
MOTIVIC COHOMOLOGY OF THE SIMPLICIAL MOTIVE
OF A ROST VARIETY

ALEXANDER MERKURJEV AND ANDREI SUSLIN

Abstract. We compute the motivic cohomology groups of the simplicial
motive Xθ of a Rost variety for an n-symbol θ in Galois cohomology of a
field. As an application we compute the kernel and cokernel of multiplica-
tion by θ in Galois cohomology. We also show that the reduced norm map
on K2 of a division algebra of square-free degree is injective.

1. Motivic cohomology of Xθ

1.1. Introduction. Let l be a prime integer, F a field of characteristic dif-
ferent from l. The Galois cohomology group H1

et(F, µl), where µl is the Galois
module of all lth roots of unity, is canonically isomorphic to the factor group
F×/F×l. We write (a) for the class in H1

et(F, µl) corresponding to an element
a ∈ F×. Let a1, . . . , an−1 ∈ F× for some n ≥ 1 and χ ∈ H1

et(F,Z/lZ). We
consider the n-tuple of 1-dimensional cohomology classes

θ =
(
χ, (a1), . . . , (an−1)

)
.

Abusing notation we shall also write θ for the cup-product χ∪(a1)∪· · ·∪(an−1)

in Hn
et(F, µ

⊗(n−1)
l ) and call this element a symbol.

Note that if µl ⊂ F×, the choice of a primitive lth root of unity identifies
Z/lZ with µl and, therefore, χ with (a0) for some a0 ∈ F×. Thus, θ is given
by the n-tuple (a0, a1, . . . , an−1) of elements in F×.

A Rost variety for θ is a smooth projective variety Xθ over F satisfying the
conditions given in [20, Def. 1.1] or [3, Def. 0.5].

Example 1.1. (see [20])

1) If n = 1, then Xθ = Spec(L), where L/F is a cyclic field extension of degree
l splitting θ, is a Rost variety for θ.

2) If n = 2, the Severi-Brauer variety Xθ = SB(A) of a central simple F -
algebra A of dimension l2 with the class θ in H2(F, µl) ⊂ Br(F ) is a Rost
variety for θ.

An inductive process given in [13] allows to construct a Rost variety for any

θ. Denote further by Xθ the C̆ech simplicial scheme Č(Xθ) of Xθ (see [17,
Appendix B]) and by M(Xθ) the motive of Xθ in the triangulated category
DM(F,Z) (see [6]). The motive of Xθ in DM(F,Z(l)) is independent of the
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2 A. MERKURJEV AND A. SUSLIN

choice of the Rost variety Xθ ([16, §5]). If θ = 0, then Xθ = Z, so in general,
Xθ is a “twisted form” of Z. We write Hp,q(Xθ,Z) for the motivic cohomology
group Hp,q

(
M(Xθ),Z

)
.

The triviality of the motivic cohomology group Hn+1,n(Xθ,Z) is the essential
step in the proof of Bloch-Kato Conjecture (see [16, Prop. 6.11]). In this paper
we compute the motivic cohomologyHp,q(Xθ,Z) for all p and q (Theorem 1.15).

In the second part of the paper some applications are given. We compute
the kernel and cokernel of multiplication by θ in Galois cohomology. We also
show that the reduced norm map on K2 of a division algebra of square-free
degree is injective.

We use the following notation:
K∗(F ) is the Milnor ring of a field F .
If X is a variety over F , we write A0(X,Kp) for the cokernel of the residue
homomorphism (see [11]):⨿

x∈X(1)

Kp+1F (x) →
⨿

x∈X(0)

KpF (x),

where X(i) is the set of all points of X of dimension i.

n ≥ 2 an integer,
b = (ln−1 − 1)/(l − 1) = 1 + l + · · ·+ ln−2,
c = (ln − 1)/(l − 1) = 1 + l + · · ·+ ln−1 = bl + 1 = b+ ln−1,
d = ln−1 − 1 = b(l − 1) = c− b− 1.

1.2. The Bloch-Kato Conjecture and the motivic cohomology of Xθ.
The Bloch-Kato Conjecture asserts that the norm residue homomorphism

hn,l : Kn(F )/lKn(F ) → Hn
et(F, µ

⊗n
l ),

taking the class of a symbol {a0, a1, . . . , an−1} to the cup-product (a0)∪ (a1)∪
· · · ∪ (an−1), is an isomorphism. This conjecture was proved in [16] (see also
[3], [13], [19], [20] and [21]). In view of [14], the natural maps

Hp,q(Y,Z) → Hp,q
et (Y,Z)

are isomorphisms for a smooth projective variety Y over F and p ≤ q + 1.
Moreover, the natural map

(1) Hp,q(Xθ,Z) → Hp,q
et (Xθ,Z)

is an isomorphism if p ≤ q + 1. By [17, Lemma 7.3],

(2) Hp,q
et (Xθ,Z) ≃ Hp,q

et (F,Z)

for all p and q.
For every N ∈ DM(F,Z) and every α ∈ Hp,q(N ,Z) the order of α is the

integer ord(α) = p − q − 1. The subgroup of H∗,∗(N ,Z) of elements of non-
negative (respectively, non-positive) order will be denoted by H∗,∗(N ,Z)≥0

(respectively, H∗,∗(N ,Z)≤0).
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1.3. The motive X̃θ. The motive X̃θ is defined by the exact triangle

(3) X̃θ → M(Xθ) → Z → X̃θ[1]

in DM(F,Z). Note that the motive X̃θ differs by a shift from the one defined
in [17].

