MOTIVIC COHOMOLOGY OF THE SIMPLICIAL MOTIVE OF A ROST VARIETY

ALEXANDER MERKURJEV AND ANDREI SUSLIN

ABSTRACT. We compute the motivic cohomology groups of the simplicial motive \mathcal{X}_{θ} of a Rost variety for an *n*-symbol θ in Galois cohomology of a field. As an application we compute the kernel and cokernel of multiplication by θ in Galois cohomology. We also show that the reduced norm map on K_2 of a division algebra of square-free degree is injective.

1. Motivic cohomology of \mathcal{X}_{θ}

1.1. **Introduction.** Let l be a prime integer, F a field of characteristic different from l. The Galois cohomology group $H^1_{et}(F, \mu_l)$, where μ_l is the Galois module of all lth roots of unity, is canonically isomorphic to the factor group $F^{\times}/F^{\times l}$. We write (a) for the class in $H^1_{et}(F, \mu_l)$ corresponding to an element $a \in F^{\times}$. Let $a_1, \ldots, a_{n-1} \in F^{\times}$ for some $n \geq 1$ and $\chi \in H^1_{et}(F, \mathbb{Z}/l\mathbb{Z})$. We consider the *n*-tuple of 1-dimensional cohomology classes

$$\theta = (\chi, (a_1), \ldots, (a_{n-1})).$$

Abusing notation we shall also write θ for the cup-product $\chi \cup (a_1) \cup \cdots \cup (a_{n-1})$ in $H^n_{et}(F, \mu_l^{\otimes (n-1)})$ and call this element a symbol.

Note that if $\mu_l \subset F^{\times}$, the choice of a primitive *l*th root of unity identifies $\mathbb{Z}/l\mathbb{Z}$ with μ_l and, therefore, χ with (a_0) for some $a_0 \in F^{\times}$. Thus, θ is given by the *n*-tuple $(a_0, a_1, \ldots, a_{n-1})$ of elements in F^{\times} .

A Rost variety for θ is a smooth projective variety X_{θ} over F satisfying the conditions given in [20, Def. 1.1] or [3, Def. 0.5].

Example 1.1. (see [20])

1) If n = 1, then $X_{\theta} = \text{Spec}(L)$, where L/F is a cyclic field extension of degree l splitting θ , is a Rost variety for θ .

2) If n = 2, the Severi-Brauer variety $X_{\theta} = SB(A)$ of a central simple *F*-algebra *A* of dimension l^2 with the class θ in $H^2(F, \mu_l) \subset Br(F)$ is a Rost variety for θ .

An inductive process given in [13] allows to construct a Rost variety for any θ . Denote further by \mathcal{X}_{θ} the Čech simplicial scheme $\check{C}(\mathcal{X}_{\theta})$ of X_{θ} (see [17, Appendix B]) and by $M(\mathcal{X}_{\theta})$ the motive of \mathcal{X}_{θ} in the triangulated category $\mathbf{DM}(F,\mathbb{Z})$ (see [6]). The motive of \mathcal{X}_{θ} in $\mathbf{DM}(F,\mathbb{Z}_{(l)})$ is independent of the

The first author acknowledges support by the NSF grant DMS #0652316.

The second author acknowledges support by the NSF grant DMS #0901852.

choice of the Rost variety X_{θ} ([16, §5]). If $\theta = 0$, then $\mathcal{X}_{\theta} = \mathbb{Z}$, so in general, \mathcal{X}_{θ} is a "twisted form" of \mathbb{Z} . We write $H^{p,q}(\mathcal{X}_{\theta},\mathbb{Z})$ for the motivic cohomology group $H^{p,q}(M(\mathcal{X}_{\theta}),\mathbb{Z})$.

The triviality of the motivic cohomology group $H^{n+1,n}(\mathcal{X}_{\theta},\mathbb{Z})$ is the essential step in the proof of Bloch-Kato Conjecture (see [16, Prop. 6.11]). In this paper we compute the motivic cohomology $H^{p,q}(\mathcal{X}_{\theta},\mathbb{Z})$ for all p and q (Theorem 1.15).

In the second part of the paper some applications are given. We compute the kernel and cokernel of multiplication by θ in Galois cohomology. We also show that the reduced norm map on K_2 of a division algebra of square-free degree is injective.

We use the following notation:

 $K_*(F)$ is the Milnor ring of a field F.

If X is a variety over F, we write $A_0(X, K_p)$ for the cokernel of the residue homomorphism (see [11]):

$$\prod_{x \in X_{(1)}} K_{p+1}F(x) \to \prod_{x \in X_{(0)}} K_pF(x),$$

where $X_{(i)}$ is the set of all points of X of dimension *i*.

$$\begin{split} &n \geq 2 \text{ an integer,} \\ &b = (l^{n-1}-1)/(l-1) = 1 + l + \dots + l^{n-2}, \\ &c = (l^n-1)/(l-1) = 1 + l + \dots + l^{n-1} = bl + 1 = b + l^{n-1}, \\ &d = l^{n-1} - 1 = b(l-1) = c - b - 1. \end{split}$$

1.2. The Bloch-Kato Conjecture and the motivic cohomology of \mathcal{X}_{θ} . The Bloch-Kato Conjecture asserts that the norm residue homomorphism

$$h_{n,l}: K_n(F)/lK_n(F) \to H^n_{et}(F, \mu_l^{\otimes n}),$$

taking the class of a symbol $\{a_0, a_1, \ldots, a_{n-1}\}$ to the cup-product $(a_0) \cup (a_1) \cup \cdots \cup (a_{n-1})$, is an isomorphism. This conjecture was proved in [16] (see also [3], [13], [19], [20] and [21]). In view of [14], the natural maps

$$H^{p,q}(Y,\mathbb{Z}) \to H^{p,q}_{et}(Y,\mathbb{Z})$$

are isomorphisms for a smooth projective variety Y over F and $p \leq q + 1$. Moreover, the natural map

(1) $H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z}) \to H^{p,q}_{et}(\mathcal{X}_{\theta}, \mathbb{Z})$

is an isomorphism if $p \leq q + 1$. By [17, Lemma 7.3],

(2)
$$H_{et}^{p,q}(\mathcal{X}_{\theta},\mathbb{Z}) \simeq H_{et}^{p,q}(F,\mathbb{Z})$$

for all p and q.

For every $\mathcal{N} \in \mathbf{DM}(F,\mathbb{Z})$ and every $\alpha \in H^{p,q}(\mathcal{N},\mathbb{Z})$ the order of α is the integer $\operatorname{ord}(\alpha) = p - q - 1$. The subgroup of $H^{*,*}(\mathcal{N},\mathbb{Z})$ of elements of non-negative (respectively, non-positive) order will be denoted by $H^{*,*}(\mathcal{N},\mathbb{Z})^{\geq 0}$ (respectively, $H^{*,*}(\mathcal{N},\mathbb{Z})^{\leq 0}$).

