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ABSTRACT OF THE DISSERTATION

A Material Point Method for Complex Fluids

by

Daniel Ram
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Joseph M. Teran, Chair

We present a novel Material Point Method for simulating complex materials. The

method achieves plasticity effects via the temporal evolution of the left elastic Cauchy-

Green strain. We recast the upper-convected derivative of the strain in the Oldroyd-B

constitutive model as a plastic flow and are able to simulate elastic and viscoelastic

effects. Our model provides a volume-preserving rate-based description of plasticity

that does not require singular value decompositions. Our semi-implicit discretization

allows for high-resolution simulations. We also present novel discretizations of the tem-

poral update of the left elastic Cauchy-Green strain for several constitutive models that

preserve symmetry and positive-definiteness of the strain for use in the Material Point

Method. A novel modification to a constitutive model is also presented that models

material softening under plastic compression.
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CHAPTER 1

Introduction

Simulating complex materials is challenging because of the wide range of behaviors

exhibited and the nonlinear governing equations. These materials may display elastic

effects, such as resistance to deformation, but can also undergo permanent deforma-

tion. Lagrangian methods typically resolve elastic effects well by storing deformation

information on a mesh. On the other hand, Eulerian methods perform stress-based com-

putations on a background grid, and can resolve large topology change and permanent

deformation well.

The Material Point Method is a hybrid method that stores deformation information on

particles and performs stress-based computations on the grid. Because of this, it is

able to resolve elastic effects, large topology change, and self-collision. Wide-ranging

plasticity effects are achieved by tracking strain on particles.

1.1 Contributions

This dissertation details a novel Material Point Method for simulating non-Newtonian

materials, which was originally developed in [Ram et al., 2015]. The key contributions

of this method are:

● A volume-preserving rate-based description of plasticity

1



● Recasting parts of the traditional Oldroyd-B viscoelasticity model as a

plastic flow rate

● Semi-implicit discretization that allows for high resolution simulations

● A plasticity model that does not require the use of singular value decomposition

Furthermore, this dissertation proposes novel discretizations of commonly used plastic

flows that preserve important physical properties:

● Simple first-order discretizations of Oldroyd-B and Herschel-Bulkley-like plastic

flows that preserve positive-definiteness and symmetry of the left elastic Cauchy

Green strain

The dissertation also provides a novel modification to an established constitutive model

to model material softening under plastic compression. This may be used in conjunction

with a model for materials that soften under plastic extension to convincingly simulate

a variety of materials.

1.2 Dissertation Overview

We provide the necessary background in continuum mechanics for the rest of the dis-

sertation in Chapter 2. The governing equations of motion are derived and the relevant

stress tensors for our treatment of elasticity and plasticity are defined. Net working

and hyperelasticity are also discussed in this chapter. Chapter 3 details the Material

Point Method for simulating fully elastic materials. Chapter 4 covers the necessary

plasticity theory for understanding the novel Material Point Method in Chapter 5 that

handles plasticity. Chapter 4 also details novel simple discretizations of plastic flow that

preserve important physical properties of strain, as well a novel modification to an es-

tablished constitutive model that can model material softening. Chapter 6 discusses po-

2



tential extensions of the established results. In that chapter, a high-order discretization

of the left-elastic Cauchy-Green strain that preserves symmetry and positive-definitess

of the strain is presented may potentially be used in a high-order solver for the incom-

pressible Oldroyd-B equations.

The appendix provides a thorough derivation of the energy derivatives necessary for

computing the stress-based grid forces for the method detailed in Chapter 5. In order to

aid implementation, the appendix also provides pseudocode that calculates these energy

derivatives.
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CHAPTER 2

Continuum Mechanics Background

This chapter introduces deformation and the deformation gradient, and details the con-

servation of mass and momentum. These principles will be essential to our treatment

of modeling non-Newtonian fluids. As it is crucial in our treatment of plasticity, net

working and hyperelasticity is explained in detail. Several examples of hyperelastic

constitutive models are provided. Furthermore, a description of the right Cauchy-Green

strain is presented.