It follows from (1) and (2) that

(4) Hp,q(Xθ,Z) ≃ Hp,q
et (Xθ,Z) ≃ Hp,q

et (F,Z) ≃ Hp,q(F,Z)

if p ≤ q + 1. As Hp,q(F,Z) = 0 when p > q, the exact triangle (3) yields:

Proposition 1.2. There are canonical isomorphisms:

H∗,∗(X̃θ,Z)≥0 ≃ H∗,∗(Xθ,Z)≥0,

H∗,∗(Xθ,Z)≤0 ≃ H∗,∗(F,Z)≤0,

H∗,∗(X̃θ,Z)≤0 = 0.

Note that the motive X̃θ and hence the group Hp,q(X̃θ,Z) vanish if θ = 0.

Since in general θ has a degree l splitting field extension, the group Hp,q(X̃θ,Z)
is l-torsion.

Recall that Kp(F ) = Hp,p(F,Z) (see [6, §5]). Hence there is the product

(5) Ks(F )⊗Hp,q(X̃θ,Z) → Hp+s,q+s(X̃θ,Z), x⊗ α 7→ x · α.
Let Kθ

∗(F ) be the (graded) cokernel of the norm homomorphism⨿
K∗(L) → K∗(F ),

where the coproduct is taken over all finite field extensions L/F such that θ
is split over E. By projection formula, Kθ

∗(F ) has structure of a graded ring.
Clearly, Kθ

∗(F ) = 0 if θ = 0. If θ ̸= 0, a transfer argument shows that the
degree of a finite splitting field extension for θ is divisible by l. On the other
hand, there is a splitting field extension of degree l, hence Kθ

0(F ) = Z/lZ.
It follows from Proposition 1.2 that in general the product (5) yields the

structure of a left Kθ
∗(F )-module on H∗,∗(X̃θ,Z) and H∗,∗(Xθ,Z)≥0.

1.4. Integral elements. We say that an element α ∈ Hp,q(X̃θ,Z/lZ) is inte-
gral if α belongs to the image of the natural homomorphism

Hp,q(X̃θ,Z) → Hp,q(X̃θ,Z/lZ).

Let

B : H∗,∗(X̃θ,Z/lZ) → H∗+1,∗(X̃θ,Z/lZ)
be the Bockstein homomorphism, i.e., the connecting homomorphism for the
exact sequence

0 → Z/lZ → Z/l2Z → Z/lZ → 0.

The following statement is a consequence of the fact that the group Hp,q(X̃θ,Z)
is l-torsion.
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Lemma 1.3. Let α ∈ Hp,q(X̃θ,Z/lZ). Then the following conditions are equiv-
alent:

(1) α is integral;
(2) B(α) = 0;
(3) α ∈ ImB. �

1.5. The element δ. As Xθ is a splitting variety for θ, the symbol θ belongs
to the kernel of the natural homomorphism

res : Hn
et

(
F, µ

⊗(n−1)
l

)
→ Hn

et

(
F (Xθ), µ

⊗(n−1)
l

)
.

Proposition 1.4. For any m > 0, there is a canonical isomorphism between
Hm+1,m−1(Xθ,Z) and the kernel of the natural homomorphism

res : Hm
et

(
F, µ

⊗(m−1)
l

)
→ Hm

et

(
F (Xθ), µ

⊗(m−1)
l

)
.

Proof. As Hm+1,m−1(Xθ,Z) = Hm+1,m−1(X̃θ,Z) is l-torsion, we have an exact
sequence

Hm,m−1(Xθ,Z) → Hm,m−1(Xθ,Z/lZ) → Hm+1,m−1(Xθ,Z) → 0.

It follows from Proposition 1.2 that the first term of the sequence is trivial.
Hence the groupHm+1,m−1(Xθ,Z) is canonically isomorphic toHm,m−1(Xθ,Z/lZ).
By the proof of [16, Lemma 6.5], the latter group is canonically isomorphic to
the kernel of the homomorphism res. �

Denote by δ ∈ Hn+1,n−1(Xθ,Z) the element corresponding to the symbol
θ ∈ Ker(res) when m = n. Clearly, δ ̸= 0 if θ ̸= 0. We have ord(δ) = 1.

