A BAIRE CATEGORY PROOF OF THE ACKERMAN-FREER-PATEL THEOREM

ANDREW S. MARKS

In this note, we give a proof of [AFP, Theorem 1.1] using the Baire category theorem. We also prove a slight generalization of [AFP, Theorem 3.19] where the underlying space is an arbitrary infinite Polish space instead of \mathbb{R}. Thanks to Colin Jahel for pointing out a serious error in a previous version of this note: in the proof of Lemma 0.1 were we defined the extension ordering of \mathbb{P} incorrectly.

Suppose $\mathbb{A}=\left(A, R^{A}\right)_{R \in L}$ is a countable structure in a countable relational language L. Say \mathbb{A} has trivial definable closure if for every finite tuple $\bar{a} \in A$, and for every $L_{\omega_{1}, \omega}$-formula $\phi(\bar{x}, y)$, if there is a unique $b \in \mathbb{A}$ such that $\mathbb{A} \vDash \phi(\bar{a}, b)$, then $b \in \bar{a}$. Equivalently, for all tuples $\bar{a}, \bar{b} \in A$, such that \bar{a} and \bar{b} are disjoint, there are infinitely many pairwise disjoint tuples $\bar{c} \in A$ such that $\operatorname{tp}^{\mathbb{A}}(\bar{a}, \bar{b})=\operatorname{tp}^{\mathbb{A}}(\bar{a}, \bar{c})$ (see [Hod, 4.1.3]).

Lemma 0.1. Suppose $\mathbb{A}=\left(A, R^{\mathbb{A}}\right)_{R \in L}$ is a countable structure in a countable relational language L, where \mathbb{A} has trivial definable closure. Then there exists a Borel L-structure $\mathbb{B}=\left(\omega^{\omega}, R^{\mathbb{B}}\right)_{R \in L}$ on ω^{ω} (that is, the relations $\left(R^{\mathbb{B}}\right)_{R \in L}$ are Borel) so that for any countable dense set $D \subseteq \omega^{\omega}, \mathbb{B} \upharpoonright D$ is isomorphic to \mathbb{A}.

Proof. By Morleyizing \mathbb{A} (see [Hod, Section 2.6]) and expanding L, we may assume that there is a countable set T of Π_{2} sentences in L such that if \mathbb{C} is a countable structure, then $\mathbb{C} \vDash T$ if and only if \mathbb{C} is isomorphic to \mathbb{A}. (After expanding the language this way and obtaining \mathbb{B}, take the reduct of \mathbb{B} to the original language to obtain the desired structure).

If $s, t \in \omega^{<\omega}$ we write $s \subseteq t$ if s is an initial segment of t. We say s, t are incompatible if $s \nsubseteq t$ and $t \nsubseteq s$. We say that $S \subseteq \omega^{<\omega}$ is closed under initial segments if for all $t \in S$ and all $s \subseteq t, s \in S$. If $S \subseteq \omega^{<\omega}$ is finite and $t \in \omega^{<\omega}$, define $t \upharpoonright S$ to be the maximal $s \in S$ so that $s \subseteq t$. So $t \upharpoonright S$ is the longest initial segment of t that is in S. Similarly, if $x \in \omega^{\omega}$, define $x \upharpoonright S$ to be the longest initial segment of x that is in S.

Let \mathbb{P} be the set of finite partial injections from $\omega^{<\omega}$ to A whose domains are closed under initial segments. If $p, q \in \mathbb{P}$, say that q extends p if $q \supseteq p$ and for all pairwise incompatible strings $t_{1}, \ldots, t_{n} \in$ $\operatorname{dom}(q)$, if $s_{1} \upharpoonright \operatorname{dom}(p), \ldots, s_{n} \upharpoonright \operatorname{dom}(p)$ are pairwise incompatible, then

$$
\begin{equation*}
\operatorname{tp}^{\mathbb{A}}\left(p\left(s_{1} \upharpoonright \operatorname{dom}(p)\right), \ldots, p\left(s_{n} \upharpoonright \operatorname{dom}(p)\right)\right)=\operatorname{tp}^{\mathbb{A}}\left(q\left(s_{1}\right), \ldots, q\left(s_{n}\right)\right) \tag{*}
\end{equation*}
$$

That is, the type of $q\left(t_{1}\right), \ldots, q\left(t_{n}\right)$ has to be the same as the type of its "best approximation" in p, provided this best approximation is also a sequence of incompatible strings.