2.1 Deformation Gradient and the Material Derivative

Let Ω,Ωt ⊂ R3. We assume that there is an invertible and sufficiently smooth defor-

mation map φ ∶ (Ω,R) → Ωt ∶= φ(Ω, t) = {y∣∃X ∈ Ω y = φ(X, t)} that describes the

deformation of the material. We define the deformation gradient as

F ∶= ∂φ

∂X
.

Note that given a point X ∈ Ω, φ(Y, t) = φ(X, t) +F (X, t)(Y −X) is a linearization

of φ for all Y in a small neighborhood of X.

We call Ω0 = Ω the reference configuration and Ωt for t > 0 the material configuration.

For points in the material configuration Ωt, we use the shorthand x ∶= φ(X, t). Any

function Q defined on the reference configuration has a corresponding push-forward in

4



Figure 2.1: The deformation map φ. Here, Ω is the reference configuration and Ωt =
φ(Ω, t). X is a point in the reference configuration that gets mapped to x = φ(X, t) in
the material configuration. φ−1 is the deformation defined by φ−1(x, t) = X such that
φ(X, t) = x.

the material configuration, defined as

q(x, t) ∶=Q(φ−1(x, t), t)

for any x ∈ Ωt. This implies that q(φ(X, t), t) = Q(X, t) for all X ∈ Ω0, t ∈ R. We

use the convention that functions in the reference configuration are denoted with capital

letters while functions in the material configuration are denoted with lowercase letters.

Given a deformation φ, a material Q with push-forward q, and defining

V(X, t) ∶= ∂φ
∂t

(X, t)

5



Figure 2.2: The deformation gradient F . At any point X ∈ Ω,F (X, t) is a first-
order approximation to the deformation map φ for all Y close to X. We may write
F = ∂φ

∂X = ∂x
∂X . Here, a small neighborhood of X with radius dX is transformed.

with corresponding push-forward v(φ(X, t), t) ∶=V(X, t), note that ∂t(Q) ≠ ∂t(q) ∶

∂t(q) =
∂q

∂x
(φ(X, t), t)∂φ

∂t
(X, t) + ∂q

∂t
(φ(X, t), t)

= ∂q
∂x

(x, t)V(X, t) + ∂q
∂t

(φ(X, t), t)

= ∂q
∂x

(x, t)v(x, t) + ∂q
∂t

(x, t).

If we define the acceleration as

A(X, t) ∶= ∂V
∂t

(X, t)

with corresponding push-forward a(x, t) ∶= A(X, t), we immediately observe that

a(x, t) ≠ ∂v
∂t (x, t).

We define the material derivative of a function defined in the material configuration as

Dq

Dt
∶= ∂q
∂x

(x, t)v(x, t) + ∂q
∂t

(x, t).

Note that the above argument yields that if q is the push-forward of Q, then Dq
Dt is the

6



push-forward of ∂q
∂t . In particular, Dv

Dt (x, t) =
∂V
∂t (X, t).

2.2 Conservation of Mass

2.2.1 Lagrangian Form

The governing equations for motion are derived from the conservation of mass and

momentum. We assume that a material is equipped with a mass density function m

such that, assuming A ⊂ Ω,

mass(φ(A, t)) = ∫
φ(A,t)

m(x, t)dx.

