A BAIRE CATEGORY PROOF OF THE ACKERMAN-FREER-PATEL THEOREM

ANDREW S. MARKS

In this note, we give a proof of [AFP, Theorem 1.1] using the Baire category theorem. We also prove
a slight generalization of [AFP, Theorem 3.19] where the underlying space is an arbitrary infinite Polish
space instead of R. Thanks to Colin Jahel for pointing out a serious error in a previous version of this
note: in the proof of Lemma 0.1 were we defined the extension ordering of PP incorrectly.

Suppose A = (A, R4)rey is a countable structure in a countable relational language L. Say A has
trivial definable closure if for every finite tuple @ € A, and for every L,,, .-formula ¢(Z,y), if there
is a unique b € A such that A F ¢(a,b), then b € @. Equivalently, for all tuples @, b € A, such that @ and
b are disjoint, there are infinitely many pairwise disjoint tuples ¢ € A such that tp*(a,b) = tp*(a,¢)
(see [Hod, 4.1.3]).

Lemma 0.1. Suppose A = (A, R*rer is a countable structure in a countable relational language
L, where A has trivial definable closure. Then there exists a Borel L-structure B = (w*, RB)rer on
w® (that is, the relations (R®)rer are Borel) so that for any countable dense set D C w*, B | D is
isomorphic to A.

Proof. By Morleyizing A (see [Hod, Section 2.6]) and expanding L, we may assume that there is a
countable set T" of IIs sentences in L such that if C is a countable structure, then C F T if and only if
C is isomorphic to A. (After expanding the language this way and obtaining B, take the reduct of B to
the original language to obtain the desired structure).

If s,t € w<* we write s C ¢ if s is an initial segment of t. We say s,¢ are incompatible if s ¢ ¢ and
t ¢ s. We say that S C w<% is closed under initial segments if for all t € S and all s Ct, s € S. If
S C w<¥ is finite and t € w<¥, define ¢ | S to be the maximal s € S so that s Ct. Sot | S is the longest
initial segment of ¢ that is in S. Similarly, if z € w*, define = [ S to be the longest initial segment of x
that is in S.

Let P be the set of finite partial injections from w<“ to A whose domains are closed under initial
segments. If p,q € P, say that g extends p if ¢ O p and for all pairwise incompatible strings t1,...,t, €
dom(q), if s; | dom(p),...,s, | dom(p) are pairwise incompatible, then

(*) tp®(p(s1 | dom(p)),...,p(sn [ dom(p))) = tp™(q(s1), .- ., q(sn))-

That is, the type of ¢(t1),...,q(t,) has to be the same as the type of its “best approximation” in p,
provided this best approximation is also a sequence of incompatible strings.

Let Y C P¥ be the set of sequences (p;)ic. of elements of P so that if ¢ < j, then p; extends p;, and
so that (J(dom(p;)) = w<*. Note that Y is a Gs subset of P* and so is Polish.

We claim that since A has trivial definable closure, Y is nonempty. To see this, it suffices to show that
if pe P and t ¢ dom(p) is such that the predecessor ¢~ of ¢ is in dom(p), then we can extend p to ¢ € P
where dom(q) = dom(p) U {t}. Let r1,...,7 be all the elements of dom(p) that are incompatible with
t~ (note that these r; are not necessarily pairwise incompatible). Since A has trivial definable closure,
there is some a € A that is not in ran(p) so that tp®(p(r1),...,p(rr),a) = tp*(p(r1),...,p(rs), p(t™).
Let g(t) = a. We claim ¢ extends p. Suppose $1,...,5, € dom(q) are pairwise incompatible. If
t ¢ {s1...,8n}, then (*) above is trivially satisfied since s; | dom(p) = s; for every i. If t € {s1,...,sn},
then every s; not equal to ¢ cannot be compatible with ¢~ since ¢ | dom(p) = t~. Hence, (*) is satisfied
by our choice of ¢(t) since {s1,...,8,} \ {t} is a subset of the strings incompatible with ¢~.
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Now each (p;)iew € Y yields a Borel L-structure B,y = (X, RP))pep on X as follows. If (z1,...,x,)
is an n-tuple in X, we define

R®)(zy, ... zn) < R*pi(z1 | dom(p;)), ... p(zn | dom(p;)))

for any sufficiently large ¢ so that x; # xy, iff ; | dom(p;) is incompatible with z; | dom(p;). Roughly
speaking, the type of x1,...,x, in B(,,) is determined by any p; with a domain large enough to see
which of the z; are different. By the definition of extension in [P, note that truth value of RBeo (pi (1 |
dom(p;)),...p(xn [ dom(p;))) is the same for all such sufficiently large i. We claim that for every
sentence ¢ in our Il theory T', a comeager set of (p;) € Y have the property that (B(,,) [ D) F ¢ for
any dense set D C w®.

