$
$$= \text{Im} [H^{1}(\Pi, P/2) \to H^{1}(\Pi, M/2)].$$

The following is an intrinsic description of $H^1(\Pi, M/2)^{(1)}$ showing that it does not depend on the choice of the resolution.

Lemma 3.1. The subgroup $H^1(\Pi, M/2)^{(1)}$ is generated by the images of the compositions

$$M^{\Gamma} \otimes H^1(\Gamma, \mathbb{Z}/2) \xrightarrow{\cup} H^1(\Gamma, M/2) \xrightarrow{\operatorname{cor}} H^1(\Pi, M/2)$$

over all subgroups $\Gamma \subset \Pi$.

Proof. The permutation module P is a direct sum of modules of the form $\mathbb{Z}[\Pi/\Gamma]$, where Γ is a subgroup of Π . A homomorphism $\mathbb{Z}[\Pi/\Gamma] \to M$ of Π -modules is determined by the image $m \in M^{\Gamma}$ of the coset of 1. The image of the induced homomorphism

$$H^1(\Gamma, \mathbb{Z}/2) = H^1(\Pi, \mathbb{Z}/2[\Pi/\Gamma]) \to H^1(\Pi, M/2)$$

takes $x \in H^1(\Gamma, \mathbb{Z}/2)$ to the image of $m \otimes x$ under the composition in the statement of the lemma.

Conversely, every Π -module homomorphism $\mathbb{Z}[\Pi/\Gamma] \to M$ factors into a composition $\mathbb{Z}[\Pi/\Gamma] \to P \to M$ since $\operatorname{Ext}^{1}_{\Pi}(\mathbb{Z}[\Pi/\Gamma], N) = H^{1}(\Gamma, N) = 0$ as N is coflasque.

Recall that the choice of a permutation \mathbb{Z} -basis $\{x_i\}$ of P yields a homomorphism $\Gamma^2(P) \to P/2$ and hence its restriction $j : \Gamma^2(N) \to P/2$. We claim that the composition $N/2 \to \Gamma^2(N) \xrightarrow{j} P/2$ coincides with the natural embedding. Indeed, the composition takes $\sum a_i x_i$ to

$$j[(\sum a_i x_i) \star (\sum a_i x_i)] = \sum a_i^2 x_i = \sum a_i x_i.$$

We get a commutative diagram

Note that k depends on the choice of a basis in P.

It follows that the homomorphism α_N factors as follows:

$$\alpha_N : H^1(\Pi, \Lambda^2(N)) \xrightarrow{\beta_N} H^1(\Pi, M/2) \to H^2(\Pi, N/2),$$

where $\beta_N = k^*$. The kernel of the last homomorphism is equal to $H^1(\Pi, M/2)^{(1)}$. Let $M^\circ = \text{Hom}(M, \mathbb{Z})$ be the dual lattice.

Denote by $H^1(\Pi, M/2)^{(2)}$ the subgroup of all elements $u \in H^1(\Pi, M/2)$ such that $\operatorname{res}_{\Pi/\Gamma}(u) \cup y = 0$ in $H^2(\Gamma, \mathbb{Z}/2)$ for all $y \in H^1(\Gamma, M^\circ)$ and all subgroups $\Gamma \subset \Pi$. The cup-product is taken for the pairing

$$H^1(\Gamma, M/2) \otimes H^1(\Gamma, M^\circ) \to H^2(\Gamma, \mathbb{Z}/2).$$

For a subgroup $\Gamma \subset \Pi$, the connecting homomorphism

$$\partial : (N^{\circ})^{\Gamma} = H^0(\Gamma, N^{\circ}) \to H^1(\Gamma, M^{\circ})$$

induced by the exact sequence

$$0 \to M^\circ \to P^\circ \to N^\circ \to 0$$

is surjective since $H^1(\Pi, P^\circ) = 0$. For an element $y \in H^1(\Gamma, M^\circ)$ choose an $x \in (N^\circ)^{\Gamma}$ such that $y = \partial(x)$. The composition

$$H^1(\Gamma, M/2) \to H^2(\Gamma, N/2) \xrightarrow{x^*} H^2(\Gamma, \mathbb{Z}/2)$$

is given by the cup-product with $y \in H^1(\Gamma, M^\circ)$. It follows that

$$H^1(\Pi, M/2)^{(1)} \subset H^1(\Pi, M/2)^{(2)}.$$

We also have a commutative diagram

$$\begin{array}{c|c} H^1(\Gamma, \Lambda^2(N)) \xrightarrow{\alpha_N} H^2(\Gamma, N/2) \\ & & \\ & x^* \bigg| & & \\ & & \\ H^1(\Gamma, \Lambda^2(\mathbb{Z})) \xrightarrow{\alpha_{\mathbb{Z}}} H^2(\Gamma, \mathbb{Z}/2). \end{array}$$

As $\Lambda^2(\mathbb{Z}) = 0$, the composition $x^* \circ \alpha_N$ is trivial.

