MOTIVIC COHOMOLOGY OF THE SIMPLICIAL MOTIVE OF A ROST VARIETY

ALEXANDER MERKURJEV AND ANDREI SUSLIN

Abstract

We compute the motivic cohomology groups of the simplicial motive \mathcal{X}_{θ} of a Rost variety for an n-symbol θ in Galois cohomology of a field. As an application we compute the kernel and cokernel of multiplication by θ in Galois cohomology. We also show that the reduced norm map on K_{2} of a division algebra of square-free degree is injective.

1. Motivic cohomology of \mathcal{X}_{θ}

1.1. Introduction. Let l be a prime integer, F a field of characteristic different from l. The Galois cohomology group $H_{e t}^{1}\left(F, \mu_{l}\right)$, where μ_{l} is the Galois module of all l th roots of unity, is canonically isomorphic to the factor group $F^{\times} / F^{\times l}$. We write (a) for the class in $H_{e t}^{1}\left(F, \mu_{l}\right)$ corresponding to an element $a \in F^{\times}$. Let $a_{1}, \ldots, a_{n-1} \in F^{\times}$for some $n \geq 1$ and $\chi \in H_{e t}^{1}(F, \mathbb{Z} / l \mathbb{Z})$. We consider the n-tuple of 1 -dimensional cohomology classes

$$
\theta=\left(\chi,\left(a_{1}\right), \ldots,\left(a_{n-1}\right)\right) .
$$

Abusing notation we shall also write θ for the cup-product $\chi \cup\left(a_{1}\right) \cup \cdots \cup\left(a_{n-1}\right)$ in $H_{e t}^{n}\left(F, \mu_{l}^{\otimes(n-1)}\right)$ and call this element a symbol.

Note that if $\mu_{l} \subset F^{\times}$, the choice of a primitive l th root of unity identifies $\mathbb{Z} / l \mathbb{Z}$ with μ_{l} and, therefore, χ with $\left(a_{0}\right)$ for some $a_{0} \in F^{\times}$. Thus, θ is given by the n-tuple $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ of elements in F^{\times}.

A Rost variety for θ is a smooth projective variety X_{θ} over F satisfying the conditions given in [[20, Def. 1.1] or [3, Def. 0.5].

Example 1.1. (see [[20])

1) If $n=1$, then $X_{\theta}=\operatorname{Spec}(L)$, where L / F is a cyclic field extension of degree l splitting θ, is a Rost variety for θ.
2) If $n=2$, the Severi-Brauer variety $X_{\theta}=S B(A)$ of a central simple F algebra A of dimension l^{2} with the class θ in $H^{2}\left(F, \mu_{l}\right) \subset \operatorname{Br}(F)$ is a Rost variety for θ.

An inductive process given in [[3] allows to construct a Rost variety for any θ. Denote further by \mathcal{X}_{θ} the C Cech simplicial scheme $\check{C}\left(\mathcal{X}_{\theta}\right)$ of X_{θ} (see [[Appendix B]) and by $M\left(\mathcal{X}_{\theta}\right)$ the motive of \mathcal{X}_{θ} in the triangulated category $\mathbf{D M}(F, \mathbb{Z})$ (see $[\mathbb{[}])$. The motive of \mathcal{X}_{θ} in $\mathbf{D M}\left(F, \mathbb{Z}_{(l)}\right)$ is independent of the

The first author acknowledges support by the NSF grant DMS \#0652316.
The second author acknowledges support by the NSF grant DMS \#0901852.
choice of the Rost variety $\left.X_{\theta}([\mathbb{K}], \S 5]\right)$. If $\theta=0$, then $\mathcal{X}_{\theta}=\mathbb{Z}$, so in general, \mathcal{X}_{θ} is a "twisted form" of \mathbb{Z}. We write $H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ for the motivic cohomology group $H^{p, q}\left(M\left(\mathcal{X}_{\theta}\right), \mathbb{Z}\right)$.

The triviality of the motivic cohomology group $H^{n+1, n}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ is the essential step in the proof of Bloch-Kato Conjecture (see [[7], Prop. 6.11]). In this paper we compute the motivic cohomology $H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ for all p and q (Theorem [.].5).

In the second part of the paper some applications are given. We compute the kernel and cokernel of multiplication by θ in Galois cohomology. We also show that the reduced norm map on K_{2} of a division algebra of square-free degree is injective.

We use the following notation:
$K_{*}(F)$ is the Milnor ring of a field F.
If X is a variety over F, we write $A_{0}\left(X, K_{p}\right)$ for the cokernel of the residue homomorphism (see [IT]):

$$
\coprod_{x \in X_{(1)}} K_{p+1} F(x) \rightarrow \coprod_{x \in X_{(0)}} K_{p} F(x),
$$

where $X_{(i)}$ is the set of all points of X of dimension i.
$n \geq 2$ an integer,
$b=\left(l^{n-1}-1\right) /(l-1)=1+l+\cdots+l^{n-2}$,
$c=\left(l^{n}-1\right) /(l-1)=1+l+\cdots+l^{n-1}=b l+1=b+l^{n-1}$,
$d=l^{n-1}-1=b(l-1)=c-b-1$.
1.2. The Bloch-Kato Conjecture and the motivic cohomology of \mathcal{X}_{θ}.

The Bloch-Kato Conjecture asserts that the norm residue homomorphism

$$
h_{n, l}: K_{n}(F) / l K_{n}(F) \rightarrow H_{e t}^{n}\left(F, \mu_{l}^{\otimes n}\right),
$$

taking the class of a symbol $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ to the cup-product $\left(a_{0}\right) \cup\left(a_{1}\right) \cup$ $\cdots \cup\left(a_{n-1}\right)$, is an isomorphism. This conjecture was proved in [[6] (see also

$$
H^{p, q}(Y, \mathbb{Z}) \rightarrow H_{e t}^{p, q}(Y, \mathbb{Z})
$$

are isomorphisms for a smooth projective variety Y over F and $p \leq q+1$. Moreover, the natural map

$$
\begin{equation*}
H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \rightarrow H_{e t}^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \tag{1}
\end{equation*}
$$

is an isomorphism if $p \leq q+1$. By [[■], Lemma 7.3],

$$
\begin{equation*}
H_{e t}^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \simeq H_{e t}^{p, q}(F, \mathbb{Z}) \tag{2}
\end{equation*}
$$

for all p and q.
For every $\mathcal{N} \in \mathbf{D M}(F, \mathbb{Z})$ and every $\alpha \in H^{p, q}(\mathcal{N}, \mathbb{Z})$ the order of α is the integer $\operatorname{ord}(\alpha)=p-q-1$. The subgroup of $H^{*, *}(\mathcal{N}, \mathbb{Z})$ of elements of nonnegative (respectively, non-positive) order will be denoted by $H^{*, *}(\mathcal{N}, \mathbb{Z})^{\geq 0}$ (respectively, $H^{*, *}(\mathcal{N}, \mathbb{Z})^{\leq 0}$).
1.3. The motive $\widetilde{\mathcal{X}}_{\theta}$. The motive $\widetilde{\mathcal{X}}_{\theta}$ is defined by the exact triangle

$$
\begin{equation*}
\widetilde{\mathcal{X}}_{\theta} \rightarrow M\left(\mathcal{X}_{\theta}\right) \rightarrow \mathbb{Z} \rightarrow \widetilde{\mathcal{X}}_{\theta}[1] \tag{3}
\end{equation*}
$$

in $\mathbf{D M}(F, \mathbb{Z})$. Note that the motive $\widetilde{\mathcal{X}}_{\theta}$ differs by a shift from the one defined in [ㄴ].