We may assume that every Il sentence ¢ in our theory T has the form:

(le,...,mn)[/\xi #x; — (Hyl,...,ym)(/\yi Y NO(T1,. .. Tn, Y1, Um))]

i#] i#£]
where 6 is quantifier free. That is, ¢ says that for every pairwise distinct 1, ..., x, there exists pairwise
distinct y1, ..., Ym so that 0(x1,...,2n,y1,...,Ym) is true.! Assuming that ¢ is in this form simplifies

some of our book-keeping below. Fix such a IIs sentence ¢ and associated subformula 6.
The key claim is the following.

Claim. Suppose p € P is given and r1,...,r, are incompatible elements of dom(p). Then we claim
there exists some q extending p so that if s1,...,s, € dom(q) are such that s; D r; for all i <n, then
there exists incompatible t1,. .., t, € dom(q) so that AF 0(q(s1),...,q(sn),q(t1), ..., q(tm))-

Proof of Claim. Let (si1,...,8in)i<k be all n-tuples of extensions of 1, ..., r,, in dom(p). Let (¢ ;)i<k,j<m
be pairwise incompatible strings so that t; ; | dom(p) is the empty string for all ¢, j. For example, let
all the ¢; ; be strings of length 1 whose first bit is sufficiently large.

Now define an injective ¢ extending p where dom(g) = dom(p) U{¢t; ;: i < kA j < m} by recursively
ﬁnding (t171, . 7t17m), ey (tk71, v tkﬂn) so that A F 9((](81‘71), ey q(Si,m)7 q(t¢71)7 .e 7q(ti,m))- We can
find such q(;1),-..,q(tim) so that ¢ is an injection since A satisfies the formula ¢ and since A has
trivial definable closure so there are infinitely many disjoint m-tuples witnessing the formula A F
Hbl, ey bmﬁ(q(sl,l), ey q(si,n)7 bl; ey bm)

Now since ¢ is an injection, g is trivially an extension of p since all the elements ¢ € dom(q) \ dom(p)
have t | dom(p) is the empty string. O Claim.

Suppose r1,...,7,, p, and ¢ are as in the above claim. Then if (p;) € Y is such that the se-
quence (p;) contains ¢, then for any dense set D C w®, for all z1,...,z, € w* extending r1,...,7n,
there exists y1,...,ym € D so that B,y F 0(z1,...,2n,91,...,Ym). To see this, let s; = z; |
dom(q). Note that s; 2 r;. Then by the above claim, there are incompatible ¢i,...,t, so that
0(q(s1)y---,9(8n),q(t1),...,q(tm)). Now there must be proper extensions ti,...,t% of ¢1,...,tm, SO
that ¢ D t;, but tf [ dom(q) =t; (e.g. extend ¢; to t} so that its next bit is sufficiently large to not be
in dom(gq)). Choose y1,...,Ym € D to be elements of Ny, ..., N¢= (which must exist since D is dense).
Then by the definition of Byy,), tp”®0 (z1,..., @0, 41, ym) =t (a(s1), ... alsn), a(tr), - . a(tn)),
and hence B,,) F 0(x1,...,%n,Y1,-..,Ym) by the above claim.

If p € P, define the open set Uy, = {(pi)icw € Y : p, = p}. Note that these U,, form a basis
for Y. Now for each incompatible ry,...,7,, the union of the set of U, where ¢ satisfies the above
claim is dense open by the above claim. Since any distinct 1, ..., x, must extend some incompatible
1,0, € w<w, the set of (p;) € YV so that (B,,) [ D) F ¢ for every dense set D C w® is
comeager. Finally, since there are countably many ¢ € T, this implies that the set of (p;) € Y so that

(B(p,) | D) E T for every dense set D C w® is comeager. O
1Given any Ilp sentence Vzi,...,Zn3y1,...,Ym¥(T1,...,Tn,Y1,..-,Yk), we can find an equivalent sentence in the
desired form as follows. Let m be sufficiently large (e.g. m = kn™) and have 6(z1,...,%n,y1,...,ym) be the for-

mula 0(21,...,%n, Y1, ., Ym) = A, {1,....,n}—={1,...,n} Vp: {1, k}—={1,...,m} O(Tr(1), - Ta(n)s Yp(1)- - - Yp(k))- Then
our original IIs sentence is equivalent to this s sentence in our desired form using the quantifier free formula 6 in any
structure that has infinitely many elements.
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Recall that if L is a countable relational language, the space X, is the set of all L-structures with
universe w. The group S, of all permutations of w acts on X by permuting the universe of each
structure in X, (see [K95, Section 16]).

