A BAIRE CATEGORY PROOF OF THE ACKERMAN-FREER-PATEL THEOREM

ANDREW S. MARKS

In this note, we give a proof of [AFP, Theorem 1.1] using the Baire category theorem. We also prove a slight generalization of [AFP, Theorem 3.19] where the underlying space is an arbitrary infinite Polish space instead of \mathbb{R} . Thanks to Colin Jahel for pointing out a serious error in a previous version of this note: in the proof of Lemma 0.1 were we defined the extension ordering of \mathbb{P} incorrectly.

Suppose $\mathbb{A} = (A, R^A)_{R \in L}$ is a countable structure in a countable relational language L. Say \mathbb{A} has **trivial definable closure** if for every finite tuple $\overline{a} \in A$, and for every $L_{\omega_1,\omega}$ -formula $\phi(\overline{x}, y)$, if there is a unique $b \in \mathbb{A}$ such that $\mathbb{A} \models \phi(\overline{a}, b)$, then $b \in \overline{a}$. Equivalently, for all tuples $\overline{a}, \overline{b} \in A$, such that \overline{a} and \overline{b} are disjoint, there are infinitely many pairwise disjoint tuples $\overline{c} \in A$ such that $\operatorname{tp}^{\mathbb{A}}(\overline{a}, \overline{b}) = \operatorname{tp}^{\mathbb{A}}(\overline{a}, \overline{c})$ (see [Hod, 4.1.3]).

Lemma 0.1. Suppose $\mathbb{A}=(A,R^{\mathbb{A}})_{R\in L}$ is a countable structure in a countable relational language L, where \mathbb{A} has trivial definable closure. Then there exists a Borel L-structure $\mathbb{B}=(\omega^{\omega},R^{\mathbb{B}})_{R\in L}$ on ω^{ω} (that is, the relations $(R^{\mathbb{B}})_{R\in L}$ are Borel) so that for any countable dense set $D\subseteq \omega^{\omega}$, $\mathbb{B}\upharpoonright D$ is isomorphic to \mathbb{A} .

Proof. By Morleyizing \mathbb{A} (see [Hod, Section 2.6]) and expanding L, we may assume that there is a countable set T of Π_2 sentences in L such that if \mathbb{C} is a countable structure, then $\mathbb{C} \models T$ if and only if \mathbb{C} is isomorphic to \mathbb{A} . (After expanding the language this way and obtaining \mathbb{B} , take the reduct of \mathbb{B} to the original language to obtain the desired structure).

If $s,t\in\omega^{<\omega}$ we write $s\subseteq t$ if s is an initial segment of t. We say s,t are incompatible if $s\nsubseteq t$ and $t\nsubseteq s$. We say that $S\subseteq\omega^{<\omega}$ is closed under initial segments if for all $t\in S$ and all $s\subseteq t$, $s\in S$. If $S\subseteq\omega^{<\omega}$ is finite and $t\in\omega^{<\omega}$, define $t\upharpoonright S$ to be the maximal $s\in S$ so that $s\subseteq t$. So $t\upharpoonright S$ is the longest initial segment of t that is in t. Similarly, if t is t in t to be the longest initial segment of t that is in t.

Let \mathbb{P} be the set of finite partial injections from $\omega^{<\omega}$ to A whose domains are closed under initial segments. If $p, q \in \mathbb{P}$, say that q extends p if $q \supseteq p$ and for all pairwise incompatible strings $t_1, \ldots, t_n \in \text{dom}(q)$, if $s_1 \upharpoonright \text{dom}(p), \ldots, s_n \upharpoonright \text{dom}(p)$ are pairwise incompatible, then

(*)
$$\operatorname{tp}^{\mathbb{A}}(p(s_1 \upharpoonright \operatorname{dom}(p)), \dots, p(s_n \upharpoonright \operatorname{dom}(p))) = \operatorname{tp}^{\mathbb{A}}(q(s_1), \dots, q(s_n)).$$

That is, the type of $q(t_1), \ldots, q(t_n)$ has to be the same as the type of its "best approximation" in p, provided this best approximation is also a sequence of incompatible strings.

Let $Y \subseteq \mathbb{P}^{\omega}$ be the set of sequences $(p_i)_{i \in \omega}$ of elements of \mathbb{P} so that if $i \leq j$, then p_j extends p_i , and so that $\bigcup (\text{dom}(p_i)) = \omega^{<\omega}$. Note that Y is a G_{δ} subset of \mathbb{P}^{ω} and so is Polish.

