Exercise \#6, page 446:

In the proof of necessary conditions for a local minimizer for non-linear minimization problems with linear inequality constraints (page 440) we needed the following linear algebra result:

Let A be an $m \times n$ matrix, with $m \leq n$ and of rank m (all rows of A are linearly independent). Let $e_{1}=\left[\begin{array}{cccc}1 & 0 & 0 & \ldots\end{array}\right]^{T} \in R^{m}$ be the first vector of the canonical basis. Then there is a vector $p \in R^{n}$ such that $A p=e_{1}$.

Proof. Let v_{1}, \ldots, v_{m} be the m rows of the matrix A. Let

$$
S=\operatorname{Span}\left\{v_{2}, \ldots, v_{m}\right\}
$$

be the linear subspace of R^{n} spanned by the linearly independent vectors $\left\{v_{2}, \ldots, v_{m}\right\}$. We know that R^{n} is an inner product space, and any vector $v \in R^{n}$ can be written as $v=p+q$, with $q \in S$ and $p \in S^{\perp}$ (the orthogonal subspace to S).

Therefore $v_{1}=p+q$, with $q \in S, p \in S^{\perp}$. We have that $p \neq \overrightarrow{0}$ (indeed, if by contradiction $p=\overrightarrow{0}$, then $v_{1}=q \in S$, impossible, because v_{1} is not a linear combination of $\left.v_{2}, \ldots, v_{m}\right)$.

We also have $v_{1} \cdot p=(p+q) \cdot p=p \cdot p+q \cdot p=p \cdot p$. Let $\hat{p}=\frac{p}{\|p\|^{2}}$, with $\|p\|^{2}=p \cdot p$. Then $v_{1} \cdot \hat{p}=v_{1} \cdot \frac{p}{\|p\|^{2}}=1$ and $v_{2} \cdot \hat{p}=0, \ldots, v_{m} \cdot \hat{p}=0$.

This implies that $A \hat{p}=e_{1}$.