It follows from (\mathbb{D}) and ($\mathbb{Z})$ that

$$
\begin{equation*}
H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \simeq H_{e t}^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \simeq H_{e t}^{p, q}(F, \mathbb{Z}) \simeq H^{p, q}(F, \mathbb{Z}) \tag{4}
\end{equation*}
$$

if $p \leq q+1$. As $H^{p, q}(F, \mathbb{Z})=0$ when $p>q$, the exact triangle (지) yields:
Proposition 1.2. There are canonical isomorphisms:

$$
\begin{aligned}
& H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)^{\geq 0} \simeq H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0} \\
& H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\leq 0} \simeq H^{*, *}(F, \mathbb{Z})^{\leq 0} \\
& H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)^{\leq 0}=0
\end{aligned}
$$

Note that the motive $\widetilde{\mathcal{X}}_{\theta}$ and hence the group $H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ vanish if $\theta=0$. Since in general θ has a degree l splitting field extension, the group $H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ is l-torsion.

Recall that $K_{p}(F)=H^{p, p}(F, \mathbb{Z})$ (see [[⿴囗 §5]). Hence there is the product

$$
\begin{equation*}
K_{s}(F) \otimes H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right) \rightarrow H^{p+s, q+s}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right), \quad x \otimes \alpha \mapsto x \cdot \alpha \tag{5}
\end{equation*}
$$

Let $K_{*}^{\theta}(F)$ be the (graded) cokernel of the norm homomorphism

$$
\coprod K_{*}(L) \rightarrow K_{*}(F)
$$

where the coproduct is taken over all finite field extensions L / F such that θ is split over E. By projection formula, $K_{*}^{\theta}(F)$ has structure of a graded ring. Clearly, $K_{*}^{\theta}(F)=0$ if $\theta=0$. If $\theta \neq 0$, a transfer argument shows that the degree of a finite splitting field extension for θ is divisible by l. On the other hand, there is a splitting field extension of degree l, hence $K_{0}^{\theta}(F)=\mathbb{Z} / l \mathbb{Z}$.

It follows from Proposition $\mathbb{\square} 2$ that in general the product ($\mathbb{\square}$) yields the structure of a left $K_{*}^{\theta}(F)$-module on $H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ and $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$.
1.4. Integral elements. We say that an element $\alpha \in H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$ is integral if α belongs to the image of the natural homomorphism

$$
H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right) \rightarrow H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)
$$

Let

$$
B: H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right) \rightarrow H^{*+1, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)
$$

be the Bockstein homomorphism, i.e., the connecting homomorphism for the exact sequence

$$
0 \rightarrow \mathbb{Z} / l \mathbb{Z} \rightarrow \mathbb{Z} / l^{2} \mathbb{Z} \rightarrow \mathbb{Z} / l \mathbb{Z} \rightarrow 0
$$

The following statement is a consequence of the fact that the group $H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ is l-torsion.

Lemma 1.3. Let $\alpha \in H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$. Then the following conditions are equivalent:
(1) α is integral;
(2) $B(\alpha)=0$;
(3) $\alpha \in \operatorname{Im} B$.
1.5. The element δ. As X_{θ} is a splitting variety for θ, the symbol θ belongs to the kernel of the natural homomorphism

$$
\text { res }: H_{e t}^{n}\left(F, \mu_{l}^{\otimes(n-1)}\right) \rightarrow H_{e t}^{n}\left(F\left(X_{\theta}\right), \mu_{l}^{\otimes(n-1)}\right)
$$

Proposition 1.4. For any $m>0$, there is a canonical isomorphism between $H^{m+1, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ and the kernel of the natural homomorphism

$$
\text { res }: H_{e t}^{m}\left(F, \mu_{l}^{\otimes(m-1)}\right) \rightarrow H_{e t}^{m}\left(F\left(X_{\theta}\right), \mu_{l}^{\otimes(m-1)}\right) .
$$

Proof. As $H^{m+1, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)=H^{m+1, m-1}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ is l-torsion, we have an exact sequence

$$
H^{m, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \rightarrow H^{m, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right) \rightarrow H^{m+1, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \rightarrow 0
$$

It follows from Proposition $\mathbb{2}$ that the first term of the sequence is trivial. Hence the group $H^{m+1, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ is canonically isomorphic to $H^{m, m-1}\left(\mathcal{X}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$. By the proof of [[6], Lemma 6.5], the latter group is canonically isomorphic to the kernel of the homomorphism res.

Denote by $\delta \in H^{n+1, n-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ the element corresponding to the symbol $\theta \in \operatorname{Ker}($ res $)$ when $m=n$. Clearly, $\delta \neq 0$ if $\theta \neq 0$. We have $\operatorname{ord}(\delta)=1$.
1.6. Cohomological operations. Denote by $Q_{i}, i=0,1, \ldots, n-1$, the Milnor cohomological operations of bidegree $\left(2 l^{i}-1, l^{i}-1\right)$ on $H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$ and $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$ (see [[区, §13]). As $H^{p, q}(F, \mathbb{Z})$ is trivial if $p>q, Q_{i}$ is trivial on $H^{p, p}(F, \mathbb{Z})=K_{p}(F)$. It follows from the product formula (see the proof of Lemma $\mathbb{\$ 8}$ below), that the operations Q_{i} are $K_{*}(F)$-linear, that is $Q_{i}(\alpha \cdot x)=Q_{i}(\alpha) \cdot x$ and $Q_{i}(x \cdot \alpha)=(-1)^{p} x \cdot Q_{i}(\alpha)$ for all $\alpha \in H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$ and $x \in K_{p}(F)$. The operations anti-commute: $Q_{k} Q_{j}=-Q_{j} Q_{k}$ for $j \neq k$ and $Q_{i}^{2}=0$ for all i. Moreover, $Q_{0}=B$. Note that

$$
\operatorname{ord} Q_{i}(\alpha)=\operatorname{ord}(\alpha)+l^{i}
$$

for all α.
Proposition 1.5. [[], Th. 3.2], [[6], Lemma 4.3] For every $i=1, \ldots, n-1$, the sequence

$$
H^{p-2 l^{i}+1, q-l^{i}+1}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right) \xrightarrow{Q_{i}} H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right) \xrightarrow{Q_{i}} H^{p+2 l^{i}-1, q+l^{i}-1}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)
$$

is exact for all p and q.
It follows from the equality $Q_{i} B=-B Q_{i}$ for $i \geq 1$ and Lemma $\mathbb{L} .3$ that Q_{i} takes integral elements to integral ones. The restriction of Q_{i} on the subgroup of integral elements $H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ is still denoted by Q_{i}.