1.6. Cohomological operations. Denote by Qi, i = 0, 1, . . . , n− 1, the Mil-

nor cohomological operations of bidegree (2li − 1, li − 1) on H∗,∗(X̃θ,Z/lZ)
and H∗,∗(Xθ,Z/lZ) (see [18, §13]). As Hp,q(F,Z) is trivial if p > q, Qi is
trivial on Hp,p(F,Z) = Kp(F ). It follows from the product formula (see the
proof of Lemma 1.8 below), that the operations Qi are K∗(F )-linear, that is

Qi(α · x) = Qi(α) · x and Qi(x · α) = (−1)px ·Qi(α) for all α ∈ H∗,∗(X̃θ,Z/lZ)
and x ∈ Kp(F ). The operations anti-commute: QkQj = −QjQk for j ̸= k and
Q2

i = 0 for all i. Moreover, Q0 = B. Note that

ordQi(α) = ord(α) + li

for all α.

Proposition 1.5. [17, Th. 3.2], [16, Lemma 4.3] For every i = 1, . . . , n − 1,
the sequence

Hp−2li+1,q−li+1(X̃θ,Z/lZ)
Qi−→ Hp,q(X̃θ,Z/lZ)

Qi−→ Hp+2li−1,q+li−1(X̃θ,Z/lZ)
is exact for all p and q. �

It follows from the equality QiB = −BQi for i ≥ 1 and Lemma 1.3 that Qi

takes integral elements to integral ones. The restriction of Qi on the subgroup

of integral elements Hp,q(X̃θ,Z) is still denoted by Qi.
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Proposition 1.6. For every i = 1, . . . , n− 1, the sequence

Hp−2li+1,q−li+1(X̃θ,Z)
Qi−→ Hp,q(X̃θ,Z)

Qi−→ Hp+2li−1,q+li−1(X̃θ,Z)

is exact for all p and q.

Proof. Suppose that Qi(α) = 0 for some α ∈ Hp,q(X̃θ,Z). By induction on
ord(α) we prove that α = Qi(β) for some integral β.

By Proposition 1.5, α = Qi(β
′) for β′ ∈ Hp−2li+1,q−li+1(X̃θ,Z/lZ). Since α

is integral, we have (QiB)(β′) = −(BQi)(β
′) = −B(α) = 0. Since B(β′) is

integral, by the induction hypothesis, B(β′) = Qi(γ) for some integral γ. By
Lemma 1.3, we have γ = B(γ′) for some γ′ and hence

B
(
β′ +Qi(γ

′)
)
= B(β′) + (BQi)(γ

′) = B(β′)−Qi(γ) = 0.

Therefore, the element β = β′+Qi(γ
′) is integral and Qi(β) = Qi(β

′) = α. �
Propositions 1.2 and 1.6 yield:

Corollary 1.7. Let Qi(α) = 0 for some α ∈ Hp,q(Xθ,Z) and i = 1, . . . , n− 1.
Then

(1) If 0 ≤ ord(α) < li, then α = 0.

(2) If ord(α) ≥ li, then α = Qi(β) for some β ∈ Hp−2li+1,q−li+1(Xθ,Z).

1.7. The elements γ and µ. Set

µ = (Q1Q2 . . . Qn−2)(δ) = ±(Qn−2 . . . Q2Q1)(δ) ∈ H2b+1,b(Xθ,Z)

and

γ = (Q1Q2 . . . Qn−2Qn−1)(δ) = ±Qn−1(µ) ∈ H2c,c−1(Xθ,Z).
We have ord(µ) = b and ord(γ) = c. If θ ̸= 0, then δ ̸= 0, hence it follows

from Corollary 1.7(1) by induction on i = 1, . . . , n− 1 that (Qi . . . Q2Q1)(δ) ̸=
0. In particular, µ ̸= 0 and γ ̸= 0.

We write ∪ for the product in H∗,∗(Xθ,Z).

Lemma 1.8. We have Qi(γ) = 0 for any i = 1, . . . , n − 1 and Qi(x ∪ γ) =
Qi(x) ∪ γ for every x ∈ Hp,q(Xθ,Z).

Proof. The first equality follows from Q2
i = 0 and the anti-commutativity of

the Qj. If l is odd, by the product formula, for every homogeneous x of degree
p, we have

Qi(x ∪ γ) = Qi(x) ∪ γ + (−1)px ∪Qi(γ) = Qi(x) ∪ γ.

In the case l = 2, the product formula looks as follows [18, Prop. 13.4]:

Qi(x ∪ γ) = x ∪Qi(γ) +Qi(x) ∪ γ +
∑
E,E′

uE,E′QE(x) ∪QE′(γ)

for some uE,E′ ∈ H∗,∗(F,Z), where QE = Qe1
1 Qe2

2 . . . and the sum is taken over
all pairs of nonzero sequences E = (e1, e2, . . . ) and E ′ of length less than i.
Note that Qj(γ) = 0 for all j = 1, . . . , n− 1, hence QE′(γ) = 0. �
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The element µ gives rise to a morphism M(Xθ) → M(Xθ)(b)[2b + 1] in
DM(F,Z), still denoted by µ (see [16, 5.3]). Let Mθ be the motive in
DM(F,Z) defined by the exact triangle

M(Xθ)(b)[2b] → Mθ → M(Xθ)
µ−→ M(Xθ)(b)[2b+ 1].

