Math 269C

First Computational Project due on Monday, May 1st

(i) Show that the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+u(x)=f(x), \quad 0<x<1, \\
u(0)=0, u^{\prime}(1)=0
\end{array}\right.
$$

can be given a weak variational formulation.
(ii) Formulate a FEM for this problem using piecewise-linear functions. Determine the corresponding linear system of equations in the case of a uniform partition and study in particular how the boundary condition $u^{\prime}(1)=$ 0 is approximated by the method.
(iii) Write a computer program for the piecewise-linear FEM applied to this problem. Present calculations with $h=0.1$ and $h=0.2$, for $f(x)=$ $2+2 x-x^{2}$. Approximate $\int f(x) \varphi_{j}(x) d x$ by a quadrature formula of your choice. The exact solution of the problem is $u(x)=x(2-x)$.
(please see section 1.8: Remarks on programming)

