MOTIVIC COHOMOLOGY OF THE SIMPLICIAL MOTIVE
OF A ROST VARIETY

ALEXANDER MERKURJEV AND ANDREI SUSLIN

ABSTRACT. We compute the motivic cohomology groups of the simplicial
motive Xy of a Rost variety for an n-symbol 6 in Galois cohomology of a
field. As an application we compute the kernel and cokernel of multiplica-
tion by 6 in Galois cohomology. We also show that the reduced norm map
on K> of a division algebra of square-free degree is injective.

1. MOTIVIC COHOMOLOGY OF Ay

1.1. Introduction. Let [ be a prime integer, F' a field of characteristic dif-
ferent from [. The Galois cohomology group HL(F, 1), where i is the Galois
module of all Ith roots of unity, is canonically isomorphic to the factor group
F*/F*'. We write (a) for the class in HL(F, ;) corresponding to an element
a € F*. Let ay,...,a,_1 € F* for some n > 1 and x € HL(F,Z/IZ). We
consider the n-tuple of 1-dimensional cohomology classes

0= (X, (a1), ..., (an_l)).
Abusing notation we shall also write 6 for the cup-product xU(a;)U- - -U(a,—1)
in H,(F, pf?(n_l)) and call this element a symbol.

Note that if y; C F'*, the choice of a primitive /th root of unity identifies
717 with p; and, therefore, x with (ag) for some ag € F*. Thus, 6 is given
by the n-tuple (ag, a1, ..., a,—1) of elements in F*.

A Rost variety for 6 is a smooth projective variety Xy over F' satisfying the
conditions given in [20, Def. 1.1] or [B, Def. 0.5].

Example 1.1. (see [20))

1) If n =1, then Xy = Spec(L), where L/F is a cyclic field extension of degree
[ splitting 6, is a Rost variety for 6.

2) If n = 2, the Severi-Brauer variety Xy, = SB(A) of a central simple F-
algebra A of dimension [? with the class 6 in H?*(F, ;) C Br(F) is a Rost
variety for 6.

An inductive process given in [[3] allows to construct a Rost variety for any
0. Denote further by X, the Cech simplicial scheme C/(Xp) of X, (see [T,
Appendix B|) and by M(Xp) the motive of Xy in the triangulated category
DM(F,Z) (see [B]). The motive of Xy in DM(F,Z;) is independent of the
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choice of the Rost variety Xy ([, §5]). If # = 0, then Ay = Z, so in general,
Xy is a “twisted form” of Z. We write HP7(Xy,Z) for the motivic cohomology
group HP1(M(Xp),Z).

The triviality of the motivic cohomology group H" ™" (X,, Z) is the essential
step in the proof of Bloch-Kato Conjecture (see [[@, Prop. 6.11]). In this paper
we compute the motivic cohomology HP(X,, Z) for all p and ¢ (Theorem [CI3).

In the second part of the paper some applications are given. We compute
the kernel and cokernel of multiplication by # in Galois cohomology. We also
show that the reduced norm map on K, of a division algebra of square-free
degree is injective.

We use the following notation:

K, (F) is the Milnor ring of a field F.
If X is a variety over F, we write Ay(X, K),) for the cokernel of the residue
homomorphism (see [[]):

[ KniF)— [[ KF@),
zEX(l) IEX(O)
where X(;) is the set of all points of X of dimension 4.

n > 2 an integer,
b=(("1-1D/l-1)=1+1+ - +1"%
c=0"-1)/(1-1)=1+1+---+1"1=bl+1=b+1"",
d=1"1—1=b(l—-1)=c—b—1.

1.2. The Bloch-Kato Conjecture and the motivic cohomology of Xj.
The Bloch-Kato Conjecture asserts that the norm residue homomorphism

ho + Ko (F) [US (F) — HE (F, ™),

taking the class of a symbol {ag, a1, ...,a,—1} to the cup-product (ag) U (a;)U
-+ U (ay_1), is an isomorphism. This conjecture was proved in [[@] (see also
], (3], [[@], [20] and [20]). In view of [Id], the natural maps

HPS (Y, Z) — HY(Y, Z)

are isomorphisms for a smooth projective variety Y over F' and p < ¢q + 1.
Moreover, the natural map

(1) HP( Xy, Z) — HE' (Xy, Z)
is an isomorphism if p < ¢+ 1. By [, Lemma 7.3],
(2) Hei' (X, 2) =~ He' (F, Z)

for all p and q.