For every i = 0, 1, . . . , l − 1, let SiMθ be the i-th symmetric power of Mθ in
DM(F,Z(l)) (see [16, §3]). The symmetric power Rθ := Sl−1Mθ is called the
Rost motive of θ.

Note that in the split case,

(6) Mθ = Z(l) ⊕ Z(l)(b)[2b]⊕ · · · ⊕ Z(l)((l − 1)b)[2(l − 1)b].

There are exact triangles [16, (5.5) and (5.6)] in DM(F,Z(l)):

Rθ → Sl−2Mθ → M(Xθ)(d)[2d+ 1] → Rθ[1],

Sl−2Mθ(b)[2b] → Rθ → M(Xθ) → Sl−2Mθ(b)[2b+ 1].

For all integers p and q we then have exact sequences

(7) Hp+2d,q+d(Rθ,Z(l)) → Hp,q(Xθ,Z(l))
∂1−→

Hp+2d+1,q+d(Sl−2Mθ,Z(l)) → Hp+2d+1,q+d(Rθ,Z(l))

and

(8) Hp+2c−1,q+c−1(Rθ,Z(l)) → Hp+2d+1,q+d(Sl−2Mθ,Z(l))
∂2−→

Hp+2c,q+c−1(Xθ,Z(l)) → Hp+2c,q+c−1(Rθ,Z(l)).

By [16, Lemma 5.15] and [20, Cor. 8.8], the motiveRθ is a direct summand of
M(Xθ) inDM(F,Z(l)). It follows thatH

p,q(Rθ,Z(l)) = 0 if p−q > d = dimXθ.
Therefore, by (7),

(9) ∂1 : H
p,q(Xθ,Z(l)) → Hp+2d+1,q+d(Sl−2Mθ,Z(l))

is an isomorphism if p > q and by (8),

(10) ∂2 : H
p+2d+1,q+d(Sl−2Mθ,Z(l)) → Hp+2c,q+c−1(Xθ,Z(l))

is an isomorphism if p+ c > q + d.
Let ∂ be the composition ∂2 ◦∂1. Then (7) and (10) yield an exact sequence

(11) Hp+2c−1,p+c−1(Xθ,Z(l)) → Hp+2d,p+d(Rθ,Z(l)) →

Hp,p(Xθ,Z(l))
∂−→ Hp+2c,p+c−1(Xθ,Z(l)) → 0

for every p.

Proposition 1.9. The homomorphism ∂ in (11) yields an isomorphism

Kθ
p(F )

∼→ Hp+2c,p+c−1(Xθ,Z)

for every integer p.
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Proof. Since both groups are l-torsion, it is sufficient to establish the isomor-
phism over Z(l). By (4), we have Hp,p(Xθ,Z(l)) = Hp,p(F,Z(l)) = Kp(F )(l).
Let L/F be a finite splitting field extension of θ. The commutativity of the
diagram

Kp(L)(l) Hp,p(XθL,Z(l))
∂L−−−→ Hp+2c,p+c−1(XθL,Z(l))

NL/F

y NL/F

y NL/F

y
Kp(F )(l) Hp,p(Xθ,Z(l))

∂−−−→ Hp+2c,p+c−1(Xθ,Z(l))

and the triviality of the top right corner imply that

Ker(∂) ⊃ A := Ker
(
Kp(F )(l) → Kθ

p(F )(l)
)
.

By [17, Lemma 4.11], the group Hp+2d,p+d(Xθ,Z) is canonically isomorphic to
A0(Xθ, Kp). AsRθ is a direct summand ofM(Xθ), the groupHp+2d,p+d(Xθ,Z(l))
and hence Hp+2d,p+d(Rθ,Z(l)) is generated by the norms for the field extensions
F (x)/F over all closed points x ∈ Xθ. Since the field F (x) splits θ, we see
from the exactness of (11) that Ker(∂) ⊂ A. Therefore, Ker(∂) = A and ∂
yields the isomorphism in the statement of the proposition. �

Suppose that θ ̸= 0. We have Kθ
0(F ) = Z/lZ and therefore by Proposition

1.9, H2c,c−1(Xθ,Z) ≃ Z/lZ. On the other hand, γ is a nonzero element of this
group, hence H2c,c−1(Xθ,Z) = (Z/lZ)γ.

Note that the motive Mθ and its symmetric powers are motives over Xθ (see
[16]). Moreover, the morphisms in the exact triangles involving these motives
are over Xθ. In particular, the homomorphism ∂ is H∗,∗(Xθ,Z)-linear. There-
fore, ∂ is given by multiplication by the canonical generator of H2c,c−1(Xθ,Z)
that is a multiple of γ. Note that since the degree 2c of γ is even, γ is central
in H∗,∗(Xθ,Z) by [6, Th. 15.9]. Then Proposition 1.9, (9) and (10) yield:

Proposition 1.10. (1) The map Kθ
p(F ) → Hp+2c,p+c−1(Xθ,Z) given by mul-

tiplication by γ, is an isomorphism for any p.