We claim that since $\mathbb A$ has trivial definable closure, Y is nonempty. To see this, it suffices to show that if $p \in \mathbb P$ and $t \notin \mathrm{dom}(p)$ is such that the predecessor t^- of t is in $\mathrm{dom}(p)$, then we can extend p to $q \in \mathbb P$ where $\mathrm{dom}(q) = \mathrm{dom}(p) \cup \{t\}$. Let r_1, \ldots, r_k be all the elements of $\mathrm{dom}(p)$ that are incompatible with t^- (note that these r_i are not necessarily pairwise incompatible). Since $\mathbb A$ has trivial definable closure, there is some $a \in \mathbb A$ that is not in $\mathrm{ran}(p)$ so that $\mathrm{tp}^{\mathbb A}(p(r_1), \ldots, p(r_k), a) = \mathrm{tp}^{\mathbb A}(p(r_1), \ldots, p(r_k), p(t^-)$. Let q(t) = a. We claim q extends p. Suppose $s_1, \ldots, s_n \in \mathrm{dom}(q)$ are pairwise incompatible. If $t \notin \{s_1, \ldots, s_n\}$, then (*) above is trivially satisfied since $s_i \upharpoonright \mathrm{dom}(p) = s_i$ for every i. If $t \in \{s_1, \ldots, s_n\}$, then every s_i not equal to t cannot be compatible with t^- since $t \upharpoonright \mathrm{dom}(p) = t^-$. Hence, (*) is satisfied by our choice of q(t) since $\{s_1, \ldots, s_n\} \setminus \{t\}$ is a subset of the strings incompatible with t^- .

Date: May 31, 2016, updated December 12, 2022.

Now each $(p_i)_{i\in\omega}\in Y$ yields a Borel *L*-structure $\mathbb{B}_{(p_i)}=(X,R^{(p_i)})_{R\in L}$ on *X* as follows. If (x_1,\ldots,x_n) is an *n*-tuple in *X*, we define

$$R^{(p_i)}(x_1,\ldots,x_n) \leftrightarrow R^{\mathbb{A}}(p_i(x_1 \upharpoonright \operatorname{dom}(p_i)),\ldots p(x_n \upharpoonright \operatorname{dom}(p_i)))$$

for any sufficiently large i so that $x_j \neq x_k$ iff $x_j \upharpoonright \text{dom}(p_i)$ is incompatible with $x_k \upharpoonright \text{dom}(p_i)$. Roughly speaking, the type of x_1, \ldots, x_n in $\mathbb{B}_{(p_i)}$ is determined by any p_i with a domain large enough to see which of the x_j are different. By the definition of extension in \mathbb{P} , note that truth value of $R^{\mathbb{B}_{(p_i)}}(p_i(x_1 \upharpoonright \text{dom}(p_i)), \ldots p(x_n \upharpoonright \text{dom}(p_i)))$ is the same for all such sufficiently large i. We claim that for every sentence φ in our Π_2 theory T, a comeager set of $(p_i) \in Y$ have the property that $(\mathbb{B}_{(p_i)} \upharpoonright D) \vDash \varphi$ for any dense set $D \subseteq \omega^{\omega}$.

We may assume that every Π_2 sentence φ in our theory T has the form:

$$(\forall x_1,\ldots,x_n)[\bigwedge_{i\neq j}x_i\neq x_j\to (\exists y_1,\ldots,y_m)(\bigwedge_{i\neq j}y_i\neq y_j\wedge\theta(x_1,\ldots,x_n,y_1,\ldots,y_m))]$$
 where θ is quantifier free. That is, φ says that for every pairwise distinct x_1,\ldots,x_n there exists pairwise

where θ is quantifier free. That is, φ says that for every pairwise distinct x_1, \ldots, x_n there exists pairwise distinct y_1, \ldots, y_m so that $\theta(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is true. Assuming that φ is in this form simplifies some of our book-keeping below. Fix such a Π_2 sentence φ and associated subformula θ .

The key claim is the following.

