Math 269B Instructor: Luminita Vese. Teaching Assistant: Michael Puthawala. Homework \#6 Due on: Friday, March 3rd, or exceptionally the following Monday.
[1] Consider the one-way wave equation $u_{t}+u_{x}=0$ for $t>0$ and $x \in R$, with the initial condition $u(x, 0)=u_{0}(x)$.
(a) Give the exact solution of the equation.
(b) Show that the leapfrog scheme with $\lambda=\frac{k}{h}=1$ applied to this equation gives the exact solution (let v_{m}^{0} and v_{m}^{1} be given by the exact solution at $t=0$ and $t=k$, for all $m \in Z$).
[2] Consider the equation

$$
u_{t}=b_{11} u_{x x}+2 b_{12} u_{x y}+b_{22} u_{y y} .
$$

(a) Under what conditions is this a parabolic equation?
(b) Derive a formula for the solution of this equation using the Fourier transform in two spatial dimensions, function of $\hat{u}_{0}\left(\omega_{1}, \omega_{2}\right)$.
[3] Consider the convection-diffusion equation with lower order term,

$$
u_{t}+a u_{x}=b u_{x x}+c u,
$$

with $b>0$ and all constant coefficients, and with initial condition $u(0, x)=$ $u_{0}(x)$, for x real.
(a) Let $y=x-a t$ and set $w(t, y)=u(t, y+a t)$. Find an equation satisfied by w.
(b) Derive a formula for the solution of the equation in u using the Fourier transform.
(c) Show that the (IVP) in u is well-posed (in the sense of the Definition 1.5.2 from the textbook by J. Strikwerda).
[4] Show that the two-dimensional Du Fort-Frankel scheme for the equation $u_{t}=b\left(u_{x x}+u_{y y}\right)+f$ given by

$$
\frac{v_{l, m}^{n+1}-v_{l, m}^{n-1}}{2 k}=b \frac{v_{l+1, m}^{n}+v_{l-1, m}^{n}+v_{l, m+1}^{n}+v_{l, m-1}^{n}-2\left(v_{l, m}^{n+1}+v_{l, m}^{n-1}\right)}{h^{2}}+f_{m}^{n}
$$

where $\triangle x=\triangle y=h, b>0$, is unconditionally stable.
[5] Consider the system of partial differential equations

$$
\begin{cases}u_{t}+u_{x}+v_{x}=0, & u(x, 0)=u_{0}(x), \tag{1}\\ v_{t}+u_{x}-v_{x}=0, & v(x, 0)=v_{0}(x) .\end{cases}
$$

(a) Write the system in matrix form $U_{t}+A U_{x}=\overrightarrow{0}$, with $U(x, t)=$ $\binom{u(x, t)}{v(x, t)}$, and find the matrix A.
(b) Is this a hyperbolic system ? Explain.
(c) Reduce, if possible, the system (1) to a set of independent scalar hyperbolic equations.
(d) Obtain the exact solution of the system (1).
(e) Let $V_{m}^{n} \approx\binom{u\left(x_{m}, t_{n}\right)}{v\left(x_{m}, t_{n}\right)}$. Consider the FTCS scheme applied to the system (1) in matrix form:

$$
\begin{equation*}
\frac{1}{k}\left(V_{m}^{n+1}-V_{m}^{n}\right)+\frac{1}{2 h} A\left(V_{m+1}^{n}-V_{m-1}^{n}\right)=\overrightarrow{0} \tag{2}
\end{equation*}
$$

Find the nonsingular amplification matrix G for this scheme by substituting $V_{m}^{n}=G^{n} e^{i m \theta}$ into the difference equation (2).
(f) Apply the statements below to the particular matrices A and G from (a)-(e) and analyze the stability of the scheme when $\lambda=\frac{k}{h}$ is constant.

- We have:

Assume that A is a diagonalizable matrix (i.e. there is a nonsingular matrix P such that $P A P^{-1}=\Lambda_{A}$ is diagonal). If $G=\Phi(A)$, where $\Phi(A)=$ $c_{0} I+c_{1} A+c_{2} A^{2}$ is a polynomial of A, whith I the identity matrix, and c_{0}, c_{1}, c_{2} constants, then G is also diagonalizable, with the same matrix P.

Moreover, the diagonal matrix Λ_{G} of eigenvalues of G can easily be obtained function of $\Lambda_{A}\left(\right.$ in fact $\left.\Lambda_{G}=\Phi\left(\Lambda_{A}\right)\right)$.

Note 1 . The above statement is true for any polynomial or rational function Φ of A.

Note 2. Assume that A and G are as in the general statement, with A a constant matrix, and G the amplification matrix. Then the von Neumann condition is necessary and sufficient for stability (hint: write $G=P^{-1} \Lambda_{G} P$, $\left\|G^{n}\right\|_{2}=\left\|\left(P^{-1} \Lambda_{G} P\right)^{n}\right\|_{2} \leq\left\|P^{-1}\right\|_{2}\|P\|_{2}\left\|\Lambda_{G}^{n}\right\|_{2}$, and use the general formula $\|M\|_{2}=\rho\left(M^{*} M\right)$, where M is an $n \mathrm{x} n$ matrix and $\rho\left(M^{*} M\right)$ is the spectral radius of $\left.M^{*} M\right)$.

Recall the Von Neumann stability condition: $\forall T>0$, there is $C_{T}>0$ s.t. for $0 \leq n k \leq T$ we have: $\left\|G^{n}\right\| \leq C_{T}$.

