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Abstract. We solve the lifting problem for Galois representations in every

dimension and in every characteristic. That is, we determine all pairs (n, k),

where n is a positive integer and k is a field of characteristic p > 0, such
that for every field F , every continuous homomorphism ΓF → GLn(k) lifts to

GLn(W2(k)), where W2(k) is the ring of p-typical length 2 Witt vectors of k.

1. Introduction

1.1. Lifting Galois representations. Let F be a field, let ΓF be the absolute
Galois group of F , let k be a field of characteristic p > 0, let W2(k) be the ring of
p-typical length 2 Witt vectors of k, and let n be a positive integer. Given an n-
dimensional continuous k-linear representation V of ΓF , a basic question is whether
V lifts toW2(k), that is, whether there exists a continuousW2(k)-free ΓF -moduleW
of rank n such that W⊗W2(k)k ∼= V . Similarly, for an n-dimensional complete flag of
continuous ΓF -representations, that is, a sequence of continuous ΓF -representations
V1 ⊂ V2 ⊂ · · · ⊂ Vn such that Vi has dimension i for all 1 ≤ i ≤ n, one may ask
whether the flag lifts to W2(k), that is, whether there exists a sequence of W2(k)-free
continuous ΓF-modules W1 ⊂ W2 ⊂ · · · ⊂ Wn, such that Wi+1/Wi is W2(k)-free
for all 1 ≤ i ≤ n, and which reduces to the sequence of the Vi after tensorization
with k over W2(k).

The related question of existence of lifting representations of ΓQ to characteris-
tic zero, perhaps satisfying additional conditions, is of great importance in number
theory. For example, given a continuous odd representation ρ : ΓQ → GL2(Fp), it is

very useful to construct a continuous lifting ρ̃ : ΓQ → GL2(Qp) which is unramified
outside finitely many places. The existence of such liftings, due to Ramakrishna
[Ram99] and Khare–Wintenberger [KW09a], is a key tool in the proof Serre’s mod-
ularity conjecture by Khare–Wintenberger [Kha06, KW09a, KW09b]. More gener-
ally, the deformation theory of continuous representations of absolute Galois groups
of local and global fields is a prominent topic in number theory, with connections
to modularity theorems and Wiles’ proof of Fermat’s Last Theorem [Wil95].

1.2. The question of Khare and Serre. Khare [Kha97] proved that, when k is
a finite field, every 2-dimensional continuous representation of ΓF with coefficients
in k lifts to W2(k), for every field F . More precisely, Khare stated his theorem
in the case when F is a number field, and Serre observed that Khare’s argument
generalized to an arbitrary field F ; see [Kha97, Remark 2 p. 392]. Khare and Serre
then asked whether every continuous finite-dimensional representation of ΓF with
coefficients in k lifts to W2(k); see [KL20, Question 1.1].
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De Clercq and Florence [DCF22] generalized Khare’s theorem by removing the
assumption that k is finite (see Khare–Larsen [KL20] for an alternative proof) and
showed that every continuous representation of ΓF of dimension n ≤ 4 over F2

lifts to Z/4Z. Florence [Flo20] conjectured that the question of Khare and Serre
should have a positive answer, and even conjectured the stronger assertion that
every finite-dimensional complete flag of continuous representations of ΓF over k
should lift to W2(k). He later constructed, for every odd prime p, a 3-dimensional
complete flag of ΓQ((t)) which does not lift to Z/p2Z, and amended his conjecture to

include the assumption that F contains a primitive p2-th root of unity; see [Flo24].
There are also positive results specific to local and global fields. By work of

Böckle [Böc03], all continuous representations ΓF -representations over Fp lift to
Z/p2Z, when F is a local field. The analogous statement for complete flags has
recently been proved by Conti, Demarche and Florence [CDF24]. Böckle [Böc03]
also proved lifting of certain mod p representations of ΓF , when F is a global field.
When F is a number field containing a primitive root of unity of order p2, Khare
and Larsen [KL20] proved that all 3-dimensional representations of ΓF over Fp lift
to Z/p2Z.

1.3. The main theorem. In [MS24], we showed that the question of Khare and
Serre and the conjecture of Florence have a negative answer, even over fields con-
taining all p-primary roots of unity. More precisely, for all n ≥ 3, all odd primes p,
and all fields F containing a primitive p-th root of unity, letting K := F (x1, . . . , xp),
where the xi are independent variables over F , we constructed an n-dimensional
continuous representation of ΓK with Fp coefficients, admitting a ΓK-invariant
complete flag, and which does not lift to Z/p2Z.

After this result, the goal shifted to determining all cases when the question
of Khare and Serre has a positive answer, that is, the pairs (k, n), where k is a
characteristic p field and n is a positive integer, such that, for every field K, every
continuous n-dimensional representation of ΓK lifts to W2(k). In this paper, we
solve this problem. In fact, we answer a finer, relative version of the problem, where
K ranges over all extensions of a fixed field F .

Theorem 1.1. Let F be a field, let k be a field of characteristic p > 0, and let n
be a positive integer. The following assertions are equivalent.

(1) For every field extension K/F , every continuous n-dimensional represen-
tation of ΓK over k lifts to W2(k).

(2) For every field extension K/F , every continuous n-dimensional complete
flag of representations of ΓK over k lifts to W2(k).

(3) At least one of the following conditions is satisfied:
(a) char(F ) = p,
(b) n ≤ 2,
(c) |k| = 2 and n ≤ 4.

Thus, for every pair (k, n) except for those considered by Khare and De Clercq–
Florence, there exist n-dimensional Galois representations over k that do not lift
to W2(k). In fact, in each such case, for every “generic” extension K/F , the Galois
group ΓK admits several “generic” non-liftable representations; see Section 6.7 for
the precise statement.
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1.4. Negligible cohomology. We rephrase Theorem 1.1 using the notion of neg-
ligible cohomology classes. Consider a short exact sequence of groups

(1.1) 0 M G̃ G 1,

whereM is abelian. The conjugation action of G̃ onM factors throughG and makes
M into a G-module; we let α ∈ H2(G,M) be the class of (1.1). Following Serre, we
say that α is negligible over F if for every field extension K/F and every continuous
homomorphism ρ : ΓK → M we have ρ∗(α) = 0 in H2(K,M); see Section 2.1 for
more details and references. Observe that α is negligible over F if and only if, for
all field extensions K/F , every continuous homomorphism ρ : ΓK → G lifts to a

continuous homomorphism ρ̃ : ΓK → G̃:

ΓK

0 M G̃ G 1.

ρ
ρ̃

For every positive integer n and every field k of characteristic p > 0, we have the
short exact sequences of groups

GLift(k, n) 0 Mn(k) GLn(W2(k)) GLn(k) 1,

BLift(k, n) 0 Tn(k) Bn(W2(k)) Bn(k) 1,

whose definition is recalled in Section 2.2. Here Bn ⊂ GLn is the Borel subgroup of
upper triangular matrices and Tn(k) ⊂ Mn(k) is the subspace of upper triangular
matrices. Since W2(Fp) ∼= Z/p2Z, for k = Fp these sequences take the form

GLift(Fp, n) 0 Mn(Fp) GLn(Z/p2Z) GLn(Fp) 1,

BLift(Fp, n) 0 Tn(Fp) Bn(Z/p2Z) Bn(Fp) 1,

where the maps Mn(Fp)→ GLn(Z/p2Z) and Tn(Fp)→ Bn(Z/p2Z) send the matrix
A to I + pA.

A continuous n-dimensional representation of ΓK over k may be lifted to W2(k)
if and only if the corresponding continuous homomorphism ΓK → GLn(k) (which
is uniquely determined up to conjugation) lifts to a continuous homomorphism
ΓK → GLn(W2(k)). Similarly an n-dimensional complete flag of representations of
ΓK over k lifts to W2(k) if and only if the corresponding continuous homomorphism
ΓK → Bn(k) lifts to Bn(W2(k)). Therefore Theorem 1.1 can be rephrased in the
following equivalent way.

The classes of GLift(k, n) and BLift(k, n) are negligible over F if char(F ) = p,
n ≤ 2, or |k| = 2 and n ≤ 4, and are not negligible over F in all other cases.

1.5. Sketch of proof of the main theorem. Our main tool for the proof of
Theorem 1.1 is [MS24, Theorem 1.4] (see Theorem 2.2 below). Let α ∈ H2(G,M)
be the class of (1.1). Suppose that G is a finite group of exponent e(G), that M
has finite exponent e(M), and that F contains a primitive root of unity of order
e(M)e(G). Under these assumptions, Theorem 2.2 asserts that α is negligible over
F if and only if α belongs to the subgroup of H2(G,M) generated by all elements of

the form corGaG (a ∪ χ), where a ∈M , Ga is the stabilizer of a, and χ ∈ H2(Ga,Z).
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When k is finite, Theorem 2.2 reduces Theorem 1.1 to a problem in finite group
cohomology, and when k is infinite, our strategy will be to apply Theorem 2.2 to
suitable finite subgroups of GLn(k).

We now sketch the proof of Theorem 1.1. For clarity, we only consider GLift(k, n).
If char(F ) = p, then by [Ser02, Proposition 3 p. 75] the group H2(F,M) is trivial
for every p-primary torsion ΓF -module M , and so Theorem 1.1 is obvious in this
case. When char(F ) 6= p, the theorems of Khare and De Clercq–Florence, of which
we include self-contained proofs in Section 3, deal with all cases when GLift(k, n)
has a positive solution. We must show that GLift(k, n) is not negligible over F in
all the remaining cases.

For all n ≥ 3 and all fields k of characteristic p > 0, if the class of GLift(Fp, n) is
not negligible over F , neither is the class of GLift(k, n); see Lemma 4.1. Combining
this with Theorem 2.5 (whose proof relies on Theorem 2.2) is enough to conclude
when n ≥ 3 and p is odd. It remains to consider the case when p = 2 and n ≥ 3.
We consider the cases when |k| > 2 and |k| = 2 separately.

The case p = 2, |k| > 2 and n ≥ 3 is handled in Section 5. By Lemma 2.8, it
suffices to consider the case n = 3. Since |k| > 2, we may find a Klein subgroup W
of k. Using W , we construct a Klein subgroup Z ⊂ GL3(k) such that (i) the class
of GLift(k, n) does not restrict to zero in H2(Z,M3(k)) (Lemma 5.1), while (ii) ev-
ery class in H2(GL3(k),M3(k)) which is negligible over F is zero in H2(Z,M3(k))
(Lemma 5.2). Statement (i) is proved by a direct matrix computation, while (ii)
crucially relies on Theorem 2.2. Because GL3(k) is not necessarily finite, Theo-
rem 2.2 does not apply to GLift(k, 3); we get around this by considering a certain
intermediate finite subgroup Z ⊂ H ⊂ GL3(k) and by proving, using Theorem 2.2,
the stronger statement that all classes in H2(H,M3(k)) that are negligible over F
restrict to zero in H2(Z,M3(k)).

We consider the case when |k| = 2 and n ≥ 5 in Section 6. By Lemma 2.8, we may
assume that n = 5. Let G := GL5(F2). By Theorem 2.2, it suffices to prove that the
class of GLift(F2, 5) does not belong to the subgroup of H2(G,M5(F2)) generated

by the elements corGAG (A∪χ), where A ranges over all elements of M5(F2), GA is the
stabilizer of A, and χ ranges over all elements of H2(GA,Z). It suffices to consider
a single A ∈M5(F2) for each G-orbit. When A is not conjugate to a 5× 5 Jordan
block, a case-by-case analysis using the projection formula and matrix computations
implies that corGAG (A ∪ χ) = 0 for all χ ∈ H2(GA,Z). When A is conjugate to a
5×5 Jordan block, we have H2(GA,Z) = (Z/2Z) ·χ⊕ (Z/8Z) ·ψ for some χ and ψ.

Using the projection formula, we prove that corGAG (A ∪ χ) = 0. However, no such

argument seems to be available for showing that corGAG (A ∪ ψ) = 0. To overcome
this, in Proposition 6.11 we construct a Klein subgroup Z ⊂ GL5(F2) such that (i)
the class of GLift(F2, 5) restricts to a non-trivial element in H2(Z,M5(F2)) and (ii)

the equality resGZ corGAG (A ∪ ψ) = 0 holds in H2(Z,M5(F2)); see Proposition 6.12.
We prove (i) by a matrix computation, and (ii) by an intricate argument involving
the double coset formula. This completes our proof sketch for Theorem 1.1.