1.3. The motive $\widetilde{\mathcal{X}}_{\theta}$. The motive $\widetilde{\mathcal{X}}_{\theta}$ is defined by the exact triangle

(3)
$$\widetilde{\mathcal{X}}_{\theta} \to M(\mathcal{X}_{\theta}) \to \mathbb{Z} \to \widetilde{\mathcal{X}}_{\theta}[1]$$

in $\mathbf{DM}(F,\mathbb{Z})$. Note that the motive $\widetilde{\mathcal{X}}_{\theta}$ differs by a shift from the one defined in [17].

It follows from (1) and (2) that

(4)
$$H^{p,q}(\mathcal{X}_{\theta},\mathbb{Z}) \simeq H^{p,q}_{et}(\mathcal{X}_{\theta},\mathbb{Z}) \simeq H^{p,q}_{et}(F,\mathbb{Z}) \simeq H^{p,q}(F,\mathbb{Z})$$

if
$$p \leq q+1$$
. As $H^{p,q}(F,\mathbb{Z}) = 0$ when $p > q$, the exact triangle (3) yields:

Proposition 1.2. There are canonical isomorphisms:

$$H^{*,*}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})^{\geq 0} \simeq H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})^{\geq 0},$$
$$H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})^{\leq 0} \simeq H^{*,*}(F,\mathbb{Z})^{\leq 0},$$
$$H^{*,*}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})^{\leq 0} = 0.$$

Note that the motive $\widetilde{\mathcal{X}}_{\theta}$ and hence the group $H^{p,q}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$ vanish if $\theta = 0$. Since in general θ has a degree l splitting field extension, the group $H^{p,q}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$ is l-torsion.

Recall that $K_p(F) = H^{p,p}(F,\mathbb{Z})$ (see [6, §5]). Hence there is the product

(5)
$$K_s(F) \otimes H^{p,q}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}) \to H^{p+s,q+s}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}), \quad x \otimes \alpha \mapsto x \cdot \alpha.$$

Let $K^{\theta}_{*}(F)$ be the (graded) cokernel of the norm homomorphism

$$\coprod K_*(L) \to K_*(F),$$

where the coproduct is taken over all finite field extensions L/F such that θ is split over E. By projection formula, $K^{\theta}_{*}(F)$ has structure of a graded ring. Clearly, $K^{\theta}_{*}(F) = 0$ if $\theta = 0$. If $\theta \neq 0$, a transfer argument shows that the degree of a finite splitting field extension for θ is divisible by l. On the other hand, there is a splitting field extension of degree l, hence $K^{\theta}_{0}(F) = \mathbb{Z}/l\mathbb{Z}$.

It follows from Proposition 1.2 that in general the product (5) yields the structure of a left $K^{\theta}_{*}(F)$ -module on $H^{*,*}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$ and $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})^{\geq 0}$.

1.4. Integral elements. We say that an element $\alpha \in H^{p,q}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z})$ is *inte*gral if α belongs to the image of the natural homomorphism

$$H^{p,q}(\mathcal{X}_{\theta},\mathbb{Z}) \to H^{p,q}(\mathcal{X}_{\theta},\mathbb{Z}/l\mathbb{Z}).$$

Let

$$B: H^{*,*}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z}) \to H^{*+1,*}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z})$$

be the *Bockstein homomorphism*, i.e., the connecting homomorphism for the exact sequence

$$0 \to \mathbb{Z}/l\mathbb{Z} \to \mathbb{Z}/l^2\mathbb{Z} \to \mathbb{Z}/l\mathbb{Z} \to 0.$$

The following statement is a consequence of the fact that the group $H^{p,q}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$ is *l*-torsion.

Lemma 1.3. Let $\alpha \in H^{p,q}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z})$. Then the following conditions are equivalent:

- (1) α is integral; (2) $B(\alpha) = 0;$
- (3) $\alpha \in \operatorname{Im} B$.

1.5. The element δ . As X_{θ} is a splitting variety for θ , the symbol θ belongs to the kernel of the natural homomorphism

res :
$$H_{et}^n(F, \mu_l^{\otimes (n-1)}) \to H_{et}^n(F(X_\theta), \mu_l^{\otimes (n-1)}).$$

Proposition 1.4. For any m > 0, there is a canonical isomorphism between $H^{m+1,m-1}(\mathcal{X}_{\theta},\mathbb{Z})$ and the kernel of the natural homomorphism

res :
$$H^m_{et}(F, \mu_l^{\otimes (m-1)}) \to H^m_{et}(F(X_\theta), \mu_l^{\otimes (m-1)}).$$

Proof. As $H^{m+1,m-1}(\mathcal{X}_{\theta},\mathbb{Z}) = H^{m+1,m-1}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$ is *l*-torsion, we have an exact sequence

$$H^{m,m-1}(\mathcal{X}_{\theta},\mathbb{Z}) \to H^{m,m-1}(\mathcal{X}_{\theta},\mathbb{Z}/l\mathbb{Z}) \to H^{m+1,m-1}(\mathcal{X}_{\theta},\mathbb{Z}) \to 0.$$

It follows from Proposition 1.2 that the first term of the sequence is trivial. Hence the group $H^{m+1,m-1}(\mathcal{X}_{\theta},\mathbb{Z})$ is canonically isomorphic to $H^{m,m-1}(\mathcal{X}_{\theta},\mathbb{Z}/l\mathbb{Z})$. By the proof of [16, Lemma 6.5], the latter group is canonically isomorphic to the kernel of the homomorphism res.

Denote by $\delta \in H^{n+1,n-1}(\mathcal{X}_{\theta},\mathbb{Z})$ the element corresponding to the symbol $\theta \in \text{Ker}(\text{res})$ when m = n. Clearly, $\delta \neq 0$ if $\theta \neq 0$. We have $\text{ord}(\delta) = 1$.

1.6. Cohomological operations. Denote by Q_i , i = 0, 1, ..., n-1, the Milnor cohomological operations of bidegree $(2l^i - 1, l^i - 1)$ on $H^{*,*}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z})$ and $H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z}/l\mathbb{Z})$ (see [18, §13]). As $H^{p,q}(F,\mathbb{Z})$ is trivial if p > q, Q_i is trivial on $H^{p,p}(F,\mathbb{Z}) = K_p(F)$. It follows from the product formula (see the proof of Lemma 1.8 below), that the operations Q_i are $K_*(F)$ -linear, that is $Q_i(\alpha \cdot x) = Q_i(\alpha) \cdot x$ and $Q_i(x \cdot \alpha) = (-1)^p x \cdot Q_i(\alpha)$ for all $\alpha \in H^{*,*}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z})$ and $x \in K_p(F)$. The operations anti-commute: $Q_k Q_j = -Q_j Q_k$ for $j \neq k$ and $Q_i^2 = 0$ for all i. Moreover, $Q_0 = B$. Note that

$$\operatorname{ord} Q_i(\alpha) = \operatorname{ord}(\alpha) + l^i$$

for all α .