Letting M denote the pull-back of m, f denote the push-forward of the deformation

gradient F , and J = det(F ) we get that

mass(φ(A, t)) = ∫
φ(A,t)

m(x, t)dx

= ∫
φ−1(φ(A,t))

m(φ(X, t), t)det( ∂φ
∂X

(X, t))dX

= ∫
A
M(X, t)det( ∂φ

∂X
(X, t))dX

= ∫
A
M(X, t)J(X, t)dX

The conservation of mass requires that for all A ⊂ Ω and t ∈ R, mass(φ(A, t)) =

mass(A). Rewriting mass(A) =mass(φ(A,0)), we get

mass(φ(A, t)) =mass(φ(A,0))

∫
A
M(X, t)J(X, t)dX = ∫

A
M(X,0)J(X,0)dX

As J(X,0) = 1 (since φ(X,0) =X), A is an arbitrary subset of Ω, and the above must

7



hold for all A, we get that the conservation of mass holds if and only if

M(X, t)J(X, t) =M(X,0)

for all t,X.

d(M(X, t)J(X, t))
dt

= 0 Conservation of Mass, Lagrangian form

2.2.2 Eulerian Form

Using the material derivative identities above and letting j denote the push-forward of

J , we can also deduce that conservation of mass holds if and only if D(m(x,t)j(x,t))
Dt = 0.

Observe that

∂F

∂t
=
∂ ∂φ
∂X

∂t

=
∂ ∂φ∂t
∂X

= ∂V
∂X

= ∂X(v(φ(X, t), t))

= ∂v
∂x

∂φ

∂X

= ∂v
∂x
F .

Unraveling the Eulerian form of the conservation of mass and using the additional

identity that
∂J(X, t)
∂F

= J(X, t)F (X, t)−T ,

we get

0 = D(m(x, t)j(x, t))
Dt

8



= Dm(x, t)
Dt

j(x, t) +m(x, t)Dj(x, t)
Dt

= Dm(x, t)
Dt

J(X, t) +m(x, t)∂J(X, t)
∂t

= Dm(x, t)
Dt

J(X, t) +m(x, t)∂J(X, t)
∂F

∶ ∂F (X, t)
∂t

= Dm(x, t)
Dt

J(X, t) +m(x, t)J(X, t)F (X, t)−T ∶ ∂F (X, t)
∂t

= Dm(x, t)
Dt

J(X, t) +m(x, t)J(X, t) tr(F (X, t)−TF (X, t)T ∂v
∂x

(x, t)T)

= Dm(x, t)
Dt

J(X, t) +m(x, t)J(X, t)∇ ⋅ v(x, t)

In our treatment, we assume that J(X, t) > 0 for all X and t. This simplifies the above

equation to

Dm(x, t)
Dt

+m(x, t)∇ ⋅ v(x, t) = 0 Conservation of Mass, Eulerian form

2.3 Conservation of Linear Momentum

2.3.1 Eulerian Form

The conservation of momentum requires that the rate of change in momentum in the

material is equal to the net forces on the material. We assume the existence of a

Cauchy stress σ ∶ (Ω,R) → Rn×n[Gonzalez and Stuart, 2008], a spatially-varying ten-

sor that computes the force per unit area that the positive side of the material exerts

upon the negative side of the material (as determined by a unit vector n) at x ∈ Ω

and time t. Given a subset of the material At ⊂ Ωt, this force can be written as

∫∂At
σ(x, t)n(x, t)ds(x). We also assume the existence of body forces on the ma-

terial, which we denote by g(x, t). Hence, the conservation of momentum in Eulerian

9



form is

d

dt ∫At

m(x, t)v(x, t)dx = ∫
∂At

σ(x, t)n(x, t)ds(x) + ∫
At

g(x, t)dx

We can simplify the left-hand side:

d

dt ∫At

m(x, t)v(x, t)dx

= d

dt ∫φ−1(φ(A,t))
m(φ(X, t), t)v(φ(X, t), t)det(F (X, t))dX

= d

dt ∫A
M(X, t)J(X, t)V(X, t)dX

= d

dt ∫A
M(X,0)J(X,0)V(X, t)dX

= ∫
A
M(X,0)A(X, t)dX

= ∫
A
M(X, t)J(X, t)A(X, t)dX

= ∫
At

m(x, t)a(x, t)dx

Using the divergence theorem on ∫∂At
σ(x, t)n(x, t)ds(x), we get that

∫
At

m(x, t)a(x, t)dx = ∫
At

∇ ⋅ σ(x, t)dx + ∫
At

g(x, t)dx

Since this must hold for all At ⊂ Ωt, we get

m(x, t)a(x, t) = ∇ ⋅ σ(x, t) + g(x, t) Conservation of Momentum, Eulerian form

2.3.2 Lagrangian Form

Using a change of surface variables, we get [Gonzalez and Stuart, 2008]