For completeness, we also determine all cases when GLift(k, n) is split. In these
cases, the corresponding lifting problem is trivial. As we prove in Theorem 7.1, the
extension GLift(k, n) is split if and only if either n = 1, or n = 2 and |k| ≤ 3, or
n = 3 and |k| = 2.

Notation. For a commutative ring R and a non-negative integer n, we let Mn(R)
(resp. Tn(R)) be the R-algebra of n×n matrices (resp. upper triangular matrices)
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with coefficients in R. We also let GLn(R) (resp. Bn(R), resp. Un(R)) be the group
of invertible matrices (resp. upper triangular matrices, resp. upper unitriangular
matrices) with coefficients in R, and we write R× = GL1(R) for the group of units
in R. For all i, j ∈ {1, . . . , n}, we let Eij ∈ Mn(R) be the matrix whose (i, j)-th
entry is equal to 1 and whose other entries are equal to 0.

Let Γ be a profinite group. All group homomorphisms Γ → G, where G is
a group, will be assumed to be continuous for the profinite topology on Γ and
the discrete topology on G. All Γ-modules will be assumed to be discrete. For
every Γ-module M and every non-negative integer i, we let Hi(Γ,M) be the i-th
cohomology group.

If F is a field, we let ΓF be the absolute Galois group of F and, for every
ΓF -module M and every i ≥ 0, we let Hi(F,M) := Hi(ΓF ,M).

Let G be a group. For all σ, τ ∈ G, we let [σ, τ ] := στσ−1τ−1 be the commutator
of σ and τ . We let [G,G] be the derived subgroup of G, and we let Gab := G/[G,G]
be the abelianization of G.

Let M be a G-module. We often view M as a Z[G]-module: for all σ, τ ∈ G and
m ∈ M , we have (σ + τ)(m) = σ(m) + τ(m) and (στ)(m) = σ(τ(m)). We write
MG for the subgroup of G-invariant elements of M . For a subgroup H ⊂ G, we
let resGH : Hi(G,M)→ Hi(H,M) be the restriction map and, if H has finite index
in G, we let corHG : Hi(H,M) → Hi(G,M) be the corestriction map. In degree
0, the corestriction corHG : H0(H,M) → H0(G,M) coincides with the norm map
NG/H : MH → MG; see [NSW08, p. 48]. For every σ ∈ G and every subgroup

H ⊂ G, we let σ∗ : Hi(H,M) → Hi(σHσ−1,M) be the conjugation map. By
[NSW08, Proposition 1.5.6], for any two subgroups H,K ⊂ G such that K has
finite index in G, we have the double coset formula

resGH ◦ corKG =
∑
σ

corH∩σKσ
−1

H ◦σ∗ ◦ resKK∩σ−1Hσ,

where σ ranges over a system of representatives of the double cosets H\G/K.
Finally, for every σ ∈ G, we write Mσ for M 〈σ〉 and Nσ for the norm map

N〈σ〉/{1} : M → Mσ, that is, the map given by m 7→
∑e−1
i=0 σ

im, where e is the
order of σ.

2. Preliminaries

2.1. The lifting problem and negligible cohomology. Let G be a group, let M
be a G-module, let F be a field, and let α ∈ Hd(G,M) be a degree d cohomology
class, for some d ≥ 0. Following Serre, we say that α is negligible over F if for
every field extension K/F and every homomorphism ΓK → G, the pullback map
Hd(G,M)→ Hd(K,M) takes α to zero; see [Ser91, Ser94] or [GMS03, §26 p. 61].
The negligible elements over F form a subgroup

H2(G,M)neg,F ⊂ H2(G,M).

Lemma 2.1. Let F be a field, and let d be a non-negative integer.

(1) For every group G and every G-module homomorphism M → M ′, the in-
duced map Hd(G,M)→ Hd(G,M ′) takes the subgroup Hd(G,M)neg,F into
Hd(G,M ′)neg,F .
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(2) For every group homomorphism G′ → G and every G-module M , the pull-
back map Hd(G,M)→ Hd(G′,M) takes the subgroup Hd(G,M)neg,F into
Hd(G′,M)neg,F .

(3) For every field extension F ′/F , every group G and every G-module M , we
have Hd(G,M)neg,F ⊂ Hd(G,M)neg,F ′ .

(4) For every finite field extension F ′/F , every group G and every G-module
M , we have [F ′ : F ] ·Hd(G,M)neg,F ′ ⊂ Hd(G,M)neg,F .

Proof. The proofs immediately follow from the definitions; see [GM22, Proposition
2.3], where the assumption that G is finite is unnecessary. �

Let G be a group, let M be a G-module, and let F be a field. Consider a group
extension

(2.1) 0 M G̃ G 1,

where the G-action on M induced by the conjugation G̃-action coincides with the G-
module action, and let α ∈ H2(G,M) be the class of (2.1). The class α is negligible
if and only if, for every field extension K/F , every homomorphism ΓK → G lifts to

a homomorphism ΓK → G̃.
In [MS24], we determined the subgroup H2(G,M)neg,F ⊂ H2(G,M) when G is

finite, M has finite exponent, and F contains enough roots of unity.

Theorem 2.2. Let G be a finite group of exponent e(G), let M be a G-module
of finite exponent e(M), and let F be a field containing a primitive root of unity
of order e(M)e(G). Then H2(G,M)neg,F is generated by all elements of the form
corHG (a ∪ χ), where H is a subgroup of G, a ∈MH and χ ∈ H2(H,Z).

In fact, H2(G,M)neg,F is generated by all elements of the form corGaG (a ∪ χ),
where a ranges over all elements of M , Ga is the stabilizer of a in G, and χ ranges
over all elements of H2(Ga,Z).

Proof. When M is finite, this is [MS24, Theorem 1.3]. The general case follows
from the finite case by writing M as the union of its finite G-submodules. �

Suppose that the group G is finite. For every subgroup H ⊂ G, we define

(2.2) ϕH : MH ⊗H2(H,Z)
∪−→ H2(H,M)

cor−−→ H2(G,M).

Therefore, under the assumptions of Theorem 2.2, the subgroup H2(G,M)neg,F is
generated by the images of ϕGa , where a ranges over all elements of M , and where
Ga is the stabilizer of a in G. In fact, as the next lemma shows, it suffices to
consider a single a ∈M for each G-orbit.

Lemma 2.3. Let G be a finite group, let M be a G-module. For every g ∈ G and
every a ∈M , we have Im(ϕga) = Im(ϕa).

Proof. Let a ∈M , let g ∈ G, and set a′ := ga. We have a commutative diagram

MGa ⊗H2(Ga,Z) H2(Ga,M) H2(G,M)

MGa′ ⊗H2(Ga′ ,Z) H2(Ga′ ,M) H2(G,M).

∪

g∗⊗g∗ g∗

cor

g∗

∪ cor
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Here, the left square commutes by [NSW08, Proposition 1.5.3(i)], and the right
square commutes by [NSW08, Proposition 1.5.4]. Moreover, by [Wei94, Theorem
6.7.8] the right vertical map is the identity. It follows that Im(ϕGa) = Im(ϕGa′ ). �

2.2. Length 2 Witt vectors. Let k be a field of characteristic p > 0. We recall
the definition of the p-typical length 2 Witt vectors W2(k) of k. Consider the
polynomial Φ(x, y) := ((x + y)p − xp − yp)/p ∈ Z[x, y]. As a set W2(k) := k × k,
and, for all (a1, b1), (a2, b2) ∈W2(k), one has

(a1, b1) + (a2, b2) := (a1 + a2, b1 + b2 − Φ(a1, a2)),

(a1, b1) · (a2, b2) := (a1a2, a
p
1b2 + ap2b1);

see [Bou06, Chapitre IX, §1, paragraphe 4]. We have a short exact sequence of
abelian groups

(2.3) 0 k W2(k) k 0,ι π

where π(a, b) = a and ι(b) = (0, b) for all a, b ∈ k. The map π is a ring homomor-
phism. For every integer n ≥ 0, we obtain a short exact sequence of groups

Lift(k,n) 0 Mn(k) GLn(W2(k)) GLn(k) 1,

where the homomorphism GLn(W2(k))→ GLn(k) is induced by π, and where the
inclusion Mn(k) → GLn(W2(k)) is given by (mij) 7→ I + (ι(mij)). Similarly, we
have an exact sequence

BLift(k, n) 0 Tn(k) Bn(W2(k)) Bn(k) 1.

For every A = (aij) ∈ GLn(k), we define A(p) := (apij) ∈ GLn(k).

Lemma 2.4. The GLn(k)-action on Mn(k) induced by GLift(k, n) is given by

GLn(k)×Mn(k)→Mn(k), (A,M) 7→ A(p)M(A(p))−1.

Proof. Under the identification Mn(W2(k)) = Mn(k)×Mn(k) induced by the iden-
tification W2(k) = k × k, the conclusion amounts to

(A, 0)(0,M)(A, 0)−1 = (0, A(p)M(A(p))−1)

for all A ∈ GLn(k) and M ∈Mn(k). This is equivalent to

(A, 0)(0,M) = (0, A(p)M(A(p))−1)(A, 0),

which follows from the identities

(X, 0)(0, Y ) = (0, X(p)Y ), (0, Y )(X, 0) = (0, Y X(p)),

valid for all X,Y ∈Mn(k). �

When k = Fp, we have a ring isomorphism Z/p2Z ∼−→ W2(Fp) determined by
1 + p2Z 7→ (1, 0). Thus (2.3) becomes

0 Fp Z/p2Z Fp 0,

where the map Fp → Z/p2Z sends 1 to p+p2Z, and the sequences GLift(Fp, n) and
BLift(Fp, n) take the form

GLift(Fp, n) 0 Mn(Fp) GLn(Z/p2Z) GLn(Fp) 1,
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BLift(Fp, n) 0 Tn(Fp) Bn(Z/p2Z) Bn(Fp) 1,

where the maps Mn(Fp) → GLn(Z/p2Z) and Tn(Fp) → Bn(Z/p2Z) send A to
I + pA. By Lemma 2.4, the induced GLn(Fp)-action on Mn(Fp) is given by matrix
conjugation.

Theorem 2.5. For all n ≥ 3, all odd primes p, and all fields F of characteristic
different from p, the class of GLift(Fp, n) is not negligible over F .

Proof. See [MS24, Theorem 5.1]. �

We conclude this subsection with some basic observations about GLift(k, n) and
BLift(k, n).

Lemma 2.6. Let Γ be a profinite group, let k be a field of characteristic p > 0, and
let V be a finite-dimensional k-representation of Γ. There exists an open subgroup
Γ′ ⊂ Γ of prime-to-p index such that V is a unitriangular representation of Γ′.

Proof. Replacing Γ with the image of the natural homomorphism Γ→ Aut(V ), we
may assume that Γ is finite. Replacing Γ by a p-Sylow subgroup, we may assume
that Γ is a p-group. By induction on the dimension of V , it suffices to show that
V Γ 6= {0}. This is proved in [Ser12, Proposition 26 p. 64]. �

Lemma 2.7. Let F be a field, let k be a field of characteristic p > 0, and let n be a
positive integer. If the class of BLift(k, n) is negligible over F , then so is the class
of GLift(k, n).

Proof. Let K/F be a field extension, and let ρ : ΓK → GLn(k) be a group homomor-
phism. Let G ⊂ GLn(k) be the image of ρ, and let P ⊂ G be a p-Sylow subgroup
of G. Since P is a finite p-group, by Lemma 2.6, we may assume that P ⊂ Bn(k).
Let c ∈ H2(Bn(k),Mn(k)) be the pushforward of the class of BLift(k, n). By
Lemma 2.1(1), the class c is negligible over F , and hence so is its restriction in
H2(P,Mn(k)). The latter class is the restriction of the class of GLift(k, n) via the
inclusion P ↪→ G ↪→ GLn(k). As [G : P ] is prime to p, by Lemma 2.1(4) the
restriction in H2(G,Mn(k)) of the class of GLift(k, n) is also negligible over F . It
follows that ρ lifts to GLn(W2(k)). �

Lemma 2.8. Let F be a field, let k be a field of characteristic p > 0, and let n ≥ m
be positive integers. If the class of GLift(k, n) is negligible over F , then so is the
class of GLift(k,m). Similarly, if the class of BLift(k, n) is negligible over F , then
so is the class of BLift(k,m).