Proposition 1.5. [17, Th. 3.2], [16, Lemma 4.3] For every i = 1, ..., n - 1, the sequence

$$H^{p-2l^{i}+1,q-l^{i}+1}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z}/l\mathbb{Z}) \xrightarrow{Q_{i}} H^{p,q}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z}/l\mathbb{Z}) \xrightarrow{Q_{i}} H^{p+2l^{i}-1,q+l^{i}-1}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z}/l\mathbb{Z})$$

is exact for all p and q.

It follows from the equality $Q_i B = -BQ_i$ for $i \ge 1$ and Lemma 1.3 that Q_i takes integral elements to integral ones. The restriction of Q_i on the subgroup of integral elements $H^{p,q}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$ is still denoted by Q_i .

Proposition 1.6. For every i = 1, ..., n - 1, the sequence

$$H^{p-2l^i+1,q-l^i+1}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z}) \xrightarrow{Q_i} H^{p,q}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z}) \xrightarrow{Q_i} H^{p+2l^i-1,q+l^i-1}(\widetilde{\mathcal{X}}_{\theta},\mathbb{Z})$$

is exact for all p and q.

Proof. Suppose that $Q_i(\alpha) = 0$ for some $\alpha \in H^{p,q}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z})$. By induction on $\operatorname{ord}(\alpha)$ we prove that $\alpha = Q_i(\beta)$ for some integral β .

By Proposition 1.5, $\alpha = Q_i(\beta')$ for $\beta' \in H^{p-2l^i+1,q-l^i+1}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z}/l\mathbb{Z})$. Since α is integral, we have $(Q_iB)(\beta') = -(BQ_i)(\beta') = -B(\alpha) = 0$. Since $B(\beta')$ is integral, by the induction hypothesis, $B(\beta') = Q_i(\gamma)$ for some integral γ . By Lemma 1.3, we have $\gamma = B(\gamma')$ for some γ' and hence

$$B\big(\beta' + Q_i(\gamma')\big) = B(\beta') + (BQ_i)(\gamma') = B(\beta') - Q_i(\gamma) = 0.$$

Therefore, the element $\beta = \beta' + Q_i(\gamma')$ is integral and $Q_i(\beta) = Q_i(\beta') = \alpha$. \Box

Propositions 1.2 and 1.6 yield:

Corollary 1.7. Let $Q_i(\alpha) = 0$ for some $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ and $i = 1, \ldots, n-1$. Then

(1) If $0 \leq \operatorname{ord}(\alpha) < l^i$, then $\alpha = 0$.

(2) If $ord(\alpha) \ge l^i$, then $\alpha = Q_i(\beta)$ for some $\beta \in H^{p-2l^i+1,q-l^i+1}(\mathcal{X}_{\theta},\mathbb{Z})$.

1.7. The elements γ and μ . Set

$$\mu = (Q_1 Q_2 \dots Q_{n-2})(\delta) = \pm (Q_{n-2} \dots Q_2 Q_1)(\delta) \in H^{2b+1,b}(\mathcal{X}_{\theta}, \mathbb{Z})$$

and

$$\gamma = (Q_1 Q_2 \dots Q_{n-2} Q_{n-1})(\delta) = \pm Q_{n-1}(\mu) \in H^{2c,c-1}(\mathcal{X}_{\theta},\mathbb{Z}).$$

We have $\operatorname{ord}(\mu) = b$ and $\operatorname{ord}(\gamma) = c$. If $\theta \neq 0$, then $\delta \neq 0$, hence it follows from Corollary 1.7(1) by induction on $i = 1, \ldots, n-1$ that $(Q_i \ldots Q_2 Q_1)(\delta) \neq 0$. In particular, $\mu \neq 0$ and $\gamma \neq 0$.

We write \cup for the product in $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})$.

Lemma 1.8. We have $Q_i(\gamma) = 0$ for any i = 1, ..., n-1 and $Q_i(x \cup \gamma) = Q_i(x) \cup \gamma$ for every $x \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$.

Proof. The first equality follows from $Q_i^2 = 0$ and the anti-commutativity of the Q_j . If l is odd, by the product formula, for every homogeneous x of degree p, we have

$$Q_i(x \cup \gamma) = Q_i(x) \cup \gamma + (-1)^p x \cup Q_i(\gamma) = Q_i(x) \cup \gamma.$$

In the case l = 2, the product formula looks as follows [18, Prop. 13.4]:

$$Q_i(x \cup \gamma) = x \cup Q_i(\gamma) + Q_i(x) \cup \gamma + \sum_{E,E'} u_{E,E'} Q_E(x) \cup Q_{E'}(\gamma)$$

for some $u_{E,E'} \in H^{*,*}(F,\mathbb{Z})$, where $Q_E = Q_1^{e_1}Q_2^{e_2}\dots$ and the sum is taken over all pairs of nonzero sequences $E = (e_1, e_2, \dots)$ and E' of length less than i. Note that $Q_j(\gamma) = 0$ for all $j = 1, \dots, n-1$, hence $Q_{E'}(\gamma) = 0$. The element μ gives rise to a morphism $M(\mathcal{X}_{\theta}) \to M(\mathcal{X}_{\theta})(b)[2b+1]$ in **DM** (F,\mathbb{Z}) , still denoted by μ (see [16, 5.3]). Let \mathcal{M}_{θ} be the motive in **DM** (F,\mathbb{Z}) defined by the exact triangle

$$M(\mathcal{X}_{\theta})(b)[2b] \to \mathcal{M}_{\theta} \to M(\mathcal{X}_{\theta}) \xrightarrow{\mu} M(\mathcal{X}_{\theta})(b)[2b+1].$$

For every i = 0, 1, ..., l - 1, let $S^i \mathcal{M}_{\theta}$ be the *i*-th symmetric power of \mathcal{M}_{θ} in $\mathbf{DM}(F, \mathbb{Z}_{(l)})$ (see [16, §3]). The symmetric power $\mathcal{R}_{\theta} := S^{l-1} \mathcal{M}_{\theta}$ is called the *Rost motive of* θ .