Claim. Suppose $p \in \mathbb{P}$ is given and r_1, \ldots, r_n are incompatible elements of dom(p). Then we claim there exists some q extending p so that if $s_1, \ldots, s_n \in dom(q)$ are such that $s_i \supseteq r_i$ for all $i \le n$, then there exists incompatible $t_1, \ldots, t_m \in dom(q)$ so that $\mathbb{A} \models \theta(q(s_1), \ldots, q(s_n), q(t_1), \ldots, q(t_m))$.

Proof of Claim. Let $(s_{i,1}, \ldots, s_{i,n})_{i \leq k}$ be all n-tuples of extensions of r_1, \ldots, r_n in dom(p). Let $(t_{i,j})_{i \leq k, j \leq m}$ be pairwise incompatible strings so that $t_{i,j} \upharpoonright \text{dom}(p)$ is the empty string for all i, j. For example, let all the $t_{i,j}$ be strings of length 1 whose first bit is sufficiently large.

Now define an injective q extending p where $dom(q) = dom(p) \cup \{t_{i,j} : i \leq k \land j \leq m\}$ by recursively finding $(t_{1,1}, \ldots, t_{1,m}), \ldots, (t_{k,1}, \ldots, t_{k,m})$ so that $\mathbb{A} \models \theta(q(s_{i,1}), \ldots, q(s_{i,m}), q(t_{i,1}), \ldots, q(t_{i,m}))$. We can find such $q(t_{i,1}), \ldots, q(t_{i,m})$ so that q is an injection since \mathbb{A} satisfies the formula φ and since \mathbb{A} has trivial definable closure so there are infinitely many disjoint m-tuples witnessing the formula $\mathbb{A} \models \exists b_1, \ldots, b_m \theta(q(s_{i,1}), \ldots, q(s_{i,n}), b_1, \ldots, b_m)$.

Now since q is an injection, q is trivially an extension of p since all the elements $t \in \text{dom}(q) \setminus \text{dom}(p)$ have $t \upharpoonright \text{dom}(p)$ is the empty string.

Suppose r_1, \ldots, r_n , p, and q are as in the above claim. Then if $(p_i) \in Y$ is such that the sequence (p_i) contains q, then for any dense set $D \subseteq \omega^{\omega}$, for all $x_1, \ldots, x_n \in \omega^{\omega}$ extending r_1, \ldots, r_n , there exists $y_1, \ldots, y_m \in D$ so that $\mathbb{B}_{(p_i)} \models \theta(x_1, \ldots, x_n, y_1, \ldots, y_m)$. To see this, let $s_i = x_i \upharpoonright \text{dom}(q)$. Note that $s_i \supseteq r_i$. Then by the above claim, there are incompatible t_1, \ldots, t_m so that $\theta(q(s_1), \ldots, q(s_n), q(t_1), \ldots, q(t_m))$. Now there must be proper extensions t_1^*, \ldots, t_m^* of t_1, \ldots, t_m so that $t_i^* \supseteq t_i$, but $t_i^* \upharpoonright \text{dom}(q) = t_i$ (e.g. extend t_i to t_i^* so that its next bit is sufficiently large to not be in dom(q)). Choose $y_1, \ldots, y_m \in D$ to be elements of $N_{t_1^*}, \ldots, N_{t_m^*}$ (which must exist since D is dense). Then by the definition of $\mathbb{B}_{(p_i)}$, $\text{tp}^{B_{(p_i)}}(x_1, \ldots, x_n, y_1, \ldots, y_m) = \text{tp}^A(q(s_1), \ldots, q(s_n), q(t_1), \ldots, q(t_n))$, and hence $B_{(p_i)} \models \theta(x_1, \ldots, x_n, y_1, \ldots, y_m)$ by the above claim.

If $p \in \mathbb{P}$, define the open set $U_{p,n} = \{(p_i)_{i \in \omega} \in Y : p_n = p\}$. Note that these $U_{p,n}$ form a basis for Y. Now for each incompatible r_1, \ldots, r_n , the union of the set of $U_{q,k}$ where q satisfies the above claim is dense open by the above claim. Since any distinct x_1, \ldots, x_n must extend some incompatible $r_1, \ldots, r_n \in \omega < \omega$, the set of $(p_i) \in Y$ so that $(\mathbb{B}_{(p_i)} \upharpoonright D) \vDash \varphi$ for every dense set $D \subseteq \omega^\omega$ is comeager. Finally, since there are countably many $\varphi \in T$, this implies that the set of $(p_i) \in Y$ so that $(\mathbb{B}_{(p_i)} \upharpoonright D) \vDash T$ for every dense set $D \subseteq \omega^\omega$ is comeager.