Proof. See [DCF22, Lemma 3.4]. For a more direct argument, see [MS24, Lemma
5.3], which is stated and proved only when k = Fp, but whose proof immediately
generalizes to arbitrary k. �

2.3. Extensions of bicyclic groups. Let s and t be positive integers, let

Z :=
〈
ρ, µ | ρs = µt = [ρ, µ] = 1

〉
be a bicyclic group of order st, and let M be a Z-module. Define the abelian group

Z2(Z,M) := {(a, b, c) ∈M3 | ρ(a) = a, µ(b) = b,Nρ(c) = (µ−1)a,Nµ(c) = (ρ−1)b},
its subgroup

B2(Z,M) = {(Nρ(u), Nµ(v), (ρ− 1)v + (µ− 1)u) |u, v ∈M},
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and the quotient group

H̃2(Z,M) := Z2(Z,M)/B2(Z,M).

Let α ∈ H2(Z,M), and let

(2.4) 0 M Z̃ Z 1.

be a group extension representing α. Let ρ̃, µ̃ ∈ Z̃ be lifts of ρ and µ, respectively.
Observe that ρ̃−s, µ̃t and [ρ̃, µ̃] belong to M , and the triple (ρ̃−s, µ̃t, [ρ̃, µ̃]) belongs
to Z2(Z,M). Define

f(α) := (ρ̃−s, µ̃t, [ρ̃, µ̃]) +B2(Z,M) ∈ H̃2(Z,M).

Lemma 2.9. This construction yields a well-defined function

f : H2(Z,M)→ H̃2(Z,M)

such that f(0) = 0.

Proof. Let α ∈ H2(Z,M), let (2.4) be a group extension representing α, and let

ρ̃, µ̃ ∈ Z̃ be lifts of ρ and µ, respectively.
We first show that f(α) does not depend on the choice of lifts ρ̃, µ̃. Any other pair

of lifts has the form u−1ρ̃, vµ̃ for some u, v ∈ M . (Here we view M as a subgroup

of Z̃, and hence use multiplicative notation for the group operation.) Then

(u−1ρ̃)−s = ρ̃−sNρ(u), (vµ̃)t = Nµ(v)µ̃t,

[u−1ρ̃, vµ̃] = u−1ρ̃vρ̃−1ρ̃µ̃ρ̃−1µ̃−1µ̃uµ̃−1v−1 = u−1ρ(v)[ρ̃, µ̃]µ(u)v−1.

Recalling that the subgroup M is abelian, we obtain, in additive notation,

((u−1ρ̃)−s, (vµ̃)t, [u−1ρ̃, vµ̃]) = (ρ̃−s, µ̃t, [ρ̃, µ̃]) + (Nρ(u), Nµ(v), (ρ− 1)v+ (µ− 1)u)

in Z2(Z,M). Thus f(α) does not depend on the choice of lift. The fact that f(α)
does not depend on the choice of the group extension (2.4) is clear. Finally, if α = 0

then (2.4) admits a splitting s : Z → Z̃. Letting ρ̃ := s(ρ) and µ̃ := s(µ), we have
(ρ̃−s, µ̃t, [ρ̃, µ̃]) = 0 in Z2(Z,M), and hence f(0) = 0. �

Remark 2.10. One can show that the function f : H2(Z,M)→ H̃2(Z,M) is a group
isomorphism. We will not need this stronger assertion.

3. Proofs of the theorems of Khare and De Clercq–Florence

Let R be a commutative ring, let Γ be a profinite group, and let A and C be
R[Γ]-modules. We let

Ext1
R[Γ],s(C,A) := Ker[Ext1

R[Γ](C,A)→ Ext1
R(C,A)]

be the abelian group of isomorphism classes of R-split exact sequences of R[Γ]-
modules

0 A B C 0.

Given a (continuous) 1-cocycle ϕ of Γ with values in HomR(C,A), one introduces
the structure of an R[Γ]-module on A⊕ C by the formula

g(a, c) = (ga+ ϕ(g)(gc), gc).

This yields a group isomorphism

(3.1) H1(Γ,HomR(C,A))
∼−→ Ext1

R[Γ],s(C,A).



10 ALEXANDER MERKURJEV AND FEDERICO SCAVIA

For every ring homomorphism R→ R′, letting A′ := A⊗R R′ and C ′ := C ⊗R R′,
base change induces a commutative square

(3.2)

H1(Γ,HomR(C,A)) Ext1
R[Γ],s(C,A)

H1(Γ,HomR′(C
′, A′)) Ext1

R′[Γ],s(C
′, A′),

∼

∼

where the bottom horizontal map is (3.1) for the R′-modules A′ and C ′.
The following theorem was proved by Khare [Kha97] when the field k is finite,

and by De Clercq and Florence [DCF22] in general.

Theorem 3.1. For every field F and every field k of characteristic p > 0, the
classes of GLift(k, 2) and BLift(k, 2) are negligible over F .

Proof. By Lemma 2.7, it suffices to prove that the class of BLift(k, 2) is negligible
over F . By [Ser02, Proposition 3 p. 75], we may assume that char(F ) 6= p and, by
Lemma 2.1(4), that F contains a primitive p-th root of unity ζ. The choice of ζ
allows us to identify µp with Z/pZ and k ⊗ µp with k. Let

(3.3) 0 k V k 0

be a 2-dimensional complete flag of representations of ΓF over k. By Lemma 2.6,
there exists an open subgroup Γ′ ⊂ Γ acting trivially on both copies of k in (3.3).
By Lemma 2.1(4), we may replace Γ by Γ′, that is, we may assume that ΓF acts
trivially on both copies of k in (3.3). Consider the commutative diagram

W2(k)⊗ F× W2(k)⊗H1(F, µp2) H1(F,W2(k)⊗ µp2)

k ⊗ F× k ⊗H1(F, µp) H1(F, k),

∼ ∪

∼ ∪

where the ΓF -action on k and W2(k) is trivial, the vertical maps are induced by the
reduction map W2(k)→ k, and the left horizontal maps are induced by the Kummer
sequence. As the map W2(k)→ k is surjective, so is W2(k)⊗F× → k⊗F×. Since
k is an Fp-vector space, the bottom-right map is an isomorphism, and hence the
homomorphism H1(F,W2(k)⊗ µp2)→ H1(F, k) is also surjective.

In view of (3.1), the extension (3.3) is represented by a class α ∈ H1(F, k) and,
letting α̃ ∈ H1(F,W2(k)⊗ µp2) be a lift of α, the class α̃ represents a W2(k)-split
extension of W2(k)[ΓF ]-modules

(3.4) 0 W2(k)⊗ µp2 W W2(k) 0.

Since α̃ lifts α, the commutativity of (3.2) (where the homomorphism R→ R′ is the
reduction map W2(k) → k) implies that tensoring (3.4) with k over W2(k) yields
(3.3), and the conclusion follows. �

The next theorem is due to De Clercq and Florence [DCF22, Corollary 6.3].

Theorem 3.2. For every field F and every n ≤ 4, the classes of GLift(F2, n) and
BLift(F2, n) are negligible over F .
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Proof. By Lemma 2.7, it suffices to prove that BLift(F2, n) is negligible over F . By
[Ser02, Proposition 3 p. 75], we may assume that char(F ) 6= 2 and, by Lemma 2.8,
that n = 4.

Let V1 ⊂ V2 ⊂ V3 ⊂ V4 = V be a 4-dimensional complete flag of representations
of ΓF over F2. Every triangular action of ΓF on a 2-dimensional vector space over
F2 has a permutation basis: this is clear if the ΓF -action is trivial, and if the ΓF -
action is non-trivial, then the ΓF -orbit of a non-fixed vector is a permutation basis.
Thus, there exist ΓF -invariant bases X = {x1, x2} of V2 and Y = {y1, y2} of V/V2

such that

V2 = F2[X], V/V2 = F2[Y ], V1 = F2 · (x1 + x2), V3/V2 = F2 · (y1 + y2).

We obtain a short exact sequence of F2-linear ΓF -representations

(3.5) 0 F2[X] V F2[Y ] 0.

Let L be an étale F -algebra corresponding to the ΓF -set X × Y ; see [KMRT98,
Theorem 18.4]. We have a commutative square of (Z/4Z)[ΓF ]-modules

HomZ/4Z((Z/4Z)[Y ], µ4[X]) µ4[X × Y ]

HomF2(F2[Y ],F2[X]) F2[X × Y ],

∼

∼

where µ4[X] := (Z/4Z)[X]⊗ µ4 and µ4[X × Y ] := (Z/4Z)[X × Y ]⊗ µ4. We obtain
a commutative diagram

H1(L, µ4) H1(F, µ4[X × Y ]) H1(F,HomZ/4Z((Z/4Z)[Y ], µ4[X]))

H1(L,F2) H1(F,F2[X × Y ]) H1(F,HomF2(F2[Y ],F2[X])),

∼ ∼

∼ ∼

where the three vertical arrows are induced by the reduction maps Z/4Z → F2

and µ4 → F2, and where the left horizontal maps are the Faddeev–Shapiro iso-
morphisms; see [NSW08, Proposition 1.6.4]. The map H1(L, µ4) → H1(L,F2) is
surjective by Kummer theory, and hence all vertical maps are surjective.

Let α ∈ H1(F,HomF2
(F2[Y ],F2[X])) be the class of (3.5), and lift α to an element

α̃ ∈ H1(F,HomZ/4Z((Z/4Z)[Y ], µ4[X])). Then, under the identification of (3.1), α̃
is the class of a (Z/4Z)-split exact sequence of (Z/4Z)[ΓF ]-modules

0 µ4[X] W (Z/4Z)[Y ] 0

which reduces to (3.5) modulo 2. Define W1 := µ4 · (x1 + x2), W2 := µ4[X], let W3

be the inverse image of Z/4Z · (y1 + y2) in W , and let W4 := W . Then the flag of
Z/4Z-free ΓF -modules W1 ⊂W2 ⊂W3 ⊂W4 reduces to the flag V1 ⊂ V2 ⊂ V3 ⊂ V4

modulo 2, as desired. �

4. Proof of Theorem 1.1 for odd p and n ≥ 3

Lemma 4.1. Let p be a prime number, let n be a positive integer, let F be a field,
and let k be a field of characteristic p. If GLift(Fp, n) is not negligible over F ,
neither is GLift(k, n). Similarly, if BLift(Fp, n) is not negligible over F , neither is
BLift(k, n).
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Proof. We have a commutative diagram of abelian groups with exact rows

0 k W2(k) k 0

0 k C Fp 0

0 Fp W2(Fp) Fp 0,

λ ϕ

where the group homomorphism λ is a splitting of the inclusion Fp ↪→ k. By
definition, C is the subring of W2(k) consisting of those pairs (a, b) such that a ∈ Fp
and b ∈ k. The ring homomorphism ϕ is given by ϕ(a, b) = (a, λ(b)).

We obtain a commutative diagram of groups with exact rows

0 Mn(k) GLn(W2(k)) GLn(k) 1

0 Mn(k) GLn(C) GLn(Fp) 1

0 Mn(Fp) GLn(W2(Fp)) GLn(Fp) 1.

λ∗ ϕ∗

Since the top row is negligible over F , by Lemma 2.1(2) so is the middle row, and
hence by Lemma 2.1(1) so is the bottom row. The proof for BLift(k, n) is entirely
analogous. �

Proof of Theorem 1.1 for odd p and n ≥ 3. By Lemma 2.7, it suffices to prove that
GLift(k, n) is not negligible over F for all n ≥ 3. By Lemma 4.1, it is enough
to show that the class of GLift(Fp, n) is not negligible over F , which follows from
Theorem 2.5. �

5. Proof of Theorem 1.1 for p = 2, |k| > 2 and n ≥ 3

Lemma 5.1. Let n ≥ 2 be an integer, let k be a field of characteristic 2 such that
|k| > 2, let x, y ∈ k× be two distinct elements, and let Z ⊂ Un(k) be the Klein
subgroup generated by ρ := I + xE1,n and µ := I + yE1,n. The class of GLift(k, n)
in H2(GLn(k),Mn(k)) restricts to a non-trivial class in H2(Z,Mn(k)).