(2) The map Hp,q(Xθ,Z) → Hp+2c,q+c−1(Xθ,Z), given by multiplication by γ,
is an isomorphism if p > q, i.e., every α ∈ H∗,∗(Xθ,Z) with ord(α) > c can be
written in the form α = β ∪ γ for a unique β. �

Proposition 1.11. The map Kθ
p(F ) → Hp+n+1,p+n−1(Xθ,Z), x 7→ x · δ, is an

isomorphism for all p.

Proof. The composition

Kθ
p(F )

·δ−→ Hp+n+1,p+n−1(Xθ,Z)
Q1...Qn−1−−−−−−→ Hp+2c,p+c−1(Xθ,Z)

coincides with the multiplication by γ and therefore is an isomorphism by
Proposition 1.10(1). The second map is injective by Corollary 1.7. �

Lemma 1.12. If α ∈ Hp,q(Xθ,Z) such that b < ord(α) ≤ c, then Qn−1(α) = 0.
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Proof. Since ordQn−1(α) > b + ln−1 = c, we have Qn−1(α) = β ∪ γ for some
β ∈ H∗,∗(Xθ,Z)≥0 by Proposition 1.10(2). Hence, in view of Lemma 1.8,

Qn−1(β) ∪ γ = Qn−1(β ∪ γ) = Q2
n−1(α) = 0,

therefore Qn−1(β) = 0 again by Proposition 1.10(2). Since

ord(β) ≤ c+ ln−1 − (c+ 1) < ln−1,

we have β = 0 by Corollary 1.7 and therefore Qn−1(α) = 0. �
Lemma 1.13. If α ∈ Hp,q(Xθ,Z) with 2li ≤ ord(α) < li+1 for some i =
0, 1, . . . , n− 2, then α = 0.

Proof. Consider the element α′ = (Qn−2 . . . Qi+1)(α). Since

ord(α′) = ord(α) + li+1 + · · ·+ ln−2,

we have b < ord(α′) < ln−1 < c. By Lemma 1.12, Qn−1(α
′) = 0.

Using Corollary 1.7, by descending induction on j = n− 2, . . . , i, we deduce
that (Qj . . . Qi+1)(α) = 0 since ord(Qj . . . Qi+1)(α) < lj+1. Therefore, α =
0. �
Lemma 1.14. If α ∈ Hp,q(Xθ,Z) with ord(α) ≤ c and li ≤ ord(α) < 2li for
some i = 1, 2, . . . , n− 1, then α = Qi(β) for some β ∈ H∗,∗(Xθ,Z)≥0.

Proof. By Corollary 1.7, it is sufficient to show that Qi(α) = 0.
Suppose first that i = n − 1. Since b < ln−1 ≤ ord(α) ≤ c, it follows

from Lemma 1.12 that Qn−1(α) = 0. In the rest of the proof we assume that
i ≤ n− 2.

Case 1: l ≥ 3. We have

2li ≤ ordQi(α) < 3li ≤ li+1.

By Lemma 1.13, Qi(α) = 0.

Case 2: l = 2. We prove that Qi(α) = 0 by descending induction on i. Since
2i+1 ≤ ordQi(α) < 2i + 2i+1, by the induction hypothesis, (Qi+1Qi)(α) = 0.
By Corollary 1.7(2), Qi(α) = Qi+1(ρ) for some ρ ∈ H∗,∗(Xθ,Z)≥0. Since
(Qi+1Qi)(ρ) = −(QiQi+1)(ρ) = −Q2

i (α) = 0 and ord(ρ) < 2i, ordQi(ρ) < 2i+1,
it follows from Corollary 1.7 that ρ = 0 and therefore Qi(α) = 0. �
1.8. Main theorem. Consider the exterior algebra

Λ = Kθ
∗(F )[t][λ1, . . . , λn−1]

over the polynomial algebra Kθ
∗(F )[t], i.e., λ2

i = 0 and λiλj = −λiλi for i ̸= j.

Recall (see section 1.3) thatH∗,∗(X̃θ,Z) has a structure of a leftKθ
∗(F )-module.

The operations Qi are K∗(F )-linear and Qi commute with multiplication by
γ by Lemma 1.8. Therefore, we can view H∗,∗(Xθ,Z) as a left Λ-module with
t acting by multiplication by γ and λi acting via the operation Qi. The ring
Λ is graded over Kθ

∗(F ) as follows: deg(t) = c + 1, deg(λi) = li. For any
homogeneous element λ ∈ Λ and any α ∈ Hp,q(Xθ,Z), we have

ord(λα) = deg(λ) + ord(α).
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Note that distinct monomials in Λ of the form tkλa1
1 λa2

2 . . . λ
an−1

n−1 with ai = 0
or 1 have different degree.

Theorem 1.15. Let l be a prime integer, n ≥ 2, F a field of characteristic

different from l and θ ∈ Hn
et(F, µ

⊗(n−1)
l ) a nontrivial symbol. Then

(1) H∗,∗(Xθ,Z)≤0 is canonically isomorphic to H∗,∗(F,Z)≤0.
(2) H∗,∗(Xθ,Z)≥0 is a free left Λ-module with basis {δ}.