Corollary 0.2 ([AFP, Theorem 1.1]). Suppose A = (A, R*)rey, is a countable structure in a countable
relational language L. Then A has trivial definable closure if and only if there is an So-invariant Borel
probability measure p on X that is supported on the set of structures isomorphic to A.

Proof. Suppose A has trivial definable closure. Let X be any perfect Polish space and let u be an
atomless Borel probability measure on X that assigns positive measure to every open subset of X. By
Lemma 0.1, let B = (X, R®) ey be a Borel L-structure such that every countable dense set D C X has
B | D isomorphic to A. Let u“ be the product probability measure on X*“. Since p is atomless and
assigns positive measure to every open subset of X, p* is supported on the set Z C X% of sequences
(x;) € X“ such that (x;) is injective and dense in X. So each such (z;) has B | {; : ¢ € w} isomorphic
to B.

Let f: Z — X be the function so that f((x;)) is the structure on w isomorphic to B | {z; : i € w}
obtained by identifying z; with 4. Formally, f((z;)) = (w, R7((*))) g where

Rf((””))(no, .. .,nk) <~ RIB(-T'n07 cee 7xnk)'

Then the pushforward f,u® of u* under f is supported on the set of structures isomorphic to A. This
measure is Syo-invariant because the permutation action of S, on X“ is y“-invariant.

We now prove the converse. Suppose for a contradiction that A has nontrivial definable closure, but
there exists an S.-invariant Borel probability measure p on the set of structures in X isomorphic to
A. Let ¢ be an L, , formula and @ € A be parameters so that A F 3ly ¢ a¢(a,y). If m is a tuple
of elements of w and m ¢ @, let Ay ,, be the set of structures B € X, isomorphic to A so that @ is
lexicographically least such that B F 3ly ¢ m¢(m,y), and m is the least element not in @ such that
B E ¢(m, m). The sets Ag ., partition the set of models isomorphic to A. So u(|J An.m) = 1. However,
if m,m’ ¢ 7, then p(Anm) = u(Azm ) since there is an element of Sy that fixes 7 but maps m to
m’. We also have that Az ,, and Az ., are disjoint. Hence, since there are countably many m ¢ 7 we
must have pu(Ag,,) = 0 for each @, since p is a probability measure. Thus, pu(lJ Az,m) = 0 which is a
contradiction. |

We finish by noting that Lemma 0.1 can be generalized to find a Borel structure on an arbitrary
infinite Polish space X so that its restriction to any countable dense subset is isomorphic to A. First
we need a trivial proposition about functions so that preimages of dense sets are dense.

Proposition 0.3. If X is an infinite Polish space, then there is a Borel bijection f whose domain is a
Borel subset of w* and whose range is X so that if D C X is dense, then f~1(D) is dense in w®.

Proof. Let Ny = {zx € w¥: x C s} be the usual basis for w*. Let (s,)nec, be an enumeration of w<v.
Let (As)sew<~ be disjoint uncountable Borel subsets of w* so that Ay C Ny, and so that w* \ J, A
is uncountable. For example, define A, = {x € w¥: (Vi > [s,|)z(i) = 2n V (i) = 2n + 1} where |s,]
denotes the length of s,. That is, A, is the reals x so the every bit of x that occurs after the initial
segment s, is equal to 2n or 2n + 1.

Since X is infinite, there exists a countably infinite collection of disjoint open subset (Up)necw in
X. For each n, Let f, be a bijection from a Borel subset of A, to U,. (Note that since U, may be
countable, the domain of f,, might need to be a proper subset of A, ). Now the domains dom(f,) are
disjoint since the A are disjoint. Let g be a Borel bijection between a Borel subset of w* \ |J,, An and

Our desired function is gUJ,, f. If D C X is dense, then f~!(D) contains a point in Ny, for every
n. This is since there is some = € U, so that x € D since D is dense and hence f~'(z) € A;, C Ny,
by the definition of f and f,. |
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Corollary 0.4. Suppose A = (A, R*)ger, is a countable structure in a countable relational language
L, where A has trivial definable closure. Then if X is an infinite Polish space, there exists a Borel L-
structure A’ = (X, R* Yper, on X (that is, the relations (R* )ger are Borel) so that for any countable
dense set D C X, A’ | D is isomorphic to A.

Proof. Let f be a function as in Proposition 0.3, and let B be a Borel structure on w* as in Lemma, 0.1.
Now let A’ be the pushforward of B under f. That is, define R4 (z1,...,2,) < RE(f~ (1), ..., f~H(xn)).
Since the inverse image of any dense set under f is dense in w*, we are done. (|
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