Recall that α_N is the composition of β_N and the connecting homomorphism $H^1(\Pi, M/2) \to H^2(\Pi, N/2)$. We have proved:

Proposition 3.2. The image of the homomorphism $\beta_N : H^1(\Pi, \Lambda^2(N)) \to H^1(\Pi, M/2)$ is contained in $H^1(\Pi, M/2)^{(2)}$.

Thus, $\Phi(\Pi, M)$ is the image of the composition

$$H^1(\Pi, \Lambda^2(N)) \to H^1(\Pi, M/2)^{(2/1)} \hookrightarrow H^2(\Pi, N/2).$$

Note that although β_N does depend on the choice of a basis in P, the first map in the composition is independent of the choice as is the composition.

Corollary 3.3. If $H^1(\Pi, M/2)^{(1)} = H^1(\Pi, M/2)^{(2)}$, then $\Phi(\Pi, M) = 0$.

4. Examples

In this section we consider several classes of Π -lattices M with $\Phi(\Pi, M) = 0$. Let a finite group Π act on a finite set X and let I be the kernel of the

augmentation map $\mathbb{Z}[X] \to \mathbb{Z}$ taking every x in X to 1. The exact sequence

$$0 \to I/2 \to (\mathbb{Z}/2)[X] \to \mathbb{Z}/2 \to 0$$

yields a connecting homomorphism $\partial : \mathbb{Z}/2 \to H^1(\Pi, I/2)$. Write

$$t_X := \partial(1+2\mathbb{Z}) \in H^1(\Pi, I/2).$$

Lemma 4.1. If t_X is not trivial and there is an element $\sigma \in \Pi$ of order 2 without fixed points in X then $t_X \notin H^1(\Pi, I/2)^{(2)}$.

Proof. Let Γ be cyclic subgroup of Π (of order 2) generated by σ . The exact sequence

$$0 \to \mathbb{Z} \to \mathbb{Z}[X] \to I^{\circ} \to 0$$

yields an exact sequence

$$0 = H^1(\Gamma, \mathbb{Z}[X]) \to H^1(\Gamma, I^\circ) \xrightarrow{\lambda} H^2(\Gamma, \mathbb{Z}) \to H^2(\Gamma, \mathbb{Z}[X]).$$

By assumption, $\mathbb{Z}[X]$ is a free Γ -module, hence $H^2(\Gamma, \mathbb{Z}[X]) = 0$. Therefore, the map λ is an isomorphism. We have the following diagram of cup-product maps:

Let $y \in H^1(\Gamma, I^\circ)$ be (the only) nonzero element. Then the element

$$\operatorname{res}(t_X) \cup y = \overline{1} \cup \lambda(y)$$

is the image of nonzero $\lambda(y)$ under the isomorphism $H^2(\Gamma, \mathbb{Z}) \simeq H^2(\Gamma, \mathbb{Z}/2)$ hence $\operatorname{res}(t_X) \cup y \neq 0$. It follows that $t_X \notin H^1(\Pi, I/2)^{(2)}$.

Example 4.2. Let I be the kernel of the augmentation map $\mathbb{Z}[\Pi] \to \mathbb{Z}$. We claim that the group $H^1(\Pi, I/2)^{(2)}$ is trivial, in particular $\Phi(\Pi, I) = 0$ by Proposition 3.2. We may assume that the order of Π is even. Let $\sigma \in \Pi$ be an element of order 2. As σ act without fixed points by left translations on $X = \Pi$, by the Lemma 4.1, $t_X \notin H^1(\Pi, I/2)^{(2)}$. On the other hand, the group $H^1(\Pi, I/2) \simeq \mathbb{Z}/2$ is generated by t_X . It follows that $H^1(\Pi, I/2)^{(2)}$ is trivial.