Proof. We first reduce to the case when n = 2. We have a commutative diagram
with exact rows

0 Mn(k) GLn(W2(k)) GLn(k) 1

0 Mn(k) E GL2(k) 1

0 M2(k) GL2(W2(k)) GL2(k) 1,

π

ι
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where π and ι are given by

[aij ] 7→
[
a1,1 a1,n

an,1 an,n

]
,

(
a b
c d

)
7→


a 0 · · · 0 b
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
c 0 · · · 0 d

 ,

respectively. Letting αn ∈ H2(GLn(k),Mn(k)) be the class of GLift(k, n), we
deduce that α2 = π∗ι

∗(αn). Let jn : Z ↪→ GLn(k) be the inclusion map. We have
ι ◦ j2 = jn, so that j∗n = j∗2 ι

∗, and we have j∗2π∗ = π∗j
∗
2 . Thus

j∗2 (α2) = j∗2π∗ι
∗(αn) = π∗j

∗
2 ι
∗(αn) = π∗j

∗
n(αn)

in H2(Z,M2(k)). In particular, if j∗2 (α2) 6= 0 in H2(Z,M2(k)), then j∗n(αn) 6= 0 in
H2(Z,Mn(k)). We may thus assume that n = 2.

Let x̃ := (x, 0) and ỹ := (y, 0) be lifts of x and y in W2(k), respectively, and
define ρ̃ := I + x̃E12 and µ̃ := I + ỹE12 in GL2(W2(k)). Then ρ̃ and µ̃ lift ρ and
µ, respectively. For every u ∈ k, we have (u, 0) + (u, 0) = (0, u2) = ι(u2) in W2(k),
where the map ι : k →W2(k) has been defined in (2.3). Thus

ρ̃−2 = I − ι(x2)E12 = I + ι(x2)E12, µ̃2 = I + ι(y2)E12, [ρ̃, µ̃] = I

in GL2(W2(k)).
Suppose by contradiction that GLift(k, 2) is trivial. Then, by Lemma 2.9, there

exist U and V in M2(k) such that

Nρ(U) = x2E12, Nµ(V ) = y2E12, Nµ(U) = Nρ(V )

in M2(k), that is, letting U = (uij) and V = (vij),[
x2u21 x2u11 + x4u21 + x2u22

0 x2u21

]
=

[
0 x2

0 0

]
,

[
y2v21 y2v11 + y4v21 + y2v22

0 y2v21

]
=

[
0 y2

0 0

]
,[

y2u21 y2u11 + y4u21 + y2u22

0 y2u21

]
=

[
x2v21 x2v11 + x4v21 + x2v22

0 x2v21

]
.

It remains to show that no such U and V exist. Indeed, if they existed, then

u21 = 0 = v21,

u11 + u22 = 1 = v11 + v22,

y2u11 + y2u22 = x2v11 + x2v22,

which would imply x2 = y2 and hence x = y, a contradiction. �

Lemma 5.2. Let F be a field of characteristic different from 2, let k be a field of
characteristic 2 such that |k| > 2, let W ⊂ k be a finite subgroup such that |W | > 2,
let H ⊂ U3(k) be the finite subgroup

H :=

1 x z
0 1 y
0 0 1

 ,
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where x, y ∈ W and z ∈ 〈W ·W 〉, and let Z ⊂ H be the center of H, that is, the
subgroup of H defined by x = y = 0. The restriction map

H2(H,M3(k))→ H2(Z,M3(k))

sends H2
neg,F (H,M3(k)) to zero.

Proof. Let M := M3(k). By Lemma 2.1(3), we may assume that F contains all
roots of unity of 2-power order. Since H is finite, the conclusion will follow from
Theorem 2.2 once we show that resHZ corSH(A∪χ) = 0 in H2(Z,M) for all subgroups
S ⊂ H, for all A ∈MS and all χ ∈ H2(S,Z).

Choose a subgroup S ⊂ H, an element A ∈ MS , and an element χ ∈ H2(S,Z).
Letting ∂ : H1(S,Q/Z) → H2(S,Z) be the connecting homomorphism associated
to the short exact sequence of S-modules

0 Z Q Q/Z 0,

we have χ = ∂(u) for a unique character u : S → Q/Z. Since Z is an elementary
abelian 2-group, there exists a homomorphism v : Z → Q/Z which extends the
restriction of u to S ∩Z. Then the map ũ : SZ → Q/Z defined by sz 7→ u(s) + v(z)
for all s ∈ S and z ∈ Z is a well-defined character which extends u. Letting χ̃
be the image of ũ in H2(SZ,Z), we deduce that resSZS (χ̃) = χ. By the projection
formula, we have

corSH(A ∪ χ) = corSZH (corSSZ(A ∪ χ)) = corSZH (NSZ/Z(A) ∪ χ̃).

Therefore, replacing S by SZ, we may assume that Z ⊂ S.
Note that Z ∩ σSσ−1 = Z for every σ ∈ H. Hence, by the double coset formula

resHZ corSH(A ∪ χ) =
∑
σ

σ∗(A ∪ resSZ(χ))

=
∑
σ

σ∗(A) ∪ σ∗(resSZ(χ))

=
∑
σ

σ∗(A) ∪ resSZ(χ)

=NH/S(A) ∪ resSZ(χ)

in H2(Z,M), where σ runs over a set of representatives of H/S. In order to
conclude, it remains to show that NH/S(A) ∪ resSZ(χ) = 0.

Let W× := W \ {0}. For every x ∈ W×, we define σ12(x) := I + xE12 ∈ H and
σ23(x) := I + xE23 ∈ H. For all x ∈W×, we have

Mσ12(x) =

a b c
0 a 0
0 d e

 ,
which is independent of the choice of x ∈W×. Thus, for all x, y ∈W×, we have

(5.1) Nσ12(x)(M
σ12(y)) = Nσ12(x)(M

σ12(x)) = 0.

Similarly,

(5.2) Nσ23(x)(M
σ23(y)) = Nσ23(x)(M

σ23(x)) = 0.

We split the proof that NH/S(A) ∪ resZS (χ) = 0 in five cases.
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(i) Suppose first that σ12(x) /∈ S for all x ∈W×. Choose two distinct x, y ∈W×,
and let K be the subgroup of H generated by S, σ12(x), and σ12(y). Since Z ⊂ S
and the group H/Z is abelian, we see that S is normal in K and K/S is a Klein
group generated by the cosets of σ12(x) and σ12(y). It follows from (5.1) that

NK/S(A) = Nσ12(x)(Nσ12(y)(A)) = 0,

and hence
NH/S(A) = NH/K(NK/S(A)) = 0.

(ii) Suppose that σ23(x) /∈ S for all x ∈ W×. The conclusion follows as in case
(i), replacing σ12 by σ23 and (5.1) by (5.2).

(iii) Suppose now that there are x, y ∈W× such that σ12(x) /∈ S and σ12(y) ∈ S.
Let K be the subgroup of H generated by S and σ12(x). Then K/S is a cyclic group
generated by the coset of σ12(x). Since A ∈ MS ⊂ Mσ12(y), it follows from (5.1)
that

NK/S(A) = Nσ12(x)(A) = 0

and hence
NH/S(A) = NH/K(NK/S(A)) = 0.

(iv) Suppose now that there are x, y ∈W× such that σ23(x) /∈ S and σ23(y) ∈ S.
We conclude as in case (iii), replacing σ12 by σ23 and (5.1) by (5.2).

(v) Finally, suppose that σ12(x) and σ23(x) belong to S for all x ∈W×. In this
case, S = H. Then resSZ(χ) = 0 since Z ⊂ [S, S]. �

Proof of Theorem 1.1 for p = 2, |k| > 2 and n ≥ 3. By Lemma 2.7, it suffices to
show that GLift(k, n) is not negligible over F for all n ≥ 3. By Lemma 2.8, we
may assume that n = 3 and, by Lemma 2.1(3), we may suppose that F contains
all roots of unity of 2-power order.

Let W ⊂ k be a finite subgroup such that |W | > 2, for example a Klein subgroup.
Let H ⊂ GL3(k) and Z ⊂ H be the corresponding finite subgroups in the statement
of Lemma 5.2, and let α ∈ H2(H,M3(k)) be the restriction of the class of GLift(k, 3)
to H. By Lemma 2.1(2), it suffices to show that α is not negligible over F . By
Lemma 5.1, the restriction of α in H2(Z,M3(k)) is not zero. By Lemma 5.2, the
subgroup H2

neg,F (H,M3(k)) restricts to zero in H2(Z,M3(k)). Thus resHZ (α) is not

negligible over F . By Lemma 2.1(2), we conclude that α is not negligible over F ,
as desired. �

6. Proof of Theorem 1.1 for |k| = 2 and n ≥ 5

6.1. Notation. Throughout this section, we let G := GL5(F2), U := U5(F2), and
M := M5(F2). The group G acts on M by matrix conjugation. For every A ∈ M ,
we let GA be the stabilizer of A in G. For every subgroup H ⊂ G, we define

ϕH : MH ⊗H2(H,Z)
∪−→ H2(H,M)

cor−−→ H2(G,M).

For every subgroup H ⊂ U5 and all 1 ≤ i ≤ j ≤ 5, we let uij : H → Q/Z be
the composition of the (i, j)-th coordinate function H → Z/2Z and the inclusion
Z/2Z ↪→ Q/Z. The function uij is not necessarily a group homomorphism. If
it is a homomorphism, then it defines an element uij ∈ H1(H,Q/Z), and we let
χij := ∂(uij) ∈ H2(H,Z), where ∂ : H1(H,Q/Z) → H2(H,Z) is the connecting
map associated to the sequence

0 Z Q Q/Z 0.
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For every A ∈ M , we let pA(x), qA(x) ∈ F2[x] be the characteristic polynomial
and the minimal polynomial of A, respectively. Observe that deg(pA(x)) = 5, that
qA(x) divides pA(x), and that pA(x) and qA(x) have the same irreducible factors.

We let Π: S5 → G be the homomorphism which sends a permutation σ ∈ S5 to
the corresponding permutation matrix Π(σ).

6.2. Projection formula arguments. We collect lemmas that will be invoked re-
peatedly in what follows. Their proofs use the projection formula [NSW08, Propo-
sition 1.5.3(iv)].

Lemma 6.1. Let H ⊂ G be a subgroup, let P ⊂ H be a 2-Sylow subgroup, let
A ∈ MH , let χ ∈ H2(H,Z), and let χ′ := resHP (χ) ∈ H2(P,Z). If ϕP (A⊗ χ′) = 0,
then ϕH(A⊗ χ) = 0. In particular, if ϕP = 0, then ϕH = 0.

Proof. Since 2M = 0 and [H : P ] is odd, we have NH/P (A) = [H : P ]A = A. By
the projection formula

corHG (A ∪ χ) = corHG (NH/P (A) ∪ χ) = corHG (corPH(A ∪ χ′)) = corPG(A ∪ χ′) = 0. �

Lemma 6.2. We have ϕU = 0.

Proof. We have MU = 〈E15〉 and

GE15
=


1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 1

 .

We have
H1(U,Q/Z) = F2 · u12 ⊕ F2 · u23 ⊕ F2 · u34 ⊕ F2 · u45,

and hence
H2(U,Z) = F2 · χ12 ⊕ F2 · χ23 ⊕ F2 · χ34 ⊕ F2 · χ45.

If χ ∈ {χ12, χ23}, define a subgroup U ⊂ K ⊂ G as

K :=


1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 .

Then u12 and u23 extend to K, and hence χ is the restriction of some χ′ ∈ H2(K,Z).
Observe that MK ⊂ MU and that E15 is not K-invariant because K is not con-
tained in GE15 . We deduce that MK = 0, so that in particular corUK(E15) = 0 and
therefore

corUG(E15 ∪ χ) = corKG (corUK(E15 ∪ χ)) = corKG (NU/K(E15) ∪ χ′) = 0.