For every N' € DM(F,Z) and every a € HPY(N,Z) the order of « is the
integer ord(a) = p — ¢ — 1. The subgroup of H**(N,Z) of elements of non-
negative (respectively, non-positive) order will be denoted by H**(N,Z)=°
(respectively, H**(N, Z)=°).
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1.3. The motive .559. The motive .559 is defined by the exact triangle
(3) Xy — M(Xy) = Z — X[1]
in DM(F,Z). Note that the motive X, differs by a shift from the one defined
in [I3].
It follows from (M) and (B) that
(4) HPUXY, Z) ~ HY (X, Z) ~ HY(F,Z) ~ H™(F,7)
if p<q+1. As H?(F,Z) = 0 when p > ¢, the exact triangle (B) yields:
Proposition 1.2. There are canonical isomorphisms:
H**(Xy, 7)2° ~ H**(X,, 7)>°,
H** (X, 7)=° ~ H**(F,Z)=°,

H**(Xy, Z)=° = 0.

Note that the motive Xy and hence the group H?(X,, Z) vanish if § = 0.

Since in general 0 has a degree [ splitting field extension, the group H p’q(/fg, Z)
is [-torsion.
Recall that K,(F) = HPP(F,Z) (see [B, §5]). Hence there is the product

(5) K (F) @ H?(Xy, Z) — HP**95(X),Z), z@aw - a.
Let KY(F) be the (graded) cokernel of the norm homomorphism

[17.() = K.(F),

where the coproduct is taken over all finite field extensions L/F such that 6
is split over E. By projection formula, K(F) has structure of a graded ring.
Clearly, KY(F) = 0if § = 0. If # # 0, a transfer argument shows that the

degree of a finite splitting field extension for # is divisible by /. On the other
hand, there is a splitting field extension of degree [, hence K{(F) = Z/IZ.
It follows from Proposition [ that in general the product (B) yields the

structure of a left KY(F)-module on H**(X,, Z) and H**(X,, Z)=°.

1.4. Integral elements. We say that an element o € HP9(X,, Z/IZ) is inte-
gral if a belongs to the image of the natural homomorphism

HP4( Xy, Z) — HP(X,,Z,)1Z).
Let N N
B : H"* (X, Z/)17) — H*“’*(Xg,Z/lZ)
be the Bockstein homomorphism, i.e., the connecting homomorphism for the

exact sequence
0 — Z/IZ — 7.JI*Z — Z7.]17. — 0.

The following statement is a consequence of the fact that the group H p’q(fg, 7)
is [-torsion.
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Lemma 1.3. Let o € HP9(Xy, Z/IZ). Then the following conditions are equiv-
alent:

(1) « is integral;

(2) B(a) =0;

(3) a € ImB. O

1.5. The element . As Xy is a splitting variety for €, the symbol 6 belongs
to the kernel of the natural homomorphism

ves : HYy (Fp"™V) = HL (F(Xo), 17" 7Y).

Proposition 1.4. For any m > 0, there is a canonical isomorphism between
H™Hm=1(X, 7) and the kernel of the natural homomorphism

ves : HEf (F ™) = HE (F(Xo), ™).

Proof. As H™'m=Y(x, 7,) = H™m=1(X, 7) is |-torsion, we have an exact
sequence

H™ ™Y (X, Z) — H™™ (X, LJIZ) — H™ (X, Z) — 0.
It follows from Proposition 2 that the first term of the sequence is trivial.
Hence the group H™ 1™~ 1(X,, Z) is canonically isomorphic to H™™ Y( Xy, Z/1Z).
By the proof of [[@, Lemma 6.5], the latter group is canonically isomorphic to
the kernel of the homomorphism res. O

Denote by § € H"™'""1(X) Z) the element corresponding to the symbol
6§ € Ker(res) when m = n. Clearly, § # 0 if 6 # 0. We have ord(d) = 1.