 $\mathbf{6}$

Example 4.3. Let Π be the Klein group of order 4. We show that $\Phi(\Pi, M) = 0$ for every Π -lattice M. In Example 4.2 we proved that $\Phi(\Pi, I) = 0$, where I is the augmentation ideal in $\mathbb{Z}[\Pi]$. Let N be a coflasque module in a coflasque resolution of I. Then the map α_N is trivial.

By a theorem of Kunyavskii [6], every coflasque Π -module is stably equivalent to the direct sum of several copies of N. Therefore, $\alpha_{N'} = 0$ for every coflasque N' and hence $\Phi(\Pi, M) = 0$ for every Π -lattice M.

Example 4.4. Let Π be an elementary abelian 2-group of order 2^n . Choose subgroups $\Pi_1, \Pi_2, \ldots, \Pi_n$ in Π of index 2 with zero intersection. The group Π acts naturally on the set X the disjoint union of Π/Π_i over all i. Let I be the kernel of $\mathbb{Z}[X] \to \mathbb{Z}$ as in Lemma 4.1. We claim that $\Phi(\Pi, I) = 0$.

Consider the following exact sequence of cohomology groups:

(4.1)
$$0 \to \mathbb{Z}/2 \to H^1(\Pi, I/2) \xrightarrow{\theta} \coprod_{i=1}^n H^1(\Pi, (\mathbb{Z}/2)[\Pi/\Pi_i]).$$

Let x_i be a generator of the infinite cyclic group $\mathbb{Z}[\Pi/\Pi_i]^{\Pi}$. We have an exact sequence

$$0 \to I^{\Pi} \to \coprod_{i=1}^{n} \mathbb{Z}[\Pi/\Pi_i]^{\Pi} \to \mathbb{Z} \to 0,$$

where the image of every x_i is equal to 1. Therefore, there is a commutative diagram with the exact row:

where α takes a character $\chi : \Pi/\Pi_i \to \mathbb{Z}/2$ to $x_i \otimes \chi'$, where χ' is the composition of $\Pi \to \Pi/\Pi_i$ and χ . If we identify $H^1(\Pi, (\mathbb{Z}/2)[\Pi/\Pi_i])$ with $\widehat{\Pi}_i$, the map β takes $x_i \otimes \chi$ to the restriction of χ to Π_i . It follows that the column in the diagram is exact.

As the map $\coprod \Pi/\Pi_i \to \widehat{\Pi}$ is an isomorphism, by diagram chase, the other diagonal map in the diagram is also isomorphism. It follows that the restriction of the map θ in (4.1) on $H^1(\Pi, I/2)^{(1)}$ is surjective. Therefore, the group $H^1(\Pi, I/2)$ is generated by $H^1(\Pi, I/2)^{(1)}$ and the image t of $1 + 2\mathbb{Z}$ under the map $\mathbb{Z}/2 \to H^1(\Pi, I/2)$.

Let $\sigma \in \Pi$ be (the only) element that is not contained in Π_i for all *i*. Then σ acts without fixed points on each set Π/Π_i . By Lemma 4.1, $t \notin H^1(\Pi, I/2)^{(2)}$. It follows that $H^1(\Pi, I/2)^{(1)} = H^1(\Pi, I/2)^{(2)}$. In view of Corollary 3.3, $\Phi(\Pi, I) = 0$.

5. Algebraic tori

Let T be an algebraic torus over a field F, let E/F be a splitting field of T and $\Pi = \text{Gal}(L/F)$. Write \widehat{T} for the character Π -lattice of T over E.

Denote by T° the dual torus. The character lattice of T° is dual to \hat{T} . For a field extension K/F, there is a pairing (see [1]):

(5.1)
$$H^1(K,T^{\circ}) \otimes H^1(K,T) \to H^3(K,\mathbb{Q}/\mathbb{Z}(2)), \quad u \otimes v \mapsto u \cup v.$$

The kernel of the pairing is the subgroup of all $u \in H^1(F, T^\circ)$ such that $u_K \cup v = 0$ in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$ for all $v \in H^1(K, T)$ and all field extensions K/F.

There are two descriptions of the kernel of the pairing. First, the kernel is canonically isomorphic to the torsion part of $CH^2(BT)$, where BT is the classifying space of T (see [1, Theorem B]).

