
6c Lecture 13: May 13, 2014

11 The completeness theorem

Our goal today is the following theorem:

Theorem 11.1 (Gödel). If L is a language, S is a set of sentences in the
language L, and φ is a sentence in the language L, then S � φ iff S ` φ.

The fact that S ` φ→ S � φ (i.e. the soundness of our proof system) is an
easy induction on proofs. We simply check that each of our logical axioms is
logically valid, and that modus ponens preserves validity. It will be a homework
exercise.

The direction S � φ→ S ` φ (i.e. the completeness of our proof system) is
more difficult. Like our proof of the completeness of propositional logic, we will
prove the contrapositive: ¬S ` φ→ ¬S � φ.

Recall that a set S of formulas is inconsistent if there is some formula ψ
such that both S ` ψ and S ` ¬ψ. Otherwise, we say S is consistent. We claim
since ¬S ` φ, then S ∪ {¬φ} must be consistent. This is because if it were
inconsistent, then S ` φ via proof by contradiction (which was a homework
problem).

Now recall that S � φ means that for every model M of S, we have M � φ.
Hence, to show ¬S � φ we must find some model M of S ∪ {¬φ} (i.e. M � S
and M � ¬φ).

Let’s recap. To prove the completeness theorem, it is enough to show that
if a theory T is consistent, then there is a model M of T . (And then we can
apply this to T = S ∪ {¬φ} above).

To make this model, we will begin by finding a complete consistent theory
extending T and then we will construct the model M from this complete theory
(much as we constructed a valuation from a complete theory in our proof of the
completeness theorem for propositional logic).

Recall that a theory T is complete if for any sentence φ we have either φ ∈ T
or ¬φ ∈ T . Note that if T is consistent and complete, the for any sentence φ,
exactly one of φ ∈ T or ¬φ ∈ T .

We begin with a key definition:

Definition 11.2. A Henkin theory is a theory T so that for every every formula
φ and variable x, there is a constant symbol c such that (∃xφ→ φxc ) ∈ T , where
φxc is the formula φ replacing each free occurrence of the variable x by the
constant c. The constant c is called a Henkin witness for ∃xφ.

The rough idea here is that in a Henkin theory, we have an actual constant
naming a witness to ∃xφ whenever it is true.
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For an example, lets consider the theory T of the structure 〈N; +, ·, 0, 1〉. For
the formula φ = ∀y(x+ y = y), we can use the constant 0 for x to witness ∃xφ.
That is, ∃x∀y(x + y = y) → ∀y(0 + y = y) is true. However, for the formula
φ = ∀y(y + y = x · y), there is no constant c so that ∃x∀y(y + y = x · y) →
∀y(y + y = cẏ) is true, since we don’t have a constant symbol for the number 2
in our language. (You might be tempted to use the term 1+1 here as a witness,
but remember that formally, this is a term (it comes from one of our functions
applied to constants) and it isn’t a constant itself). Hence, T is not a Henkin
theory.

Now consider the structure 〈N; +, ·, 0, 1, 2, . . .〉 containing a constant for each
natural number. Then it is easy to see that the theory of this structure has the
Henkin property; for each formula φ, if ∃xφ is true, then there must be some
constant n such that φ is true when we replace x by n, and hence ∃xφ → φxn.
If ∃xφ is false, then clearly ∃xφ→ φxc is vacuously true for any constant c.

Now we will prove two important lemmas about Henkin theories which will
together immediately prove the completeness theorem.

Lemma 11.3. Suppose L is a language and T is a consistent theory in the
language L. Then there is a first order language L′ ⊇ L obtained by adding
some constant symbols to L and a theory T ′′ ⊇ T such that T ′′ is consistent,
complete, and has the Henkin property.