∫
∂At

σ(x, t)n(x, t)ds(x) = ∫
∂A
J(X, t)σ(φ(X, t), t)F (X, t)−TN(X)ds(X).
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We define the first Piola-Kirchhoff stress as

P (X, t) ∶= J(X, t)σ(φ(X, t), t)F (X, t)−T ,

so that ∫∂At
σ(x, t)n(x, t)ds(x) = ∫∂AP (X, t)N(X)ds(X). Using the third to last

equality in the simplification above and the divergence theorem, we have

∫
A
M(X,0)J(X,0)A(X, t)dX = ∫

∂At

σ(x, t)n(x, t)ds(x) + ∫
At

g(x, t)dx

= ∫
∂A
P (X, t)N(X)ds(X) + ∫

A
G(X, t)J(X, t)dx

= ∫
A
∇ ⋅P (X, t) + ∫

A
G(X, t)J(X, t)dX.

Since this holds for all A ⊂ Ω, we get

Conservation of Momentum, Lagrangian form

M(X,0)A(X, t) = ∇ ⋅P (X, t) + J(X, t)G(X, t)

2.4 Net Working

2.4.1 Lagrangian Form

This section closely follows the treatment in [Gonzalez and Stuart, 2008]. Define the

kinetic energy as

KE(At) =
1

2 ∫At

m(x, t)∥v(x, t)∥2dx

and the power as

P (At) = ∫
At

m(x, t)g(x, t) ⋅ v(x, t)dx + ∫
∂At

σ(x, t)n(x, t) ⋅ v(x, t)ds(x).

11



To simplify expressions in this treatment, we assume g (as in [Gonzalez and Stuart,

2008]) is a force per unit mass so that the conservation of momentum becomes

M(X,0)A(X, t) = ∇ ⋅P (X, t) +M(X,0)G(X, t)

after applying the conservation of mass, M(X, t)J(X, t) =M(X,0).

Using another application of the conservation of mass in Lagrangian form and moving

to the reference configuration, we get

KE(At) =
1

2 ∫At

m(x, t)∥v(x, t)∥2dx

= 1

2 ∫φ(A,t)
M(φ−1(x, t), t)∥V(φ−1(x, t))∥2dx

= 1

2 ∫φ−1(φ(A,t),t)
M(X, t)∥V(X, t)∥2J(X, t)dX

= 1

2 ∫A
M(X,0)∥V(X, t)∥2dX.

Differentiating with respect to time and using the conservation of momentum gives

∂tKE(At) =
1

2 ∫A
M(X,0)∂t∥V(X, t)∥2dX

= 1

2 ∫A
M(X,0)2V(X, t) ⋅A(X, t)dX

= ∫
A
(∇ ⋅P (X, t) +M(X,0)G(X, t)) ⋅V(X, t)dX.