The second description is as follows.

Proposition 5.1. There is a natural homomorphism $\Phi(\Pi, \widehat{T}) \to H^1(F, T^\circ)$ with image the kernel of the pairing (5.1) for the torus T.

Proof. For any torus S split by E denote by q_S the homomorphism

$$\widehat{S}/2 \to \widehat{S} \otimes E^{\times} = S^{\circ}(E),$$

taking x to $x \otimes (-1)$.

Every character $x \in \widehat{S}$ can be viewed as an invertible function on S which we denote by e^x .

Let

$$1 \to T \to R \to Q \to 1$$

be a coflasque resolution for T of tori that are split by E.

For any point $x \in Q_E := Q \times_F \operatorname{Spec}(E)$ of codimension 1, there is *residue* homomorphism

$$\partial_x : K_2(E(Q)) \to E(x)^{\times}$$

from Milnor's K_2 -group of the function field of Q over E to the multiplicative group of the residue field E(x). We write $\overline{A}^0(Q_E, \mathcal{K}_2)$ for the factor group of the intersection of the kernels of ∂_x over all points $x \in Q_E$ of codimension 1 by the subgroup $K_2(E)$. There is an exact sequence (see [5, §5.7])

$$0 \to Q^{\circ}(E) \to \overline{A}^{0}(Q_{E}, \mathcal{K}_{2}) \to \Lambda^{2}(\widehat{Q}) \to 0.$$

The first map takes $x \otimes a \in \widehat{Q} \otimes E^{\times} = Q^{\circ}(E)$ to the symbol $\{e^x, a\}$ and the second map takes a symbol $\{e^x, e^y\}$ to $x \wedge y$.

We also have a homomorphism

$$p: \Gamma^2(\widehat{Q}) \to \overline{A}^0(Q_E, \mathcal{K}_2),$$

taking $x \star y$ to the symbol $\{e^x, e^y\}$.

We have the following commutative diagram with the exact rows:

where j and k were defined in Section 3. Therefore, the following diagram

is commutative and the composition

$$H^1(\Pi, \Lambda^2(\widehat{Q})) \to H^1(\Pi, T^{\circ}(E)) \hookrightarrow H^2(\Pi, Q^{\circ}(E))$$

is the connecting map for the top exact sequence in the diagram above. Note that the second map in the composition is injective since $H^1(\Pi, R^{\circ}(E)) = 0$ as R is a quasi-split torus.

It was proven in [1, Theorem 4.7] that the image of the composition and the image in $H^2(\Pi, Q^{\circ}(E))$ of the kernel of the pairing coincide. Note that although the map k depends on the choice of a basis in \widehat{R} , the composition does not. Therefore, the homomorphism $H^1(\Pi, \Lambda^2(\widehat{Q})) \to H^1(\Pi, T^{\circ}(E))$ also does not depend on the choice of a basis. Finally, the latter homomorphism factors into a composition of the natural surjection $H^1(\Pi, \Lambda^2(\widehat{Q})) \to \Phi(\Pi, \widehat{T})$ and the map $\Phi(\Pi, \widehat{T}) \to H^1(\Pi, T^{\circ}(E)) = H^1(F, T^{\circ})$ with image the kernel of the pairing. \Box

Corollary 5.2. The group $CH^2(BT)_{tors}$ is canonically isomorphic to a factor group of $\Phi(\Pi, \widehat{T})$.

Corollary 5.3. If $\Phi(\Pi, \widehat{T}) = 0$, then $CH^2(BT)_{tors} = 0$ and the kernel of the pairing (5.1) is trivial.

The following corollary is a consequence of Proposition 2.1, Corollary 5.3 and Theorem 7.3.

Corollary 5.4. If BT is 2-retract rational, then $CH^2(BT)_{tors} = 0$ and the kernel of the pairing (5.1) is trivial.

Corollary 5.5. If char(F) = 2, then $CH^2(BT)_{tors} = 0$ and the kernel of the pairing (5.1) is trivial.

Proof. The map $q_Q : \widehat{Q}/2 \to Q^{\circ}(E)$ in the proof of the proposition is trivial as -1 = 1.