If χ ∈ {χ34, χ45}, a similar argument, replacing K by the subgroup

K ′ :=


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1

 ,

again shows that corUG(E15 ∪ χ) = 0. Thus ϕU = 0, as desired. �
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Lemma 6.3. Let H ⊂ U be a subgroup. For all 1 ≤ i ≤ 4 and all A ∈ MH , we
have ϕH(A⊗ χi,i+1) = 0.

Proof. The χi,i+1 ∈ H2(H,Z) extend to elements of H2(U,Z). By Lemma 6.2 and
the projection formula, we have

corHG (A ∪ χi,i+1) = corUG(corHU (A ∪ χi,i+1)) = corUG(NU/H(A) ∪ χi,i+1) = 0. �

Lemma 6.4. For i = 2, 3, let Vi := Ker[ui,i+1 : U → F2].
(1) Let H ⊂ V2 be a subgroup, and let χ ∈ H2(H,Z) be either ∂(u13) or ∂(u24).

For all A ∈MH , we have ϕH(A⊗ χ) = 0.
(2) Let H ⊂ V3 be a subgroup, and let χ ∈ H2(H,Z) be either ∂(u24) or ∂(u35).

For all A ∈MH , we have ϕH(A⊗ χ) = 0.

Proof. We first show that ϕVi = 0 for i = 2, 3. We have MVi = 〈E15〉 = MU . By
the projection formula, for every χ ∈ H2(Vi,Z) we have

corViG (E15 ∪ χ) = corUG(corViU (E15 ∪ χ)) = corUG(E15 ∪ corViU (χ)).

Now Lemma 6.2 implies that ϕVi = 0, as claimed.
The coordinate maps u13, u24 : V1 → F2 and u24, u35 : V2 → F2 are group homo-

morphisms. Thus χ as in (1) and (2) is well defined and is the restriction of some
χ′ ∈ H2(Vi,Z). For every A ∈MH , the vanishing of ϕVi implies

corViG (NH/Vi(A) ∪ χ′) = ϕVi(NH/Vi(A)⊗ χ′) = 0,

and hence by the projection formula

corHG (A ∪ χ) = corViG (corHVi(A ∪ χ)) = corViG (NH/Vi(A) ∪ χ′) = 0. �

Lemma 6.5. Let I ∈ M be the identity matrix. For every subgroup H ⊂ G and
every χ ∈ H2(H,Z), we have ϕH(I ⊗ χ) = 0.

Proof. Recall that GLn(F2) = SLn(F2) is equal to its derived subgroup for all n ≥ 3;
see for example [MT11, Theorem 24.17]. Thus G = [G,G], and hence H2(G,Z) = 0.
By the projection formula, we conclude that

corHG (I ∪ χ) = I ∪NG/H(χ) = 0. �

6.3. The case when A is not conjugate to a Jordan block.

Proposition 6.6. Suppose that A ∈ M is not conjugate to a 5 × 5 Jordan block.
Then ϕGA(A⊗ χ) = 0 for all χ ∈ H2(GA,Z).

We will prove the conclusion of Proposition 6.6 by a case-by-case analysis:

(1) A is diagonalizable over F2 (Lemma 6.7),
(2) pA(x) is square-free (Lemma 6.8),
(3) A is not diagonalizable, but it admits a Jordan form over F2 (Lemma 6.9),
(4) pA(x) is not square-free and does not split over F2 (Lemma 6.10).

By Lemma 2.3, for the proof of Proposition 6.6 it suffices to consider one A ∈M
for each G-orbit. Moreover, letting M0 ⊂ M be the G-submodule of trace-zero
matrices, for every A ∈ M one of A and I + A belongs to M0, and hence by
Lemma 6.5 we may assume that A ∈M0.

Lemma 6.7. If A ∈M is diagonalizable over F2, then ϕGA = 0.
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Proof. By Lemma 6.5, we may assume that A ∈M0. We have

GA ∼= GLd(F2)×GL5−d(F2)

for some 0 ≤ d ≤ 2. For all r ≥ 3 the group GLr(F2) is equal to its derived
subgroup, and hence H2(GLr(F2),Z) = H1(GLr(F2),Q/Z) = 0. Thus, if d = 0, 1,
we have H2(GA,Z) = 0 and hence ϕGA = 0 in this case. When d = 2, up to
conjugation

A =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 , GA =


∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 .

Consider the following 2-Sylow subgroup of GA:

P :=


1 ∗ ∗ 0 0
0 1 ∗ 0 0
0 0 1 0 0
0 0 0 1 ∗
0 0 0 0 1

 ∼= U3(F2)× U2(F2).

By Lemma 6.1, it suffices to show that ϕP = 0. As

H1(P,Q/Z) = F2 · u12 ⊕ F2 · u23 ⊕ F2 · u45,

every character of P extends to U5, and the conclusion follows from Lemma 6.3. �

Lemma 6.8. For every A ∈M such that pA(x) is square-free, we have ϕGA = 0.

Proof. We view M as a non-commutative F2-algebra, and for every A ∈ M we let
Z(A) ⊂M be the centralizer F2-subalgebra of A. Then GA = Z(A)×.

Suppose that pA(x) is square-free. Then pA(x) = qA(x), and hence A admits a
cyclic basis. It follows that Z(A) is equal to the F2-subalgebra generated by A, and
hence Z(A) ∼= F2[x]/(pA(x)) as F2-algebras. In particular, GA ∼= F2[x]/(pA(x))×.
Because pA(x) is square-free, F2[x]/(pA(x)) ∼= F1×· · ·×Fd, where Fi/F2 is a finite
field extension for all 1 ≤ i ≤ d. Thus GA ∼= F×1 × · · · × F

×
d has odd order. We

conclude that H2(GA,Z)[2] = 0, and hence in particular ϕGA = 0. �

Lemma 6.9. Suppose that A ∈M is not diagonalizable over F2, that pA(x) splits
as a product of linear factors in F2[x], and that A is not conjugate to a 5×5 Jordan
block. Then ϕGA(A⊗ χ) = 0 for all χ ∈ H2(GA,Z).

Proof. By Lemma 6.5, we may assume that the trace of A is zero. Up to conjuga-
tion, we may assume that A is in normal Jordan form. We let Jr(λ) be the r × r
Jordan block with eigenvalue λi ∈ F2. More generally, we let Jr1(λ1)⊕· · ·⊕Jrd(λd)
be the matrix in Jordan form with i-th Jordan block of size ri ≥ 1 and eigenvalue
λi ∈ F2.

(i) If A = J5(0), there is nothing to prove.
(ii) If A = J4(0)⊕ J1(0), then

GA =


1 a b c d
0 1 a b 0
0 0 1 a 0
0 0 0 1 0
0 0 0 e 1

 .
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We replace A by its conjugate by the permutation matrix Π(45). Then

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , GA =


1 a b d c
0 1 a 0 b
0 0 1 0 a
0 0 0 1 e
0 0 0 0 1

 .

We have I +E15 = [I +E14, I +E45]. We deduce that Gab
A = Z/4Z×Z/2Z×Z/2Z

and H1(GA,Q/Z) = (Z/4Z) ·u⊕F2 ·u14⊕F2 ·u45, where u : GA → Z/4Z ⊂ Q/Z is
defined as follows. Let C ⊂ U3 be the subgroup generated by the order 4 element
I +E12 +E23. We have an isomorphism ρ : C

∼−→ Z/4Z which sends I +E12 +E23

to 1 + 4Z. Then u is the composite of the projection onto the top-left 3× 3 square
(whose image is equal to C) and ρ. Therefore

H2(GA,Z) = (Z/4Z)χ⊕ F2χ14 ⊕ F2χ45,

where χ := ∂(u).

We first show that corGAG (A ∪ χ) = 0. Let

K :=


1 a b d c
0 1 a 0 f
0 0 1 0 a
0 0 0 1 e
0 0 0 0 1

 .

Then u extends to u′ : K → Z/4Z, with the same definition. We let χ′ := ∂(u′).
Let σ := I + E25 ∈ K. Then K is the internal semidirect product GA o 〈σ〉. It
follows that NK/GA(A) = Nσ(A) = E15. Now the projection formula implies that

corGAG (A ∪ χ) = corKG (E15 ∪ χ′). Let

L := GE15 =


1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 1

 .

By the projection formula corKL (E15 ∪ χ′) = E15 ∪ corKL (χ′). We have

H1(L,Q/Z) = F2 · u12 ⊕ F2 · u45,

and so ϕL = 0 by Lemma 6.3. We conclude that corKG (E15 ∪ χ′) = 0, and hence in

particular corGAG (A ∪ χ) = 0.

The fact that corGAG (A ∪ χ45) = 0 follows from Lemma 6.3. Finally, in order to
deal with χ14, we further conjugate A by Π(243). Then GA is sent to

1 d a b c
0 1 0 0 e
0 0 1 a b
0 0 0 1 a
0 0 0 0 1


and u14 is sent to u12. Now Lemma 6.3 implies that corGAG (A ∪ χ14) = 0.
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(iii) If A = J3(0)⊕ J2(0), then

GA =


1 a b c d
0 1 a 0 c
0 0 1 0 0
0 e f 1 g
0 0 e 0 1

 .

Conjugate A by Π(2354) to get

A =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , GA =


1 c a d b
0 1 e h f
0 0 1 c a
0 0 0 1 e
0 0 0 0 1

 .

Then [GA, GA] contains

I + E14 = [I + E12 + E34, I + E13 + E35],

I + E25 = [I + E23 + E45, I + E13 + E35],

I + E15 = [I + E14, I + E23 + E45],

I + E13 + E24 + E35 = [I + E12 + E34, I + E23 + E45].

Thus the abelianization Gab
A may be described as

1 c a � �
0 1 e h �
0 0 1 c a
0 0 0 1 e
0 0 0 0 1

 modulo


1 0 1 � �
0 1 0 1 �
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,

where the boxes indicate that the corresponding entries are missing. Indeed, Gab
A

is a quotient of this group, and on the other hand a simple computation shows that
this group is abelian and in fact every element has order 2. Thus Gab

A
∼= (Z/2Z)3.

In fact, we have an isomorphism

Gab
A
∼−→ (Z/2Z)3,


1 c a � �
0 1 e h �
0 0 1 c a
0 0 0 1 e
0 0 0 0 1

 7→ (c, e, a+ h+ ce).

In particular, H1(GA,Q/Z) = F2 · u12 ⊕ F2 · u23 ⊕ F2 · u, where

u : GA → Z/2Z,


1 c a d b
0 1 e h f
0 0 1 c a
0 0 0 1 e
0 0 0 0 1

 7→ a+ h+ ce.
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We define χ := ∂(u) ∈ H2(GA,Z). In view of Lemma 6.3, it suffices to show that

corGAG (A ∪ χ) = 0. For this, define the subgroup

K :=


1 c a d b
0 1 e h f
0 0 1 c g
0 0 0 1 e
0 0 0 0 1

 .

Then K is the internal semidirect product GA o 〈σ〉, where σ := I +E35. Observe
that u extends to a homomorphism u′ : K → Z/2Z, given by the same formula.
Let χ′ := ∂(u′). We have NK/GA(A) = Nσ(A) = E15, and hence by the projection

formula corGAK (A∪χ) = E15∪χ′. This reduces us to showing that corKG (E15∪χ′) = 0.
As in (ii), let

L := GE15 =


1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 1

 .

By the projection formula corKL (E15 ∪ χ′) = E15 ∪ corKL (χ′). We have

H1(L,Q/Z) = F2 · u12 ⊕ F2 · u45,

and hence ϕL = 0 by Lemma 6.3. In particular,

corKG (E15 ∪ χ′) = corLG(corKL (E15 ∪ χ′)) = 0,

as desired.
(iv) If A = J3(0)⊕ J1(0)⊕ J1(0), then

GA =


1 a b c d
0 1 a 0 0
0 0 1 0 0
0 0 e f g
0 0 h i j

 .

We conjugate A by Π(35). Then GA is sent to
1 a d c b
0 1 0 0 a
0 0 j i h
0 0 g f e
0 0 0 0 1

 .