Note that in the split case,

(6)
$$\mathcal{M}_{\theta} = \mathbb{Z}_{(l)} \oplus \mathbb{Z}_{(l)}(b)[2b] \oplus \cdots \oplus \mathbb{Z}_{(l)}((l-1)b)[2(l-1)b].$$

There are exact triangles [16, (5.5) and (5.6)] in $\mathbf{DM}(F, \mathbb{Z}_{(l)})$:

$$\mathcal{R}_{\theta} \to S^{l-2}\mathcal{M}_{\theta} \to M(\mathcal{X}_{\theta})(d)[2d+1] \to \mathcal{R}_{\theta}[1],$$
$$S^{l-2}\mathcal{M}_{\theta}(b)[2b] \to \mathcal{R}_{\theta} \to M(\mathcal{X}_{\theta}) \to S^{l-2}\mathcal{M}_{\theta}(b)[2b+1].$$

For all integers p and q we then have exact sequences

(7)
$$H^{p+2d,q+d}(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}) \to H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) \xrightarrow{\partial_{1}} H^{p+2d+1,q+d}(S^{l-2}\mathcal{M}_{\theta}, \mathbb{Z}_{(l)}) \to H^{p+2d+1,q+d}(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)})$$

and

(8)
$$H^{p+2c-1,q+c-1}(\mathcal{R}_{\theta},\mathbb{Z}_{(l)}) \to H^{p+2d+1,q+d}(S^{l-2}\mathcal{M}_{\theta},\mathbb{Z}_{(l)}) \xrightarrow{\partial_2} H^{p+2c,q+c-1}(\mathcal{X}_{\theta},\mathbb{Z}_{(l)}) \to H^{p+2c,q+c-1}(\mathcal{R}_{\theta},\mathbb{Z}_{(l)}).$$

By [16, Lemma 5.15] and [20, Cor. 8.8], the motive \mathcal{R}_{θ} is a direct summand of $M(X_{\theta})$ in $\mathbf{DM}(F, \mathbb{Z}_{(l)})$. It follows that $H^{p,q}(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}) = 0$ if $p-q > d = \dim X_{\theta}$. Therefore, by (7),

(9)
$$\partial_1 : H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) \to H^{p+2d+1,q+d}(S^{l-2}\mathcal{M}_{\theta}, \mathbb{Z}_{(l)})$$

is an isomorphism if p > q and by (8),

(10)
$$\partial_2 : H^{p+2d+1,q+d}(S^{l-2}\mathcal{M}_{\theta},\mathbb{Z}_{(l)}) \to H^{p+2c,q+c-1}(\mathcal{X}_{\theta},\mathbb{Z}_{(l)})$$

is an isomorphism if p + c > q + d.

Let ∂ be the composition $\partial_2 \circ \partial_1$. Then (7) and (10) yield an exact sequence

(11)
$$H^{p+2c-1,p+c-1}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) \to H^{p+2d,p+d}(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)}) \to$$

 $H^{p,p}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) \xrightarrow{\partial} H^{p+2c,p+c-1}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) \to 0$

for every p.

Proposition 1.9. The homomorphism ∂ in (11) yields an isomorphism $K_p^{\theta}(F) \xrightarrow{\sim} H^{p+2c,p+c-1}(\mathcal{X}_{\theta}, \mathbb{Z})$

for every integer p.

Proof. Since both groups are *l*-torsion, it is sufficient to establish the isomorphism over $\mathbb{Z}_{(l)}$. By (4), we have $H^{p,p}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) = H^{p,p}(F, \mathbb{Z}_{(l)}) = K_p(F)_{(l)}$. Let L/F be a finite splitting field extension of θ . The commutativity of the diagram

$$K_{p}(L)_{(l)} = H^{p,p}(\mathcal{X}_{\theta L}, \mathbb{Z}_{(l)}) \xrightarrow{\partial_{L}} H^{p+2c,p+c-1}(\mathcal{X}_{\theta L}, \mathbb{Z}_{(l)})$$

$$\stackrel{N_{L/F}}{\longrightarrow} N_{L/F} \downarrow \qquad N_{L/F} \downarrow$$

$$K_{p}(F)_{(l)} = H^{p,p}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)}) \xrightarrow{\partial} H^{p+2c,p+c-1}(\mathcal{X}_{\theta}, \mathbb{Z}_{(l)})$$

and the triviality of the top right corner imply that

$$\operatorname{Ker}(\partial) \supset A := \operatorname{Ker}\left(K_p(F)_{(l)} \to K_p^{\theta}(F)_{(l)}\right).$$

By [17, Lemma 4.11], the group $H^{p+2d,p+d}(X_{\theta}, \mathbb{Z})$ is canonically isomorphic to $A_0(X_{\theta}, K_p)$. As \mathcal{R}_{θ} is a direct summand of $M(X_{\theta})$, the group $H^{p+2d,p+d}(X_{\theta}, \mathbb{Z}_{(l)})$ and hence $H^{p+2d,p+d}(\mathcal{R}_{\theta}, \mathbb{Z}_{(l)})$ is generated by the norms for the field extensions F(x)/F over all closed points $x \in X_{\theta}$. Since the field F(x) splits θ , we see from the exactness of (11) that $\operatorname{Ker}(\partial) \subset A$. Therefore, $\operatorname{Ker}(\partial) = A$ and ∂ yields the isomorphism in the statement of the proposition.

Suppose that $\theta \neq 0$. We have $K_0^{\theta}(F) = \mathbb{Z}/l\mathbb{Z}$ and therefore by Proposition 1.9, $H^{2c,c-1}(\mathcal{X}_{\theta},\mathbb{Z}) \simeq \mathbb{Z}/l\mathbb{Z}$. On the other hand, γ is a nonzero element of this group, hence $H^{2c,c-1}(\mathcal{X}_{\theta},\mathbb{Z}) = (\mathbb{Z}/l\mathbb{Z})\gamma$.

Note that the motive \mathcal{M}_{θ} and its symmetric powers are motives over \mathcal{X}_{θ} (see [16]). Moreover, the morphisms in the exact triangles involving these motives are over \mathcal{X}_{θ} . In particular, the homomorphism ∂ is $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})$ -linear. Therefore, ∂ is given by multiplication by the canonical generator of $H^{2c,c-1}(\mathcal{X}_{\theta},\mathbb{Z})$ that is a multiple of γ . Note that since the degree 2c of γ is even, γ is central in $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})$ by [6, Th. 15.9]. Then Proposition 1.9, (9) and (10) yield:

Proposition 1.10. (1) The map $K_p^{\theta}(F) \to H^{p+2c,p+c-1}(\mathcal{X}_{\theta},\mathbb{Z})$ given by multiplication by γ , is an isomorphism for any p.

(2) The map $H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z}) \to H^{p+2c,q+c-1}(\mathcal{X}_{\theta}, \mathbb{Z})$, given by multiplication by γ , is an isomorphism if p > q, i.e., every $\alpha \in H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})$ with $\operatorname{ord}(\alpha) > c$ can be written in the form $\alpha = \beta \cup \gamma$ for a unique β .