1.6. Cohomological operations. Denote by );, i =0,1,...,n—1, the Mil-
nor cohomological operations of bidegree (21 — 1,1" — 1) on H**(Xy, Z/I7Z)
and H**(Xp,Z/IZ) (see [I¥, §13]). As HPY(F,7Z) is trivial if p > ¢, Q; is
trivial on HPP(F,Z) = K,(F). It follows from the product formula (see the
proof of Lemma 8 below), that the operations @); are K,(F)-linear, that is
Qi(a-z) =Qi(a) -z and Q;(z - a) = (—1)Px - Q;(«) for all « € H** (X, Z/I7)
and x € K,(F). The operations anti-commute: Q,Q; = —Q,;Qy, for j # k and
Q? = 0 for all i. Moreover, Qo = B. Note that

ord Q;(a) = ord(a) + I
for all .

Proposition 1.5. [, Th. 3.2], [[@, Lemma 4.3] For every i = 1,...,n — 1,
the sequence

Hr- ALt (X 717) Y HP( X, 2)12) L HYU L LR, 7,)17)
1s exact for all p and q. O

It follows from the equality Q);B = —BQ); for ¢« > 1 and Lemma 3 that Q);
takes integral elements to integral ones. The restriction of @; on the subgroup
of integral elements H?7(Xy,7Z) is still denoted by @);.
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Proposition 1.6. For every i =1,...,n — 1, the sequence
Hp721i+1,qfli+1(‘)?0,z) &> Hp,q(fg)z) &> Hp+2li71,q+li71(‘jgejz)
is exact for all p and q.

Proof. Suppose that Q;(«) = 0 for some o € HP(Xy,7Z). By induction on
ord(a) we prove that o = @Q;(3) for some integral 3.

By Proposition I3, o = Q;(8) for /€ HP2"+1a=1'"+1( X, 7,/I7). Since
is integral, we have (Q;B)(5’) = —(BQ:)(8') = —B(a) = 0. Since B(f') is
integral, by the induction hypothesis, B(f') = @Q;(7) for some integral 7. By
Lemma 3, we have v = B(y') for some 7' and hence

B(p'+Qi(v)) = B(f) + (BQ:)(7') = B(#') — Qi(y) = 0.
Therefore, the element 5 = '+ Q;(+') is integral and Q;(8) = Q;(f') = a. O
Propositions 2 and A yield:

Corollary 1.7. Let Q;(«) =0 for some a € HP4(Xp,7Z) andi=1,...,n— 1.
Then

(1) If 0 < ord(a) < I*, then o = 0. | |

(2) If ord(a) > I°, then o = Q;(B) for some € HP~2+La=U+1( X, 7).
1.7. The elements v and pu. Set

1= (Q1Qz...Qn2)(6) = £(Qn-2...Q20Q1)(6) € H**(Xy, Z)

and
7= (Q1Q2 - Qn2Qn 1)) = £Qu 1 (1) € H** (X, Z).
We have ord(p) = b and ord(y) = ¢. If 8 # 0, then ¢ # 0, hence it follows
from Corollary TA(1) by induction on i = 1,...,n— 1 that (Q; ... Q20Q1)(5) #

0. In particular, p # 0 and ~ # 0.
We write U for the product in H**(Xy,Z).

Lemma 1.8. We have Q;(y) =0 for any i =1,...,n—1 and Q;(z U~) =
Qi(x) U~y for every x € HP1( Xy, 7).

Proof. The first equality follows from Q? = 0 and the anti-commutativity of
the @);. If [ is odd, by the product formula, for every homogeneous z of degree
p, we have

Qi(rUy) = Qi(x) Uy + (=1)Pz U Qi(y) = Qi(2) U
In the case | = 2, the product formula looks as follows [[3, Prop. 13.4]:
Qi(zrUv) =2 UQi(y) + Qi(z) Uy + Z up,pQe(r)UQr(Y)
E,E'

for some ug g € H**(F,Z), where Qp = Q7' Q5 ... and the sum is taken over
all pairs of nonzero sequences E = (eg,es,...) and E’ of length less than i.
Note that Q;(y) =0forall j =1,...,n— 1, hence Qg (y) = 0. O
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The element p gives rise to a morphism M(Xp) — M(X)(b)[2b + 1] in
DM(F,Z), still denoted by p (see [I@, 5.3]). Let M,y be the motive in
DM(F,Z) defined by the exact triangle

M (Xp)(b)[20] — My — M(Xp) L M () (b)[2b + 1].

