285J, L. Vese

Assignment 3: Due on Friday, June 10.

• Let $g \in C^1(R)$ be a function, with g' > 0. Let v = g(u). If u satisfies

$$\frac{\partial u}{\partial t} = |\nabla u| G(\operatorname{curv}(u)),$$

so does v (contrast invariance or geometric).

• Let $u: R^2 \to R$. The upper level set of u at level $\lambda \in R$ is the set $\chi_{\lambda}(u) = \{x \in R^2: u(x) \geq \lambda\}$. Show that u can be retrieved by the reconstruction formula

$$u(x) = \sup\{\lambda : x \in \chi_{\lambda}(u)\}.$$

• Let $u, v : R^2 \to R$. Assume that u and v have the same level sets, that is for all $\lambda \in R$, there is $\mu \in R$ such that $\chi_{\lambda}(u) = \chi_{\mu}(v)$. Let us define g by $g(\lambda) = \sup \{ \mu : \chi_{\lambda}(u) = \chi_{\mu}(v) \}$. Then g is nondecreasing and $v = g \circ u$.

(show first that g is nondecreasing, then show that $v \geq g \circ u$ and that $g \circ u \geq v$).

• Let u be sufficiently smooth and satisfy

$$\frac{\partial u}{\partial t} = |\nabla u| G(\text{curv} u),$$

where $\operatorname{curv} u = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$ is the curvature operator, and G is a function such that $kG(k) \geq 0$. Show that this flow decreases the total variation of u in time.