¹Given any Π_2 sentence $\forall x_1,\ldots,x_n\exists y_1,\ldots,y_m\psi(x_1,\ldots,x_n,y_1,\ldots,y_k)$, we can find an equivalent sentence in the desired form as follows. Let m be sufficiently large (e.g. $m=kn^n$) and have $\theta(x_1,\ldots,x_n,y_1,\ldots,y_m)$ be the formula $\theta(x_1,\ldots,x_n,y_1,\ldots,y_m):=\bigwedge_{\pi\colon\{1,\ldots,n\}\to\{1,\ldots,n\}}\bigvee_{\rho\colon\{1,\ldots,k\}\to\{1,\ldots,m\}}\theta(x_{\pi(1)},\ldots,x_{\pi(n)},y_{\rho(1)},\ldots,y_{\rho(k)})$. Then our original Π_2 sentence is equivalent to this Π_2 sentence in our desired form using the quantifier free formula θ in any structure that has infinitely many elements.

Recall that if L is a countable relational language, the space X_L is the set of all L-structures with universe ω . The group S_{∞} of all permutations of ω acts on X_L by permuting the universe of each structure in X_L (see [K95, Section 16]).

Corollary 0.2 ([AFP, Theorem 1.1]). Suppose $\mathbb{A} = (A, R^{\mathbb{A}})_{R \in L}$ is a countable structure in a countable relational language L. Then A has trivial definable closure if and only if there is an S_{∞} -invariant Borel probability measure μ on X_L that is supported on the set of structures isomorphic to \mathbb{A} .

Proof. Suppose \mathbb{A} has trivial definable closure. Let X be any perfect Polish space and let μ be an atomless Borel probability measure on X that assigns positive measure to every open subset of X. By Lemma 0.1, let $\mathbb{B} = (X, R^{\mathbb{B}})_{R \in L}$ be a Borel L-structure such that every countable dense set $D \subseteq X$ has $\mathbb{B} \upharpoonright D$ isomorphic to \mathbb{A} . Let μ^{ω} be the product probability measure on X^{ω} . Since μ is atomless and assigns positive measure to every open subset of X, μ^{ω} is supported on the set $Z \subseteq X^{\omega}$ of sequences $(x_i) \in X^{\omega}$ such that (x_i) is injective and dense in X. So each such (x_i) has $\mathbb{B} \upharpoonright \{x_i : i \in \omega\}$ isomorphic to \mathbb{B}

Let $f: Z \to X_L$ be the function so that $f((x_i))$ is the structure on ω isomorphic to $\mathbb{B} \upharpoonright \{x_i : i \in \omega\}$ obtained by identifying x_i with i. Formally, $f((x_i)) = (\omega, R^{f((x_i))})_{R \in L}$ where

$$R^{f((x_i))}(n_0,\ldots,n_k) \leftrightarrow R^{\mathbb{B}}(x_{n_0},\ldots,x_{n_k}).$$

Then the pushforward $f_*\mu^\omega$ of μ^ω under f is supported on the set of structures isomorphic to \mathbb{A} . This measure is S_∞ -invariant because the permutation action of S_∞ on X^ω is μ^ω -invariant.

We now prove the converse. Suppose for a contradiction that \mathbb{A} has nontrivial definable closure, but there exists an S_{∞} -invariant Borel probability measure μ on the set of structures in X_L isomorphic to \mathbb{A} . Let ϕ be an $L_{\omega_1,\omega}$ formula and $\overline{a} \in A$ be parameters so that $\mathbb{A} \models \exists ! y \notin \overline{a}\phi(\overline{a},y)$. If \overline{n} is a tuple of elements of ω and $m \notin \overline{n}$, let $A_{\overline{n},m}$ be the set of structures $\mathbb{B} \in X_L$ isomorphic to \mathbb{A} so that \overline{n} is lexicographically least such that $\mathbb{B} \models \exists ! y \notin \overline{n}\phi(\overline{n},y)$, and m is the least element not in \overline{n} such that $\mathbb{B} \models \phi(\overline{n},m)$. The sets $A_{\overline{n},m}$ partition the set of models isomorphic to \mathbb{A} . So $\mu(\bigcup A_{\overline{n},m}) = 1$. However, if $m,m'\notin \overline{n}$, then $\mu(A_{\overline{n},m}) = \mu(A_{\overline{n},m'})$ since there is an element of S_{∞} that fixes \overline{n} but maps m to m'. We also have that $A_{\overline{n},m}$ and $A_{\overline{n},m'}$ are disjoint. Hence, since there are countably many $m\notin \overline{n}$ we must have $\mu(A_{\overline{n},m}) = 0$ for each \overline{n} , since μ is a probability measure. Thus, $\mu(\bigcup A_{\overline{n},m}) = 0$ which is a contradiction.

