HW\#2, 269C, Spring 2006, Vese Due on Friday, April 28
[1] Find the linear basis functions for the triangle K with vertices at $(0,0),(h, 0)$ and $(0, h)$. Show that the corresponding element stiffness matrix is given by

$$
\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

Using this result show that the linear system (1.25) of Example 1.1. has the stated form (pages 30-31) there is a typo in the textbook regarding the linear system).
[2] Let $\Omega=\left\{x \in R^{2}:|x| \leq 1\right\}$. Show that the function $v(x)=|x|^{\alpha}$ belongs to $H^{1}(\Omega)$ if $\alpha>0$.
[3] Consider the problem with an inhomogeneous boundary condition,

$$
\left\{\begin{array}{l}
-\triangle u=f \text { in } \Omega, \\
u=u_{0} \text { on } \Gamma=\partial \Omega,
\end{array}\right.
$$

where f and u_{0} are given. Show that this problem can be given the following equivalent variational formulations:
(V) Find $u \in V\left(u_{0}\right)$ such that $a(u, v)=(f, v), \forall v \in H_{0}^{1}(\Omega)$,
(M) Find $u \in V\left(u_{0}\right)$ such that $F(u) \leq F(v), \forall v \in V\left(u_{0}\right)$,
where $V\left(u_{0}\right)=\left\{v \in H^{1}(\Omega): v=u_{0}\right.$ on $\left.\Gamma\right\}$.
Then formulate a finite element method and prove an error estimate (as in Thm. 1.1, page 24).

Recall: $H_{0}^{1}(\Omega)=\left\{v \in L^{2}(\Omega), \nabla v \in L^{2}(\Omega)^{n}, v=0\right.$ on $\left.\partial \Omega\right\}$, where n is the spatial dimension.
[4] Let Ω be a bounded domain in the plane and let the boundary Γ of Ω be devided into two parts Γ_{1} and Γ_{2}. Give a variational formulation of the following problem:

$$
\begin{aligned}
-\Delta u+u=f & \text { in } \Omega \\
\frac{\partial u}{\partial \vec{n}}=g & \text { on } \Gamma_{1} \\
u=u_{0} & \text { on } \Gamma_{2}
\end{aligned}
$$

where f, u_{0} and g are given functions. Then formulate a FEM for this problem.