A 2-Sylow subgroup of GA is

P =


1 a d c b
0 1 0 0 a
0 0 1 i h
0 0 0 1 e
0 0 0 0 1

 .
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We have

I + E15 = [I + E14, I + E45],

I + E35 = [I + E34, I + E45],

I + E14 = [I + E13, I + E34].

Then Gab
A
∼= (Z/2Z)4, so that

H1(GA,Q/Z) = F2 · u12 ⊕ F2 · u13 ⊕ F2 · u34 ⊕ F2 · u45.

The conclusion follows from Lemma 6.3 and Lemma 6.4.
(v) If A = J2(0)⊕ J2(0)⊕ J1(0), then

GA =


a b c d e
0 a 0 c 0
f g h i 0
0 f 0 h 0
0 j 0 k l

 .

Conjugate A by Π(2453) to get

GA =


a c e b d
f h 0 g i
0 0 l j k
0 0 0 a c
0 0 0 f h

 .

A 2-Sylow subgroup of GA is

P :=


1 c e b d
0 1 0 g i
0 0 1 j k
0 0 0 1 c
0 0 0 0 1

 .

The commutator subgroup [GA, GA] contains I + E15, I + E14, I + E25, I + E35.
It follows that Gab

A
∼= (Z/2Z)4, so that

H1(GA,Q/Z) = F2 · u12 ⊕ F2 · u13 ⊕ F2 · u34 ⊕ F2 · u24.

The conclusion follows from Lemma 6.3 and Lemma 6.4.
(vi) If A = J2(0) ⊕ J1(0) ⊕ J1(0) ⊕ J1(0), then up to conjugation A = I + E15,

in which case

GA =


1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 1


which contains U . We have H1(GA,Q/Z) = F2 · u12 ⊕ F2 · u45. The conclusion
follows from Lemma 6.3.



THE LIFTING PROBLEM FOR GALOIS REPRESENTATIONS 23

(vii) If A = J4(1)⊕ J1(0), then

GA =


1 a b c 0
0 1 a b 0
0 0 1 a 0
0 0 0 1 0
0 0 0 0 1

 .

Let

K :=


1 a b c d
0 1 a b e
0 0 1 a 0
0 0 0 1 0
0 0 0 0 1

 .

Let σ := I + E15 and τ := I + E25. Then 〈σ, τ〉 ∼= (Z/2Z)2 is a normal subgroup
of U5 which intersects GA trivially, and so K = 〈σ, τ〉 o GA. In particular, every
character of GA extends to K. By the projection formula, for every χ ∈ H2(GA,Z)
we have

corGAG (A ∪ χ) = corKG (corGAK (A ∪ χ)) = corGAG (NK/H(A) ∪ χ′),

where χ′ ∈ H2(K,Z) restricts to χ in H2(GA,Z). We have Nσ(A) = E15, so

that NK/H(A) = Nτ (Nσ(A)) = Nτ (E15) = 0. Thus corGAG (A ∪ χ) = 0 for all

χ ∈ H2(GA,Z).
(viii) If A = J3(1)⊕ J1(1)⊕ J1(0), then

GA =


1 a b c 0
0 1 a 0 0
0 0 1 0 0
0 0 d 1 0
0 0 0 0 1

 .

Conjugate A by Π(34) to get

A =


1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , GA =


1 a c b 0
0 1 0 a 0
0 0 1 d 0
0 0 0 1 0
0 0 0 0 1

 .

Consider the subgroup

K :=


1 a c b e
0 1 0 a f
0 0 1 d 0
0 0 0 1 0
0 0 0 0 1

 .

Let σ := I + E15 and τ := I + E25. Then K = 〈σ, τ〉 o GA, so that in particular
every character of GA extends to K. We have Nσ(A) = E15 and Nτ (E15) = 0, so
that NK/GA(A) = Nτ (Nσ(A)) = Nτ (E15) = 0. By the projection formula, for all

χ ∈ H2(GA,Z), letting χ′ ∈ H2(K,Z) be a class restricting to χ, we have

corGAG (A ∪ χ) = corKG (corGAK (A ∪ χ)) = corKG (NK/GA(A) ∪ χ′) = 0.
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(ix) If A = J2(1)⊕ J2(1)⊕ J1(0), then

GA =


a b c d 0
0 a 0 c 0
e f g h 0
0 e 0 g 0
0 0 0 0 1

 .

We conjugate A by Π(23). Then

A =


1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , GA =


a c b d 0
e g f h 0
0 0 a c 0
0 0 e g 0
0 0 0 0 1

 .

A 2-Sylow subgroup of GA is given by

P :=


1 c b d 0
0 1 f h 0
0 0 1 c 0
0 0 0 1 0
0 0 0 0 1

 .

By Lemma 6.1, it suffices to show that corPG(A ∪ χ) = 0 for all χ ∈ H2(P,Z). Let

K :=


1 c b d i
0 1 f h j
0 0 1 c 0
0 0 0 1 0
0 0 0 0 1

 .

Then K = 〈σ, τ〉 o P , where σ := I + E15 and τ := I + E25. Every character
of P extends to K, and hence by the projection formula it suffices to show that
NK/P (A) = 0. We have Nσ(A) = E15 and Nτ (E15) = 0, which together imply
NK/P (A) = Nτ (Nσ(A)) = 0, as desired.

(x) If A = J2(1)⊕ J1(1)⊕ J1(1)⊕ J1(0), then

GA =


1 a b c 0
0 1 0 0 0
0 d e f 0
0 g h i 0
0 0 0 0 1

 .

We conjugate A by Π(24), so that GA is replaced by

GA =


1 c b a 0
0 i h g 0
0 f e d 0
0 0 0 1 0
0 0 0 0 1

 .
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A 2-Sylow subgroup of GA is

P :=


1 c b a 0
0 1 h g 0
0 0 1 d 0
0 0 0 1 0
0 0 0 0 1

 .

Thus P ∼= U4(F2), and hence H1(P,Q/Z) = F2 ·u12⊕F2 ·u23⊕F2 ·u34. We conclude
by Lemma 6.3.

(xi) If A = J3(0)⊕ J2(1), then

GA =


1 a b 0 0
0 1 a 0 0
0 0 1 0 0
0 0 0 1 c
0 0 0 0 1

 .

Consider the subgroup

K :=


1 a b 0 0
0 1 a 0 0
0 0 1 d e
0 0 0 1 c
0 0 0 0 1

 .

Let τ := I+E35 and σ := I+E34. We have K = 〈σ, τ〉oGA, and hence all characters
of GA extend to K. We have Nτ (A) = E25 + E35 and Nσ(E25 + E35) = 0, so that
NK/GA(A) = Nσ(Nτ (A)) = 0. By the projection formula, for all χ ∈ H2(GA,Z),

letting χ′ ∈ H2(K,Z) be an element restricting to χ, we have

corGAG (A ∪ χ) = corKG (corGAK (A ∪ χ)) = corKG (NK/GA(A) ∪ χ′) = 0.

(xii) If A = J3(0)⊕ J1(1)⊕ J1(1), then

GA =


1 a b 0 0
0 1 a 0 0
0 0 1 0 0
0 0 0 c d
0 0 0 e f

 .

A 2-Sylow subgroup of GA is

P :=


1 a b 0 0
0 1 a 0 0
0 0 1 0 0
0 0 0 1 d
0 0 0 0 1

 .

By Lemma 6.1, it suffices to show that corPG(A ∪ χ) = 0 for all χ ∈ H2(P,Z). We
conclude as in (xi).
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(xiii) If A = J2(0)⊕ J1(0)⊕ J2(1), then

GA =


1 a b 0 0
0 1 0 0 0
0 c 1 0 0
0 0 0 1 d
0 0 0 0 1

 .

We conjugate A by Π(23). Then GA is replaced by

GA =


1 b a 0 0
0 1 c 0 0
0 0 1 0 0
0 0 0 1 d
0 0 0 0 1

 .

We have H1(GA,Q/Z) = F2 · u12 ⊕ F2 · u23 ⊕ F2 · u45. We conclude by Lemma 6.3.
(xiv) If A = J2(0)⊕ J1(0)⊕ J1(1)⊕ J1(1), then

GA =


1 b c 0 0
0 1 0 0 0
0 d 1 0 0
0 0 0 e f
0 0 0 g h

 .

We conjugate A by Π(23). Then GA becomes

GA =


1 c b 0 0
0 1 d 0 0
0 0 1 0 0
0 0 0 e f
0 0 0 g h

 .

A 2-Sylow subgroup of GA is

P :=


1 c b 0 0
0 1 d 0 0
0 0 1 0 0
0 0 0 1 f
0 0 0 0 1

 .

We have H1(P,Q/Z) = F2 · u12 ⊕ F2 · u23 ⊕ F2 · u45. We conclude by Lemma 6.1
and Lemma 6.3.

(xv) If A = J1(0)⊕ J1(0)⊕ J1(0)⊕ J2(1), then

GA =


a b c 0 0
d e f 0 0
g h i 0 0
0 0 0 1 j
0 0 0 0 1

 .
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A 2-Sylow subgroup of GA is

P :=


1 a c 0 0
0 1 b 0 0
0 0 1 0 0
0 0 0 1 d
0 0 0 0 1

 .

Thus H1(P,Q/Z) = F2 · u12 ⊕ F2 · u23 ⊕ F2 · u45, and the conclusion follows from
Lemma 6.1 and Lemma 6.3. �

Lemma 6.10. Let A ∈ M be such that pA(x) is divisible by a square and does
not split as a product of linear factors over F2. Then ϕGA(A ⊗ χ) = 0 for all
χ ∈ H2(GA,Z).

Proof. By Lemma 6.5, we may assume that the trace of A is equal to 0. Write
pA(x) = p1(x)p2(x)2, where p1(x) is square-free. Then deg(p2(x)) ∈ {1, 2}, and
hence

p2(x) ∈ {x2, (x+ 1)2, x2(x+ 1)2, (x2 + x+ 1)2, x4}.

We exclude x2(x+ 1)2 and x4 because by assumption pA(x) does not split over F2.
Thus

p2(x) ∈ {x2, (x+ 1)2, (x2 + x+ 1)2}.

Since the trace of A is zero, the sum of the roots of pA(x) in F2 is equal to zero.
As each root of p2(x)2 in F2 has even multiplicity, we deduce that the sum of the
roots of p1(x) in F2 must be equal to 0, so that

p1(x) = xd + ad−2x
d−2 + · · ·+ a1x+ a0.

Therefore, if p2(x) = (x2 + x + 1)2, then p1(x) = x. If p2(x) ∈ {x2, (x + 1)2},
then p1(x) = x3 + a1x+ a0 for some ai ∈ F2, but x3 and x3 + x = (x+ 1)x2 must
be excluded because by assumption pA(x) does not split over F2, and hence p1(x)
belongs to {x3 + x+ 1, (x+ 1)(x2 + x+ 1)} in this case. All in all, the possibilities
for pA(x) are

(x3 + x+ 1)x2, (x3 + x+ 1)(x+ 1)2, (x2 + x+ 1)2x,

(x2 + x+ 1)x2(x+ 1), (x2 + x+ 1)(x+ 1)3.

We now prove Lemma 6.10 by a case-by-case analysis.
(i) If pA(x) = (x3 + x+ 1)x2 and qA(x) = (x3 + x+ 1)x, then up to conjugation

A =


0 0 1 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , GA =


a+ c a b 0 0
b c a+ b 0 0
a b c 0 0
0 0 0 d e
0 0 0 f g

 .

The top-left 3 × 3 corner is isomorphic to (F2[x]/(x3 + x + 1))× ∼= F×8 ∼= Z/7Z.
Therefore GA ∼= Z/7Z×GL2(F2). In particular, I +E45 ∈ GA generates a 2-Sylow
subgroup of GA. The conclusion follows from Lemma 6.1 and Lemma 6.3.
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(ii) If pA(x) = qA(x) = (x3 + x+ 1)x2, then up to conjugation

A =


0 0 1 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0

 , GA =


a+ c a b 0 0
b c a+ b 0 0
a b c 0 0
0 0 0 1 d
0 0 0 0 1

 .