Define σm as the pull-back of σ. Evaluating P (At) with quantities in the reference

configuration is done by

P (At) = ∫
At

m(x, t)g(x, t) ⋅ v(x, t)dx + ∫
∂At

σ(x, t)n(x, t) ⋅ v(x, t)ds(x)

= ∫
φ(A,t)

M(φ−1(x, t), t)G(φ−1(x, t), t) ⋅V(φ−1(x, t), t)dx

+ ∫
∂φ(A,t)

σTm(φ−1(x, t), t)v(φ−1(x, t), t) ⋅ n(φ−1(x, t), t)ds(x)
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= ∫
φ−1(φ(A,t),t)

M(X, t)G(X, t) ⋅V(X, t)J(X, t)dX

+ ∫
∂φ−1(φ(A,t),t)

J(X, t)σTm(X, t)V(X, t) ⋅F (X, t)−TN(X, t)ds(X)

= ∫
A
M(X,0)G(X, t) ⋅V(X, t)dX+

+ ∫
∂A
J(X, t)V(X, t) ⋅ σm(X, t)F (X, t)−TN(X, t)ds(X)

= ∫
A
M(X,0)G(X, t) ⋅V(X, t)dX + ∫

∂A
V(X, t) ⋅P (X, t)N(X, t)ds(X)

= ∫
A
M(X,0)G(X, t) ⋅V(X, t)dX + ∫

∂A
P (X, t)TV(X, t) ⋅N(X, t)ds(X)

= ∫
A
M(X,0)G(X, t) ⋅V(X, t) +∇ ⋅ (P (X, t)TV(X, t))dX

= ∫
A
(M(X,0)G(X, t) +∇ ⋅P (X, t)) ⋅V(X, t) +P (X, t) ∶ ∂V(X, t)

∂X
dX.

If we plug in our expression for ∂tKE(At) above and use the identity that

∂V(X, t)
∂X

= ∂F (X, t)
∂t

we get

P (At) = ∂tKE(At) + ∫
A
P ∶ ∂V(X, t)

∂X
dX

= ∂tKE(At) + ∫
A
P ∶ ∂F (X, t)

∂t
dX.

This relates the kinetic energy in At with the power of external forces on At. Net

working is defined as

W (At) ∶= P (At) − ∂tKE(At),

from which immediately deduce

W (At) = ∫
A
P ∶ ∂F (X, t)

∂t
dX Net Working, Lagrangian Form
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2.4.2 Other identities

The quantity P ∶ ∂F (X,t)∂t will be important in our development of plasticity. It is called

the stress power and measures the power done by internal stresses.

Defining the Kirchhoff stress tensor

τ(X, t) = J(X, t)σm(X, t),

we get [Bonet and Wood, 2008]

W (At) = ∫
A
P ∶ ∂F (X, t)

∂t
dX

= ∫
A
J(X, t)σm(X, t)F (X, t)−T ∶ ∂F (X, t)

∂t
dX

= ∫
A

tr(J(X, t)F (X, t)−1σTm(X, t)∂F (X, t)
∂t

)dX

= ∫
A
J(X, t)σm(X, t) ∶ (∂F (X, t)

∂t
F (X, t)−1)dX

= ∫
A
J(X, t)σm(X, t) ∶ ∂v(x, t)

∂x
dX

= ∫
A
τ(X, t) ∶ ∂v(x, t)

∂x
dX.

This shows that τ ∶ ∂v(x,t)
dx also expresses stress power with respect to the reference

configuration. As in [Bonet and Wood, 2008], we will use this particular expression in

our plasticity development.

2.4.3 Eulerian Form

From above, we have

W (At) = ∫
A
τ(X, t) ∶ ∂v(x, t)

dx
dX
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= ∫
φ−1(φ(A,t),t)

J(X, t)σ(φ(X, t)) ∶ ∂v(x, t)
∂x

dX

= ∫
At

σ(x, t) ∶ ∂v(x, t)
∂x

dx.

W (At) = ∫
At

σ(x, t) ∶ ∂v(x, t)
dx

dx Net Working, Eulerian Form

2.5 Hyperelasticity

2.5.1 Definition

This section closely follows the treatment in [Gonzalez and Stuart, 2008]. From [Gon-

zalez and Stuart, 2008], a material that is hyperelastic must satisfy:

1. T(X, t) = T∗(F (X, t)) for all stresses T ∈ {σm,P ,F −1P }. This means that

the stress tensors must be functions of F only.

