Midterm Solutions

Paul Young

October 31, 2005

1. In $M_{2\times 3}(\mathbb{F})$, prove that the set

$$\left\{ \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} \right) \right\}$$

is linearly dependent.

Solution:

$$(1) \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + (1) \cdot \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} + (1) \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} = 0$$

clearly proves linear dependence.

2. Let $T: V^n \to W^m$ be a linear transformation from an *n*-dimensional vector space V to an *m*-dimensional vector space W.

(i) Prove that if n > m, then T cannot be injective.

(ii) Prove that if n < m, then T cannot be surjective.

Solution: This was a homework problem. I will approach this problem differently from the way I did in the homework.

(i) Suppose that n > m. Then by the Dimension Formula,

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = n > m.$$

Subtracting rank(T) on both sides we get

$$\operatorname{nullity}(T) > m - \operatorname{rank}(T).$$

Since R(T) is always a subspace of W, it follows that $\operatorname{rank}(T) \leq \dim(W) = m$. Therefore nullity(T) > 0 and hence N(T) is a nontrivial subspace of V, i.e. $N(T) \neq \{0\}$. This completes the proof.

(ii) Suppose that n < m. Then by the Dimension Formula,

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = n < m$$

Subtracting $\operatorname{rank}(T)$ on both sides we get

$$\operatorname{nullity}(T) < m - \operatorname{rank}(T)$$

Since nullity $(T) \ge 0$, it follows that $m-\operatorname{rank}(T) > 0$, or $m > \operatorname{rank}(T)$. As R(T) is a subspace of W, by considering their respective dimensions, we get that $R(T) \subsetneq W$. This completes the proof.

3. Let V and W be finite dimensional vector spaces with ordered basis $\beta = \{v_1, ..., v_n\}$ and $\gamma = \{w_1, ..., w_m\}$ respectively. Define the linear transformation $T_{ij} : V \to W$ such that $T_{ij}(v_k) = \delta_{kj}w_i$ where δ_{kj} is the Kronecker delta-function. Prove that $\{T_{ij} : 1 \le i \le m \ 1 \le j \le n\}$ is a basis of $\mathcal{L}(V, W)$.

Solution: Since we know that $\dim(\mathcal{L}(V, W)) = mn$, it suffices to prove that the set is linearly independent (since there are precisely mn elements in this set.)

Let $a_1^1, a_1^2, ..., a_1^m, a_2^1, a_2^2, ..., a_2^m, ..., a_n^1, a_n^2, ..., a_n^m$ be scalars such that $\sum_{i,j} a_j^i T_{ij} = 0 = T_0$

where this sum is over all appropriate *i*'s and *j*'s. Let us evaluate both sides with the vector v_k , where k is some integer such that $1 \le k \le n$. Then the LHS equals

$$\sum_{i,j} a_j^i T_{ij}(v_k) = \sum_{i,j} a_j^i \delta_{kj} w_i \stackrel{*}{=} \sum_i a_k^i w_i,$$

where * follows from the fact that the middle sum over j's are all zeros except precisely when j = k. This is because of the Kronecker delta function. Now evaluating v_k on the RHS gives us 0. Therefore

$$\sum_{i} a_k^i w_i = 0$$

But since γ is a linearly independent set, it follows that $a_k^1 = a_k^2 = \cdots = a_k^m = 0$. Now since k was arbitrary, we conclude $a_j^i = 0$ for all i's and j's. This completes our proof.

4. let V be a vector space, $T: V \to V$ be a linear transformation. Prove that $T^2 = 0$ if and only if $R(T) \subseteq N(T)$.

Solution: $T^2 = 0$ if and only if for all $v \in V$, $0 = T^2(v) = T(T(v))$ if and only if for all $v \in V$, $T(v) \in N(T)$ if and only if $R(T) \subseteq N(T)$. This completes our proof.

5. For any finite dimensional vector space V of dimension n with an ordered basis β , show that the coordinate map $\phi_{\beta}: V \to \mathbb{R}^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}$ is

a linear transformation which is both one-to-one and onto.

Solution:

Linearity: Let $x, y \in V$ and c be any scalar. Then we can write $x = \sum_i a_i \beta_i$ and $y = \sum_l b_l \beta_l$ where a_i, b_l are scalars and $\beta = \{\beta_1, ..., \beta_n\}$. Then

$$\phi_{\beta}(cx+y) = \phi_{\beta}\left(\sum_{i}(ca_{i}+b_{i})\beta_{i}\right)$$
$$= \begin{pmatrix} ca_{1}+b_{1}\\ \vdots\\ ca_{n}+b_{n} \end{pmatrix}$$
$$= c\begin{pmatrix} a_{1}\\ \vdots\\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1}\\ \vdots\\ b_{n} \end{pmatrix}$$
$$= c\phi_{\beta}(x) + \phi_{\beta}(y).$$

Therefore ϕ_{β} is linear.

<u>One-to-one</u>: Let $x \in V$ be such that $\phi_{\beta}(x) = 0$. Furthermore, let us write $x = \sum_{i} a_{i}\beta_{i}$. We need to prove that x = 0. So

$$\phi_{\beta}(x) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$$

and hence $a_i = 0$ for all i.

Onto: is immediate. Let

$$\left(\begin{array}{c}a_1\\\vdots\\a_n\end{array}\right)$$

be any arbitrary vector in \mathbb{R}^n . Then define $x = \sum_i a_i \beta_i$. Then clearly

$$\phi_{\beta}(x) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

This completes our proof.