We conclude as in (i).
(iii) If pA(x) = (x3 + x + 1)(x + 1)2 and qA(x) = (x3 + x + 1)(x + 1), then GA

is as in (i), and we conclude as in (i).
(iv) If pA(x) = qA(x) = (x3 + x + 1)(x + 1)2, then GA is as in (ii), and we

conclude as in (ii).
(v) If pA(x) = (x2 + x+ 1)2x and qA(x) = (x2 + x+ 1)x, then up to conjugation

A =


0 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 0

 , GA =


a+ b a c+ d c 0
a b c d 0

e+ f e g + h g 0
e f g h 0
0 0 0 0 1

 .

The subring [
a+ b a
a b

]
⊂M2(F2)

is isomorphic to F4. In particular, it is commutative, and its unit group is cyclic of
order 3. Let z ∈ F4 be such that z2 +z+1, so that F4 = F2 ·1⊕F2 ·z as an F2-vector
space. This identification yields an inclusion GL2(F4) ↪→ GL4(F2) with image
GA, where we also identify GA with its image under the injective homomorphism
GA ↪→ GL4(F2) given by the top-left 4 × 4 square. Since the natural GL2(F4)-
action on F2

4 \ {0} is transitive, GA acts transitively on F4
2 \ {0}. The GA-stabilizer

of e2 ∈ F4
2 is

S :=


1 0 c+ d c 0
0 1 c d 0
0 0 g + h g 0
0 0 g h 0
0 0 0 0 1

 .

As [GA : S] = |F4
2 \ {0}| = 24 − 1 is odd, a 2-Sylow subgroup of S is also a 2-Sylow

subgroup of GA. Therefore a 2-Sylow subgroup of GA is

P :=


1 0 c+ d c 0
0 1 c d 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

By Lemma 6.1, it suffices to show that ϕP = 0. We have P ∼= Z/2Z × Z/2Z, and
hence H1(P,Q/Z) = F2 · u13 ⊕ F2 · u23. The conclusion follows from Lemma 6.3
and Lemma 6.4.
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(vi) If pA(x) = qA(x) = (x2 + x+ 1)2x, then up to conjugation

A =


0 1 1 0 0
1 1 0 1 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 0

 , GA =


a+ b a c+ d c 0
a b c d 0
0 0 a+ b a 0
0 0 a b 0
0 0 0 0 1

 .

The unique 2-Sylow subgroup of GA is

P :=


1 0 c+ d c 0
0 1 c d 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

We conclude as in (v). Indeed, by Lemma 6.1, it suffices to show that ϕP = 0. We
have H1(P,Q/Z) = F2 · u13 ⊕ F2 · u23, and the conclusion follows from Lemma 6.3
and Lemma 6.4.

(vii) If pA(x) = (x2 + x+ 1)x2(x+ 1) and qA(x) = (x2 + x+ 1)x(x+ 1), then up
to conjugation

A =


0 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , GA =


a+ b a 0 0 0
a b 0 0 0
0 0 c d 0
0 0 e g 0
0 0 0 0 1

 .

Then GA ∼= Z/3Z×GL2(F2), and the unique 2-Sylow subgroup of GA is

P :=


1 0 0 0 0
0 1 0 0 0
0 0 1 d 0
0 0 0 1 0
0 0 0 0 1

 .

We conclude by Lemma 6.1 and Lemma 6.3.
(viii) If pA(x) = qA(x) = (x2 + x+ 1)x2(x+ 1), then up to conjugation

A =


0 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

 , GA =


a+ b a 0 0 0
a b 0 0 0
0 0 1 c 0
0 0 0 1 0
0 0 0 0 1

 .

Thus GA ∼= Z/3Z× Z/2Z and the unique 2-Sylow subgroup of GA is generated by
I + E34. We conclude by Lemma 6.1 and Lemma 6.3.

(ix) If pA(x) = (x2 + x+ 1)(x+ 1)3 and qA(x) = (x2 + x+ 1)(x+ 1), then up to
conjugation

A =


0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , GA =


a+ b a 0 0 0
a b 0 0 0
0 0 c d e
0 0 f g h
0 0 i j k

 .
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Thus GA ∼= Z/3Z×GL3(F2), and hence H2(GA,Z)[2] = 0.
(x) If pA(x) = (x2 + x + 1)(x + 1)3 and qA(x) = (x2 + x + 1)(x + 1)2, then up

to conjugation

A =


0 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 , GA =


a+ b a 0 0 0
a b 0 0 0
0 0 1 c d
0 0 0 1 0
0 0 0 e 1

 .

We conjugate A by Π(45). Then GA is replaced by

GA =


a+ b a 0 0 0
a b 0 0 0
0 0 1 d c
0 0 0 1 e
0 0 0 0 1

 .

Then GA ∼= Z/3Z× U3(F2), and the unique 2-Sylow subgroup of GA is

P :=


1 0 0 0 0
0 1 0 0 0
0 0 1 d c
0 0 0 1 e
0 0 0 0 1

 .

Thus P ∼= U3(F2) and in particular H1(P,Q/Z) = F2 · u34 ⊕ F2 · u45. We conclude
by Lemma 6.1 and Lemma 6.3.

(xi) If pA(x) = qA(x) = (x2 + x+ 1)(x+ 1)3, then up to conjugation

A =


0 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 , GA =


a+ b a 0 0 0
a b 0 0 0
0 0 1 c d
0 0 0 1 c
0 0 0 0 1

 .

Then GA ∼= Z/3Z× Z/4Z, and the unique 2-Sylow subgroup of GA is

P :=


1 0 0 0 0
0 1 0 0 0
0 0 1 c d
0 0 0 1 c
0 0 0 0 1

 .

By Lemma 6.1, it suffices to show that corPG(A ∪ χ) = 0 for all χ ∈ H2(P,Z). Let

K :=


1 e 0 0 0
0 1 0 0 0
0 0 1 c d
0 0 0 1 c
0 0 0 0 1

 ,

and let σ := I + E12 ∈ K, so that K = 〈σ, P 〉 ∼= Z/2Z × P . Every character of P
extends to K. Let A′ := Nσ(A) = E11 + E22 ∈ MK . By the projection formula,
for every χ ∈ H2(P,Z), letting χ′ ∈ H2(K,Z) be a class restricting to χ, we have

corPG(A ∪ χ) = corKG (A′ ∪ χ′).
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Because A′ ∈MK , we have K ⊂ GA′ , and so by the projection formula

corKG (A′ ∪ χ′) = cor
GA′
G (A′ ∪NGA′/K(χ′)).

Since A′ is diagonal, the conclusion follows from Lemma 6.7. �

6.4. Restriction to a Klein subgroup. Let

S :=

[
1 0
0 1

]
, T :=

[
0 1
1 1

]
be matrices in M2(F2). Let n ≥ 4. We will write n× n matrices as 3× 3 matrices
according to the partition n = 2 + 2 + (n− 4). The matrices

σ :=

I S 0
0 I 0
0 0 I

 , τ :=

I T 0
0 I 0
0 0 I


commute and generate a Klein subgroup Z ⊂ GLn(F2).

Proposition 6.11. For every n ≥ 4, the class of GLift(F2, n) restricts to a non-
trivial class in H2(Z,Mn(F2)), where Z = 〈σ, τ〉 ⊂ GLn(F2) is the Klein subgroup
defined above.

Proof. Let M := Mn(F2). Let

S̃ :=

[
1 0
0 1

]
, T̃ :=

[
0 1
1 1

]
be matrices in M2(Z/4Z), and define

σ̃ :=

I S̃ 0
0 I 0
0 0 I

 , τ̃ :=

I T̃ 0
0 I 0
0 0 I


in GLn(Z/4Z). Then σ̃ and τ̃ commute, σ̃−2 = I + 2s and τ̃2 = I + 2t, where

s :=

0 S 0
0 0 0
0 0 0

 , t :=

0 T 0
0 0 0
0 0 0

 .

Suppose by contradiction that GLift(F2, n) restricts to the trivial class in H2(Z,M).
Then, by Lemma 2.9, there are U, V ∈M such that:

Nσ(U) = s, Nτ (V ) = t, Nτ (U) = Nσ(V ).

We have:

Nσ(U) = U + σUσ =

∗ U11 + U21 + U22 ∗
∗ U21 ∗
∗ ∗ ∗

 ,
and

Nτ (V ) = V + τUτ =

∗ V11T + TV21T + TV22 ∗
∗ TV21 ∗
∗ ∗ ∗

 ,
hence the equation Nσ(U) = s implies that U21 = 0 and

(6.1) U11 + U22 = I.

Similarly, the equation Nτ (V ) = t implies that V21 = 0 and

(6.2) V11T + TV22 = T.
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The equation Nτ (U) = Nσ(V ) implies

(6.3) U11T + TU22 = V11 + V22.

Plugging in U22 = I + U11 from (6.1) into (6.3) and then V22 from (6.3) into (6.2),
we get:

T (V11 + TU11) + (V11 + TU11)T = T + T 2 = I.

Note that the equation TX + XT = I has no solutions in M2(F2), contradicting
the existence of U and V , as desired. �

6.5. The case when A is conjugate to a Jordan block.

Proposition 6.12. Suppose that A ∈M is conjugate to a 5×5 Jordan block. Then
the class of GLift(F2, 5) is not in the image of ϕGA .

Proof. By Lemma 6.5, we may assume that the trace of A is 0, and hence, up to
conjugation, that A is the nilpotent 5× 5 Jordan block N = J5(0). We have

GA =


1 a b c d
0 1 a b c
0 0 1 a b
0 0 0 1 a
0 0 0 0 1

 .

Thus GA ∼= (F2[x]/(x5))× ∼= Z/8Z× Z/2Z, where the factor Z/8Z is generated by
I +N and the factor Z/2Z is generated by I +N3 = I + E14 + E25.

Define u, v ∈ H1(GA,Q/Z) by

u(I +N) = 0, u(I +N3) = 1/2, v(I +N) = 1/8, v(I +N3) = 1/2,

and let χ := ∂(u) and ψ := ∂(v) in H2(GA,Z). We have

H2(GA,Z) = (Z/2Z) · χ⊕ (Z/8Z) · ψ.

We first show that corGAG (A ∪ χ) = 0. Consider the subgroup

K :=


1 a b d f
0 1 a c e
0 0 1 a c
0 0 0 1 a
0 0 0 0 1

 .

Then GA ⊂ K. We claim that u extends to an element of H1(K,Q/Z). For this,
let K be the quotient of K by the subgroup generated by I +E13, I +E14, I +E15:

K =


1 a � � �
0 1 a c e
0 0 1 a c
0 0 0 1 a
0 0 0 0 1

 .

Then K ∼= Z/4Z × Z/2Z, where the Z/4Z is generated by the coset of I + N ,
and the Z/2Z is generated by the coset of I + N3. It follows that we may define
u ∈ H1(K,Q/Z) by sending the coset of I +N to 0 and the coset of I +N3 to 1/2.
Letting u′ ∈ H1(K,Q/Z) be the composition of the quotient map K → K and u, we
see that u′ restricts to u on GA, as claimed. It follows that χ′ := ∂(u′) ∈ H2(K,Z)
extends χ.
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Let σ := I + E14 and τ := I + E13. Then Nσ(A) = E15 and Nτ (E15) = 0, so
that NK/GA(A) = Nτ (Nσ(A)) = 0. By the projection formula,

corGAG (A ∪ χ) = corKG (corGAK (A ∪ χ)) = corKG (NK/GA(A) ∪ χ′) = 0.