Proposition 1.6. For every $i=1, \ldots, n-1$, the sequence

$$
H^{p-2 l^{i}+1, q-l^{i}+1}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right) \xrightarrow{Q_{i}} H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right) \xrightarrow{Q_{i}} H^{p+2 l^{i}-1, q+l^{i}-1}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)
$$

is exact for all p and q.
Proof. Suppose that $Q_{i}(\alpha)=0$ for some $\alpha \in H^{p, q}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$. By induction on $\operatorname{ord}(\alpha)$ we prove that $\alpha=Q_{i}(\beta)$ for some integral β.

By Proposition ㄴ.., $\alpha=Q_{i}\left(\beta^{\prime}\right)$ for $\beta^{\prime} \in H^{p-2 l^{i}+1, q-l^{i}+1}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z} / l \mathbb{Z}\right)$. Since α is integral, we have $\left(Q_{i} B\right)\left(\beta^{\prime}\right)=-\left(B Q_{i}\right)\left(\beta^{\prime}\right)=-B(\alpha)=0$. Since $B\left(\beta^{\prime}\right)$ is integral, by the induction hypothesis, $B\left(\beta^{\prime}\right)=Q_{i}(\gamma)$ for some integral γ. By Lemma $\llbracket .3$, we have $\gamma=B\left(\gamma^{\prime}\right)$ for some γ^{\prime} and hence

$$
B\left(\beta^{\prime}+Q_{i}\left(\gamma^{\prime}\right)\right)=B\left(\beta^{\prime}\right)+\left(B Q_{i}\right)\left(\gamma^{\prime}\right)=B\left(\beta^{\prime}\right)-Q_{i}(\gamma)=0 .
$$

Therefore, the element $\beta=\beta^{\prime}+Q_{i}\left(\gamma^{\prime}\right)$ is integral and $Q_{i}(\beta)=Q_{i}\left(\beta^{\prime}\right)=\alpha$.
Propositions $\mathbb{L 2}$ and $\mathbb{L C]}$ yield:
Corollary 1.7. Let $Q_{i}(\alpha)=0$ for some $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ and $i=1, \ldots, n-1$. Then
(1) If $0 \leq \operatorname{ord}(\alpha)<l^{i}$, then $\alpha=0$.
(2) If $\operatorname{ord}(\alpha) \geq l^{i}$, then $\alpha=Q_{i}(\beta)$ for some $\beta \in H^{p-2 l^{i}+1, q-l^{i}+1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$.
1.7. The elements γ and μ. Set

$$
\mu=\left(Q_{1} Q_{2} \ldots Q_{n-2}\right)(\delta)= \pm\left(Q_{n-2} \ldots Q_{2} Q_{1}\right)(\delta) \in H^{2 b+1, b}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)
$$

and

$$
\gamma=\left(Q_{1} Q_{2} \ldots Q_{n-2} Q_{n-1}\right)(\delta)= \pm Q_{n-1}(\mu) \in H^{2 c, c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) .
$$

We have $\operatorname{ord}(\mu)=b$ and $\operatorname{ord}(\gamma)=c$. If $\theta \neq 0$, then $\delta \neq 0$, hence it follows from Corollary $\mathbb{L}(1)$ by induction on $i=1, \ldots, n-1$ that $\left(Q_{i} \ldots Q_{2} Q_{1}\right)(\delta) \neq$ 0 . In particular, $\mu \neq 0$ and $\gamma \neq 0$.

We write \cup for the product in $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$.
Lemma 1.8. We have $Q_{i}(\gamma)=0$ for any $i=1, \ldots, n-1$ and $Q_{i}(x \cup \gamma)=$ $Q_{i}(x) \cup \gamma$ for every $x \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$.

Proof. The first equality follows from $Q_{i}^{2}=0$ and the anti-commutativity of the Q_{j}. If l is odd, by the product formula, for every homogeneous x of degree p, we have

$$
Q_{i}(x \cup \gamma)=Q_{i}(x) \cup \gamma+(-1)^{p} x \cup Q_{i}(\gamma)=Q_{i}(x) \cup \gamma
$$

In the case $l=2$, the product formula looks as follows [1], Prop. 13.4]:

$$
Q_{i}(x \cup \gamma)=x \cup Q_{i}(\gamma)+Q_{i}(x) \cup \gamma+\sum_{E, E^{\prime}} u_{E, E^{\prime}} Q_{E}(x) \cup Q_{E^{\prime}}(\gamma)
$$

for some $u_{E, E^{\prime}} \in H^{*, *}(F, \mathbb{Z})$, where $Q_{E}=Q_{1}^{e_{1}} Q_{2}^{e_{2}} \ldots$ and the sum is taken over all pairs of nonzero sequences $E=\left(e_{1}, e_{2}, \ldots\right)$ and E^{\prime} of length less than i. Note that $Q_{j}(\gamma)=0$ for all $j=1, \ldots, n-1$, hence $Q_{E^{\prime}}(\gamma)=0$.

The element μ gives rise to a morphism $M\left(\mathcal{X}_{\theta}\right) \rightarrow M\left(\mathcal{X}_{\theta}\right)(b)[2 b+1]$ in $\operatorname{DM}(F, \mathbb{Z})$, still denoted by μ (see [[区], 5.3]). Let \mathcal{M}_{θ} be the motive in $\mathbf{D M}(F, \mathbb{Z})$ defined by the exact triangle

$$
M\left(\mathcal{X}_{\theta}\right)(b)[2 b] \rightarrow \mathcal{M}_{\theta} \rightarrow M\left(\mathcal{X}_{\theta}\right) \xrightarrow{\mu} M\left(\mathcal{X}_{\theta}\right)(b)[2 b+1] .
$$

For every $i=0,1, \ldots, l-1$, let $S^{i} \mathcal{M}_{\theta}$ be the i-th symmetric power of \mathcal{M}_{θ} in $\mathbf{D M}\left(F, \mathbb{Z}_{(l)}\right)$ (see [[6], §3]). The symmetric power $\mathcal{R}_{\theta}:=S^{l-1} \mathcal{M}_{\theta}$ is called the Rost motive of θ.

