Math 273: Homework \#2, due on Wednesday, October 25

[1] Consider the minimization problem

$$
\inf _{u} F(u)=\int_{x_{0}}^{x_{1}} L\left(x, u(x), u^{\prime}(x), u^{\prime \prime}(x)\right) d x
$$

with $u\left(x_{0}\right)=u_{0}, u\left(x_{1}\right)=u_{1}, u^{\prime}\left(x_{0}\right)=U_{0}, u^{\prime}\left(x_{1}\right)=U_{1}$ given, and L is a sufficiently smooth function. Obtain the Euler-Lagrange equation of the minimization problem that is satisfied by a smooth optimal u. Choose test functions v in $C^{\infty}\left[x_{0}, x_{1}\right]$ that satisfy $v\left(x_{0}\right)=v\left(x_{1}\right)=v^{\prime}\left(x_{0}\right)=v^{\prime}\left(x_{1}\right)=0$, and proceed as before (you should obtain a fourth-order differential equation).
[2] Consider the 1D length functional

$$
\operatorname{Min}_{u} F(u)=\int_{0}^{1} L\left(u^{\prime}(x)\right) d x, \text { or } \operatorname{Min}_{u} \int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x
$$

with boundary conditions $u(0)=0, u(1)=1$.
(a) Find the exact solution of the problem.
(b) Show that the functional $u \mapsto F(u)$ is convex.
(c) Consider a discrete version of the problem: let

$$
x_{0}=0<x_{1}<\ldots<x_{n}<x_{n+1}=1
$$

be equidistant points, with $x_{i+1}-x_{i}=h$. For $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$, consider $f(\vec{u})=\sum_{i=0}^{n} \sqrt{1+\left(\frac{u_{i+1}-u_{i}}{h}\right)^{2}}$, with the additional condition that $u_{0}=0$ and $u_{n+1}=1$.

Choose an appropriate discretization integer n and numerically analyze the behavior of the gradient descent method with backtracking line search. Choose the initial starting point u^{0} as a curve joining the points $(0,0)$ and $(1,1)$. Record the number of iterations and plot the error $u^{k}-u^{*}$, where u^{*} is the exact minimizer. You could also plot the curve given by \vec{u}^{k} at some iterations.

Notes: Let Ω be an open and bounded subset of R^{d}, with Lipschitzcontinuous (or sufficiently smooth) boundary $\partial \Omega$. Let $\vec{n}=\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ be the exterior unit normal to $\partial \Omega$.

Recall the following fundamental Green's formula, or integration by parts formula: given two functions u, v (with u, v, and all their 1st order partial derivatives belonging to $L^{2}(\Omega)$), then

$$
\int_{\Omega} u v_{x_{i}} d x=-\int_{\Omega} u_{x_{i}} v d x+\int_{\partial \Omega} u v n_{i} d S .
$$

