Homework \# 6, due on Friday, February 24

[1] (a) Show in discrete variables that

$$
\mathcal{F}\left(f(x, y) e^{2 \pi i\left(u_{0} \frac{x}{M}+v_{0} \frac{y}{N}\right)}\right)=F\left(u-u_{0}, v-v_{0}\right),
$$

where $F=\mathcal{F}(f)$.
(b) Using (a), deduce the formula used in shifting the center of the transform by multiplication with $(-1)^{x+y}$, when $u_{0}=M / 2$ and $v_{0}=N / 2$, with M and N even positive integers.
[2]
(a) Show the translation property

$$
\mathcal{F}\left(f\left(x-x_{0}, y-y_{0}\right)\right)=F(u, v) e^{-2 \pi i\left(x_{0} u / M+y_{0} v / N\right)},
$$

where $F(u, v)=\mathcal{F}(f(x, y))$.
(b) Consider the linear difference operator $g(x, y)=f(x+1, y)-f(x, y)$. Obtain the filter transfer function, $H(u, v)$, for performing the equivalent process in the frequency domain.
[3] Prove the validity of the discrete convolution theorem in one variable (you may need to use the translation properties).
[4] Assume that $f(x)$ is given by the discrete IFT formula in one dimension. Show the periodicity property $f(x)=f(x+k M)$, where k is an integer.
[5] (a) Implement the Gaussian lowpass filter in Eq. (4.3-8), using a radius $D_{0}=25$, and apply the algorithm to Fig4.11(a).
(b) Highpass the input image used in (a), using a highpass Gaussian filter of radius $D_{0}=25$ (see eq. (4.4-4)).