Proposition 1.11. The map $K_p^{\theta}(F) \to H^{p+n+1,p+n-1}(\mathcal{X}_{\theta},\mathbb{Z}), x \mapsto x \cdot \delta$, is an isomorphism for all p.

Proof. The composition

$$K_p^{\theta}(F) \xrightarrow{\cdot \delta} H^{p+n+1,p+n-1}(\mathcal{X}_{\theta},\mathbb{Z}) \xrightarrow{Q_1\dots Q_{n-1}} H^{p+2c,p+c-1}(\mathcal{X}_{\theta},\mathbb{Z})$$

coincides with the multiplication by γ and therefore is an isomorphism by Proposition 1.10(1). The second map is injective by Corollary 1.7.

Lemma 1.12. If $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ such that $b < \operatorname{ord}(\alpha) \leq c$, then $Q_{n-1}(\alpha) = 0$.

Proof. Since ord $Q_{n-1}(\alpha) > b + l^{n-1} = c$, we have $Q_{n-1}(\alpha) = \beta \cup \gamma$ for some $\beta \in H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})^{\geq 0}$ by Proposition 1.10(2). Hence, in view of Lemma 1.8,

$$Q_{n-1}(\beta) \cup \gamma = Q_{n-1}(\beta \cup \gamma) = Q_{n-1}^2(\alpha) = 0,$$

therefore $Q_{n-1}(\beta) = 0$ again by Proposition 1.10(2). Since

$$\operatorname{ord}(\beta) \le c + l^{n-1} - (c+1) < l^{n-1}$$

we have $\beta = 0$ by Corollary 1.7 and therefore $Q_{n-1}(\alpha) = 0$.

Lemma 1.13. If $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ with $2l^i \leq \operatorname{ord}(\alpha) < l^{i+1}$ for some $i = 0, 1, \ldots, n-2$, then $\alpha = 0$.

Proof. Consider the element $\alpha' = (Q_{n-2} \dots Q_{i+1})(\alpha)$. Since $\operatorname{ord}(\alpha') = \operatorname{ord}(\alpha) + l^{i+1} + \dots + l^{n-2}$,

we have $b < \operatorname{ord}(\alpha') < l^{n-1} < c$. By Lemma 1.12, $Q_{n-1}(\alpha') = 0$.

Using Corollary 1.7, by descending induction on j = n - 2, ..., i, we deduce that $(Q_j ... Q_{i+1})(\alpha) = 0$ since $\operatorname{ord}(Q_j ... Q_{i+1})(\alpha) < l^{j+1}$. Therefore, $\alpha = 0$.

Lemma 1.14. If $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ with $\operatorname{ord}(\alpha) \leq c$ and $l^{i} \leq \operatorname{ord}(\alpha) < 2l^{i}$ for some $i = 1, 2, \ldots, n-1$, then $\alpha = Q_{i}(\beta)$ for some $\beta \in H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})^{\geq 0}$.

Proof. By Corollary 1.7, it is sufficient to show that $Q_i(\alpha) = 0$.

Suppose first that i = n - 1. Since $b < l^{n-1} \leq \operatorname{ord}(\alpha) \leq c$, it follows from Lemma 1.12 that $Q_{n-1}(\alpha) = 0$. In the rest of the proof we assume that $i \leq n-2$.

Case 1: $l \geq 3$. We have

$$2l^i \le \operatorname{ord} Q_i(\alpha) < 3l^i \le l^{i+1}.$$

By Lemma 1.13, $Q_i(\alpha) = 0$.

Case 2: l = 2. We prove that $Q_i(\alpha) = 0$ by descending induction on i. Since $2^{i+1} \leq \operatorname{ord} Q_i(\alpha) < 2^i + 2^{i+1}$, by the induction hypothesis, $(Q_{i+1}Q_i)(\alpha) = 0$. By Corollary 1.7(2), $Q_i(\alpha) = Q_{i+1}(\rho)$ for some $\rho \in H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})^{\geq 0}$. Since $(Q_{i+1}Q_i)(\rho) = -(Q_iQ_{i+1})(\rho) = -Q_i^2(\alpha) = 0$ and $\operatorname{ord}(\rho) < 2^i$, $\operatorname{ord} Q_i(\rho) < 2^{i+1}$, it follows from Corollary 1.7 that $\rho = 0$ and therefore $Q_i(\alpha) = 0$.

1.8. Main theorem. Consider the exterior algebra

$$\Lambda = K^{\theta}_{*}(F)[t][\lambda_{1}, \dots, \lambda_{n-1}]$$

over the polynomial algebra $K^{\theta}_{*}(F)[t]$, i.e., $\lambda^{2}_{i} = 0$ and $\lambda_{i}\lambda_{j} = -\lambda_{i}\lambda_{i}$ for $i \neq j$. Recall (see section 1.3) that $H^{*,*}(\widetilde{\mathcal{X}}_{\theta}, \mathbb{Z})$ has a structure of a left $K^{\theta}_{*}(F)$ -module. The operations Q_{i} are $K_{*}(F)$ -linear and Q_{i} commute with multiplication by γ by Lemma 1.8. Therefore, we can view $H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})$ as a left Λ -module with t acting by multiplication by γ and λ_{i} acting via the operation Q_{i} . The ring Λ is graded over $K^{\theta}_{*}(F)$ as follows: $\deg(t) = c + 1$, $\deg(\lambda_{i}) = l^{i}$. For any homogeneous element $\lambda \in \Lambda$ and any $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$, we have

$$\operatorname{ord}(\lambda \alpha) = \operatorname{deg}(\lambda) + \operatorname{ord}(\alpha).$$

Note that distinct monomials in Λ of the form $t^k \lambda_1^{a_1} \lambda_2^{a_2} \dots \lambda_{n-1}^{a_{n-1}}$ with $a_i = 0$ or 1 have different degree.

Theorem 1.15. Let l be a prime integer, $n \ge 2$, F a field of characteristic different from l and $\theta \in H^n_{et}(F, \mu_l^{\otimes (n-1)})$ a nontrivial symbol. Then

- (1) $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})^{\leq 0}$ is canonically isomorphic to $H^{*,*}(F,\mathbb{Z})^{\leq 0}$.
- (2) $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})^{\geq 0}$ is a free left Λ -module with basis $\{\delta\}$.

Proof. (1) follows from Proposition 1.2.

(2): We shall prove that the map

$$\Lambda \to H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})^{\geq 0}, \qquad \lambda \mapsto \lambda \delta$$

is an isomorphism.