It remains to show that corGAG (A ∪ ψ) = 0. For this, let Z := 〈σ, τ〉 ⊂ U be the
Klein subgroup of Proposition 6.11. By Proposition 6.11, it suffices to show that
(resGZ ◦ corGAG )(A ∪ ψ) = 0. The double coset formula reads

(6.4) resGZ ◦ corGAG =
∑
g∈R

corZ∩gGAg
−1

Z ◦ g∗ ◦ resGAGA∩g−1Zg,

where R ⊂ G is a set of representatives for Z\G/GA. The Jordan normal form
of I + N4 is I + E12, while the Jordan normal form of σ, τ, στ is I + E12 + E34.
Thus g(I + N4)g−1 does not belong to Z, for any g. It follows that there are
three mutually exclusive possibilities for Z ∩ gGAg−1: either it is trivial, or it is
generated by I +N3, or it is generated by ρ := I +N3 +N4. In the first two cases,
the restriction of v to Z∩gGAg−1 is zero, and hence the term in (6.4) corresponding
to g is zero. Thus (6.4) reduces to

(6.5) resGZ ◦ corGAG =
∑
g∈S

corZ∩gGAg
−1

Z ◦ g∗ ◦ resGAGA∩g−1Zg,

where S ⊂ R is the subset of those g such that gρg−1 ∈ Z. We have S =
Sσ
∐
Sτ
∐
Sστ , where by definition g belongs to Sσ (resp. Sτ , Sστ ) if and only

if gρg−1 is equal to σ (resp. τ , στ).
For all g ∈ Sσ, the subgroup Z ∩ gGAg−1 is equal to 〈σ〉. Moreover, g∗(v) is

the non-trivial element in H1(〈σ〉 ,Q/Z), and hence g∗(ψ) = ∂(g∗(v)) is the unique
non-trivial element in H2(〈σ〉 ,Z). Let ψσ ∈ H2(Z,Z) which extends g∗(ψ) for
g ∈ Sσ. By the projection formula, for all g ∈ Sσ we have

(corZ∩gGAg
−1

Z ◦ g∗ ◦ resGAGA∩g−1Zg)(A ∪ ψ) = (cor
〈σ〉
Z ◦ g∗ ◦ resGA〈ρ〉 )(A ∪ ψ)

= cor
〈σ〉
Z (g∗(A) ∪ g∗(ψ))

= NZ/〈σ〉(g∗(A)) ∪ ψσ
= (gag−1 + τgag−1τ−1) ∪ ψσ.

Therefore∑
g∈Sσ

(corZ∩gGAg
−1

Z ◦ g∗ ◦ resGAGA∩g−1Zg)(A∪ψ) =

∑
g∈Sσ

(gag−1 + τgag−1τ−1)

∪ψσ.
Similarly,

∑
g∈Sτ

(corZ∩gGAg
−1

Z ◦ g∗ ◦ resGAGA∩g−1Zg)(A∪ψ) =

∑
g∈Sτ

(gag−1 + σgag−1σ−1)

∪ψτ ,
∑
g∈Sστ

(corZ∩gGAg
−1

Z ◦ g∗◦resGAGA∩g−1Zg)(A∪ψ) =

 ∑
g∈Sστ

(gag−1 + σgag−1σ−1)

∪ψστ ,
where ϕτ (resp. ϕστ ) is an element of H2(Z,Z) extending g∗(ψ) for all g ∈ Sτ
(resp. g ∈ Sστ ). In view of (6.5), the proof will be complete once we show that the
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three sums∑
g∈Sσ

(gag−1 + τgag−1τ−1),
∑
g∈Sτ

(gag−1 +σgag−1σ−1),
∑
g∈Sστ

(gag−1 +σgag−1σ−1)

are zero.
For all g ∈ Sσ, we have gρ = σg, hence σgGA = gρGA = gGA, and so

ZgGA = gGA ∪ σgGA ∪ τgGA ∪ στgGA = gGA ∪ τgGA = 〈τ〉 gGA.

In other words,

Z\(ZSσGA)/GA = 〈τ〉 \(SσGA)/GA.

Note that τ acts without fixed points on (SσGA)/GA. Indeed, suppose that τgGA =
gGA for some g ∈ Sg. Then g−1τg ∈ GA. We also have g−1σg = ρ ∈ GA, and
hence g−1Zg ⊂ GA. As Z and the 2-torsion subgroup GA[2] ⊂ GA have the same
order, equal to 4, this implies that g−1Zg = GA[2], contradicting the fact that
I +N4 is not conjugate to any element of Z. We obtain∑

g∈Sσ

(gag−1 + τgag−1τ−1) =
∑
g

gag−1,

where the second sum is taken over a set of representatives g of the cosets in
(SσGA)/GA. Let C ⊂ G be the centralizer of ρ. Observe that GA ⊂ C: indeed,
a matrix commuting with A = I + N commutes with any polynomial in N such
as ρ. Moreover, SσGA = g0C for some gσ ∈ Sσ. It follows that the above sum
is conjugate via g0 to NC/GA(A). The same argument shows that the second and
third sums are conjugate to NC/GA(A) via appropriate gτ ∈ Sτ and gστ ∈ Sστ ,
respectively. It remains to show that NC/GA(A) = 0. Consider again the subgroup

K :=


1 a b d f
0 1 a c e
0 0 1 a c
0 0 0 1 a
0 0 0 0 1

 .

Then GA ⊂ K ⊂ C, and hence it suffices to show that NK/GA(A) = 0. Let
µ := I+E14 and ν := I+E13. Then GA is normal in K and K/GA is a Klein group
generated by the cosets of µ and ν. We have Nµ(A) = I+E15 and Nν(I+E15) = 0,
so that NK/GA = Nν(Nµ(A)) = 0, as desired. �

6.6. End of Proof of Theorem 1.1.

Proof of Theorem 1.1 when |k| = 2 and n ≥ 5. By Lemma 2.7, it suffices to show
that GLift(F2, n) is not negligible over F , and by Lemma 2.8, we may assume that
n = 5. By Lemma 2.1(3), we may also assume that F contains all primitive roots
of unity of 2-power order.

By Proposition 6.6 and Proposition 6.12, the class of GLift(F2, 5) does not belong
to the subgroup of H2(GL5(F2),M5(2)) generated by the images of the maps ϕH ,
where H ranges over all subgroups of GL5(F2). Now Theorem 2.2 implies that the
class of GLift(F2, 5) is not negligible over F . �
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6.7. Explicit non-liftable Galois representations. Let F be a field. Let H be a
finite group, let V be a faithful finite-dimensional F -linear representation of H over
F . We view V as an affine space over F , we let F (V ) be the function field of V , and
we let F (V )H be the H-fixed subfield. The field extension F (V )/F (V )H is Galois
with Galois group H. A choice of separable closure of F (V )H containing F (V )
determines a surjective homomorphism ρ : ΓF (V )H → H. We say that a pair (K, ρ),
where K/F is a field extension and ρ : ΓK → H is a homomorphism, is generic for
H over F if there exists a faithful finite-dimensional F -linear representation V of H
such that K = F (V )H and ρ is induced by the H-Galois extension F (V )/F (V )H .
Of course, a generic pair for H over F always exists.

Proposition 6.13. Let H be a finite group, let A be a H-module, let (K, ρ) be a
generic pair for H over F , and consider a group extension (1.1). The class of (1.1)
is negligible over F if and only if ρ lifts to G.

Proof. See [GM22, Proposition 2.1]. �

For all positive integers n and fields k of characteristic p > 0 such that the class
of GLift(k, n) is not negligible over F , using Proposition 6.13 we now exhibit field
extensions K/F and continuous homomorphisms ρ : ΓK → GLn(k) which do not
lift to ΓK → GLn(W2(k)). Indeed, one may take a generic pair (K, ρ) for H over
F , where H is the finite subgroup of GLn(k) given below. We may assume that
char(F ) 6= p, since GLift(k, n) is otherwise negligible over F .

• If p > 2 and n ≥ 3, we may take H = GL3(Fp), embedded in the top-left
3× 3 block of GLn(k); see the proofs of Lemma 4.1 and from Lemma 2.8.

• If p = 2, |k| > 2, n ≥ 3, we may take H ⊂ GL3(k) ⊂ GLn(k) to be
the subgroup of GL3(k) appearing in the statement of Lemma 5.2, where
GL3(k) ⊂ GLn(k) is the top-left 3 × 3 block; see the proofs of Lemma 5.2
and Lemma 2.8.

• If p = 2, |k| = 2 and n ≥ 5, we may take H = GL5(F2), embedded in
GLn(F2) as the top-left 5× 5 corner; see the proof of Lemma 2.8.

7. Splitting of Lift(k, n)

For completeness, we determine all cases when the sequence Lift(k, n) is split.

Theorem 7.1. Let k be a field of characteristic p > 0 and let n > 0 be an integer.
The sequence GLift(k, n) is split if and only if one of the following holds:

• n = 1;
• n = 2 and |k| ≤ 3;
• n = 3 and |k| = 2.

Proof. We first show that GLift(k, n) splits in the cases listed above.
(i) If n = 1, a splitting of the map π : W2(k)× → k× is given by the Teichmüller

lift, that is, the group homomorphism τ : k× →W2(k)× given by τ(x) = (x, 0).
In all remaining cases, k is finite, and hence the sequence GLift(k, n) is split if

and only if its restriction to the p-Sylow subgroup Un(k) ⊂ GLn(k) is split. We
will construct splittings over Un(k).

(ii) If n = 2 and k = F2, a splitting is given by(
1 1
0 1

)
7→
(
−1 1

0 1

)
.
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(iii) If n = 2 and k = F3, a splitting is given by(
1 1
0 1

)
7→
(

1 1
−3 −2

)
.

(iv) If n = 3 and k = F2, a splitting is given by1 1 0
0 1 0
0 0 1

 7→
−1 −1 0

0 1 0
0 0 −1

 ,

1 0 0
0 1 1
0 0 1

 7→
−1 0 0

2 1 −1
0 0 −1

 .

Indeed, letting σ1, σ2 ∈ GL3(Z/4Z) be the images of I + E12, I + E23, and letting
τ := [σ1, σ2], it suffices to check that

σ2
1 = σ2

2 = τ2 = [σ1, τ ] = [σ2, τ ] = 1,

which can be done by direct matrix computations. This completes the proof that
GLift(k, n) splits in the cases listed above.

In order to complete the proof of Theorem 7.1, it remains to prove that in all
other cases GLift(k, n) is not split.

(1) If n ≥ 3 and p ≥ 3, the conclusion follows from Lemma 4.1 and [MS24, Claim
5.4]. (One could replace [MS24, Claim 5.4] by the stronger Theorem 2.5.)

(2) If p = 2 and n ≥ 2 and |k| > 2, see Lemma 5.1.
(3) If p = 2 and n ≥ 4, see Proposition 6.11.
(4) If p > 3 and n = 2, see [MS24, Remark 5.8(1)].
(5) It remains to consider the case p = 3, n = 2 and |k| > 3. Choose x, y ∈ k

which are linearly independent over F3, and let ρ := I + xE12 and µ := I + yE12.
Observe that ρ and µ generate a subgroup H ∼= (Z/3Z)2 of U2(k). We will show
that the restriction of GLift(k, 2) to H is not trivial. Let x̃ := (x, 0) and ỹ := (y, 0)
in W2(k), so that ρ̃ := I+x̃E12 and µ̃ := I+ỹE12 are lifts of ρ and µ to GL2(W2(k)),
respectively. Observe that 3(z, 0) = (0, z3) = ι(z3) for all z ∈ k. Thus

ρ̃3 = I + ι(x3)E12, µ̃3 = I + ι(y3)E12, [ρ̃, µ̃] = I.

Suppose by contradiction that the restriction of GLift(k, 2) to H splits. Then, by
Lemma 2.9, there exist U = (uij) and V = (vij) in M2(k) such that

Nρ(U) = x3E12, Nµ(V ) = y3E12, (ρ− 1)V − (µ− 1)U = 0.

On the other hand, a matrix computation shows that Nρ(U) = u21x
6E12 and

Nµ(V ) = v21y
6E12, and that the (1, 1)-th entry of (ρ− 1)V − (µ− 1)U is equal to

x3v21 − y3u21. We obtain u21 = x−3 and v21 = y−3, and hence x6 = y6, that is,
x = ±y. This contradicts the fact that x and y are linearly independent over F3.
We conclude that the restriction of GLift(k, 2) to H does not split, as desired. �

Remark 7.2. In cases (ii)-(iv) of the proof of Theorem 7.1, where k = Fp for
p ∈ {2, 3}, the splittings Un(Fp) → GLn(Fp) are integral, that is, they lift to
homomorphisms Un(Fp)→ GLn(Z) defined by the same matrices, this time viewed
as matrices with integer coefficients.
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