Proof. We do this proof in two steps.
Step 1 : We will make a first-order language L′ ⊇ L by adding constant

symbols to L, and a consistent Henkin theory T ′ ⊇ T in the language L′.
Step 2 : We will then finish by constructing a complete consistent T ′′ ⊇ T ′

in the language L′. Note that since T ′ has the Henkin property, so does T ′′,
since they are in the same language and T ′′ contains all the sentences of T ′.
We will omit this second step of the proof and leave it for homework, since it is
essentially the same technique we used in our proof the completeness theorem for
propositional logic for extending any consistent theory to a complete consistent
theory.

We do the first step. We will define a sequence L0 ⊆ L1 ⊆ L2 ⊆ . . . of
languages and a sequence of theories T0 ⊆ T1 ⊆ T2 ⊆ . . . such that each Ln+1

is obtained from Ln by adding new constant symbols, and each theory Tn is
consistent. To begin, set L0 = L, and T0 = T .

Now given Ln, let Ln+1 be the language obtained by adding a new constant
c∃xφ for each sentence ∃xφ in the language Ln. Let

Tn+1 = Tn ∪ {∃xφ→ φxc∃xφ : φ is a sentence in the language Ln}

be the theory obtained by adding to Tn the sentence ∃xφ→ φxc for each sentence
φ in Ln.

Define T ′ =
⋃
n Tn and L′ =

⋃
n Ln. Clearly L′ is obtained from L by adding

constants. Next, we show T ′ is a Henkin theory. If φ is a sentence in L′, then
φ ∈ Ln for some n, and hence by definition the sentence ∃xφ→ φxc∃xφ is in Tn+1

and thus in T ′.
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To finish, we show that T ′ is consistent. Since proofs are finite, if T ′ ` φ,
then Tn ` φ for some large enough n. Thus, it is enough to show that each Tn is
consistent. We can do this by induction. For our base case, note by assumption
that T0 is consistent. Inductively, suppose Tn is consistent. We must now show
Tn+1 is consistent.

So assume by way of contradiction that Tn+1 is inconsistent. Then since
Tn+1 is obtained from Tn by adding formulas of the form ∃xφ → φxc∃xφ , there
must be some finite number of such formulas φ1, . . . , φk such that

Tn ∪ {∃xφi → (φi)
x
c∃xφi

: i ≤ k}

is inconsistent. Then using proof by contradiction,

Tn ∪ {∃xφ→ (φi)
x
c∃xφi

: i ≤ k − 1} ` ¬(∃xφk → (φk)xc∃xφk
)

Let Q = Tn ∪ {∃xφ → (φi)
x
c∃xφi

: i ≤ k − 1}. Then since (¬(p → q)) → p and

(¬(p→ q))→ ¬q are tautologies, using our first logical axiom,

Q ` (∃xφi)

and
Q ` ¬(φi)

x
c∃xφi

.

But then by generalization on constants applied to this last fact, we see Q `
∀x(¬φi), and hence Q ` ¬∃xφi, so Q is inconsistent.

Proceeding this way we can eliminate all the sentences ∃xφ → (φi)
x
c∃xφi

for

i = k, . . . , 1 and show that Tn itself is inconsistent, which is a contradiction.

Lemma 11.4. Suppose L′ is a language and T ′ is a complete consistent Henkin
theory. Then there is a model M of T ′.

Proof. Consider the set X of all terms in the language L′ that do not contain
variables (we call these closed terms). Now define an equivalence relation ∼ on
X by s ∼ t iff the sentence s = t is in T ′.

First, we have to check that this is actually an equivalence relation. For all
closed terms r, s, t:

• t ∼ t since for each term t, t = t is a logical axiom hence T ′ ` t = t, so
t = t ∈ T ′ since T ′ is complete and consistent.

• s ∼ t implies t ∼ s since if s = t ∈ T ′, then since s = t→ t = s is a logical
axiom, T ′ ` t = s, so t = s ∈ T ′.

• r ∼ s and s ∼ t implies r ∼ t since if r = s and s = t ∈ T ′, then
T ′ ` r = s ∧ s = t, and since (r = s ∧ s = t) → r = t is a logical axiom,
we have T ′ ` r = t, so r = t ∈ T ′.
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For each closed term s, denote by [s] = {t : t ∼ s} the equivalence class of the
closed term s, and let A = {[t] : t is a closed term} be the set of all equivalence
classes of ∼. This will be the universe of our model M . We now need to define
the interpretations of the relations and function symbols of L′.