Proposition 5.1 shows that size of the kernel of the pairing is bounded by the size of the group $\Phi(\Pi, \hat{T})$. We show that this bound is exact. In fact, for a "versal" torus T with the splitting group Π the homomorphism

$$\Phi(\Pi, \widehat{T}) \to H^1(F, T^\circ)$$

in Proposition 5.1 is injective. Indeed, consider a faithful representation $\Pi \to \operatorname{GL}(V)$ over \mathbb{Q} and a versal Galois Π -extension $E := \mathbb{Q}(V)$ over the field $F := \mathbb{Q}(V)^{\Pi}$.

Proposition 5.6. Let M be a Π -lattice and let T be a torus over $F = \mathbb{Q}(V)^{\Pi}$ with splitting field E and character lattice $\widehat{T} = M$. Then the homomorphism $\Phi(\Pi, \widehat{T}) \to H^1(F, T^\circ)$ is injective. In particular, the kernel of the pairing (5.1) for T is isomorphic to $\Phi(\Pi, \widehat{T})$.

Proof. Consider a coflasque resolution (2.2) for M and a torus Q over F with splitting field E and character group N. In particular,

$$Q^{\circ}(E) = N \otimes \mathbb{Q}(V)^{\times}.$$

Tensoring with N the exact sequence

$$1 \to \mathbb{Q}^{\times} \to \mathbb{Q}(V)^{\times} \to D \to 0,$$

where D is the divisor Π -module of the affine space of V over \mathbb{Q} , we get an exact sequence of Π -modules:

$$1 \to N \otimes \mathbb{Q}^{\times} \to Q^{\circ}(E) \to N \otimes D \to 0.$$

As D is a permutation Π -module and N is coflasque, we have

$$H^1(\Pi, N \otimes D) = 0.$$

It follows that the natural homomorphism

$$H^2(\Pi, N \otimes \mathbb{Q}^{\times}) \to H^2(\Pi, Q^{\circ}(E)) \hookrightarrow H^2(F, Q^{\circ})$$

is injective. As μ_2 is a direct factor of \mathbb{Q}^{\times} , the map

$$H^2(\Pi, N/2) \to H^2(\Pi, N \otimes \mathbb{Q}^{\times})$$

is also injective. The statement follows the commutativity of the diagram (5.2) as $\Phi(\Pi, \widehat{T})$ is a subgroup of $H^2(\Pi, N/2)$.

10

6. Examples of pairings

In this section we consider two applications.

Let L/F be a finite Galois field extension with Galois group Π and $T = R_{L/F}(\mathbb{G}_{m,L})/\mathbb{G}_m$. Then $T^\circ = R^{(1)}(\mathbb{G}_{m,L})$ is the torus of norm 1 elements in L. For a field extension K/F,

$$H^1(K,T) = \operatorname{Br}(KL/L)$$
 and $H^1(K,T^\circ) = K^{\times}/N_{KL/K}(KL^{\times}),$

where $KL := K \otimes L$.

The character lattice \widehat{T} is the kernel I of the augmentation map $\mathbb{Z}[\Pi] \to \mathbb{Z}$. By Example 4.2, $\Phi(\Pi, I) = 0$. Therefore, Corollary 5.3 yields the following proposition.

Proposition 6.1. Let L/F be a finite Galois field extension. Suppose that for an element $a \in F^{\times}$ we have $a \cup v = 0$ in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$ for all $v \in Br(KL/K)$ and all field extensions K/F. Then a is the norm in the extension L/F. \Box

Note that the torus T° (equivalently, BT) is 2-retract rational if and only if Sylow 2-subgroups of Π are metacyclic (see [4] or [10, §4.8, Theorem 3]).

Let L_1, L_2, \ldots, L_n be linearly disjoint separable quadratic field extension of a field F. Write L for the composite of all L_i and set $\Pi := \operatorname{Gal}(L/F)$.

Let T be the cokernel of the diagonal embedding

$$\mathbb{G}_m \hookrightarrow \prod_{i=1}^n R_{L_i/F}(\mathbb{G}_{m,L_i}).$$

Let $\Pi_i := \operatorname{Gal}(L/L_i)$ and let X be the disjoint union of n Π -sets Π/Π_i . Then $\widehat{T} = I$ in the notation of Example 4.4. It was proved in that example that $\Phi(\Pi, I) = 0$.