Note that in the split case,

$$
\begin{equation*}
\mathcal{M}_{\theta}=\mathbb{Z}_{(l)} \oplus \mathbb{Z}_{(l)}(b)[2 b] \oplus \cdots \oplus \mathbb{Z}_{(l)}((l-1) b)[2(l-1) b] . \tag{6}
\end{equation*}
$$

There are exact triangles [10 (5.5) and (5.6)] in $\mathbf{D M}\left(F, \mathbb{Z}_{(l)}\right)$:

$$
\begin{gathered}
\mathcal{R}_{\theta} \rightarrow S^{l-2} \mathcal{M}_{\theta} \rightarrow M\left(\mathcal{X}_{\theta}\right)(d)[2 d+1] \rightarrow \mathcal{R}_{\theta}[1] \\
S^{l-2} \mathcal{M}_{\theta}(b)[2 b] \rightarrow \mathcal{R}_{\theta} \rightarrow M\left(\mathcal{X}_{\theta}\right) \rightarrow S^{l-2} \mathcal{M}_{\theta}(b)[2 b+1] .
\end{gathered}
$$

For all integers p and q we then have exact sequences

$$
\begin{align*}
H^{p+2 d, q+d}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow & H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \xrightarrow{\partial_{1}} \tag{7}\\
& H^{p+2 d+1, q+d}\left(S^{l-2} \mathcal{M}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow H^{p+2 d+1, q+d}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right)
\end{align*}
$$

and

$$
\begin{align*}
H^{p+2 c-1, q+c-1}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow & H^{p+2 d+1, q+d}\left(S^{l-2} \mathcal{M}_{\theta}, \mathbb{Z}_{(l)}\right) \xrightarrow{\partial_{2}} \tag{8}\\
& H^{p+2 c, q+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow H^{p+2 c, q+c-1}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right) .
\end{align*}
$$

By [[6], Lemma 5.15] and [[2], Cor. 8.8], the motive \mathcal{R}_{θ} is a direct summand of $M\left(X_{\theta}\right)$ in $\mathbf{D M}\left(F, \mathbb{Z}_{(l)}\right)$. It follows that $H^{p, q}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right)=0$ if $p-q>d=\operatorname{dim} X_{\theta}$. Therefore, by (\mathbb{Z}),

$$
\begin{equation*}
\partial_{1}: H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow H^{p+2 d+1, q+d}\left(S^{l-2} \mathcal{M}_{\theta}, \mathbb{Z}_{(l)}\right) \tag{9}
\end{equation*}
$$

is an isomorphism if $p>q$ and by ($(\mathbb{})$,

$$
\begin{equation*}
\partial_{2}: H^{p+2 d+1, q+d}\left(S^{l-2} \mathcal{M}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow H^{p+2 c, q+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \tag{10}
\end{equation*}
$$

is an isomorphism if $p+c>q+d$.
Let ∂ be the composition $\partial_{2} \circ \partial_{1}$. Then ($\mathbb{\square}$) and ($\mathbb{\|}$) yield an exact sequence

$$
\begin{align*}
H^{p+2 c-1, p+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow & H^{p+2 d, p+d}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow \tag{11}\\
\quad H^{p, p}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) & \xrightarrow[\rightarrow]{\partial} H^{p+2 c, p+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow 0
\end{align*}
$$

for every p.
Proposition 1.9. The homomorphism ∂ in (떼) yields an isomorphism

$$
K_{p}^{\theta}(F) \xrightarrow{\sim} H^{p+2 c, p+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)
$$

for every integer p.

Proof. Since both groups are l-torsion, it is sufficient to establish the isomorphism over $\mathbb{Z}_{(l)}$. By ($\left.\mathbb{(\mathbb { }}\right)$, we have $H^{p, p}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right)=H^{p, p}\left(F, \mathbb{Z}_{(l)}\right)=K_{p}(F)_{(l)}$. Let L / F be a finite splitting field extension of θ. The commutativity of the diagram

$$
\begin{array}{ccc}
K_{p}(L)_{(l)} & H^{p, p}\left(\mathcal{X}_{\theta L}, \mathbb{Z}_{(l)}\right) \xrightarrow{\partial_{L}} H^{p+2 c, p+c-1}\left(\mathcal{X}_{\theta L}, \mathbb{Z}_{(l)}\right) \\
N_{L / F} \downarrow & N_{L / F} \downarrow \\
K_{p}(F)_{(l)}= & H^{p, p}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \xrightarrow{N_{L / F}} \downarrow \\
\end{array}
$$

and the triviality of the top right corner imply that

$$
\operatorname{Ker}(\partial) \supset A:=\operatorname{Ker}\left(K_{p}(F)_{(l)} \rightarrow K_{p}^{\theta}(F)_{(l)}\right) .
$$

By [[\mathbb{Z}, Lemma 4.11], the group $H^{p+2 d, p+d}\left(X_{\theta}, \mathbb{Z}\right)$ is canonically isomorphic to $A_{0}\left(X_{\theta}, K_{p}\right)$. As \mathcal{R}_{θ} is a direct summand of $M\left(X_{\theta}\right)$, the group $H^{p+2 d, p+d}\left(X_{\theta}, \mathbb{Z}_{(l)}\right)$ and hence $H^{p+2 d, p+d}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right)$ is generated by the norms for the field extensions $F(x) / F$ over all closed points $x \in X_{\theta}$. Since the field $F(x)$ splits θ, we see from the exactness of $(\mathbb{\square})$ that $\operatorname{Ker}(\partial) \subset A$. Therefore, $\operatorname{Ker}(\partial)=A$ and ∂ yields the isomorphism in the statement of the proposition.

Suppose that $\theta \neq 0$. We have $K_{0}^{\theta}(F)=\mathbb{Z} / l \mathbb{Z}$ and therefore by Proposition I.T, $H^{2 c, c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \simeq \mathbb{Z} / l \mathbb{Z}$. On the other hand, γ is a nonzero element of this group, hence $H^{2 c, c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)=(\mathbb{Z} / l \mathbb{Z}) \gamma$.

Note that the motive \mathcal{M}_{θ} and its symmetric powers are motives over \mathcal{X}_{θ} (see [[6]). Moreover, the morphisms in the exact triangles involving these motives are over \mathcal{X}_{θ}. In particular, the homomorphism ∂ is $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$-linear. Therefore, ∂ is given by multiplication by the canonical generator of $H^{2 c, c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ that is a multiple of γ. Note that since the degree $2 c$ of γ is even, γ is central

Proposition 1.10. (1) The map $K_{p}^{\theta}(F) \rightarrow H^{p+2 c, p+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ given by multiplication by γ, is an isomorphism for any p.
(2) The map $H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \rightarrow H^{p+2 c, q+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$, given by multiplication by γ, is an isomorphism if $p>q$, i.e., every $\alpha \in H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ with $\operatorname{ord}(\alpha)>c$ can be written in the form $\alpha=\beta \cup \gamma$ for a unique β.

Proposition 1.11. The map $K_{p}^{\theta}(F) \rightarrow H^{p+n+1, p+n-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right), x \mapsto x \cdot \delta$, is an isomorphism for all p.

Proof. The composition

$$
K_{p}^{\theta}(F) \xrightarrow{\cdot \delta} H^{p+n+1, p+n-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right) \xrightarrow{Q_{1} \ldots Q_{n-1}} H^{p+2 c, p+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)
$$

coincides with the multiplication by γ and therefore is an isomorphism by Proposition $\mathbb{\square} \mathbf{D}(1)$. The second map is injective by Corollary \mathbb{L}

Lemma 1.12. If $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ such that $b<\operatorname{ord}(\alpha) \leq c$, then $Q_{n-1}(\alpha)=0$.