2. There is an energy density Ψ such that P ∗(F (X, t)) = ∂Ψ(F (X,t),t)
∂F .

3. ∂Ψ
∂F F

T = F ( ∂Ψ
∂F

)T for all F with J > 0.

Note that

P (X, t) ∶ ∂F (X, t)
∂t

= P ∗(F (X, t)) ∶ ∂F (X, t)
∂t

= ∂Ψ(F (X, t), t)
∂F

∶ ∂F (X, t)
∂t

= ∂tΨ(F (X, t)).

15



2.5.2 Net Working and Strain Energy

As in [Gonzalez and Stuart, 2008], define the strain energy as

E(At) ∶= ∫
A

Ψ(F (X, t))dX.

From the Lagrangian form of net working, we have that

W (At) = ∫
A
P ∶ ∂F (X, t)

∂t
dX

= ∫
A
∂tΨ(F (X, t))dX

= ∂

∂t ∫A
Ψ(F (X, t))dX

= ∂

∂t
E(At).

Recalling that W (At) = P (At) − ∂tKE(At), we immediately see that

W (At) =
∂

∂t
E(At) Net Working for Hyperelastic Materials

and

∂

∂t
(E(At) +KE(At)) = P (At) Energy Balance for Hyperelastic Materials

2.5.3 Hyperelastic Constitutive Models

2.5.3.1 Linear Elasticity

The linear elasticity constitutive model defines the elastic response via

P (X, t) = 2µε + λ tr(ε)I,
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[Zhu et al., 2010] where

ε(X, t) = 1

2
(F (X, t) +F (X, t)T ) − I.

Here, µ and λ are Lamé parameters.

2.5.4 Neo-Hookean

The Neo-Hooken model is defined via the energy density [Stomakhin et al., 2012]

ψ(F ) = µ
2
(tr(FF T ) − 3) − µ ln(det(F )) + λ

2
(det(F ))2.

2.6 Cauchy-Green strain

2.6.1 Definitions

Define the right Cauchy-Green strain as

C(X, t) = F (X, t)TF (X, t)

and the left Cauchy green strain as

B(X, t) = F (X, t)F (X, t)T .

Note that since C is symmetric there exists an orthogonal matrix Q and a diagonal

matrix Λ such that C =QTΛQ. Furthermore, we claim that Λii is positive. To see this,

let wi =QTei and as wi ≠ 0 and C is positive-definite, we get

wT
i Cwi > 0⇒
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wT
i Q

TΛQwi > 0⇒

eTi QQTΛQQTei > 0⇒

eTi Λei > 0⇒

Λii > 0.

Similarly, all of the eigenvalues of B are positive.

2.6.2 Significance of the right Cauchy-Green strain

This section closely follows the treatment in [Gonzalez and Stuart, 2008]. Define the

function g ∶ (R3,R3) → R by g(a,b) = Fa ⋅ Fb, and the C norm on vectors by

∥v∥C =
√
g(v,v). Note that

∥v∥C =
√
g(v,v)

=
√
Fv ⋅Fv

=
√
v ⋅Cv

Let X ∈ Ω. Then

φ(X + dX) = φ(X) +F (X)dX +O(∥dX∥2)⇒

φ(X + dX) − φ(X) = F (X)dX +O(∥dX∥2)

Define dx = φ(X + dX) − φ(X). Then

∥dx∥2 = dx ⋅ dx

= F (X)dX ⋅F (X)dX +O(∥dX∥3)
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so that ∥dx∥ =
√
F (X)dX ⋅F (X)dX +O(∥dX∥3). Fix a unit vector e and set dX =

ae. Then ∥dx∥ =
√
F (X)ae ⋅F (X)ae +O(a3), and

∥dx∥
∥dX∥

=
√
F (X)ae ⋅F (X)ae +O(a3)

√
ae ⋅ ae

=
a
√
F (X)e ⋅F (X)e +O(a)

a

=
√
F (X)e ⋅F (X)e as a→ 0

= ∥e∥C(X)

This suggests that for a vector e, ∥e∥C(X) quantifies the stretch in the direction of e

under the deformation φ.

