269C, Vese Useful results 2

• For s a real number, then $u \in H^s(\mathbb{R}^n)$ if

$$(1+|\xi|^2)^{s/2}\hat{u} \in L^2(\mathbb{R}^n), \quad \xi \in \mathbb{R}^n$$

(with \hat{u} the Fourier transform of u).

We furnish $H^s(\mathbb{R}^n)$ with the norm

$$||u||_s = \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^s |\hat{u}(\xi)|^2 d\xi\right)^{1/2}.$$

For s = m a non-negative integer, the space $H^s(\mathbb{R}^n)$ coincides with the usual space $H^m(\mathbb{R}^n)$.

Thm: For $u \in H^1(\Omega)$, with $\Gamma = \partial \Omega$ of dimension n-1 and piecewise of class C^1 , we can define $u|_{\Gamma}$ (the trace of u on Γ) as an element of $H^{1/2}(\Gamma)$.

Thm: For every $u_0 \in H^{1/2}(\Gamma)$, there is a $u \in H^1(\Omega)$ such that $u|_{\Gamma} = u_0$.

Note: For such set Γ , we can give a definition of $H^{1/2}(\Gamma)$ (with the aid of local maps defining Γ , see Lions-Magenes, Necas, Dautray-Lions, etc).

We also have another version of the Trace theorem:

Thm: Assume Ω is bounded and $\Gamma = \partial \Omega$ of class C^1 . Then there exists a bounded linear operator

$$T: H^1(\Omega) \to L^2(\Omega)$$

such that

(i)
$$Tu = u|_{\Gamma}$$
 if $u \in H^1(\Omega) \cap C(\overline{\Omega})$

(ii)

$$||Tu||_{L^2(\Gamma)} \le C||u||_{H^1(\Omega)},$$

for each $u \in H^1(\Omega)$, with constant C depending only on Ω .

Additional results, remarks, exercises

(see "Finite Elements, Mathematical Aspects", Vol. IV, J. Tinsley Oden and Graham F. Carey, Prentice Hall, 1983)

Thm. The Generalized Lax-Milgram Theorem: Let H and G be real Hilbert spaces and let $B(\cdot, \cdot)$ denote a bilinear form on $H \times G$ which has the following properties:

(i) $B(\cdot,\cdot)$ is continuous; that is, there exists a constant M>0 such that

$$|B(u,v)| \le M||u||_H||v||_G$$
, for any $u \in H$, $v \in G$.

(ii) $B(\cdot,\cdot)$ is coercive in the sense that there exists a constant α such that

$$\inf_{u \in H, \ \|u\|_{H} = 1} \ \sup_{v \in G, \ \|v\|_{G} \le 1} |B(u,v)| \ge \alpha > 0.$$

(iii) For every $v \neq 0$ in G,

$$\sup_{u\in H}|B(u,v)|>0.$$

Then there exists a unique $u^* \in H$ such that

$$B(u^*, v) = F(v)$$
, for all $v \in G$,

wherein $F \in G'$. Moreover,

$$||u^*||_H \le \frac{1}{\alpha} ||F||_{G'}.$$

If H = G, then (ii) and (iii) can be replaced by the simpler condition: (iv) There exists an $\alpha > 0$ such that

$$B(u, u) \ge \alpha ||u||_H^2$$
, for all $u \in H$.

(in this case, we say that B is H - coercive).

Here G' denotes the dual of G, the space of continuous linear forms F on H.

Mixed Methods

Notations and conventions:

- H, Q are real Hilbert spaces with norms $\|\cdot\|_H$ and $\|\cdot\|_Q$ respectively.
- ullet $a: H \times H$ is a symmetric, continuous bilinear form so that M>0 exists such that

$$|a(u,v)| \le M ||u||_H ||v||_H$$
, for all $u, v \in H$.

• $b: H \times Q$ is a continuous bilinear form so that m > 0 exists such that

$$|b(u,q)| \leq m\|u\|_H\|q\|_Q, \text{ for all } u \in H, \ q \in Q.$$

- $f: H \to R$ is a continuous linear form on H.
- $q: Q \to R$ is a continuous linear form on Q.

We consider the weak variational formulation

$$a(u,v) + b(v,p) = f(v), \text{ for all } v \in H$$
(1)

$$b(u,q) = g(q) \text{ for all } q \in Q.$$
 (2)

This corresponds to the abstract problem (in distributional sense)

$$Au + B^*p = f$$
 in H' ,

$$Bu = q \text{ in } Q'.$$

We also define:

$$kerB = \{v \in H | b(v, q) = 0 \text{ for all } q \in Q\},$$

$$ker B^* = \{q \in Q | b(v, q) = 0 \text{ for all } v \in H\},$$

and the quotient space

$$Z = Q/kerB^*$$
.

The quotient space Z consists of equivalence classes [p] of the form

$$[p] = \{q \in Q | p - q \in ker B^*\}.$$

We also assume that $g \in Rg(B)$.

Note that Bu = g is a constraint, corresponding to an unknown Lagrange multiplier p in (1).

Problem (1)-(2) can be substituted by the following equivalent problem: introduce a bilinear form $B(\cdot, \cdot)$ defined on the product space $H \times Q$,

$$B: (H \times Q) \times (H \times Q) \to R$$
, by

$$B((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q)$$

and the linear form $F: H \times Q \to R$,

$$F((v,q)) = f(v) + g(q).$$

Then (1)-(2) can be written: find $(u, p) \in H \times Q$ s.t.

$$B((u,p),(v,q)) = F((v,q)), \text{ for all } (v,q) \in H \times Q.$$
(3)

Also impose conditions: there is $\alpha_0 > 0$ s.t.

$$\alpha_0 \|u_0\|_H \le \sup_{v_0 \in ker B - \{0\}} \frac{|a(u_0, v_0)|}{\|v_0\|_H}, \text{ for all } u_0 \in ker B,$$
 (4)

and there is $\beta > \text{s.t.}$

$$\beta \inf_{p_0 \in ker B^*} \|p + p_0\|_Q = \beta \|[p]\|_Z \le \sup_{v \in H - \{0\}} \frac{|b(v, p)|}{\|v\|_H}, \text{ for all } p \in Q.$$
 (5)

Conditions (4) and (5) are equivalent with: there is $\alpha > 0$ s.t. for all $(u, p) \in H \times Q$,

$$\alpha(\|u\|_{H} + \|[p]\|_{Z}) \le \sup_{(v,q) \in H \times Q, (v,q) \neq (0,0)} \frac{|a(u,v) + b(v,p) + b(u,q)|}{\|v\|_{H} + \|q\|_{Q}}.$$

Thm. Let conditions (4) and (5) hold for the continuous bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ defined in the beginning. Then there exists a unique solution $(u, [p]) \in H \times Z$, $Z = Q/kerB^*$, of problem (3) with $g \in Rg(B)$. The Lagrange multiplier p is then unique up to an arbitrary element of $kerB^*$.

Problems:

• Consider the Newmann problem

$$-\Delta u = 0 \text{ in } \Omega,$$

$$\frac{\partial u}{\partial \vec{n}} = g \text{ on } \partial \Omega,$$

where Ω is sufficiently smooth and $g \in L^2(\partial\Omega)$.

- (a) Give a weak variational formulation of the problem.
- (b) Give a condition on g necessary to guarantee the existence of a solution to this problem.
- (c) Give a condition on u necessary to guarantee the existence and uniqueness of a solution to this problem.
 - Apply the above mixed method to the stationary Stokes equations.