Proof. Since ord $Q_{n-1}(\alpha)>b+l^{n-1}=c$, we have $Q_{n-1}(\alpha)=\beta \cup \gamma$ for some $\beta \in H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$ by Proposition $\mathbb{L} \mathbb{C}(2)$. Hence, in view of Lemma [.. ,

$$
Q_{n-1}(\beta) \cup \gamma=Q_{n-1}(\beta \cup \gamma)=Q_{n-1}^{2}(\alpha)=0,
$$

therefore $Q_{n-1}(\beta)=0$ again by Proposition $\mathbb{L D}(2)$. Since

$$
\operatorname{ord}(\beta) \leq c+l^{n-1}-(c+1)<l^{n-1}
$$

we have $\beta=0$ by Corollary $\mathbb{L D}$ and therefore $Q_{n-1}(\alpha)=0$.
Lemma 1.13. If $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ with $2 l^{i} \leq \operatorname{ord}(\alpha)<l^{i+1}$ for some $i=$ $0,1, \ldots, n-2$, then $\alpha=0$.
Proof. Consider the element $\alpha^{\prime}=\left(Q_{n-2} \ldots Q_{i+1}\right)(\alpha)$. Since

$$
\operatorname{ord}\left(\alpha^{\prime}\right)=\operatorname{ord}(\alpha)+l^{i+1}+\cdots+l^{n-2}
$$

we have $b<\operatorname{ord}\left(\alpha^{\prime}\right)<l^{n-1}<c$. By Lemma ㄸ.D, $Q_{n-1}\left(\alpha^{\prime}\right)=0$.
Using Corollary ㄸ.], by descending induction on $j=n-2, \ldots, i$, we deduce that $\left(Q_{j} \ldots Q_{i+1}\right)(\alpha)=0$ since $\operatorname{ord}\left(Q_{j} \ldots Q_{i+1}\right)(\alpha)<l^{j+1}$. Therefore, $\alpha=$ 0 .

Lemma 1.14. If $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ with $\operatorname{ord}(\alpha) \leq c$ and $l^{i} \leq \operatorname{ord}(\alpha)<2 l^{i}$ for some $i=1,2, \ldots, n-1$, then $\alpha=Q_{i}(\beta)$ for some $\beta \in H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$.

Proof. By Corollary [.], it is sufficient to show that $Q_{i}(\alpha)=0$.
Suppose first that $i=n-1$. Since $b<l^{n-1} \leq \operatorname{ord}(\alpha) \leq c$, it follows from Lemma $\mathbb{\square}$ that $Q_{n-1}(\alpha)=0$. In the rest of the proof we assume that $i \leq n-2$.

Case 1: $l \geq 3$. We have

$$
2 l^{i} \leq \operatorname{ord} Q_{i}(\alpha)<3 l^{i} \leq l^{i+1} .
$$

By Lemma [.].3, $Q_{i}(\alpha)=0$.
Case 2: $l=2$. We prove that $Q_{i}(\alpha)=0$ by descending induction on i. Since $2^{i+1} \leq \operatorname{ord} Q_{i}(\alpha)<2^{i}+2^{i+1}$, by the induction hypothesis, $\left(Q_{i+1} Q_{i}\right)(\alpha)=0$. By Corollary $\mathbb{L D}(2), Q_{i}(\alpha)=Q_{i+1}(\rho)$ for some $\rho \in H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$. Since $\left(Q_{i+1} Q_{i}\right)(\rho)=-\left(Q_{i} Q_{i+1}\right)(\rho)=-Q_{i}^{2}(\alpha)=0$ and $\operatorname{ord}(\rho)<2^{i}$, ord $Q_{i}(\rho)<2^{i+1}$, it follows from Corollary $\mathbb{L} .7$ that $\rho=0$ and therefore $Q_{i}(\alpha)=0$.
1.8. Main theorem. Consider the exterior algebra

$$
\Lambda=K_{*}^{\theta}(F)[t]\left[\lambda_{1}, \ldots, \lambda_{n-1}\right]
$$

over the polynomial algebra $K_{*}^{\theta}(F)[t]$, i.e., $\lambda_{i}^{2}=0$ and $\lambda_{i} \lambda_{j}=-\lambda_{i} \lambda_{i}$ for $i \neq j$. Recall (see section [.3]) that $H^{*, *}\left(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}\right)$ has a structure of a left $K_{*}^{\theta}(F)$-module. The operations Q_{i} are $K_{*}(F)$-linear and Q_{i} commute with multiplication by γ by Lemma ㄴ.》. Therefore, we can view $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ as a left Λ-module with t acting by multiplication by γ and λ_{i} acting via the operation Q_{i}. The ring Λ is graded over $K_{*}^{\theta}(F)$ as follows: $\operatorname{deg}(t)=c+1, \operatorname{deg}\left(\lambda_{i}\right)=l^{i}$. For any homogeneous element $\lambda \in \Lambda$ and any $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$, we have

$$
\operatorname{ord}(\lambda \alpha)=\operatorname{deg}(\lambda)+\operatorname{ord}(\alpha) .
$$

Note that distinct monomials in Λ of the form $t^{k} \lambda_{1}^{a_{1}} \lambda_{2}^{a_{2}} \ldots \lambda_{n-1}^{a_{n-1}}$ with $a_{i}=0$ or 1 have different degree.

Theorem 1.15. Let l be a prime integer, $n \geq 2, F$ a field of characteristic different from l and $\theta \in H_{e t}^{n}\left(F, \mu_{l}^{\otimes(n-1)}\right)$ a nontrivial symbol. Then
(1) $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\leq 0}$ is canonically isomorphic to $H^{*, *}(F, \mathbb{Z})^{\leq 0}$.
(2) $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$ is a free left Λ-module with basis $\{\delta\}$.