Proof. (1) follows from Proposition 1.2.

(2): We shall prove that the map

Λ → H∗,∗(Xθ,Z)≥0, λ 7→ λδ

is an isomorphism.
Injectivity : In view of the remark preceding the theorem, it suffices to prove

that if λδ = 0 for a monomial λ = xtkλa1
1 λa2

2 . . . λ
an−1

n−1 with x ∈ Kθ
∗(F ) and the

integers k ≥ 0 and ai such that ai = 0 or 1, i.e.,

γk ∪ (Qa1
1 Qa2

2 . . . Q
an−1

n−1 )(x · δ) = 0,

then x = 0. By Proposition 1.10,

(Qa1
1 Qa2

2 . . . Q
an−1

n−1 )(x · δ) = 0.

It follows from Corollary 1.7 by descending induction on i ≥ 0 that

(Qa1
1 Qa2

2 . . . Qai
i )(x · δ) = 0.

Therefore, x · δ = 0 and hence x = 0 by Proposition 1.11.

Surjectivity : Let α ∈ Hp,q(Xθ,Z) be an element with ord(α) ≥ 0. By
induction on ord(α) we show that α = λδ for some λ ∈ Λ. If ord(α) = 0,
then α = 0 by Proposition 1.2. The case ord(α) = 1 is covered by Proposition
1.11. If ord(α) ≥ c + 1, then by Proposition 1.10(2), α = γ ∪ β for β with
0 ≤ ord(β) < ord(α). By induction, β = λδ for some λ ∈ Λ and hence
α = (tλ)δ.

Suppose 2 ≤ ord(α) ≤ c. Choose an i = 0, 1, . . . , n − 1 such that li ≤
ord(α) < li+1. If ord(α) ≥ 2li (and hence i ≤ n − 2), then by Lemma 1.13,
α = 0. So we may assume that li ≤ ord(α) < 2li for i ≥ 1. It follows
from Lemma 1.14 that α = Qi(β) for some β with 0 ≤ ord(β) < ord(α). By
induction, β = λδ for some λ ∈ Λ and hence α = (λiλ)δ. �

Remark 1.16. When l = 2 we have γ = µ2. Moreover if s is the operation
of multiplication by µ, the left Kθ

∗(F )[s][λ1, . . . λn−2]-module H∗,∗(Xθ,Z)≥0 is
free with basis {δ}. In this form the statement was proved by Orlov, Vishik,
and Voevodsky (unpublished).

Remark 1.17. By Theorem 1.15, a nontrivial element α ∈ Hp,q(Xθ,Z) of
positive order can be uniquely written in the form

α = γk ∪ (Qa1
1 Qa2

2 . . . Q
an−1

n−1 )(x · δ)
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where x ∈ Kθ
∗(F ) and k, ai are integers such that k ≥ 0 and ai = 0 or 1.

Moreover,

ord(α) = 1 + k(c+ 1) +
n−1∑
i=1

lai .

1.9. The multiplicative structure. The ring structure of H∗,∗(Xθ,Z)≥0 in
the case l = 2 has been determined by Orlov, Vishik, and Voevodsky (unpub-
lished).

Let l be an odd prime. The operation S of the form ±Qi1Qi2 . . . Qik , where
k ≥ 0 and i1 < · · · < ik, is called a monomial. For a monomial S there exists
a unique monomial S ′ such that S ′S = Q1Q2 . . . Qn−1. We shall compute the
cup-product T (δ) ∪ S(δ) for two monomials T and S.

Proposition 1.18. Let S and T be monomials. Then

(1) If S ′T ′ = 0, then T (δ) ∪ S(δ) = 0.
(2) If S ′T ′ ̸= 0, i.e., S ′T ′ is a monomial, let U be (the unique) monomial

such that U ′ = S ′T ′. Then T (δ) ∪ S(δ) = U(δ) ∪ γ.

Proof. (1): By assumption, the monomials T and S do not contain Qi for
some i. Therefore, the i-th digit of ordT (δ) + ordS(δ) written in base l is
equal to 0. By Theorem 1.15, the product T (δ)∪S(δ), if not zero, is a Kθ

∗(F )-
multiple of either U(δ) ∪ γ or U(δ) for some monomial U . In the first case
ordT (δ) + ordS(δ) = ordU(δ) + c, and this case is impossible since all digits
of the right hand side written in base l are nonzero.

In the second case ordT (δ) + ordS(δ) = ordU(δ) − 1 and this case does
not occur since ordV (δ) ≡ 1 modulo l for every monomial V . Therefore
T (δ) ∪ S(δ) = 0.

(2): If T ′ = 1, then U = S, T (δ) = γ and the equality follows.
Assume that T ′ ̸= 1. By assumption T ′S = 0. Therefore,

S ′T ′(T (δ) ∪ S(δ)
)
=S ′(T ′T (δ) ∪ S(δ)± T (δ) ∪ T ′S(δ)

)
= S ′(γ ∪ S(δ)

)
= γ ∪ S ′S(δ)

= γ2,

S ′T ′(U(δ) ∪ γ
)
=U ′(U(δ) ∪ γ

)
= U ′U(δ) ∪ γ

= γ2.