For each n-ary function symbol f define its interpretation in M by

fM ([t1], . . . [tn]) = [f(t1, . . . , tn)].

(Where f(t1, . . . , tn) is a term in our language, and [f(t1, . . . , tn) is its equiva-
lence class. We need to show this is well defined. That is, if [s1] = [t1], . . . , [sn] =
[tn], then fM ([s1], . . . [sn]) = fM ([t1], . . . [tn]). This follows from the fact that
s1 = t1 ∧ . . . ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn) is a logical axiom.

Note that in the special case of constant c (i.e. a 0-ary function), we have
that the interpretation cM of c is [c]. Indeed, for any closed term t we have that
tM = [t], which can be proved by induction on the construction of t.

Similarly, for each n-ary relation, R, we define its interpretation in M by
RM ([t1], . . . [tn]) iff R(t1, . . . , tn) ∈ T . This is similarly well-defined since s1 =
t1 ∧ . . . ∧ sn = tn → R(s1, . . . , sn)→ R(t1, . . . , tn) is a logical axiom.

We have now finished our definition of the structure M . All we need to do
to finish is to show that M � T ′. We will do this by showing that for each
sentence ψ of L′, we have M � ψ iff ψ ∈ T ′.

We prove this by induction on the number of connectives and quantifiers in
sentences. For our base case, we consider atomic sentences. We first consider
atomic sentences of the form s = t where s and t are closed terms. Then we
have that M � s = t iff sM = tM iff [s] = [t] iff s ∼ t iff s = t ∈ T ′. Similarly,
for atomic sentences of the form R(t1, . . . , tn) we have M � R(t1, . . . , tn) iff
RM (tM1 , . . . , t

M
n ) iff RM ([t1], . . . , [tn]) iff R(t1, . . . , tn) ∈ T ′

Now for our induction step, suppose we have sentences φ and ψ.
(∧): Then M � φ ∧ ψ iff M � φ and M � ψ iff φ ∈ T ′ and ψ ∈ T ′ by our

induction hypothesis iff φ ∧ ψ ∈ T ′ since T ′ is consistent and complete.
(¬): M � ¬φ iff it is not the case that M � φ iff φ /∈ T ′ by our induction

hypothesis iff ¬φ ∈ T ′ since T ′ is consistent and complete.
(The other logical connectives → and ∨ are similar).
To finish, we want to show for sentences of the form ∀xφ, we have M � ∀xφ

iff ∀xφ ∈ T ′.
Now since T ′ is a Henkin theory, and recalling that ∃x is an abbreviation

for ¬∀x¬, there is a constant c and a formula of the form

¬∀x¬(¬φ)→ (¬φ)xc ∈ T ′

and since T ′ is complete,

¬∀xφ→ (¬φ)xc ∈ T ′

and so
φxc → ∀xφ ∈ T ′
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If M � ∀xφ, then certainly M � φ[x 7→ [c]] and so M � φxc which implies
φxc ∈ T ′ by our induction hypothesis and since φxc → ∀xφ ∈ T ′ and T ′ is
complete we have ∀xφ ∈ T ′.

Conversely, assume ∀xφ ∈ T ′. Then since for every closed term t, ∀xφ→ φxt
is a logical axiom and T ′ is complete, we have φxt ∈ T ′ and hence by our
induction hypothesis M � φxt , so M � φ[x 7→ tM ] so M � φ[x 7→ [t]]. But since
every element of M is of the form [t], the we see M � ∀xφ.

To finish our proof of the completeness theorem, start with Lemma 11.3 and
obtain a complete consistent Henkin theory T ′ ⊇ T in the language L′ ⊇ L.
Then use Lemma 11.4 to obtain a model M of T ′. Finally, by restricting the
model M to just the language L, we have a model of T .
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