Proof. (1) follows from Proposition [.2.
(2): We shall prove that the map

$$
\Lambda \rightarrow H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}, \quad \lambda \mapsto \lambda \delta
$$

is an isomorphism.
Injectivity: In view of the remark preceding the theorem, it suffices to prove that if $\lambda \delta=0$ for a monomial $\lambda=x t^{k} \lambda_{1}^{a_{1}} \lambda_{2}^{a_{2}} \ldots \lambda_{n-1}^{a_{n-1}}$ with $x \in K_{*}^{\theta}(F)$ and the integers $k \geq 0$ and a_{i} such that $a_{i}=0$ or 1, i.e.,

$$
\gamma^{k} \cup\left(Q_{1}^{a_{1}} Q_{2}^{a_{2}} \ldots Q_{n-1}^{a_{n-1}}\right)(x \cdot \delta)=0
$$

then $x=0$. By Proposition [.].

$$
\left(Q_{1}^{a_{1}} Q_{2}^{a_{2}} \ldots Q_{n-1}^{a_{n-1}}\right)(x \cdot \delta)=0
$$

It follows from Corollary \mathbb{L} by descending induction on $i \geq 0$ that

$$
\left(Q_{1}^{a_{1}} Q_{2}^{a_{2}} \ldots Q_{i}^{a_{i}}\right)(x \cdot \delta)=0 .
$$

Therefore, $x \cdot \delta=0$ and hence $x=0$ by Proposition [.]D.
Surjectivity: Let $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ be an element with $\operatorname{ord}(\alpha) \geq 0$. By induction on $\operatorname{ord}(\alpha)$ we show that $\alpha=\lambda \delta$ for some $\lambda \in \Lambda$. If $\operatorname{ord}(\alpha)=0$, then $\alpha=0$ by Proposition $\mathbb{2}$. The case $\operatorname{ord}(\alpha)=1$ is covered by Proposition ㄴ..]. If $\operatorname{ord}(\alpha) \geq c+1$, then by Proposition $\mathbb{L}(2), \alpha=\gamma \cup \beta$ for β with $0 \leq \operatorname{ord}(\beta)<\operatorname{ord}(\alpha)$. By induction, $\beta=\lambda \delta$ for some $\lambda \in \Lambda$ and hence $\alpha=(t \lambda) \delta$.

Suppose $2 \leq \operatorname{ord}(\alpha) \leq c$. Choose an $i=0,1, \ldots, n-1$ such that $l^{i} \leq$ $\operatorname{ord}(\alpha)<l^{i+1}$. If $\operatorname{ord}(\alpha) \geq 2 l^{i}$ (and hence $\left.i \leq n-2\right)$, then by Lemma [.].3, $\alpha=0$. So we may assume that $l^{i} \leq \operatorname{ord}(\alpha)<2 l^{i}$ for $i \geq 1$. It follows from Lemma induction, $\beta=\lambda \delta$ for some $\lambda \in \Lambda$ and hence $\alpha=\left(\lambda_{i} \lambda\right) \delta$.

Remark 1.16. When $l=2$ we have $\gamma=\mu^{2}$. Moreover if s is the operation of multiplication by μ, the left $K_{*}^{\theta}(F)[s]\left[\lambda_{1}, \ldots \lambda_{n-2}\right]$-module $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$ is free with basis $\{\delta\}$. In this form the statement was proved by Orlov, Vishik, and Voevodsky (unpublished).

Remark 1.17. By Theorem [.].5, a nontrivial element $\alpha \in H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ of positive order can be uniquely written in the form

$$
\alpha=\gamma^{k} \cup\left(Q_{1}^{a_{1}} Q_{2}^{a_{2}} \ldots Q_{n-1}^{a_{n-1}}\right)(x \cdot \delta)
$$

where $x \in K_{*}^{\theta}(F)$ and k, a_{i} are integers such that $k \geq 0$ and $a_{i}=0$ or 1 . Moreover,

$$
\operatorname{ord}(\alpha)=1+k(c+1)+\sum_{i=1}^{n-1} l^{a_{i}}
$$

1.9. The multiplicative structure. The ring structure of $H^{*, *}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)^{\geq 0}$ in the case $l=2$ has been determined by Orlov, Vishik, and Voevodsky (unpublished).

Let l be an odd prime. The operation S of the form $\pm Q_{i_{1}} Q_{i_{2}} \ldots Q_{i_{k}}$, where $k \geq 0$ and $i_{1}<\cdots<i_{k}$, is called a monomial. For a monomial S there exists a unique monomial S^{\prime} such that $S^{\prime} S=Q_{1} Q_{2} \ldots Q_{n-1}$. We shall compute the cup-product $T(\delta) \cup S(\delta)$ for two monomials T and S.

Proposition 1.18. Let S and T be monomials. Then
(1) If $S^{\prime} T^{\prime}=0$, then $T(\delta) \cup S(\delta)=0$.
(2) If $S^{\prime} T^{\prime} \neq 0$, i.e., $S^{\prime} T^{\prime}$ is a monomial, let U be (the unique) monomial such that $U^{\prime}=S^{\prime} T^{\prime}$. Then $T(\delta) \cup S(\delta)=U(\delta) \cup \gamma$.
Proof. (1): By assumption, the monomials T and S do not contain Q_{i} for some i. Therefore, the i-th digit of ord $T(\delta)+\operatorname{ord} S(\delta)$ written in base l is equal to 0 . By Theorem [D.5, the product $T(\delta) \cup S(\delta)$, if not zero, is a $K_{*}^{\theta}(F)$ multiple of either $U(\delta) \cup \gamma$ or $U(\delta)$ for some monomial U. In the first case ord $T(\delta)+\operatorname{ord} S(\delta)=\operatorname{ord} U(\delta)+c$, and this case is impossible since all digits of the right hand side written in base l are nonzero.

In the second case ord $T(\delta)+\operatorname{ord} S(\delta)=\operatorname{ord} U(\delta)-1$ and this case does not occur since ord $V(\delta) \equiv 1$ modulo l for every monomial V. Therefore $T(\delta) \cup S(\delta)=0$.
(2): If $T^{\prime}=1$, then $U=S, T(\delta)=\gamma$ and the equality follows.

Assume that $T^{\prime} \neq 1$. By assumption $T^{\prime} S=0$. Therefore,

$$
\begin{aligned}
& S^{\prime} T^{\prime}(T(\delta) \cup S(\delta))=S^{\prime}\left(T^{\prime} T(\delta) \cup S(\delta) \pm T(\delta) \cup T^{\prime} S(\delta)\right) \\
& = \\
& =S^{\prime}(\gamma \cup S(\delta)) \\
& = \\
& =\gamma \cup S^{2},
\end{aligned}
$$

By Theorem [.].5, the restriction of every operation Q_{i} on a homogeneous component $H^{p, q}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$ of non-negative order is either injective or zero. Hence $T(\delta) \cup S(\delta)=U(\delta) \cup \gamma$.

2. Applications

In this section we give some applications.

2.1. An exact sequence.

Theorem 2.1. Let l be a prime integer, F a field of characteristic different from l and $\theta \in H_{e t}^{n}\left(F, \mu_{l}^{\otimes(n-1)}\right)$ a symbol. Then the sequence

$$
\begin{aligned}
\coprod H_{e t}^{p}\left(L, \mu_{l}^{\otimes p}\right) \xrightarrow{\sum N_{L / F}} H_{e t}^{p}\left(F, \mu_{l}^{\otimes p}\right) \xrightarrow{\cup \theta} \\
H_{e t}^{p+n}\left(F, \mu_{l}^{\otimes(p+n-1)}\right) \xrightarrow{\prod \mathrm{res}_{E / F}} \prod H_{e t}^{p+n}\left(E, \mu_{l}^{\otimes(p+n-1)}\right),
\end{aligned}
$$

where the coproduct is taken over all finite splitting field extensions L / F for θ and the product is taken over all splitting field extensions E / F, is exact.