Injectivity: In view of the remark preceding the theorem, it suffices to prove that if $\lambda \delta = 0$ for a monomial $\lambda = xt^k \lambda_1^{a_1} \lambda_2^{a_2} \dots \lambda_{n-1}^{a_{n-1}}$ with $x \in K^{\theta}_*(F)$ and the integers $k \ge 0$ and a_i such that $a_i = 0$ or 1, i.e.,

$$\gamma^k \cup (Q_1^{a_1} Q_2^{a_2} \dots Q_{n-1}^{a_{n-1}})(x \cdot \delta) = 0,$$

then x = 0. By Proposition 1.10,

$$(Q_1^{a_1}Q_2^{a_2}\dots Q_{n-1}^{a_{n-1}})(x\cdot\delta) = 0$$

It follows from Corollary 1.7 by descending induction on $i \ge 0$ that

$$(Q_1^{a_1}Q_2^{a_2}\dots Q_i^{a_i})(x\cdot\delta) = 0.$$

Therefore, $x \cdot \delta = 0$ and hence x = 0 by Proposition 1.11.

Surjectivity: Let $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ be an element with $\operatorname{ord}(\alpha) \geq 0$. By induction on $\operatorname{ord}(\alpha)$ we show that $\alpha = \lambda\delta$ for some $\lambda \in \Lambda$. If $\operatorname{ord}(\alpha) = 0$, then $\alpha = 0$ by Proposition 1.2. The case $\operatorname{ord}(\alpha) = 1$ is covered by Proposition 1.11. If $\operatorname{ord}(\alpha) \geq c + 1$, then by Proposition 1.10(2), $\alpha = \gamma \cup \beta$ for β with $0 \leq \operatorname{ord}(\beta) < \operatorname{ord}(\alpha)$. By induction, $\beta = \lambda\delta$ for some $\lambda \in \Lambda$ and hence $\alpha = (t\lambda)\delta$.

Suppose $2 \leq \operatorname{ord}(\alpha) \leq c$. Choose an $i = 0, 1, \ldots, n-1$ such that $l^i \leq \operatorname{ord}(\alpha) < l^{i+1}$. If $\operatorname{ord}(\alpha) \geq 2l^i$ (and hence $i \leq n-2$), then by Lemma 1.13, $\alpha = 0$. So we may assume that $l^i \leq \operatorname{ord}(\alpha) < 2l^i$ for $i \geq 1$. It follows from Lemma 1.14 that $\alpha = Q_i(\beta)$ for some β with $0 \leq \operatorname{ord}(\beta) < \operatorname{ord}(\alpha)$. By induction, $\beta = \lambda \delta$ for some $\lambda \in \Lambda$ and hence $\alpha = (\lambda_i \lambda) \delta$.

Remark 1.16. When l = 2 we have $\gamma = \mu^2$. Moreover if s is the operation of multiplication by μ , the left $K^{\theta}_{*}(F)[s][\lambda_1, \ldots, \lambda_{n-2}]$ -module $H^{*,*}(\mathcal{X}_{\theta}, \mathbb{Z})^{\geq 0}$ is free with basis $\{\delta\}$. In this form the statement was proved by Orlov, Vishik, and Voevodsky (unpublished).

Remark 1.17. By Theorem 1.15, a nontrivial element $\alpha \in H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ of positive order can be uniquely written in the form

$$\alpha = \gamma^k \cup (Q_1^{a_1} Q_2^{a_2} \dots Q_{n-1}^{a_{n-1}})(x \cdot \delta)$$

where $x \in K^{\theta}_{*}(F)$ and k, a_{i} are integers such that $k \geq 0$ and $a_{i} = 0$ or 1. Moreover,

$$\operatorname{ord}(\alpha) = 1 + k(c+1) + \sum_{i=1}^{n-1} l^{a_i}.$$

1.9. The multiplicative structure. The ring structure of $H^{*,*}(\mathcal{X}_{\theta},\mathbb{Z})^{\geq 0}$ in the case l = 2 has been determined by Orlov, Vishik, and Voevodsky (unpublished).

Let l be an odd prime. The operation S of the form $\pm Q_{i_1}Q_{i_2}\ldots Q_{i_k}$, where $k \ge 0$ and $i_1 < \cdots < i_k$, is called a *monomial*. For a monomial S there exists a unique monomial S' such that $S'S = Q_1Q_2\ldots Q_{n-1}$. We shall compute the cup-product $T(\delta) \cup S(\delta)$ for two monomials T and S.

Proposition 1.18. Let S and T be monomials. Then

- (1) If S'T' = 0, then $T(\delta) \cup S(\delta) = 0$.
- (2) If $S'T' \neq 0$, i.e., S'T' is a monomial, let U be (the unique) monomial such that U' = S'T'. Then $T(\delta) \cup S(\delta) = U(\delta) \cup \gamma$.

Proof. (1): By assumption, the monomials T and S do not contain Q_i for some i. Therefore, the *i*-th digit of $\operatorname{ord} T(\delta) + \operatorname{ord} S(\delta)$ written in base l is equal to 0. By Theorem 1.15, the product $T(\delta) \cup S(\delta)$, if not zero, is a $K_*^{\theta}(F)$ multiple of either $U(\delta) \cup \gamma$ or $U(\delta)$ for some monomial U. In the first case $\operatorname{ord} T(\delta) + \operatorname{ord} S(\delta) = \operatorname{ord} U(\delta) + c$, and this case is impossible since all digits of the right written in base l are nonzero.

In the second case $\operatorname{ord} T(\delta) + \operatorname{ord} S(\delta) = \operatorname{ord} U(\delta) - 1$ and this case does not occur since $\operatorname{ord} V(\delta) \equiv 1$ modulo l for every monomial V. Therefore $T(\delta) \cup S(\delta) = 0$.

(2): If T' = 1, then U = S, $T(\delta) = \gamma$ and the equality follows. Assume that $T' \neq 1$. By assumption T'S = 0. Therefore,

$$S'T'(T(\delta) \cup S(\delta)) = S'(T'T(\delta) \cup S(\delta) \pm T(\delta) \cup T'S(\delta))$$

= $S'(\gamma \cup S(\delta))$
= $\gamma \cup S'S(\delta)$
= γ^2 ,
$$S'T'(U(\delta) \cup \gamma) = U'(U(\delta) \cup \gamma)$$

= $U'U(\delta) \cup \gamma$
= γ^2 .

By Theorem 1.15, the restriction of every operation Q_i on a homogeneous component $H^{p,q}(\mathcal{X}_{\theta}, \mathbb{Z})$ of non-negative order is either injective or zero. Hence $T(\delta) \cup S(\delta) = U(\delta) \cup \gamma$.

2. Applications

In this section we give some applications.