By Theorem 1.15, the restriction of every operation Qi on a homogeneous
component Hp,q(Xθ,Z) of non-negative order is either injective or zero. Hence
T (δ) ∪ S(δ) = U(δ) ∪ γ. �

2. Applications

In this section we give some applications.
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2.1. An exact sequence.

Theorem 2.1. Let l be a prime integer, F a field of characteristic different

from l and θ ∈ Hn
et(F, µ

⊗(n−1)
l ) a symbol. Then the sequence⨿

Hp
et

(
L, µ⊗p

l

) ∑
NL/F−−−−−→ Hp

et(F, µ
⊗p
l )

∪θ−→

Hp+n
et (F, µ

⊗(p+n−1)
l )

∏
resE/F−−−−−→

∏
Hp+n

et

(
E, µ

⊗(p+n−1)
l

)
,

where the coproduct is taken over all finite splitting field extensions L/F for θ
and the product is taken over all splitting field extensions E/F , is exact.

Proof. Note that by a projection formula, the sequence is a complex. By
Proposition 1.4, the kernel of the last homomorphism in the sequence is canon-
ically isomorphic to Hp+n+1,p+n−1(Xθ,Z). Under this isomorphism, the cup-
product with θ corresponds to multiplication by δ. The statement follows now
from Proposition 1.11, the definition of Kθ

p(F ) and the bijectivity of the norm
residue homomorphism. �
2.2. Certain motivic cohomology groups of the Rost motive Rθ. Let l

be a prime integer, F a field of characteristic different from l, θ ∈ Hn
et(F, µ

⊗(n−1)
l )

a symbol, Xθ a Rost variety for θ and Rθ the Rost motive of θ. Recall the
exact sequence (11):

Hp+2c−1,p+c−1(Xθ,Z(l)) → Hp+2d,p+d(Rθ,Z(l)) → Hp,p(Xθ,Z(l)) = Kp(F )(l).

By Theorem 1.15 (see also Remark 1.17), the degree c − 2 component of the
ring Λ is zero, hence the first group in the sequence is trivial. We have proved:

Proposition 2.2. The natural homomorphism

Hp+2d,p+d(Rθ,Z(l)) → Kp(F )(l)

is injective.

2.3. Injectivity of the reduced norm map for a central simple algebra.
Let D be a central simple algebra of degree m over F . An old theorem of Wang
(see [2]) asserts that the classical reduced norm homomorphism

NrdD : K1(D) → K1(F )

is injective provided m is a square-free integer.
The reduced norm homomorphism NrdD for the K2-groups has been defined

in [12, §26]. It was proven in [10] and [7] that NrdD is injective in the case
m = 2. In the following statement we generalize this result to a K2-analog of
Wang’s theorem.

Theorem 2.3. Let D be a central simple algebra of square-free degree over F .
Then the reduced norm homomorphism

NrdD : K2(D) → K2(F )

is injective.
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Lemma 2.4. Let B and C be two central simple algebras over F of relatively
prime degree. Suppose the reduced norm homomorphisms for B and C are
injective over any field extension of F . Then NrdB⊗C is also injective.

Proof. Let L/F be a splitting field of C of degree r dividing degC. By as-
sumption, the bottom homomorphism of the diagram

K2(B ⊗ C)
Nrd−−−→ K2(F )y y

K2(B ⊗ L) K2(B ⊗ C ⊗ L)
Nrd−−−→ K2(L)

is injective. We deduce that the kernel K of NrdB⊗C is r-torsion. Similarly
we show that K is s-torsion for some integer s relatively prime to r, hence
K = 0. �

Since the algebra D is a tensor product of algebras of prime degree (see [2]),
Lemma 2.4 allows to assume that D is a division algebra of a prime degree l.

Let L/F be a finite extension splitting the algebra D. Then [L : F ] = kl for
some integer k and there is an embedding of F -algebras L ↪→ Mk(D) (see [4]).
The induced homomorphism

K2(L) → K2

(
Mk(D)

)
= K2(D)

does not depend on the choice of the embedding.
Let X be the Severi-Brauer variety of left ideals of dimension l in D. As for

every closed point x ∈ X the residue field F (x) splits D, we have a canonical
homomorphism K2F (x) → K2(D).

Lemma 2.5. There is a homomorphism h : A0(X,K2) → K2(D) satisfying
the following properties:

(1) The composition NrdD ◦h is the norm map A0(X,K2) → K2(F ).
(2) For every closed point x ∈ X, the composition of h with the natural

homomorphism K2F (x) → A0(X,K2) coincides with the canonical map
K2F (x) → K2(D).

