269C: HW \#4

Due on Wednesday, May 31st.
[1] Let K be a tetrahedron with vertices $a^{i}, i=1, \ldots, 4$, and let $a^{i j}$ denote the midpoint on the straight line $a^{i} a^{j}, i<j$. Consider $v \in P_{2}(K)$ with the degrees of freedom $v\left(a^{i}\right)$, $v\left(a^{i j}\right), i, j=1, \ldots, 4, i<j$. Show that the corresponding finite element space V_{h} satisfies $V_{h} \subset C^{0}(\Omega)$, assuming continuity at all degrees of freedom.
[2] Let K be a triangle with vertices $a^{i}, i=1,2,3$, and let $a^{i j}, i<j$, denote the midpoints of the sides of K. Let a^{123} denote the center of gravity of K. Consider $v \in P_{4}(K)$ with the degrees of freedom:

$$
\begin{aligned}
& v\left(a^{i}\right), \\
& \frac{\partial v}{\partial x_{j}}\left(a^{i}\right), i=1,2,3, j=1,2, \\
& v\left(a^{i j}\right), i, j=1,2,3, i<j, \\
& v\left(a^{123}\right), \frac{\partial v}{\partial x_{j}}\left(a^{123}\right), j=1,2,
\end{aligned}
$$

(typo in Exercise 3.8 in the textbook).
Show that the functions in the corresponding finite element space V_{h} are continuous, assuming continuity at all degrees of freedom.
[3] Consider the PDE (in the distributional sense)

$$
-\triangle u+k^{2} u=f \quad \text { in } R^{n},
$$

where k is a constant. Let $s \in R$. Show that, for all $f \in H^{s}\left(R^{n}\right)$, there exists a unique $u \in H^{s+2}\left(R^{n}\right)$, solution of the PDE, with $k \in R, k \neq 0$.

Hint: use the Fourier transform (see handout for notations of Sobolev spaces with arbitrary exponent s).
[4] Let $I=[0, h]$ and let $\pi v \in P_{1}(I)$ be the linear interpolant that agrees with $v \in C^{2}(I)$ at the end points of I. Using the technique of the proof of Thm. 4.1, prove estimates for $\|v-\pi v\|_{L^{\infty}(I)}$ and $\left\|v^{\prime}-(\pi v)^{\prime}\right\|_{L^{\infty}(I)}$, cf. (1.12) and (1.13).