Let $Y \subseteq \mathbb{P}^{\omega}$ be the set of sequences $\left(p_{i}\right)_{i \in \omega}$ of elements of \mathbb{P} so that if $i \leq j$, then p_{j} extends p_{i}, and so that $\bigcup\left(\operatorname{dom}\left(p_{i}\right)\right)=\omega^{<\omega}$. Note that Y is a G_{δ} subset of \mathbb{P}^{ω} and so is Polish.

We claim that since \mathbb{A} has trivial definable closure, Y is nonempty. To see this, it suffices to show that if $p \in \mathbb{P}$ and $t \notin \operatorname{dom}(p)$ is such that the predecessor t^{-}of t is in $\operatorname{dom}(p)$, then we can extend p to $q \in \mathbb{P}$ where $\operatorname{dom}(q)=\operatorname{dom}(p) \cup\{t\}$. Let r_{1}, \ldots, r_{k} be all the elements of $\operatorname{dom}(p)$ that are incompatible with t^{-}(note that these r_{i} are not necessarily pairwise incompatible). Since \mathbb{A} has trivial definable closure, there is some $a \in \mathbb{A}$ that is not in $\operatorname{ran}(p)$ so that $\operatorname{tp}^{\mathbb{A}}\left(p\left(r_{1}\right), \ldots, p\left(r_{k}\right), a\right)=\operatorname{tp}^{\mathbb{A}}\left(p\left(r_{1}\right), \ldots, p\left(r_{k}\right), p\left(t^{-}\right)\right.$. Let $q(t)=a$. We claim q extends p. Suppose $s_{1}, \ldots, s_{n} \in \operatorname{dom}(q)$ are pairwise incompatible. If $t \notin\left\{s_{1} \ldots, s_{n}\right\}$, then $\left(^{*}\right)$ above is trivially satisfied since $s_{i} \upharpoonright \operatorname{dom}(p)=s_{i}$ for every i. If $t \in\left\{s_{1}, \ldots, s_{n}\right\}$, then every s_{i} not equal to t cannot be compatible with $t^{-} \operatorname{since} t \upharpoonright \operatorname{dom}(p)=t^{-}$. Hence, $\left(^{*}\right)$ is satisfied by our choice of $q(t)$ since $\left\{s_{1}, \ldots, s_{n}\right\} \backslash\{t\}$ is a subset of the strings incompatible with t^{-}.

Date: May 31, 2016, updated December 12, 2022.

Now each $\left(p_{i}\right)_{i \in \omega} \in Y$ yields a Borel L-structure $\mathbb{B}_{\left(p_{i}\right)}=\left(X, R^{\left(p_{i}\right)}\right)_{R \in L}$ on X as follows. If $\left(x_{1}, \ldots, x_{n}\right)$ is an n-tuple in X, we define

$$
R^{\left(p_{i}\right)}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow R^{\mathbb{A}}\left(p_{i}\left(x_{1} \upharpoonright \operatorname{dom}\left(p_{i}\right)\right), \ldots p\left(x_{n} \upharpoonright \operatorname{dom}\left(p_{i}\right)\right)\right)
$$