Consider two vectors with the same magnitude X ∈ Ω, dX1, dX2, in the directions

of unit vectors e1,e2 so that we may write dX1 = ae1, dX2 = a = e2. Set dx1 =

φ(X + dX1) − φ(X), dx2 = φ(X + dX2) − φ(X). Then the angle α between them is

α = cos−1 ( dx1⋅dx2

∥dx1∥∥dx2∥
) From above, we know that dx1 = F (X)dX1 +O(∥dX1∥2) and

dx2 = F (X)dX2 +O(∥dX2∥2) so that

dx1 ⋅ dx2 = (F (X)ae1 +O(a2)) ⋅ (F (X)ae2 +O(a2))

= a2F (X)e1 ⋅F (X)e2 +O(a3).

Also note that from above,

∥dx1∥ =
√
F (X)ae1 ⋅F (X)ae1 +O(a3)

= a
√
F (X)e1 ⋅F (X)e1 +O(a)

∥dx2∥ =
√
F (X)ae2 ⋅F (X)ae2 +O(a3)

= a
√
F (X)e2 ⋅F (X)e2 +O(a)
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Then,

α = cos−1 ( dx1 ⋅ dx2

∥dx1∥∥dx2∥
)

= cos−1
⎛
⎝

a2F (X)e1 ⋅F (X)e2 +O(a3)
a2

√
F (X)e1 ⋅F (X)e1 +O(a)

√
F (X)e2 ⋅F (X)e2 +O(a)

⎞
⎠

= cos−1 (F (X)e1 ⋅F (X)e2

∥e1∥C(X)∥e2∥C(X)
) as a→ 0

= cos−1 ( g(e1,e2)
∥e1∥C(X)∥e2∥C(X)

)

This suggests that for two vectors e1,e2, cos−1 ( g(e1,e2)

∥e1∥C(X)∥e2∥C(X)
) is the angle between

their images under the deformation φ.

2.6.3 Entries of the right Cauchy-Green strain

This section closely follows the treatment in [Gonzalez and Stuart, 2008].

Note that

Cii = ei ⋅Cei = ∥ei∥2
C,

so the diagonal entries of C are the squares of stretches of the standard basis under φ.

Define β as the difference between the angle between two vectors u1 and u2 and α. We

call β the shear between these vectors under the deformation map φ, which quantifies

how much the original angle changes under φ. Note that βei,ej = π
2 for i ≠ j. Then, for

i ≠ j,

Cij = ei ⋅Cej

= g(ei,ej)

= cos(αui,uj
)∥ui∥∥uj∥

= cos(π
2
− βui,uj

)∥ui∥∥uj∥
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= sin(βu1,uj
)∥ui∥∥uj∥

This means that the off-diagonal entries of C quantify the shear angles between the

basis vectors.

2.6.4 Left Cauchy-Green strain

The left Cauchy-Green strain B ∶= FF T plays a fundamental role in our treatment of

plasticity. Relevant properties are detailed in Chapter 4.
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CHAPTER 3

The Material Point Method

The Material Point Method is a hybrid Lagrangian-Eulerian method for simulating flu-

ids. The method is Lagrangian in the sense that it that tracks positions, velocities,

masses, and deformation information on Lagrangian particles. Relevant quantities are

transferred to an Eulerian grid where stress-based force computations are performed.

Stress-based forces are derived from the weak form in a manner similar to the finite

element method. These quantities are then transferred back to the Lagrangian particles

to update the system state. This chapter provides a derivation of the forces from the

weak form and the subsequent discretization this yields. An overview which details a

full timestep of the algorithm is presented at the end of this chapter.