Proof. Note that by a projection formula, the sequence is a complex. By Proposition [.]. the kernel of the last homomorphism in the sequence is canonically isomorphic to $H^{p+n+1, p+n-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}\right)$. Under this isomorphism, the cupproduct with θ corresponds to multiplication by δ. The statement follows now from Proposition [.] , the definition of $K_{p}^{\theta}(F)$ and the bijectivity of the norm residue homomorphism.
2.2. Certain motivic cohomology groups of the Rost motive \mathcal{R}_{θ}. Let l be a prime integer, F a field of characteristic different from $l, \theta \in H_{e t}^{n}\left(F, \mu_{l}^{\otimes(n-1)}\right)$ a symbol, X_{θ} a Rost variety for θ and \mathcal{R}_{θ} the Rost motive of θ. Recall the exact sequence (떼):

$$
H^{p+2 c-1, p+c-1}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow H^{p+2 d, p+d}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow H^{p, p}\left(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}\right)=K_{p}(F)_{(l)}
$$

 ring Λ is zero, hence the first group in the sequence is trivial. We have proved:

Proposition 2.2. The natural homomorphism

$$
H^{p+2 d, p+d}\left(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}\right) \rightarrow K_{p}(F)_{(l)}
$$

is injective.
2.3. Injectivity of the reduced norm map for a central simple algebra.

Let D be a central simple algebra of degree m over F. An old theorem of Wang (see [Z]) asserts that the classical reduced norm homomorphism

$$
\operatorname{Nrd}_{D}: K_{1}(D) \rightarrow K_{1}(F)
$$

is injective provided m is a square-free integer.
The reduced norm homomorphism Nrd_{D} for the K_{2}-groups has been defined in [[2], §26]. It was proven in [[0]] and [[] that Nrd_{D} is injective in the case $m=2$. In the following statement we generalize this result to a K_{2}-analog of Wang's theorem.
Theorem 2.3. Let D be a central simple algebra of square-free degree over F. Then the reduced norm homomorphism

$$
\operatorname{Nrd}_{D}: K_{2}(D) \rightarrow K_{2}(F)
$$

is injective.

Lemma 2．4．Let B and C be two central simple algebras over F of relatively prime degree．Suppose the reduced norm homomorphisms for B and C are injective over any field extension of F ．Then $\operatorname{Nrd}_{B \otimes C}$ is also injective．
Proof．Let L / F be a splitting field of C of degree r dividing $\operatorname{deg} C$ ．By as－ sumption，the bottom homomorphism of the diagram

is injective．We deduce that the kernel K of $\operatorname{Nrd}_{B \otimes C}$ is r－torsion．Similarly we show that K is s－torsion for some integer s relatively prime to r ，hence $K=0$ ．

Since the algebra D is a tensor product of algebras of prime degree（see［［ $]$ ］）， Lemma $L . \pi$ allows to assume that D is a division algebra of a prime degree l ．

Let L / F be a finite extension splitting the algebra D ．Then $[L: F]=k l$ for some integer k and there is an embedding of F－algebras $L \hookrightarrow M_{k}(D)$（see［⿴囗十丁］）． The induced homomorphism

$$
K_{2}(L) \rightarrow K_{2}\left(M_{k}(D)\right)=K_{2}(D)
$$

does not depend on the choice of the embedding．
Let X be the Severi－Brauer variety of left ideals of dimension l in D ．As for every closed point $x \in X$ the residue field $F(x)$ splits D ，we have a canonical homomorphism $K_{2} F(x) \rightarrow K_{2}(D)$ ．
Lemma 2．5．There is a homomorphism $h: A_{0}\left(X, K_{2}\right) \rightarrow K_{2}(D)$ satisfying the following properties：
（1）The composition $\operatorname{Nrd}_{D} \circ h$ is the norm map $A_{0}\left(X, K_{2}\right) \rightarrow K_{2}(F)$ ．
（2）For every closed point $x \in X$ ，the composition of h with the natural homomorphism $K_{2} F(x) \rightarrow A_{0}\left(X, K_{2}\right)$ coincides with the canonical map $K_{2} F(x) \rightarrow K_{2}(D)$.

Proof．We follow the construction in［ $[4, \S 8]$ ．Let J be the canonical vector bundle of rank l over X ．There is a natural right action of the opposite algebra D^{-1} on J over F ．For every $i \geq 0$ ，the functor $M \mapsto J^{i} \otimes_{D^{\otimes-i}} M$ from the category of left finite $D^{\otimes-i}$－modules to the category of vector bundles over X induces a homomorphism

$$
K_{2}\left(D^{\otimes-i}\right) \rightarrow K_{2}(X) .
$$

By Quillen＇s theorem［ $\mathbf{\square}, \S 8$ ，Th．4．1］，the map

$$
\coprod_{i=0}^{l-1} K_{2}\left(D^{\otimes-i}\right) \rightarrow K_{2}(X)
$$

is an isomorphism．We define the map h as the composition

$$
h: A_{0}\left(X, K_{2}\right) \rightarrow K_{2}(X) \rightarrow K_{2}(D),
$$

where the first map is the edge homomorphism of the Gersten-Quillen spectral sequence [$[4, \S 7$, Th. 5.4] and the second one is projection on the $(l-1)$ th component of the left hand side in Quillen's isomorphism. The GerstenQuillen spectral sequence is functorial with respect to the base field change, in particular, h commutes with the norm maps for finite field extensions.

Note that the group $A_{0}\left(X, K_{2}\right)$ is generated by the norms for finite field extensions that split D. Thus, to prove the first property of h we may assume that D is split. In this case X is isomorphic to the projective space \mathbb{P}^{l-1}, $A_{0}\left(X, K_{2}\right) \simeq K_{2}(F)$ canonically and $K_{2}\left(D^{-i}\right)$ can be identified with $K_{2}(F)$ via the reduced norm homomorphism. The image of an element $\alpha \in K_{2}(F)$ in $K_{2}(X)$ is equal to $\alpha \cdot[p t]$, where $[p t]$ is the class of a rational point in $K_{0}(X)$. Note that the Quillen's isomorphism takes $\sum a_{i}$ to $\sum a_{i} \eta^{i} \in K_{*}(X)$, where η is the class of the canonical line bundle (with the sheaf of sections $\mathcal{O}(1))$. Since $[p t]=(\eta-1)^{l-1}=\eta^{l-1}+\ldots$, the element $\alpha \cdot[p t]$ projects to $\alpha \in K_{2}(F)=K_{2}(D)$, that proves the first property of h.