for any sufficiently large i so that $x_{j} \neq x_{k}$ iff $x_{j} \upharpoonright \operatorname{dom}\left(p_{i}\right)$ is incompatible with $x_{k} \upharpoonright \operatorname{dom}\left(p_{i}\right)$. Roughly speaking, the type of x_{1}, \ldots, x_{n} in $\mathbb{B}_{\left(p_{i}\right)}$ is determined by any p_{i} with a domain large enough to see which of the x_{j} are different. By the definition of extension in \mathbb{P}, note that truth value of $R^{\mathbb{B}\left(p_{i}\right)}\left(p_{i}\left(x_{1} \upharpoonright\right.\right.$ $\left.\operatorname{dom}\left(p_{i}\right)\right), \ldots p\left(x_{n} \upharpoonright \operatorname{dom}\left(p_{i}\right)\right)$) is the same for all such sufficiently large i. We claim that for every sentence φ in our Π_{2} theory T, a comeager set of $\left(p_{i}\right) \in Y$ have the property that $\left(\mathbb{B}_{\left(p_{i}\right)} \upharpoonright D\right) \vDash \varphi$ for any dense set $D \subseteq \omega^{\omega}$.

We may assume that every Π_{2} sentence φ in our theory T has the form:

$$
\left(\forall x_{1}, \ldots, x_{n}\right)\left[\bigwedge_{i \neq j} x_{i} \neq x_{j} \rightarrow\left(\exists y_{1}, \ldots, y_{m}\right)\left(\bigwedge_{i \neq j} y_{i} \neq y_{j} \wedge \theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right)\right]
$$

where θ is quantifier free. That is, φ says that for every pairwise distinct x_{1}, \ldots, x_{n} there exists pairwise distinct y_{1}, \ldots, y_{m} so that $\theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is true. ${ }^{1}$ Assuming that φ is in this form simplifies some of our book-keeping below. Fix such a Π_{2} sentence φ and associated subformula θ.

The key claim is the following.
Claim. Suppose $p \in \mathbb{P}$ is given and r_{1}, \ldots, r_{n} are incompatible elements of $\operatorname{dom}(p)$. Then we claim there exists some q extending p so that if $s_{1}, \ldots, s_{n} \in \operatorname{dom}(q)$ are such that $s_{i} \supseteq r_{i}$ for all $i \leq n$, then there exists incompatible $t_{1}, \ldots, t_{m} \in \operatorname{dom}(q)$ so that $\mathbb{A} \vDash \theta\left(q\left(s_{1}\right), \ldots, q\left(s_{n}\right), q\left(t_{1}\right), \ldots, q\left(t_{m}\right)\right)$.
Proof of Claim. Let $\left(s_{i, 1}, \ldots, s_{i, n}\right)_{i \leq k}$ be all n-tuples of extensions of r_{1}, \ldots, r_{n} in $\operatorname{dom}(p)$. Let $\left(t_{i, j}\right)_{i \leq k, j \leq m}$ be pairwise incompatible strings so that $t_{i, j} \upharpoonright \operatorname{dom}(p)$ is the empty string for all i, j. For example, let all the $t_{i, j}$ be strings of length 1 whose first bit is sufficiently large.

Now define an injective q extending p where $\operatorname{dom}(q)=\operatorname{dom}(p) \cup\left\{t_{i, j}: i \leq k \wedge j \leq m\right\}$ by recursively finding $\left(t_{1,1}, \ldots, t_{1, m}\right), \ldots,\left(t_{k, 1}, \ldots t_{k, m}\right)$ so that $\mathbb{A} \vDash \theta\left(q\left(s_{i, 1}\right), \ldots, q\left(s_{i, m}\right), q\left(t_{i, 1}\right), \ldots, q\left(t_{i, m}\right)\right)$. We can find such $q\left(t_{i, 1}\right), \ldots, q\left(t_{i, m}\right)$ so that q is an injection since \mathbb{A} satisfies the formula φ and since \mathbb{A} has trivial definable closure so there are infinitely many disjoint m-tuples witnessing the formula $\mathbb{A} \vDash$ $\exists b_{1}, \ldots, b_{m} \theta\left(q\left(s_{i, 1}\right), \ldots, q\left(s_{i, n}\right), b_{1}, \ldots, b_{m}\right)$.

Now since q is an injection, q is trivially an extension of p since all the elements $t \in \operatorname{dom}(q) \backslash \operatorname{dom}(p)$ have $t \upharpoonright \operatorname{dom}(p)$ is the empty string.Claim.