For every i = 0,1,...,1 — 1, let S"My be the i-th symmetric power of My in
DM(F, Z)) (see [, §3]). The symmetric power Ry := S My is called the
Rost motive of 6.

Note that in the split case,

(6) Mo =Ly ® Ly (b)[20] ® - - & Zgpy (1 = 1)b)[2(1 — 1)b)].
There are exact triangles [[@, (5.5) and (5.6)] in DM(F, Z):
Ro — S'2 My — M(X,)(d)[2d + 1] — Ry[1],
ST2M(b)[26] — Ry — M (X)) — ST2My(b)[2b + 1].
For all integers p and ¢ we then have exact sequences
(7) HPPAH(Ry Zy) — HPI( Xy, Zy) 2
Hp-‘r?d-l-l,q-‘rd(sl—?/\/le’ Z(l)) - Hp+2d+1,q+d(R67 Z(l))

and

(8) HPP2-laterl(Ry 7)) — HPYRLad(GI2 g, 7,y 2

HPP2or e (X Zgy) — HPP2S0 TN ( Ry L),

By [@, Lemma 5.15] and [E0, Cor. 8.8], the motive Ry is a direct summand of
M(Xy) in DM(F, Zgy). 1t follows that H»9(Ry, Zg)) = 0if p—q > d = dim X,.
Therefore, by (@),

(9) O 1 HP(Xy, Zgy) — HPP2HLatd (S22 Ay 7))
is an isomorphism if p > ¢ and by (B),
(10) Qo+ HP AT (GIZ2 Ny 7)) — HPP2O9T (X, Zg))

is an isomorphism if p+ ¢ > ¢ + d.
Let 0 be the composition 0, 0 9;. Then (@) and () yield an exact sequence

(11) HPPPmWrrel(Xy, Zgy) — HPPPY Ry, Zgy) —
HP? (X, Zy) & HPP20H1( Xy, ) — 0
for every p.
Proposition 1.9. The homomorphism 0 in () yields an isomorphism
Kg(F) 5 [p2ertesl(x, 7)

for every integer p.
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Proof. Since both groups are [-torsion, it is sufficient to establish the isomor-
phism over Z(l)- By (Zﬂ), we have Hp’p(Xg,Z(l)) = Hp’p(F, Z(l)) = Kp(F)(l).
Let L/F be a finite splitting field extension of . The commutativity of the
diagram

16)
Kp(L) gy === H"?(Xpr, L)) — HP*P+ N (Xyp, L)
NL/Fl NL/Fl NL/Fl

6] _
Kp(F)y === HPP(Xp, L)) —— HPPPT1(Xy, L))

and the triviality of the top right corner imply that
Ker(9) D A :=Ker(K,(F)q — KJ(F)g).

By [, Lemma 4.11], the group HP+24P+4( X, 7) is canonically isomorphic to
Ao(Xp, Kp). As Ry is a direct summand of M (Xp), the group HPF27H4( Xy 7))
and hence HPT24P+4 (R 7)) is generated by the norms for the field extensions
F(z)/F over all closed points x € Xy. Since the field F(x) splits 6, we see
from the exactness of (Il) that Ker(d) C A. Therefore, Ker(d) = A and 0
yields the isomorphism in the statement of the proposition. U

Suppose that 6 # 0. We have K{(F) = Z/I7Z and therefore by Proposition
9, H?*"Y(Xy,Z) ~ Z/IZ. On the other hand, ~ is a nonzero element of this
group, hence H** Y (X, Z) = (Z/1Z)~.

Note that the motive My and its symmetric powers are motives over Xj (see
[@]). Moreover, the morphisms in the exact triangles involving these motives
are over Xp. In particular, the homomorphism 0 is H**(Xp, Z)-linear. There-
fore, @ is given by multiplication by the canonical generator of H?*~1(Xp,Z)

that is a multiple of 7. Note that since the degree 2¢ of v is even,  is central
in H**(Xy,Z) by [B, Th. 15.9]. Then Proposition 9, (8) and () yield:

Proposition 1.10. (1) The map K!(F) — H?P™20te=1( X, Z) given by mul-
tiplication by v, is an isomorphism for any p.

(2) The map HPY (X, Z) — HPT2¢0T=1( X, Z), given by multiplication by -,
is an isomorphism if p > q, i.e., every o € H** (X}, Z) with ord(«) > ¢ can be
written in the form o = U~ for a unique (5. O

Proposition 1.11. The map K5(F) — HPHrtn=Y(Xy 7), x — - 8, is an
tsomorphism for all p.