2.1. An exact sequence.

Theorem 2.1. Let l be a prime integer, F a field of characteristic different from l and $\theta \in H^n_{et}(F, \mu_l^{\otimes (n-1)})$ a symbol. Then the sequence

$$\begin{split} \coprod H^p_{et}\big(L,\mu_l^{\otimes p}\big) \xrightarrow{\sum N_{L/F}} H^p_{et}(F,\mu_l^{\otimes p}) \xrightarrow{\cup \theta} \\ H^{p+n}_{et}(F,\mu_l^{\otimes (p+n-1)}) \xrightarrow{\prod \operatorname{res}_{E/F}} \prod H^{p+n}_{et}\big(E,\mu_l^{\otimes (p+n-1)}\big), \end{split}$$

where the coproduct is taken over all finite splitting field extensions L/F for θ and the product is taken over all splitting field extensions E/F, is exact.

Proof. Note that by a projection formula, the sequence is a complex. By Proposition 1.4, the kernel of the last homomorphism in the sequence is canonically isomorphic to $H^{p+n+1,p+n-1}(\mathcal{X}_{\theta},\mathbb{Z})$. Under this isomorphism, the cupproduct with θ corresponds to multiplication by δ . The statement follows now from Proposition 1.11, the definition of $K_p^{\theta}(F)$ and the bijectivity of the norm residue homomorphism.

2.2. Certain motivic cohomology groups of the Rost motive \mathcal{R}_{θ} . Let l be a prime integer, F a field of characteristic different from $l, \theta \in H^n_{et}(F, \mu_l^{\otimes (n-1)})$ a symbol, X_{θ} a Rost variety for θ and \mathcal{R}_{θ} the Rost motive of θ . Recall the exact sequence (11):

$$H^{p+2c-1,p+c-1}(\mathcal{X}_{\theta},\mathbb{Z}_{(l)}) \to H^{p+2d,p+d}(\mathcal{R}_{\theta},\mathbb{Z}_{(l)}) \to H^{p,p}(\mathcal{X}_{\theta},\mathbb{Z}_{(l)}) = K_p(F)_{(l)}$$

By Theorem 1.15 (see also Remark 1.17), the degree c - 2 component of the ring Λ is zero, hence the first group in the sequence is trivial. We have proved:

Proposition 2.2. The natural homomorphism

$$H^{p+2d,p+d}(\mathcal{R}_{\theta},\mathbb{Z}_{(l)}) \to K_p(F)_{(l)}$$

is injective.

2.3. Injectivity of the reduced norm map for a central simple algebra. Let D be a central simple algebra of degree m over F. An old theorem of Wang (see [2]) asserts that the classical reduced norm homomorphism

$$\operatorname{Nrd}_D: K_1(D) \to K_1(F)$$

is injective provided m is a square-free integer.

The reduced norm homomorphism Nrd_D for the K_2 -groups has been defined in [12, §26]. It was proven in [10] and [7] that Nrd_D is injective in the case m = 2. In the following statement we generalize this result to a K_2 -analog of Wang's theorem.

Theorem 2.3. Let D be a central simple algebra of square-free degree over F. Then the reduced norm homomorphism

$$\operatorname{Nrd}_D: K_2(D) \to K_2(F)$$

is injective.

Lemma 2.4. Let B and C be two central simple algebras over F of relatively prime degree. Suppose the reduced norm homomorphisms for B and C are injective over any field extension of F. Then $Nrd_{B\otimes C}$ is also injective.

Proof. Let L/F be a splitting field of C of degree r dividing deg C. By assumption, the bottom homomorphism of the diagram

is injective. We deduce that the kernel K of $\operatorname{Nrd}_{B\otimes C}$ is r-torsion. Similarly we show that K is s-torsion for some integer s relatively prime to r, hence K = 0.

Since the algebra D is a tensor product of algebras of prime degree (see [2]), Lemma 2.4 allows to assume that D is a division algebra of a prime degree l.

Let L/F be a finite extension splitting the algebra D. Then [L:F] = kl for some integer k and there is an embedding of F-algebras $L \hookrightarrow M_k(D)$ (see [4]). The induced homomorphism

$$K_2(L) \to K_2(M_k(D)) = K_2(D)$$

does not depend on the choice of the embedding.

Let X be the Severi-Brauer variety of left ideals of dimension l in D. As for every closed point $x \in X$ the residue field F(x) splits D, we have a canonical homomorphism $K_2F(x) \to K_2(D)$.

Lemma 2.5. There is a homomorphism $h : A_0(X, K_2) \to K_2(D)$ satisfying the following properties:

- (1) The composition $\operatorname{Nrd}_D \circ h$ is the norm map $A_0(X, K_2) \to K_2(F)$.
- (2) For every closed point $x \in X$, the composition of h with the natural homomorphism $K_2F(x) \to A_0(X, K_2)$ coincides with the canonical map $K_2F(x) \to K_2(D)$.

Proof. We follow the construction in [9, §8]. Let J be the canonical vector bundle of rank l over X. There is a natural right action of the opposite algebra D^{-1} on J over F. For every $i \ge 0$, the functor $M \mapsto J^i \otimes_{D^{\otimes -i}} M$ from the category of left finite $D^{\otimes -i}$ -modules to the category of vector bundles over X induces a homomorphism

$$K_2(D^{\otimes -i}) \to K_2(X).$$

By Quillen's theorem [9, §8, Th. 4.1], the map

$$\prod_{i=0}^{l-1} K_2(D^{\otimes -i}) \to K_2(X)$$

is an isomorphism. We define the map h as the composition

$$h: A_0(X, K_2) \to K_2(X) \to K_2(D),$$

where the first map is the edge homomorphism of the Gersten-Quillen spectral sequence [9, §7, Th. 5.4] and the second one is projection on the (l - 1)-th component of the left hand side in Quillen's isomorphism. The Gersten-Quillen spectral sequence is functorial with respect to the base field change, in particular, h commutes with the norm maps for finite field extensions.

Note that the group $A_0(X, K_2)$ is generated by the norms for finite field extensions that split D. Thus, to prove the first property of h we may assume that D is split. In this case X is isomorphic to the projective space \mathbb{P}^{l-1} , $A_0(X, K_2) \simeq K_2(F)$ canonically and $K_2(D^{-i})$ can be identified with $K_2(F)$ via the reduced norm homomorphism. The image of an element $\alpha \in K_2(F)$ in $K_2(X)$ is equal to $\alpha \cdot [pt]$, where [pt] is the class of a rational point in $K_0(X)$. Note that the Quillen's isomorphism takes $\sum a_i$ to $\sum a_i\eta^i \in K_*(X)$, where η is the class of the canonical line bundle (with the sheaf of sections $\mathcal{O}(1)$). Since $[pt] = (\eta - 1)^{l-1} = \eta^{l-1} + \ldots$, the element $\alpha \cdot [pt]$ projects to $\alpha \in K_2(F) = K_2(D)$, that proves the first property of h.