Proof. We follow the construction in [9, §8]. Let J be the canonical vector
bundle of rank l over X. There is a natural right action of the opposite
algebra D−1 on J over F . For every i ≥ 0, the functor M 7→ J i ⊗D⊗−i M from
the category of left finite D⊗−i-modules to the category of vector bundles over
X induces a homomorphism

K2(D
⊗−i) → K2(X).

By Quillen’s theorem [9, §8, Th. 4.1], the map

l−1⨿
i=0

K2(D
⊗−i) → K2(X)

is an isomorphism. We define the map h as the composition

h : A0(X,K2) → K2(X) → K2(D),
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where the first map is the edge homomorphism of the Gersten-Quillen spectral
sequence [9, §7, Th. 5.4] and the second one is projection on the (l − 1)-
th component of the left hand side in Quillen’s isomorphism. The Gersten-
Quillen spectral sequence is functorial with respect to the base field change, in
particular, h commutes with the norm maps for finite field extensions.

Note that the group A0(X,K2) is generated by the norms for finite field
extensions that split D. Thus, to prove the first property of h we may assume
that D is split. In this case X is isomorphic to the projective space Pl−1,
A0(X,K2) ≃ K2(F ) canonically and K2(D

−i) can be identified with K2(F )
via the reduced norm homomorphism. The image of an element α ∈ K2(F )
in K2(X) is equal to α · [pt], where [pt] is the class of a rational point in
K0(X). Note that the Quillen’s isomorphism takes

∑
ai to

∑
aiη

i ∈ K∗(X),
where η is the class of the canonical line bundle (with the sheaf of sections
O(1)). Since [pt] = (η − 1)l−1 = ηl−1 + . . . , the element α · [pt] projects to
α ∈ K2(F ) = K2(D), that proves the first property of h.

To prove the second property let x ∈ X be a closed point of degree kl and
let L = F (x). Choose a rational point x′ ∈ XL over x. For every α ∈ K2(L)
the classes αx′ and αx in the groups A0(XL, K2) and A0(X,K2) respectively
satisfy NL/F (αx

′) = αx, where NL/F is the left vertical norm homomorphism
in the commutative diagram

A0(XL, K2)
hL−−−→ K2(DL)

NL/F

y yNL/F

A0(X,K2)
h−−−→ K2(D),

where DL = D ⊗F L. Since NrdDL

(
hL(αx

′)
)
= α by the first part, it suf-

fices to prove that the right vertical norm homomorphism coincides with the
composition

K2(DL)
Nrd−−→ K2(L) → K2(D).

This follows from commutativity of the diagram

K2(DL)
∼−−−→ K2Ml(L) −−−→ K2Mkl(D)

∼−−−→ K2Ml(D)

Nrd

y y≀
y≀

y≀

K2(L) K2(L) −−−→ K2Mk(D)
∼−−−→ K2(D)

and the fact that the diagonal composition K2(DL) → K2(D) coincides with
the norm map. �

Now we can finish the proof of Theorem 2.3. As the kernel of NrdD is l-
torsion, it suffices to prove that NrdD is injective after tensoring with Z(l). A
transfer argument shows that we can replace F by a finite field extension of
degree prime to l. Thus, we can assume that D is a cyclic algebra.

Let θ be the 2-symbol corresponding to D and X the Severi-Brauer variety
of D. Then X is a Rost variety of θ. The Rost motive Rθ is a direct sum of
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M(X) in DM(F,Z(l)). Let

Rθ
r−→ M(X)

s−→ Rθ

be morphisms such that s ◦ r is the identity of Rθ. Over a splitting field
extension L/F , XL ≃ Pl−1

L , therefore, the motives (Rθ)L and M(XL) are
both isomorphic to Z(l) ⊕ Z(l)(1)[2] ⊕ · · · ⊕ Z(l)(l − 1)[2(l − 1)] by (6) and

hence are isomorphic. Identifying (Rθ)L and M(XL) with M(Pl−1
L ), we can

view rL and sL as endomorphisms of M(Pl−1
L ) with sL a left inverse of rL.

The endomorphism ring of M(Pl−1
L ) is CHl−1(Pl−1

L × Pl−1
L )(l) (see [15]) that is

isomorphic to the product of l copies of Z(l). As this ring is commutative, rL
and sL are isomorphisms inverse to each other. By [1, Cor. 8.4.], r and s
are isomorphisms, i.e., the Rost motive Rθ is isomorphic to the motive of the
Severi-Brauer variety X in DM(F,Z(l)).

By Proposition 2.2 (see also the proof of Proposition 1.9), the norm homo-
morphism N : A0(X,K2) → K2(F ) is injective after tensoring with Z(l). By
Lemma 2.5(1), N coincides with the composition

A0(X,K2)
h−→ K2(D)

NrdD−−−→ K2(F ).

It follows from [8, Th. 5.2] that the group K2(D) is generated by the images
of natural homomorphisms K2F (x) → K2(D) over all closed points x ∈ X.
Hence, by Lemma 2.5(2), h is surjective. It follows that NrdD is injective after
tensoring with Z(l). �
Remark 2.6. Theorem 2.3 was proven independently by B. Kahn and M. Levine
in [5].
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