Proof. The composition
Kg(F) _6) Hp-i-n-i—l,p-‘rn—l(Xe’ Z) Q@1---Qn-1 Hp+26,p+c—l(/1(9’ Z)

coincides with the multiplication by v and therefore is an isomorphism by
Proposition TI0(1). The second map is injective by Corollary 2. U

Lemma 1.12. Ifa € HP(Xy,7Z) such that b < ord(«) < ¢, then Q,—1(a)) = 0.
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Proof. Since ord Q,,_1(a)) > b+ "1 = ¢, we have Q,,_1(a) = 8 U~ for some
B € H**(Xy, Z)=° by Proposition CI0(2). Hence, in view of Lemma [,
Qna(A) Uy =Quna(BUv) =Q%_i(a) =0,
therefore @,,—1(5) = 0 again by Proposition [I0(2). Since
ord(B) <c+1"1'—(c+1) <™
we have 8 = 0 by Corollary [0 and therefore @Q,,_1 () = 0. O

Lemma 1.13. If a € HP(Xy,Z) with 2I' < ord(a) < "' for some i =
0,1,...,n—2, then aa = 0.

Proof. Consider the element o = (Q_2...Q+1)(c). Since
ord(c/) = ord(a) + "M 4 - H 172,

we have b < ord(a’) < [""! < ¢. By Lemma 12, Q,,_;(’) = 0.

Using Corollary 72, by descending induction on j =n—2,... 4, we deduce
that (Q;...Qit1)(a) = 0 since ord(Q; ... Qis1)(a) < ' Therefore, a@ =
0. O

Lemma 1.14. If a € HP(Xy,Z) with ord(a) < ¢ and I < ord(a) < 21" for
somei=1,2,....,n—1, then a = Q;(3) for some B € H**(Xp, 7Z)=°.

Proof. By Corollary [, it is sufficient to show that Q;(«) = 0.

Suppose first that ¢ = n — 1. Since b < (" ! < ord(a) < ¢, it follows
from Lemma T2 that @,—1(«) = 0. In the rest of the proof we assume that
1 <n—2.

Case 1: | > 3. We have

21" < ord Q;(a) < 31" < I,
By Lemma I3, Q;(«) = 0.

Case 2: | = 2. We prove that Q;(«) = 0 by descending induction on . Since
2t < ord Q;(a) < 2" + 2", by the induction hypothesis, (Q;11Q;)(a) = 0.
By Corollary IT2(2), Q:(a) = Qir1(p) for some p € H**(X,, Z)=°. Since

(Qir1Q:)(p) = —(QiQi+1)(p) = Q7 (ar) = D and ord(p) < 2', ord Qs(p) < 2'*,
it follows from Corollary [ that p = 0 and therefore @Q;(«) = 0. O

1.8. Main theorem. Consider the exterior algebra

A=KYF)[t[\,. .., Al
over the polynomial algebra K?(F)[t], i.e., A? = 0 and \;\; = —\;\; for i # j.
Recall (see section [3) that H** (X}, Z) has a structure of a left K?(F)-module.
The operations Q; are K,(F)-linear and @); commute with multiplication by
v by Lemma [R. Therefore, we can view H**(Xj,Z) as a left A-module with
t acting by multiplication by v and \; acting via the operation @);. The ring
A is graded over K?(F) as follows: deg(t) = ¢ + 1, deg(\;) = [*. For any
homogeneous element A € A and any o € H?(X),Z), we have

ord(Aa) = deg(A) + ord(«).
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Note that distinct monomials in A of the form #*A{*A3% ... \""7" with a; = 0
or 1 have different degree.

Theorem 1.15. Let | be a prime integer, n > 2, F a field of characteristic
different from l and 6 € HZ(F, ul@)(n_l)) a nontrivial symbol. Then

(1) H**(Xy,Z)=° is canonically isomorphic to H**(F,7Z)=°.

(2) H**(Xy,Z)=° is a free left A-module with basis {J}.

Proof. (1) follows from Proposition [2.
(2): We shall prove that the map

A= H(X,Z2)2°, X A6

is an isomorphism.

