Midterm Solutions

Paul Young

October 31, 2005

1. In $M_{2 \times 3}(\mathbb{F})$, prove that the set

$$
\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right)\right\}
$$

is linearly dependent.
Solution:
$(1) \cdot\left(\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)+(1) \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 0 & 0\end{array}\right)+(1) \cdot\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right)+(-1) \cdot\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right)+(-1) \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right)=0$
clearly proves linear dependence.
2. Let $T: V^{n} \rightarrow W^{m}$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W.
(i) Prove that if $n>m$, then T cannot be injective.
(ii) Prove that if $n<m$, then T cannot be surjective.

Solution: This was a homework problem. I will approach this problem differently from the way I did in the homework.
(i) Suppose that $n>m$. Then by the Dimension Formula,

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=n>m
$$

Subtracting $\operatorname{rank}(T)$ on both sides we get

$$
\operatorname{nullity}(T)>m-\operatorname{rank}(T)
$$

Since $R(T)$ is always a subspace of W, it follows that $\operatorname{rank}(T) \leq \operatorname{dim}(W)=m$. Therefore $\operatorname{nullity}(T)>0$ and hence $N(T)$ is a nontrivial subspace of V, i.e. $N(T) \neq\{0\}$. This completes the proof.
(ii) Suppose that $n<m$. Then by the Dimension Formula,

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=n<m
$$

Subtracting $\operatorname{rank}(T)$ on both sides we get

$$
\operatorname{nullity}(T)<m-\operatorname{rank}(T)
$$

Since $\operatorname{nullity}(T) \geq 0$, it follows that $m-\operatorname{rank}(T)>0$, or $m>\operatorname{rank}(T)$. As $R(T)$ is a subspace of W, by considering their respective dimensions, we get that $R(T) \subsetneq W$. This completes the proof.
3. Let V and W be finite dimensional vector spaces with ordered basis $\beta=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, \ldots, w_{m}\right\}$ respectively. Define the linear transformation $T_{i j}: V \rightarrow W$ such that $T_{i j}\left(v_{k}\right)=\delta_{k j} w_{i}$ where $\delta_{k j}$ is the Kronecker deltafunction. Prove that $\left\{T_{i j}: 1 \leq i \leq m \quad 1 \leq j \leq n\right\}$ is a basis of $\mathcal{L}(V, W)$.

Solution: Since we know that $\operatorname{dim}(\mathcal{L}(V, W))=m n$, it suffices to prove that the set is linearly independent (since there are precisely $m n$ elements in this set.)

Let $a_{1}^{1}, a_{1}^{2}, \ldots, a_{1}^{m}, a_{2}^{1}, a_{2}^{2}, \ldots, a_{2}^{m}, \ldots, a_{n}^{1}, a_{n}^{2}, \ldots a_{n}^{m}$ be scalars such that

$$
\sum_{i, j} a_{j}^{i} T_{i j}=0=T_{0}
$$

where this sum is over all appropriate i 's and j 's. Let us evaluate both sides with the vector v_{k}, where k is some integer such that $1 \leq k \leq n$. Then the LHS equals

$$
\sum_{i, j} a_{j}^{i} T_{i j}\left(v_{k}\right)=\sum_{i, j} a_{j}^{i} \delta_{k j} w_{i} \stackrel{*}{=} \sum_{i} a_{k}^{i} w_{i},
$$

where $*$ follows from the fact that the middle sum over j 's are all zeros except precisely when $j=k$. This is because of the Kronecker delta function. Now evaluating v_{k} on the RHS gives us 0 . Therefore

$$
\sum_{i} a_{k}^{i} w_{i}=0
$$

But since γ is a linearly independent set, it follows that $a_{k}^{1}=a_{k}^{2}=\cdots=a_{k}^{m}=0$. Now since k was arbitrary, we conclude $a_{j}^{i}=0$ for all i 's and j 's. This completes our proof.
4. let V be a vector space, $T: V \rightarrow V$ be a linear transformation. Prove that $T^{2}=0$ if and only if $R(T) \subseteq N(T)$.

Solution: $T^{2}=0$ if and only if for all $v \in V, 0=T^{2}(v)=T(T(v))$ if and only if for all $v \in V, T(v) \in N(T)$ if and only if $R(T) \subseteq N(T)$. This completes our proof.
5. For any finite dimensional vector space V of dimension n with an ordered basis β, show that the coordinate map $\phi_{\beta}: V \rightarrow \mathbb{R}^{n}$ defined by $\phi_{\beta}(x)=[x]_{\beta}$ is
a linear transformation which is both one-to-one and onto.

Solution:

Linearity: Let $x, y \in V$ and c be any scalar. Then we can write $x=\sum_{i} a_{i} \beta_{i}$ and $y=\sum_{l} b_{l} \beta_{l}$ where a_{i}, b_{l} are scalars and $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. Then

$$
\begin{aligned}
\phi_{\beta}(c x+y) & =\phi_{\beta}\left(\sum_{i}\left(c a_{i}+b_{i}\right) \beta_{i}\right) \\
& =\left(\begin{array}{c}
c a_{1}+b_{1} \\
\vdots \\
c a_{n}+b_{n}
\end{array}\right) \\
& =c\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)+\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \\
& =c \phi_{\beta}(x)+\phi_{\beta}(y) .
\end{aligned}
$$

Therefore ϕ_{β} is linear.
One-to-one: Let $x \in V$ be such that $\phi_{\beta}(x)=0$. Furthermore, let us write $x=\sum_{i} a_{i} \beta_{i}$. We need to prove that $x=0$. So

$$
\phi_{\beta}(x)=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

and hence $a_{i}=0$ for all i.
Onto: is immediate. Let

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

be any arbitrary vector in \mathbb{R}^{n}. Then define $x=\sum_{i} a_{i} \beta_{i}$. Then clearly

$$
\phi_{\beta}(x)=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) .
$$

This completes our proof.