For a field extension K/F, we have

$$H^1(K,T) = \bigcap_{i=1}^n \operatorname{Br}(KL_i/K).$$

From the exact sequence for the dual torus T° :

$$1 \to T^{\circ} \to \prod_{i=1}^{n} R_{L_i/F}(\mathbb{G}_{m,L_i}) \to \mathbb{G}_m \to 1$$

we get

$$H^1(F,T^\circ) = F^{\times} / \prod N_{L_i/F}(L_i^{\times}).$$

Then Corollary 5.3 yields:

Proposition 6.2. Let L_1, L_2, \ldots, L_n be linearly disjoint separable quadratic field extension of a field F. Suppose that for an element $a \in F^{\times}$ we have $a \cup v =$ 0 in $H^3(K, \mathbb{Q}/\mathbb{Z}(2))$ for and all $v \in \bigcap Br(KL_i/K)$ and all field extensions K/F. Then a is the product of norms in the extensions L_i/F . \Box

Note that the torus T° (equivalently, BT) is not 2-retract rational for $n \geq 3$.

7. Appendix

Let p be a prime integer. A Π -lattice M is called *p*-invertible if there is an integer n prime to p such that the endomorphism of multiplication by n of M can be factored as $M \to P \to M$, where P is a permutation lattice.

The following statement was proved in [9, Proposition 3.1]. For completeness, we give a slightly shorter prove below. For the definition of p-retract rationality see [8].

Proposition 7.1. Let T be a torus over F, p a prime integer and $1 \rightarrow S \rightarrow R \rightarrow T \rightarrow 1$ a flasque resolution of T. Then T is p-retract rational over F if and only if \hat{S} is p-invertible.

Proof. \Rightarrow : Let E/F be a splitting field of T with Galois group Π . For a smooth variety X over F set

$$U(X) := E[X]^{\times} / E^{\times}.$$

Then U(X) is a Π -lattice. For example, $U(T) = \hat{T}$ (see [2, §2]).

If $\operatorname{Pic}(X_E) = 0$ and $W \subset X$ is a dense open subset, there is an exact sequence

$$0 \to U(X) \to U(W) \to P \to 0$$

for a permutation Π -lattice P (see [2, Proposition 5]).

As T is p-retract rational, there is a composition of morphisms of integral varieties $f: Z \to V \to W$, where V is an open subset of an affine space, W is an open subset of T and f is dominant of degree n prime to p. Shrinking the varieties we may assume that f is finite flat. We have a push-out commutative diagram of lattices

with the exact rows and columns with P a permutation lattice. As \widehat{R} is permutation, the middle vertical sequence is split, hence P' is also permutation.

The push-forward (norm) homomorphism given by f yields a composition $U(W) \xrightarrow{f^*} U(Z) \xrightarrow{f_*} U(W)$ that is multiplication by n. Since the map $f^* : U(W) \to U(Z)$ factors through the permutation lattice U(V), so does the endomorphism of U(W) of multiplication by n. As \widehat{S} is flasque, we have $\operatorname{Ext}^1_{\Pi}(\widehat{S}, U(V)) = 0$. It follows that the group $\operatorname{Ext}^1_{\Pi}(\widehat{S}, U(W))$ is n-periodic.

12

Hence there is a diagram

i.e., \widehat{S} is *p*-invertible.

 \Leftarrow : By assumption, the map $n: \widehat{S} \to \widehat{S}$ factors through a permutation lattice P for some n prime to p. As $H^1(F(T), P) = 1$, the group $H^1(F(T), S)$ is *n*-torsion, hence the pull-back of the sequence in the statement of the proposition with respect to the homomorphism $T \to T$ taking t to t^n is split generically, i.e., we have a commutative diagram

with $W \subset T$ a nonempty open subset. It follow that T is p-retract rational as R is a rational variety (see also [8, Remark 2.1]).

The following statement is a p-local analog of [3, Proposition 7.4].

Proposition 7.2. Let S be a torus over F and p a prime integer. Then S is p-invertible if and only if $H^1(K,S)$ has no element of order p for all field extensions K/F.

Proof. \Rightarrow : There is an integer *n* prime to *p* such that the homomorphism $S \rightarrow S$ taking *s* to s^n factors through a quasi-split torus R'. Since $H^1(K, R') = 1$, the group $H^1(K, S)$ is *n*-periodic.

