
Math 285J, L. Vese. Assignment 1: Due on Wednesday, November 6

[1] Consider in two dimensions the functional minimization problem

inf
u
F (u) = F1(u) + λF2(u0 −Ku),

where u0 : Ω→ R is a given degraded version of a true (unknown) image u : Ω→ R, Ω ⊂ R2,
and K is a linear and continuous operator on L2(Ω). Here, F1 represents the regularization
term while F2 represents the data fidelity term. Recall that |∇u| =

√
(ux)2 + (uy)2.

Assume u0, u ∈ L2(Ω), F1(u) =
∫

Ω
φ1(|∇u|)dxdy, F2(u0 − Ku) =

∫
Ω
φ2(u0 − Ku)dxdy,

where ∇u = (ux, uy) is the spatial gradient operator, φi : R → R are functions of class C1

(i = 1, 2), and that φ′
2(u0 −Ku) ∈ L2(Ω), as long as u0 −Ku ∈ L2(Ω).

(i) For u ∈ W 1,1(Ω), obtain the Euler-Lagrange equation associated with the minimiza-
tion problem in u, in the stationary and time-dependent cases, together with the appropri-
ate boundary conditions in u on ∂Ω. For the time-dependent case, show that the energy
E(t) = F (u(x, y, t)) is decreasing in time. 1

(ii) Show that, if φi, i = 1, 2 are both convex, and φ1 is in addition non-decreasing from
[0,∞) to [0,∞), then the functional F (u) is convex.

[2] Consider in two dimensions f ∈ L2(Ω), and u(·, λ) the minimizer of

F (u) = λ

∫
Ω

|∇u|dxdy +
1

2

∫
Ω

(u− f)2dxdy,

with λ > 0. Recall that |∇u| =
√

(ux)2 + (uy)2 can be made differentiable substituting it

by
√
ε2 + (ux)2 + (uy)2.

(i) Using the result from the previous problem, give the associated Euler-Lagrange equa-
tion with the corresponding boundary conditions for a minimizer u = u(·, λ) ∈ W 1,1(Ω).

(ii) Show that the L2-norm of u(·, λ), given by
√∫

Ω
(u(x, y, λ))2dxdy is bounded by a

constant independent of λ.
(iii) Show (e.g. using the obtained stationary E.-L. equation and associated boundary

condition), that ∫
Ω

u(x, y, λ)dxdy =

∫
Ω

f(x, y)dxdy.

(iv) Show that u(·, λ) converges in the L1(Ω) − strong topology to the average of the
initial data. In other words, show that

lim
λ→∞

∫
Ω

∣∣∣u(x, y, λ)−
∫

Ω
f(x, y)dxdy

|Ω|

∣∣∣dxdy = 0.

1We may need to formally assume, in addition, that (Ku)t = K(ut); this is natural for a linear and
continuous operator K that does not depend on t, for instance if Ku = k∗u and k = k(x, y) does not depend
on t.
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[3] Discretize and implement the stationary or the non-stationary E.-L. equation from [2] by
the method of your choice using finite differences, for the denoising case. More details will be
discussed in class. Choose an original true image û, and define a noisy version f = û+noise
(see matlab sample codes on the class web-page, or in matlab you can add noise of zero mean
to an image using “imnoise”). Give the optimal λ (may be different in each case) and the
RMSE between the original clean image û and the reconstructed image u:

RMSE =

√∑i=M,j=N
i=1,j=1 (û(i, j)− u(i, j))2

MN
.

Plot the energy versus iterations.

Optional: You can make additional tests by substituting the data fidelity term ‖f − u‖2
L2(Ω)

above by ‖f−u‖L2(Ω) or by ‖f−u‖L1(Ω), and compare the results. Each method may require
different λ for the same image. λ can also be automatically selected if we know the noise
variance in the form ‖f − u‖2 = σ2. Using a norm, instead of the norm square for the data
fidelity term avoids the intensity loss drawback of the ROF model.
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