We finish by noting that Lemma 0.1 can be generalized to find a Borel structure on an arbitrary infinite Polish space X so that its restriction to any countable dense subset is isomorphic to \mathbb{A} . First we need a trivial proposition about functions so that preimages of dense sets are dense.

Proposition 0.3. If X is an infinite Polish space, then there is a Borel bijection f whose domain is a Borel subset of ω^{ω} and whose range is X so that if $D \subseteq X$ is dense, then $f^{-1}(D)$ is dense in ω^{ω} .

Proof. Let $N_s = \{x \in \omega^\omega : x \subseteq s\}$ be the usual basis for ω^ω . Let $(s_n)_{n \in \omega}$ be an enumeration of $\omega^{<\omega}$. Let $(A_s)_{s \in \omega^{<\omega}}$ be disjoint uncountable Borel subsets of ω^ω so that $A_s \subseteq N_s$, and so that $\omega^\omega \setminus \bigcup_s A_s$ is uncountable. For example, define $A_{s_n} = \{x \in \omega^\omega : (\forall i \geq |s_n|)x(i) = 2n \vee x(i) = 2n + 1\}$ where $|s_n|$ denotes the length of s_n . That is, A_{s_n} is the reals x so the every bit of x that occurs after the initial segment s_n is equal to 2n or 2n + 1.

Since X is infinite, there exists a countably infinite collection of disjoint open subset $(U_n)_{n\in\omega}$ in X. For each n, Let f_n be a bijection from a Borel subset of A_{s_n} to U_n . (Note that since U_n may be countable, the domain of f_n might need to be a proper subset of A_{s_n}). Now the domains $\mathrm{dom}(f_n)$ are disjoint since the A_s are disjoint. Let g be a Borel bijection between a Borel subset of $\omega^{\omega} \setminus \bigcup_n A_n$ and $X \setminus \bigcup_n U_n$.

Our desired function is $g \cup \bigcup_n f_n$. If $D \subseteq X$ is dense, then $f^{-1}(D)$ contains a point in N_{s_n} for every n. This is since there is some $x \in U_n$ so that $x \in D$ since D is dense and hence $f^{-1}(x) \in A_{s_n} \subseteq N_{s_n}$ by the definition of f and f_n .

Corollary 0.4. Suppose $\mathbb{A} = (A, R^{\mathbb{A}})_{R \in L}$ is a countable structure in a countable relational language L, where \mathbb{A} has trivial definable closure. Then if X is an infinite Polish space, there exists a Borel L-structure $\mathbb{A}' = (X, R^{\mathbb{A}'})_{R \in L}$ on X (that is, the relations $(R^{\mathbb{A}'})_{R \in L}$ are Borel) so that for any countable dense set $D \subseteq X$, $\mathbb{A}' \upharpoonright D$ is isomorphic to \mathbb{A} .

Proof. Let f be a function as in Proposition 0.3, and let \mathbb{B} be a Borel structure on ω^{ω} as in Lemma 0.1. Now let \mathbb{A}' be the pushforward of \mathbb{B} under f. That is, define $R^{A'}(x_1,\ldots,x_n) \leftrightarrow R^{\mathbb{B}}(f^{-1}(x_1),\ldots,f^{-1}(x_n))$. Since the inverse image of any dense set under f is dense in ω^{ω} , we are done.

References

[AFP] N. Ackerman, C. Freer, and R. Patel, Invariant measures concentrated on countable structures, arXiv: 1206.4011v3.
[Hod] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, 1993.

[K95] A.S. Kechris, Classical Descriptive Set Theory, Springer, 1995.