Suppose r_{1}, \ldots, r_{n}, p, and q are as in the above claim. Then if $\left(p_{i}\right) \in Y$ is such that the sequence (p_{i}) contains q, then for any dense set $D \subseteq \omega^{\omega}$, for all $x_{1}, \ldots, x_{n} \in \omega^{\omega}$ extending r_{1}, \ldots, r_{n}, there exists $y_{1}, \ldots, y_{m} \in D$ so that $\mathbb{B}_{\left(p_{i}\right)} \vDash \theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$. To see this, let $s_{i}=x_{i} \upharpoonright$ $\operatorname{dom}(q)$. Note that $s_{i} \supseteq r_{i}$. Then by the above claim, there are incompatible t_{1}, \ldots, t_{m} so that $\theta\left(q\left(s_{1}\right), \ldots, q\left(s_{n}\right), q\left(t_{1}\right), \ldots, q\left(t_{m}\right)\right)$. Now there must be proper extensions $t_{1}^{*}, \ldots, t_{m}^{*}$ of t_{1}, \ldots, t_{m} so that $t_{i}^{*} \supsetneq t_{i}$, but $t_{i}^{*} \upharpoonright \operatorname{dom}(q)=t_{i}$ (e.g. extend t_{i} to t_{i}^{*} so that its next bit is sufficiently large to not be in $\operatorname{dom}(q)$). Choose $y_{1}, \ldots, y_{m} \in D$ to be elements of $N_{t_{1}^{*}}, \ldots, N_{t_{m}^{*}}$ (which must exist since D is dense). Then by the definition of $\mathbb{B}_{\left(p_{i}\right)}, \operatorname{tp}^{B_{\left(p_{i}\right)}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=\operatorname{tp}^{A}\left(q\left(s_{1}\right), \ldots, q\left(s_{n}\right), q\left(t_{1}\right), \ldots, q\left(t_{n}\right)\right)$, and hence $B_{\left(p_{i}\right)} \vDash \theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ by the above claim.

If $p \in \mathbb{P}$, define the open set $U_{p, n}=\left\{\left(p_{i}\right)_{i \in \omega} \in Y: p_{n}=p\right\}$. Note that these $U_{p, n}$ form a basis for Y. Now for each incompatible r_{1}, \ldots, r_{n}, the union of the set of $U_{q, k}$ where q satisfies the above claim is dense open by the above claim. Since any distinct x_{1}, \ldots, x_{n} must extend some incompatible $r_{1}, \ldots, r_{n} \in \omega<\omega$, the set of $\left(p_{i}\right) \in Y$ so that $\left(\mathbb{B}_{\left(p_{i}\right)} \upharpoonright D\right) \vDash \varphi$ for every dense set $D \subseteq \omega^{\omega}$ is comeager. Finally, since there are countably many $\varphi \in T$, this implies that the set of $\left(p_{i}\right) \in Y$ so that $\left(\mathbb{B}_{\left(p_{i}\right)} \upharpoonright D\right) \vDash T$ for every dense set $D \subseteq \omega^{\omega}$ is comeager.

[^0]Recall that if L is a countable relational language, the space X_{L} is the set of all L-structures with universe ω. The group S_{∞} of all permutations of ω acts on X_{L} by permuting the universe of each structure in X_{L} (see [K95, Section 16]).

Corollary 0.2 ([AFP, Theorem 1.1]). Suppose $\mathbb{A}=\left(A, R^{\mathbb{A}}\right)_{R \in L}$ is a countable structure in a countable relational language L. Then A has trivial definable closure if and only if there is an S_{∞}-invariant Borel probability measure μ on X_{L} that is supported on the set of structures isomorphic to \mathbb{A}.

Proof. Suppose \mathbb{A} has trivial definable closure. Let X be any perfect Polish space and let μ be an atomless Borel probability measure on X that assigns positive measure to every open subset of X. By Lemma 0.1 , let $\mathbb{B}=\left(X, R^{\mathbb{B}}\right)_{R \in L}$ be a Borel L-structure such that every countable dense set $D \subseteq X$ has $\mathbb{B} \upharpoonright D$ isomorphic to \mathbb{A}. Let μ^{ω} be the product probability measure on X^{ω}. Since μ is atomless and assigns positive measure to every open subset of X, μ^{ω} is supported on the set $Z \subseteq X^{\omega}$ of sequences $\left(x_{i}\right) \in X^{\omega}$ such that $\left(x_{i}\right)$ is injective and dense in X. So each such $\left(x_{i}\right)$ has $\mathbb{B} \upharpoonright\left\{x_{i}: i \in \omega\right\}$ isomorphic to \mathbb{B}.

Let $f: Z \rightarrow X_{L}$ be the function so that $f\left(\left(x_{i}\right)\right)$ is the structure on ω isomorphic to $\mathbb{B} \upharpoonright\left\{x_{i}: i \in \omega\right\}$ obtained by identifying x_{i} with i. Formally, $f\left(\left(x_{i}\right)\right)=\left(\omega, R^{f\left(\left(x_{i}\right)\right)}\right)_{R \in L}$ where

$$
R^{f\left(\left(x_{i}\right)\right)}\left(n_{0}, \ldots, n_{k}\right) \leftrightarrow R^{\mathbb{B}}\left(x_{n_{0}}, \ldots, x_{n_{k}}\right)
$$

Then the pushforward $f_{*} \mu^{\omega}$ of μ^{ω} under f is supported on the set of structures isomorphic to \mathbb{A}. This measure is S_{∞}-invariant because the permutation action of S_{∞} on X^{ω} is μ^{ω}-invariant.

We now prove the converse. Suppose for a contradiction that \mathbb{A} has nontrivial definable closure, but there exists an S_{∞}-invariant Borel probability measure μ on the set of structures in X_{L} isomorphic to A. Let ϕ be an $L_{\omega_{1}, \omega}$ formula and $\bar{a} \in A$ be parameters so that $\mathbb{A} \vDash \exists!y \notin \bar{a} \phi(\bar{a}, y)$. If \bar{n} is a tuple of elements of ω and $m \notin \bar{n}$, let $A_{\bar{n}, m}$ be the set of structures $\mathbb{B} \in X_{L}$ isomorphic to \mathbb{A} so that \bar{n} is lexicographically least such that $\mathbb{B} \vDash \exists!y \notin \bar{n} \phi(\bar{n}, y)$, and m is the least element not in \bar{n} such that $\mathbb{B} \vDash \phi(\bar{n}, m)$. The sets $A_{\bar{n}, m}$ partition the set of models isomorphic to \mathbb{A}. So $\mu\left(\bigcup A_{\bar{n}, m}\right)=1$. However, if $m, m^{\prime} \notin \bar{n}$, then $\mu\left(A_{\bar{n}, m}\right)=\mu\left(A_{\bar{n}, m^{\prime}}\right)$ since there is an element of S_{∞} that fixes \bar{n} but maps m to m^{\prime}. We also have that $A_{\bar{n}, m}$ and $A_{\bar{n}, m^{\prime}}$ are disjoint. Hence, since there are countably many $m \notin \bar{n}$ we must have $\mu\left(A_{\bar{n}, m}\right)=0$ for each \bar{n}, since μ is a probability measure. Thus, $\mu\left(\bigcup A_{\bar{n}, m}\right)=0$ which is a contradiction.

We finish by noting that Lemma 0.1 can be generalized to find a Borel structure on an arbitrary infinite Polish space X so that its restriction to any countable dense subset is isomorphic to \mathbb{A}. First we need a trivial proposition about functions so that preimages of dense sets are dense.

Proposition 0.3. If X is an infinite Polish space, then there is a Borel bijection f whose domain is a Borel subset of ω^{ω} and whose range is X so that if $D \subseteq X$ is dense, then $f^{-1}(D)$ is dense in ω^{ω}.

Proof. Let $N_{s}=\left\{x \in \omega^{\omega}: x \subseteq s\right\}$ be the usual basis for ω^{ω}. Let $\left(s_{n}\right)_{n \in \omega}$ be an enumeration of $\omega^{<\omega}$. Let $\left(A_{s}\right)_{s \in \omega<\omega}$ be disjoint uncountable Borel subsets of ω^{ω} so that $A_{s} \subseteq N_{s}$, and so that $\omega^{\omega} \backslash \bigcup_{s} A_{s}$ is uncountable. For example, define $A_{s_{n}}=\left\{x \in \omega^{\omega}:\left(\forall i \geq\left|s_{n}\right|\right) x(i)=2 n \vee x(i)=2 n+1\right\}$ where $\left|s_{n}\right|$ denotes the length of s_{n}. That is, $A_{s_{n}}$ is the reals x so the every bit of x that occurs after the initial segment s_{n} is equal to $2 n$ or $2 n+1$.

Since X is infinite, there exists a countably infinite collection of disjoint open subset $\left(U_{n}\right)_{n \in \omega}$ in X. For each n, Let f_{n} be a bijection from a Borel subset of $A_{s_{n}}$ to U_{n}. (Note that since U_{n} may be countable, the domain of f_{n} might need to be a proper subset of $\left.A_{s_{n}}\right)$. Now the domains dom $\left(f_{n}\right)$ are disjoint since the A_{s} are disjoint. Let g be a Borel bijection between a Borel subset of $\omega^{\omega} \backslash \bigcup_{n} A_{n}$ and $X \backslash \bigcup_{n} U_{n}$.

Our desired function is $g \cup \bigcup_{n} f_{n}$. If $D \subseteq X$ is dense, then $f^{-1}(D)$ contains a point in $N_{s_{n}}$ for every n. This is since there is some $x \in U_{n}$ so that $x \in D$ since D is dense and hence $f^{-1}(x) \in A_{s_{n}} \subseteq N_{s_{n}}$ by the definition of f and f_{n}.

Corollary 0.4. Suppose $\mathbb{A}=\left(A, R^{\mathbb{A}}\right)_{R \in L}$ is a countable structure in a countable relational language L, where \mathbb{A} has trivial definable closure. Then if X is an infinite Polish space, there exists a Borel L structure $\mathbb{A}^{\prime}=\left(X, R^{\mathbb{A}^{\prime}}\right)_{R \in L}$ on X (that is, the relations $\left(R^{\mathbb{A}^{\prime}}\right)_{R \in L}$ are Borel) so that for any countable dense set $D \subseteq X, \mathbb{A}^{\prime} \upharpoonright D$ is isomorphic to \mathbb{A}.

Proof. Let f be a function as in Proposition 0.3, and let \mathbb{B} be a Borel structure on ω^{ω} as in Lemma 0.1. Now let \mathbb{A}^{\prime} be the pushforward of \mathbb{B} under f. That is, define $R^{A^{\prime}}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow R^{\mathbb{B}}\left(f^{-1}\left(x_{1}\right), \ldots, f^{-1}\left(x_{n}\right)\right)$. Since the inverse image of any dense set under f is dense in ω^{ω}, we are done.

References

[AFP] N. Ackerman, C. Freer, and R. Patel, Invariant measures concentrated on countable structures, arXiv: 1206.4011v3.
[Hod] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, 1993.
[K95] A.S. Kechris, Classical Descriptive Set Theory, Springer, 1995.

[^0]: ${ }^{1}$ Given any Π_{2} sentence $\forall x_{1}, \ldots, x_{n} \exists y_{1}, \ldots, y_{m} \psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$, we can find an equivalent sentence in the desired form as follows. Let m be sufficiently large (e.g. $m=k n^{n}$) and have $\theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ be the formula $\theta\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=\bigwedge_{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}} \bigvee_{\rho:\{1, \ldots, k\} \rightarrow\{1, \ldots, m\}} \theta\left(x_{\pi(1)}, \ldots, x_{\pi(n)}, y_{\rho(1)}, \ldots, y_{\rho(k)}\right)$. Then our original Π_{2} sentence is equivalent to this Π_{2} sentence in our desired form using the quantifier free formula θ in any structure that has infinitely many elements.