Injectivity: In view of the remark preceding the theorem, it suffices to prove
that if A\d = 0 for a monomial A = xt*A\{*\3? ... A" " with z € K?(F) and the
integers k > 0 and a; such that a; =0 or 1, i.e.,

YFU(QTQS? ... Q) (x-6) =0,
then x = 0. By Proposition 10,
(Q1'Q5 ... Q)5 )(w-6) =0.
It follows from Corollary T4 by descending induction on ¢ > 0 that
QQF ...Q ) 8) =0,
Therefore, z - § = 0 and hence x = 0 by Proposition [T

Surjectivity: Let « € HP9(Xy,Z) be an element with ord(a) > 0. By
induction on ord(«) we show that o = AJ for some A\ € A. If ord(a) = 0,
then a = 0 by Proposition T3A. The case ord(«) = 1 is covered by Proposition
CIm. If ord(c) > ¢ + 1, then by Proposition II0(2), o = v U S for [ with
0 < ord(f) < ord(a). By induction, 5 = AJ for some A € A and hence
a = (tA)o.

Suppose 2 < ord(a) < ¢. Choose an i = 0,1,...,n — 1 such that [ <
ord(a) < I“*1. If ord(a) > 2I* (and hence i < n — 2), then by Lemma [I3,
a = 0. So we may assume that [ < ord(a) < 20" for i > 1. Tt follows
from Lemma I that o = Q;(f) for some S with 0 < ord(f) < ord(«). By
induction, 5 = Ad for some A € A and hence a = (A\;A)6. O

Remark 1.16. When [ = 2 we have v = p?. Moreover if s is the operation
of multiplication by p, the left K?(F)[s][A1, ... An_o]-module H**(Xy, Z)=" is
free with basis {0}. In this form the statement was proved by Orlov, Vishik,
and Voevodsky (unpublished).

Remark 1.17. By Theorem I3, a nontrivial element o € HP(Xy,Z) of
positive order can be uniquely written in the form

a=7"U(Q1Qy ...y )(z-9)
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where # € KY(F) and k, a; are integers such that & > 0 and a; = 0 or 1.
Moreover,

n—1
ord(a) = 1+ k(c+1)+ » 1%,
=1

1.9. The multiplicative structure. The ring structure of H**(Xp,Z)=" in
the case | = 2 has been determined by Orlov, Vishik, and Voevodsky (unpub-

lished).
Let [ be an odd prime. The operation S of the form +@);, @, - .. Q;,, where
k>0 and i, < --- <1y, is called a monomial. For a monomial S there exists

a unique monomial S’ such that §'S = Q1Qs...Q,_1. We shall compute the
cup-product 7'(6) U S(0) for two monomials 7" and S.
Proposition 1.18. Let S and T be monomials. Then

(1) If S'T" =0, then T(5) U S(J) = 0.

(2) If S'T" # 0, i.e., S'T" is a monomial, let U be (the unique) monomial

such that U' = S"T". Then T(5) US(0) =U(J) U~.

Proof. (1): By assumption, the monomials 7" and S do not contain @); for
some 7. Therefore, the i-th digit of ord 7'(d) + ord S(4) written in base [ is
equal to 0. By Theorem ICIH, the product T'(§) U S(§), if not zero, is a KY(F)-
multiple of either U(d) U~ or U(J) for some monomial U. In the first case
ordT'(0) + ord S(6) = ord U(d) + ¢, and this case is impossible since all digits
of the right hand side written in base [ are nonzero.

In the second case ordT'(§) + ord S(6) = ordU(S) — 1 and this case does
not occur since ord V(J) = 1 modulo [ for every monomial V. Therefore
T(0)US(0)=0.

(2): If T" =1, then U = S, T'(§) = v and the equality follows.
Assume that 77 # 1. By assumption 7S = 0. Therefore,
S'T(T(6) U S(8)) =S"(T'T(6) U S(8) £ T(6) UT'S(6))

= S (yUS5(8))

=y US'S(9)

=97,

ST (U(S)uy) =U'(U(5) U~y)
=U'U(d)U~n

By Theorem [CIA, the restriction of every operation (); on a homogeneous
component HP9(Xy,Z) of non-negative order is either injective or zero. Hence

T)US0)=U(()Un. O
2. APPLICATIONS

In this section we give some applications.
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2.1. An exact sequence.