 \Leftarrow : The order *n* of the generic *S*-torsor is prime to *p*. By [7, Theorem 2.2], there are subgroups $\Pi_i \subset \Pi$, i = 1, 2, ..., m, characters $x_i \in \widehat{S}^{\Pi_i}$ and co-characters $y_i \in \operatorname{Hom}_{\Pi_i}(\widehat{S}, \mathbb{Z})$ such that

$$\sum_{i} \operatorname{cor}_{\Pi/\Pi_{i}}(\varphi_{i}) = n \cdot 1_{\widehat{S}},$$

where φ_i is an endomorphism of \widehat{S} defined by $\varphi_i(z) = y_i(z)x_i$.

Let $P = \coprod_i \mathbb{Z}[\Pi/\Pi_i]$. The elements x_i and y_i determine homomorphisms $f: P \to \widehat{S}$ and $g: \widehat{S} \to P$ such that $f \circ g = n \cdot 1_{\widehat{S}}$. By definition, \widehat{S} is *p*-invertible. \Box

Let T be an algebraic torus over F. Let

$$(7.1) 1 \to T \to R \to Q \to 1$$

be an exact sequence of tori with R a quasi-split torus. We have $R = R_{C/F}(\mathbb{G}_{m,C})$ for an étale F-algebra C. Therefore, the variety of R is an open subscheme of the affine space $\mathbb{A}(C)$ where the torus T acts linearly. We can

view Q as an "approximation" of the classifying space BT. The *p*-retract rational type of Q is independent of the choice of the coflasque resolution of T. We say that BT is *p*-retract rational if so is Q.

The next statement is a p-local analog of [9, Proposition 6.1].

Theorem 7.3. Let T be a torus over F and p a prime integer. The following are equivalent:

- (1) BT is p-retract rational,
- (2) T° is p-retract rational,
- (3) The group of R -equivalence classes T°(K)/R (see [2, §5]) has no element of order p for all field extensions K/F,
- (4) If $1 \to T \to R \to Q \to 1$ is a coflasque resolution of T, then the lattice \widehat{Q} is p-invertible.

Proof. The equivalence of (2) and (4) is proved in Proposition 7.1 (with T replaced by T°).

 $(1) \Rightarrow (4)$: As Q is an approximation of BT, the torus Q is p-retract rational. Choose a flasque resolution $1 \rightarrow S \rightarrow R' \rightarrow Q \rightarrow 1$ of Q. In view of Proposition 7.1 applied to Q, the lattice \hat{S} is p-invertible. It follows that the group $\operatorname{Ext}^{1}_{\Pi}(\hat{S}, \hat{Q})$ is n-torsion for some integer n prime to p. Therefore we have a commutative diagram

hence \widehat{Q} is *p*-invertible.

(4) \Rightarrow (1): There is an integer *n* prime to *p* such that the map $n : \hat{Q} \to \hat{Q}$ factors through \hat{R}' for a quasi-split torus R'. thus we have a diagram

It follows that Q and hence BT is *p*-retract rational as R' is a rational variety. (3) \Leftrightarrow (4): Dualising (7.1), we get a flasque resolution

$$1 \to Q^\circ \to R^\circ \to T^\circ \to 1$$

of Q° . By [2, Theorem 2], $T^{\circ}(K)/R \simeq H^{1}(K, Q^{\circ})$. In view of Proposition 7.2, (3) is equivalent to *p*-invertibility of \widehat{Q}° and therefore of \widehat{Q} .

References

S. Blinstein and A. Merkurjev, Cohomological invariants of algebraic tori, Algebra Number Theory 7 (2013), no. 7, 1643–1684.

14

- [2] J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229.
- [3] J.-L. Colliot-Thélène and J.-J. Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), no. 1, 148–205.
- [4] S. Endô and T. Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), 85–104.
- [5] R. Garibaldi, A. Merkurjev, and Serre J.-P., Cohomological invariants in galois cohomology, American Mathematical Society, Providence, RI, 2003.
- [6] B. È. Kunjavskiĭ, Tori with a biquadratic splitting field, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 580–587.
- [7] A. S. Merkurjev, Periods of principal homogeneous spaces of algebraic tori, Vestnik St. Petersburg Univ. Math. 43 (2010), no. 1, 39–43.
- [8] A. Merkurjev, Versal torsors and retracts, To appear in Transformation Groups.
- [9] F. Scavia, Retract rationality and algebraic tori, arXiv:1810.08682v1 (2018), 12 pages.
- [10] V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998, Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ].

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu