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In this note, we give a proof of [AFP, Theorem 1.1] using the Baire category theorem. We
also prove a slight generalization of [AFP, Theorem 3.19] where the underlying space is an
arbitrary infinite Polish space instead of R.

Suppose A = (A,RA)R∈L is a countable structure in a countable relational language L. Say
A has trivial definable closure if for every finite tuple a ∈ A, and for every Lω1,ω-formula
φ(x, y), if there is a unique b ∈ A such that A � φ(a, b), then b ∈ a. Equivalently, for all tuples
a, b ∈ A, such that a and b are disjoint, there are infinitely many pairwise disjoint tuples c ∈ A
such that tpA(a, b) = tpA(a, c) (see [Hod, 4.1.3]).

Lemma 0.1. Suppose A = (A,RA)R∈L is a countable structure in a countable relational lan-
guage L, where A has trivial definable closure. Then if X is an infinite Polish space, there exists
a Borel L-structure A′ = (X,RA′)R∈L on X (that is, the relations (RA′)R∈L are Borel) so that
for any countable dense set D ⊆ X, A′ � D is isomorphic to A.

Proof. By Morleyizing A (see [Hod, Section 2.6]) and expanding L, we may assume that there
is a countable set T of Π2 sentences in L such that if B is a countable structure, then B � T
if and only if B is isomorphic to A. (After expanding the language this way and obtaining A′,
take the reduct of A′ to the original language).

By Proposition 0.3, if X is an infinite Polish space, then there are Borel sets {Bs}s∈ω<ω

satisfying: if s ⊆ t then Bt ⊆ Bs, for every n ∈ ω, {Bs}|s|=n partitions X, the collection
{Bs}s∈ω<ω separates points, and every Bs contains an open subset. For example, if X = ωω,
then let Bs = Ns, the basic open neighborhood determined by s. (The case X = ωω suffices to
prove Corollary 0.2).

Let Y be the set of injections f : ω<ω → A such that if s0 . . . , sn ∈ ω<ω are pairwise
incompatible, and t0, . . . , tn ∈ ω<ω are such that si ⊆ ti for i ≤ n, then

tpA(f(s0), . . . , f(sn)) = tpA(f(t0), . . . , f(tn)).

If we equip the set of functions from ω<ω → A with the product topology, then Y is a closed
subset of this space. It is nonempty since A has trivial definable closure. Each f ∈ Y yields a
Borel L-structure (X,Rf )R∈L on X as follows: if x = (xp(0), . . . , xp(m−1)) is a tuple in X where
x0, . . . , xn−1 are distinct and p : m→ n, we define

Rf (xp(0), . . . , xp(m−1))↔ RA(f(sp(0)), . . . f(sp(m−1)))

for any sequence s0, . . . , sn so that the sets Bs0 , . . . , Bsn are disjoint, and xi ∈ Bsi . Our
definition of Y makes it clear that the truth value of RA(f(sp(0)), . . . f(sp(m−1))) will be same
for any such sequence s0, . . . , sn−1. We claim that a comeager set of f ∈ Y have the property
that the structure A′ = (X,Rf )R∈L is as desired.

Suppose s = s0, . . . , sn−1 ∈ ω<ω is a tuple of pairwise incompatible elements, and a =
(a0, . . . , an−1) ∈ A are distinct. Define the open set Ua,s = {f ∈ Y : f(si) = ai}. Suppose
φ ∈ T where φ = ∀x∃yθ(x, y), where the length of x is m, and p : m→ n is any function. Let the
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length of x and y combined be j ≥ m, and let Va,s,p,φ be the set of f ∈ U such that there exists
sn, . . . , sk−1 ∈ ω<ω so that elements of the sequence s0, . . . , sk−1 are pairwise incompatible and
such that A � θ(f(sp∗(0)), . . . , f(sp∗(j−1))) for some p∗ : j → k extending p. We claim that
Va,s,p,φ is open and dense in Ua,s.

The set Va,s,p,φ is clearly open. Now A � φ and so there exists a tuple b ∈ A such that

θ(ap(0), . . . , ap(m−1), b). Let b
′

enumerate all the elements of b that are disjoint from a. Since

there are infinitely many pairwise disjoint tuples c ∈ A such that tpA(a, b
′
) = tpA(a, c), Va,s,p,φ

is dense in Ua,s.
This suffices to prove the theorem. Suppose f ∈ Y is generic, D ⊆ X is a dense set,

and φ = ∃x∀yθ(x, y) ∈ T . We will show (X,Rf )R∈L � D � φ. Let x = (xp(0), . . . , xp(m−1))
be a tuple in D where x0, . . . , xn−1 are distinct and p : n → m. Then there is a sequence
of incompatible s0, . . . , sn−1 ∈ ω<ω with xi ∈ Bsi , since the Bs separate points. Since f is
generic, θ(f(sp(0)), . . . , f(sp∗(j−1))) is true for some sn, . . . , sk−1 ∈ ω<ω, such that the sequence
s0, . . . , sk−1 is pairwise incompatible and some p∗ : j → k extending p. Let yi = xi for i <
n. For n ≤ i < j, D must contain some yi ∈ Bsi since each Bsi contains an open subset.
Hence, we have shown (X,Rf )R∈L � D � θ(yp∗(0), . . . , yp∗(j−1)) and so (X,Rf )R∈L � D �
θ(xp(0), . . . , xp(m−1), yp∗(m), . . . , yp∗(j−1)) as desired. �

Recall that if L is a countable relational language, the space XL is the set of all L-structures
with universe ω. The group S∞ of all permutations of ω acts on XL by permuting the universe
of each structure in XL (see [K95, Section 16]).

Corollary 0.2 ([AFP, Theorem 1.1]). Suppose A = (A,RA)R∈L is a countable structure in
a countable relational language L. Then A has trivial definable closure if and only if there is
an S∞-invariant Borel probability measure µ on XL that is supported on the set of structures
isomorphic to A.

Proof. Suppose A has trivial definable closure. Let X be any perfect Polish space and let µ be
an atomless Borel probability measure on X that assigns positive measure to every open subset
of X. By Lemma 0.1, let A′ = (X,RA′)R∈L be a Borel L-structure such that every countable
dense set D ⊆ X has A′ � D isomorphic to A. Let µω be the product probability measure
on Xω. Since µ is atomless and assigns positive measure to every open subset of X, µω is
supported on the set Z ⊆ Xω of sequences (xi) ∈ Xω such that (xi) is injective and dense in
X. So each such (xi) has A′ � {xi : i ∈ ω} isomorphic to A.

Let f : Z → XL be the function so that f((xi)) is the structure on ω isomorphic to A′ � {xi :
i ∈ ω} obtained by identifying xi with i. Formally, f((xi)) = (ω,Rf((xi)))R∈L where

Rf((xi))(n0, . . . , nk)↔ RA′(xn0
, . . . , xnk

).

Then the pushforward f∗µ
ω of µω under f is supported on the set of structures isomorphic to

A. This measure is S∞-invariant because the permutation action of S∞ on Xω is µω-invariant.
We now prove the converse. Suppose for a contradiction that A has nontrivial definable

closure, but there exists an S∞-invariant Borel probability measure µ on the set of structures
in XL isomorphic to A. Let φ be an Lω1,ω formula and a ∈ A be parameters so that A � ∃!y /∈
aφ(a, y). If n is a tuple of elements of ω and m /∈ n, let An,m be the set of structures B ∈ XL

isomorphic to A so that n is lexicographically least such that B � ∃!y /∈ nφ(n, y), and m is
the least element not in n such that B � φ(n,m). The sets An,m partition the set of models
isomorphic to A. So µ(

⋃
An,m) = 1. However, if m,m′ /∈ n, then µ(An,m) = µ(An,m′) since

there is an element of S∞ that fixes n but maps m to m′. We also have that An,m and An,m′

are disjoint. Hence, since there are countably many m /∈ n we must have µ(An,m) = 0 for each
n, since µ is a probability measure. Thus, µ(

⋃
An,m) = 0 which is a contradiction. �
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Proposition 0.3. If X is an infinite Polish space, then there are Borel sets {Bs}s∈ω<ω satis-
fying:

(1) If s ⊆ t then Bt ⊆ Bs
(2) For every n ∈ ω, {Bs}|s|=n partitions X
(3) {Bs}s∈ω<ω separates points in X
(4) Every Bs contains an open subset.

Proof. Since X is infinite, there exists a countably infinite collection of disjoint open subsets
(Us)s∈ω<ω of X. (So Us ∩ Ut = ∅ if s 6= t). Let B′s =

⋃
{Ut : t ⊇ s}. Then the B′s satisfy (1)

and (4), and for every x ∈ ωω,
⋂
nB
′
x�n = ∅. We will find Bs ⊇ B′s satisfying (1), (2), and (3).

Let f : X \
⋃
s∈ω<ω Us → ωω be a Borel injection, and for every s ∈ ω<ω, let fs : Us → ωω

be a Borel injection such that fs(Us) ⊆ Ns. We may assume that the ranges of f , and the fs
are all disjoint. Define

Bs = f−1(Ns) ∪B′s ∪
⋃
t⊆s

{f−1t (Ns)}

�
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