Theorem 2.1. Let | be a prime integer, F' a field of characteristic different
froml and 8 € HJ,(F, u?(n_l)) a symbol. Then the sequence

N
T E5 (L, 7)) =225 mn(F, ) 2

n n—1 HreSE/F n n—1
HEE D) =2 T H (B ),

where the coproduct is taken over all finite splitting field extensions L/ F for
and the product is taken over all splitting field extensions E/F, is exact.

Proof. Note that by a projection formula, the sequence is a complex. By
Proposition 4, the kernel of the last homomorphism in the sequence is canon-
ically isomorphic to HPTFLrtn=1(x, 7).  Under this isomorphism, the cup-
product with 6 corresponds to multiplication by §. The statement follows now
from Proposition [T, the definition of K(F) and the bijectivity of the norm
residue homomorphism. [l

2.2. Certain motivic cohomology groups of the Rost motive Ry. Let [

be a prime integer, F’ a field of characteristic different from [, § € H”\(F), ,ul®(n_1))

a symbol, Xy a Rost variety for # and Ry the Rost motive of #. Recall the
exact sequence (I):
HPP2em bt el (X, Zy) — HP PV (R, Zy) — HPP (X, Ly) = Kp(F) -

By Theorem T3 (see also Remark [CT4), the degree ¢ — 2 component of the
ring A is zero, hence the first group in the sequence is trivial. We have proved:

Proposition 2.2. The natural homomorphism
HP 2Ry Zay) — Kp(F)a
1S injective.
2.3. Injectivity of the reduced norm map for a central simple algebra.

Let D be a central simple algebra of degree m over F'. An old theorem of Wang
(see [B]) asserts that the classical reduced norm homomorphism

NI’dD : Kl(D) — Kl(F)

is injective provided m is a square-free integer.

The reduced norm homomorphism Nrdp for the Ks-groups has been defined
in [[, §26]. It was proven in [[] and [@ that Nrdp is injective in the case
m = 2. In the following statement we generalize this result to a Kj-analog of
Wang’s theorem.

Theorem 2.3. Let D be a central simple algebra of square-free degree over F.
Then the reduced norm homomorphism

NI’dD : KQ(D) — KQ(F)

18 1njective.
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Lemma 2.4. Let B and C' be two central simple algebras over F' of relatively
prime degree. Suppose the reduced norm homomorphisms for B and C' are
ingective over any field extension of F'. Then Nrdpge is also injective.

Proof. Let L/F be a splitting field of C' of degree r dividing deg C'. By as-
sumption, the bottom homomorphism of the diagram

Ky B®C) s Ky(F)

! !

KyB®L) —— Ky(B®C®L) % Ky(L)

is injective. We deduce that the kernel K of Nrdggc is r-torsion. Similarly
we show that K is s-torsion for some integer s relatively prime to r, hence
K =0. O

Since the algebra D is a tensor product of algebras of prime degree (see [B]),
Lemma P4 allows to assume that D is a division algebra of a prime degree .

Let L/F be a finite extension splitting the algebra D. Then [L : F] = kl for
some integer k and there is an embedding of F-algebras L < M (D) (see [H]).
The induced homomorphism

Ks(L) — Kz (My(D)) = Ky(D)

does not depend on the choice of the embedding.

Let X be the Severi-Brauer variety of left ideals of dimension [ in D. As for
every closed point € X the residue field F'(x) splits D, we have a canonical
homomorphism Ky F(z) — Ks(D).

Lemma 2.5. There is a homomorphism h : Ag(X, K3) — Ky(D) satisfying
the following properties:

(1) The composition Nrdp oh is the norm map Ag(X, Ko) — Ko(F).

(2) For every closed point x € X, the composition of h with the natural

homomorphism Ky F(x) — Ao(X, K2) coincides with the canonical map

Proof. We follow the construction in [8, §8]. Let J be the canonical vector
bundle of rank [ over X. There is a natural right action of the opposite
algebra D~! on J over F. For every i > 0, the functor M + J*®@pe—i M from
the category of left finite D®~“-modules to the category of vector bundles over
X induces a homomorphism

Ky(D®7") — Ko(X).
By Quillen’s theorem [A, §8, Th. 4.1], the map
-1
[ E2(D%7) = Ky(X)
i=0
is an isomorphism. We define the map h as the composition
h: Ao(X, KQ) — KQ(X) — KQ(D),
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where the first map is the edge homomorphism of the Gersten-Quillen spectral
sequence [A@, §7, Th. 5.4] and the second one is projection on the (I — 1)-
th component of the left hand side in Quillen’s isomorphism. The Gersten-
Quillen spectral sequence is functorial with respect to the base field change, in
particular, h commutes with the norm maps for finite field extensions.