To prove the second property let $x \in X$ be a closed point of degree kl and let L = F(x). Choose a rational point $x' \in X_L$ over x. For every $\alpha \in K_2(L)$ the classes $\alpha x'$ and αx in the groups $A_0(X_L, K_2)$ and $A_0(X, K_2)$ respectively satisfy $N_{L/F}(\alpha x') = \alpha x$, where $N_{L/F}$ is the left vertical norm homomorphism in the commutative diagram

$$\begin{array}{cccc} A_0(X_L, K_2) & \stackrel{h_L}{\longrightarrow} & K_2(D_L) \\ & & & & & \downarrow^{N_{L/F}} \\ & & & & \downarrow^{N_{L/F}} \\ A_0(X, K_2) & \stackrel{h}{\longrightarrow} & K_2(D), \end{array}$$

where $D_L = D \otimes_F L$. Since $\operatorname{Nrd}_{D_L}(h_L(\alpha x')) = \alpha$ by the first part, it suffices to prove that the right vertical norm homomorphism coincides with the composition

$$K_2(D_L) \xrightarrow{\operatorname{Nrd}} K_2(L) \to K_2(D).$$

This follows from commutativity of the diagram

and the fact that the diagonal composition $K_2(D_L) \to K_2(D)$ coincides with the norm map.

Now we can finish the proof of Theorem 2.3. As the kernel of Nrd_D is *l*-torsion, it suffices to prove that Nrd_D is injective after tensoring with $Z_{(l)}$. A transfer argument shows that we can replace F by a finite field extension of degree prime to l. Thus, we can assume that D is a cyclic algebra.

Let θ be the 2-symbol corresponding to D and X the Severi-Brauer variety of D. Then X is a Rost variety of θ . The Rost motive \mathcal{R}_{θ} is a direct sum of M(X) in $\mathbf{DM}(F,\mathbb{Z}_{(l)})$. Let

$$\mathcal{R}_{\theta} \xrightarrow{r} M(X) \xrightarrow{s} \mathcal{R}_{\theta}$$

be morphisms such that $s \circ r$ is the identity of \mathcal{R}_{θ} . Over a splitting field extension L/F, $X_L \simeq \mathbb{P}_L^{l-1}$, therefore, the motives $(\mathcal{R}_{\theta})_L$ and $M(X_L)$ are both isomorphic to $\mathbb{Z}_{(l)} \oplus \mathbb{Z}_{(l)}(1)[2] \oplus \cdots \oplus \mathbb{Z}_{(l)}(l-1)[2(l-1)]$ by (6) and hence are isomorphic. Identifying $(\mathcal{R}_{\theta})_L$ and $M(X_L)$ with $M(\mathbb{P}_L^{l-1})$, we can view r_L and s_L as endomorphisms of $M(\mathbb{P}_L^{l-1})$ with s_L a left inverse of r_L . The endomorphism ring of $M(\mathbb{P}_L^{l-1})$ is $\mathrm{CH}^{l-1}(\mathbb{P}_L^{l-1} \times \mathbb{P}_L^{l-1})_{(l)}$ (see [15]) that is isomorphic to the product of l copies of $\mathbb{Z}_{(l)}$. As this ring is commutative, r_L and s_L are isomorphisms inverse to each other. By [1, Cor. 8.4.], r and sare isomorphisms, i.e., the Rost motive \mathcal{R}_{θ} is isomorphic to the motive of the Severi-Brauer variety X in $\mathrm{DM}(F,\mathbb{Z}_{(l)})$.

By Proposition 2.2 (see also the proof of Proposition 1.9), the norm homomorphism $N : A_0(X, K_2) \to K_2(F)$ is injective after tensoring with $Z_{(l)}$. By Lemma 2.5(1), N coincides with the composition

$$A_0(X, K_2) \xrightarrow{h} K_2(D) \xrightarrow{\operatorname{Nrd}_D} K_2(F).$$

It follows from [8, Th. 5.2] that the group $K_2(D)$ is generated by the images of natural homomorphisms $K_2F(x) \to K_2(D)$ over all closed points $x \in X$. Hence, by Lemma 2.5(2), h is surjective. It follows that Nrd_D is injective after tensoring with $Z_{(l)}$.

Remark 2.6. Theorem 2.3 was proven independently by B. Kahn and M. Levine in [5].

Acknowledgment. We are grateful to the referee for useful comments.

References

- V. Chernousov, S. Gille, and A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. 126 (2005), no. 1, 137–159.
- [2] P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, vol. 81, Cambridge University Press, Cambridge, 1983.
- [3] C. Haesemeyer and C. Weibel, Norm varieties and the chain lemma (after Markus Rost), Abel Symposia 4 (2009), Springer-Verlag, 95–130.
- [4] I. N. Herstein, Noncommutative rings, Mathematical Association of America, Washington, DC, 1994, Reprint of the 1968 original, With an afterword by L.W. Small.
- B. Kahn, M. Levine, Motives of Azumaya algebras, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0875/Azumaya24.pdf (2008), to appear in the J. Inst. Math. Jussieu.
- [6] C. Mazza, V. Voevodsky, and C. Weibel, *Lecture notes on motivic cohomology*, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI, 2006.
- [7] A. S. Merkurjev, The group SK₂ for quaternion algebras, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 2, 310–335, 447.
- [8] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011– 1046, 1135–1136.

- [9] D. Quillen, Higher algebraic K-theory. I, (1973), 85–147. Lecture Notes in Math., Vol. 341.
- [10] M. Rost, Injectivity of $K_2(D) \to K_2(F)$ for quaternion algebras, Preprint (1986).
- [11] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319–393 (electronic).
- [12] A. A. Suslin, Algebraic K-theory and the norm residue homomorphism, Current problems in mathematics, Vol. 25, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 115–207.
- [13] A. Suslin and S. Joukhovitski, Norm varieties, J. Pure Appl. Algebra 206 (2006), no. 1-2, 245–276.
- [14] A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117– 189.
- [15] V. Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188–238.
- [16] V. Voevodsky, On motivic cohomology with Z/l-coefficients, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0639/ (2003).
- [17] V. Voevodsky, Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, 59–104.
- [18] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, 1–57.
- [19] C. Weibel, Axioms for the norm residue isomorphism, K-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 427–435.
- [20] C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346-372.
- [21] C. Weibel, The Proof of the Bloch-Kato Conjecture, ICTP Lecture Notes Series 23 (2008), 277-305.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, 2033 SHERIDAN ROAD, EVANSTON, IL 60208-2370, USA

 $E\text{-}mail\ address:\ \texttt{suslinQmath.northwestern.edu}$