To prove the second property let $x \in X$ be a closed point of degree $k l$ and let $L=F(x)$. Choose a rational point $x^{\prime} \in X_{L}$ over x. For every $\alpha \in K_{2}(L)$ the classes αx^{\prime} and αx in the groups $A_{0}\left(X_{L}, K_{2}\right)$ and $A_{0}\left(X, K_{2}\right)$ respectively satisfy $N_{L / F}\left(\alpha x^{\prime}\right)=\alpha x$, where $N_{L / F}$ is the left vertical norm homomorphism in the commutative diagram

where $D_{L}=D \otimes_{F} L$. Since $\operatorname{Nrd}_{D_{L}}\left(h_{L}\left(\alpha x^{\prime}\right)\right)=\alpha$ by the first part, it suffices to prove that the right vertical norm homomorphism coincides with the composition

$$
K_{2}\left(D_{L}\right) \xrightarrow{\mathrm{Nrd}} K_{2}(L) \rightarrow K_{2}(D) .
$$

This follows from commutativity of the diagram

and the fact that the diagonal composition $K_{2}\left(D_{L}\right) \rightarrow K_{2}(D)$ coincides with the norm map.

Now we can finish the proof of Theorem [2.3. As the kernel of Nrd_{D} is l torsion, it suffices to prove that Nrd_{D} is injective after tensoring with $Z_{(l)}$. A transfer argument shows that we can replace F by a finite field extension of degree prime to l. Thus, we can assume that D is a cyclic algebra.

Let θ be the 2 -symbol corresponding to D and X the Severi-Brauer variety of D. Then X is a Rost variety of θ. The Rost motive \mathcal{R}_{θ} is a direct sum of
$M(X)$ in $\mathbf{D M}\left(F, \mathbb{Z}_{(l)}\right)$ ．Let

$$
\mathcal{R}_{\theta} \xrightarrow{r} M(X) \xrightarrow{s} \mathcal{R}_{\theta}
$$

be morphisms such that $s \circ r$ is the identity of \mathcal{R}_{θ} ．Over a splitting field extension $L / F, X_{L} \simeq \mathbb{P}_{L}^{l-1}$ ，therefore，the motives $\left(\mathcal{R}_{\theta}\right)_{L}$ and $M\left(X_{L}\right)$ are both isomorphic to $\mathbb{Z}_{(l)} \oplus \mathbb{Z}_{(l)}(1)[2] \oplus \cdots \oplus \mathbb{Z}_{(l)}(l-1)[2(l-1)]$ by（四）and hence are isomorphic．Identifying $\left(\mathcal{R}_{\theta}\right)_{L}$ and $M\left(X_{L}\right)$ with $M\left(\mathbb{P}_{L}^{l-1}\right)$ ，we can view r_{L} and s_{L} as endomorphisms of $M\left(\mathbb{P}_{L}^{l-1}\right)$ with s_{L} a left inverse of r_{L} ． The endomorphism ring of $M\left(\mathbb{P}_{L}^{l-1}\right)$ is $\mathrm{CH}^{l-1}\left(\mathbb{P}_{L}^{l-1} \times \mathbb{P}_{L}^{l-1}\right)_{(l)}$（see［⿴囗玉 ］）that is isomorphic to the product of l copies of $\mathbb{Z}_{(l)}$ ．As this ring is commutative，r_{L} and s_{L} are isomorphisms inverse to each other．By［⿴囗⿰丨丨丁口，Cor．8．4．］，r and s are isomorphisms，i．e．，the Rost motive \mathcal{R}_{θ} is isomorphic to the motive of the Severi－Brauer variety X in $\mathbf{D M}\left(F, \mathbb{Z}_{(l)}\right)$ ．

By Proposition $[20$（see also the proof of Proposition［．0），the norm homo－ morphism $N: A_{0}\left(X, K_{2}\right) \rightarrow K_{2}(F)$ is injective after tensoring with $Z_{(l)}$ ．By Lemma $[\mathbf{L D}(1), N$ coincides with the composition

$$
A_{0}\left(X, K_{2}\right) \xrightarrow{h} K_{2}(D) \xrightarrow{\operatorname{Nrd}_{D}} K_{2}(F) .
$$

It follows from［［］，Th．5．2］that the group $K_{2}(D)$ is generated by the images of natural homomorphisms $K_{2} F(x) \rightarrow K_{2}(D)$ over all closed points $x \in X$ ． Hence，by Lemma $\operatorname{Lan}(2), h$ is surjective．It follows that Nrd_{D} is injective after tensoring with $Z_{(l)}$ ．

Remark 2．6．Theorem［2．3］was proven independently by B．Kahn and M．Levine in［廌］．

Acknowledgment．We are grateful to the referee for useful comments．

References

［1］V．Chernousov，S．Gille，and A．Merkurjev，Motivic decomposition of isotropic projective homogeneous varieties，Duke Math．J． 126 （2005），no．1，137－159．
［2］P．K．Draxl，Skew fields，London Mathematical Society Lecture Note Series，vol．81， Cambridge University Press，Cambridge， 1983.
［3］C．Haesemeyer and C．Weibel，Norm varieties and the chain lemma（after Markus Rost），Abel Symposia 4 （2009），Springer－Verlag，95－130．
［4］I．N．Herstein，Noncommutative rings，Mathematical Association of America，Washing－ ton，DC，1994，Reprint of the 1968 original，With an afterword by L．W．Small．
［5］B．Kahn，M．Levine，Motives of Azumaya algebras，K－theory Preprint Archives， http：／／www．math．uiuc．edu／K－theory／0875／Azumaya24．pdf（2008），to appear in the J． Inst．Math．Jussieu．
［6］C．Mazza，V．Voevodsky，and C．Weibel，Lecture notes on motivic cohomology，Clay Mathematics Monographs，vol．2，American Mathematical Society，Providence，RI， 2006.
［7］A．S．Merkurjev，The group $S K_{2}$ for quaternion algebras，Izv．Akad．Nauk SSSR Ser． Mat． 52 （1988），no．2，310－335， 447.
［8］A．S．Merkurjev and A．A．Suslin，K－cohomology of Severi－Brauer varieties and the norm residue homomorphism，Izv．Akad．Nauk SSSR Ser．Mat． 46 （1982），no．5，1011－ 1046，1135－1136．
[9] D. Quillen, Higher algebraic K-theory. I, (1973), 85-147. Lecture Notes in Math., Vol. 341.
[10] M. Rost, Injectivity of $K_{2}(D) \rightarrow K_{2}(F)$ for quaternion algebras, Preprint (1986).
[11] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393 (electronic).
[12] A. A. Suslin, Algebraic K-theory and the norm residue homomorphism, Current problems in mathematics, Vol. 25, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 115-207.
[13] A. Suslin and S. Joukhovitski, Norm varieties, J. Pure Appl. Algebra 206 (2006), no. 12, 245-276.
[14] A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117189.
[15] V. Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238.
[16] V. Voevodsky, On motivic cohomology with Z/l-coefficients, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0639/ (2003).
[17] V. Voevodsky, Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, 59-104.
[18] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, 1-57.
[19] C. Weibel, Axioms for the norm residue isomorphism, K-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 427-435.
[20] C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346-372.
[21] C. Weibel, The Proof of the Bloch-Kato Conjecture, ICTP Lecture Notes Series 23 (2008), 277-305.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2370, USA

E-mail address: suslin@math.northwestern.edu