Note that the group Ag(X, K3) is generated by the norms for finite field
extensions that split D. Thus, to prove the first property of h we may assume
that D is split. In this case X is isomorphic to the projective space P!~
Ag(X, Ky) ~ K3(F) canonically and Ky(D™*) can be identified with Ky(F')
via the reduced norm homomorphism. The image of an element o € Ky (F)
in Ky(X) is equal to a - [pt], where [pt] is the class of a rational point in
Ky(X). Note that the Quillen’s isomorphism takes > a; to > a;n* € K.(X),
where 7 is the class of the canonical line bundle (with the sheaf of sections
O(1)). Since [pt] = (n — D)1 = p!~1 + ..., the element « - [pt] projects to
a € Ky(F) = Ky(D), that proves the first property of h.

To prove the second property let x € X be a closed point of degree kl and
let L = F(x). Choose a rational point 2’ € X over z. For every a € Ks(L)
the classes ar’ and ax in the groups Ag(Xp, K») and Ag(X, K3) respectively
satisfy Ni,p(ax’) = ax, where Ny p is the left vertical norm homomorphism
in the commutative diagram

Ao(X 1, Ky) — Ky(Dy)

NL/Fl lNL/F

Ao(X, Ky) — Ky(D),

where D, = D ®p L. Since Nrdp, (hL(ax’)) = « by the first part, it suf-
fices to prove that the right vertical norm homomorphism coincides with the

composition
Ko(Dr) 24 Ko (L) — Ky (D).

This follows from commutativity of the diagram

KQ(DL) ;> KQMl(L) e KQMk;l(D) ;) KQMZ(D)

w } |

and the fact that the diagonal composition Ky(Dy) — K3(D) coincides with
the norm map. 0

Now we can finish the proof of Theorem 3. As the kernel of Nrdp is [-
torsion, it suffices to prove that Nrdp is injective after tensoring with Z). A
transfer argument shows that we can replace F' by a finite field extension of
degree prime to [. Thus, we can assume that D is a cyclic algebra.

Let 6 be the 2-symbol corresponding to D and X the Severi-Brauer variety
of D. Then X is a Rost variety of #. The Rost motive Ry is a direct sum of
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M(X) in DM(F, Z). Let
Ro — M(X) > Ry

be morphisms such that s o r is the identity of Ry. Over a splitting field
extension L/F, X ~ IP’ZL_l, therefore, the motives (Ry); and M(Xy) are
both isomorphic to Zgy @ Zgy(1)[2] @ --- @ Zgy(I — 1)[2(1 — 1)] by (B) and
hence are isomorphic. Identifying (Rg);, and M (X;) with M (P, '), we can
view r, and s; as endomorphisms of M (PlL’l) with s; a left inverse of r;.
The endomorphism ring of M (P, ") is CH'™ ' (P! x PU) ) (see [IH]) that is
isomorphic to the product of [ copies of Zy. As this ring is commutative, r,
and sy, are isomorphisms inverse to each other. By [0, Cor. 8.4.], r and s
are isomorphisms, i.e., the Rost motive Ry is isomorphic to the motive of the
Severi-Brauer variety X in DM(F, Z).

By Proposition 232 (see also the proof of Proposition I3), the norm homo-
morphism N : Ay(X, Ky) — Ky(F') is injective after tensoring with Z). By
Lemma E3(1), N coincides with the composition

Ao(X, Ks) % Ka(D) 25 Ky(F).

It follows from [B, Th. 5.2] that the group K3(D) is generated by the images
of natural homomorphisms K>F(z) — Ks(D) over all closed points x € X.
Hence, by Lemma E(2), h is surjective. It follows that Nrdp is injective after
tensoring with Z;). 0

Remark 2.6. Theorem I3 was proven independently by B. Kahn and M. Levine
in [A].

Acknowledgment. We are grateful to the referee for useful comments.
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