3.1 Transfers

Quantities are transferred using standard grid-based interpolation functions. As de-

scribed in [Stomakhin et al., 2013], if we define N as

N(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ∣x∣3 − x2 + 2

3 , ∣x∣ < 1

−1
6 ∣x∣3 + x2 − 2 ∣x∣ + 4

3 , 1 ≤ ∣x∣ < 2

0, otherwise

,
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then our grid interpolation functions are defined as

N∆x
g (x) = N( 1

∆x
(x − i∆x))N( 1

∆x
(y − j∆x))N( 1

∆x
(z − k∆x)),

where (i, j, k) is the grid index for g and x = (x, y, z).

We assume that each particle p at xp occupies a ball B0
p with volume V 0

p = ∫B0
p
dX.

Furthermore, this allows us get the mass of a particle, namely,

mn
p = ∫

Bn
p

m(x, t)dx

Next, we describe how to we get quantities from particles to the grid and from the grid

to the particles.

Mass transfer from particles to grid

Given mp on particles, grid nodes get mass via mg = ∑pmpNg(xp)

We note that this transfer is conservative:

∑
g

mg =∑
g
∑
p

mpNg(xp)

=∑
p

mp∑
g

Ng(xp)

=∑
p

mp,

as ∑gNg(x) = 1 for all x.

Momentum transfer from particles to grid

Given mp,vp on particles, grid nodes get momentum via (mv)g = ∑pmpvpNg(xp)
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This transfer is also conservative:

∑
g

(mv)g =∑
g
∑
p

mpvpNg(xp)

=∑
p

mpvp∑
g

Ng(xp)

=∑mpvp,

as ∑gNg(x) = 1 for all x.

Velocity transfer from particles to grid

Grid velocities are calculated as vg = (mv)g
mg

Once velocities are calculated on the Eulerian grid, quantities are transferred back to

the particles to update particle velocities and the system state. Note that the mass on

particles does not need to get updated.

Velocity transfer from grid to particles

Particle velocities are calculated as vp = ∑g vgNg(xp)

3.2 Weak Form

We use the Eulerian form of the conservation of momentum for our weak form to derive

our forces on the grid. Let w(x, t) ∶ (Ωt,R)→ Ωt be an arbitrary function. Then

∫
Ωt

w(x, t) ⋅m(x, t)a(x, t)dx = ∫
Ωt

w(x, t) ⋅ (∇ ⋅ σ(x, t) + g(x, t))dx

= ∫
Ωt

(∇ ⋅ (σ(x, t)Tw(x, t)) −∇w(x, t) ∶ σ(x, t)

+w(x, t) ⋅ g(x, t))dx
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= ∫
∂Ωt

σ(x, t)Tw(x, t) ⋅ n(x)ds(x)

− ∫
Ωt

∇w(x, t) ∶ σ(x, t)dx

+ ∫
Ωt

w(x, t) ⋅ g(x, t)dx.

3.3 Discretization

Define vn(x) ∶= v(x, tn) and vn+1(x) ∶= v(x, tn+1) for x ∈ Ωtn . Note that, fixing

x ∈ Ωtn

1

∆t
(vn+1(x) − vn(x)) = 1

∆t
(V(φ−1(x, tn), tn+1) −V(φ−1(x, tn), tn))

= 1

∆t
(V(X, tn+1) −V(X, tn))

=A(X, tn) +O(∆t)

= a(x, tn) +O(∆t).

Then the weak form is discretized in time by

1

∆t ∫Ωtn

w(x, tn) ⋅m(x, tn)(vn+1(x) − vn(x))dx =

∫
∂Ωtn

σ(x, tn)Tw(x, tn) ⋅ n(x)ds(x)

− ∫
Ωtn

∇w(x, tn) ∶ σ(x, tn)dx

+ ∫
Ωtn

w(x, tn) ⋅ g(x, tn)dx.

We discretize in space by introducing basis functions on the grid Ng(x) so that

v =∑
g

vgNg,w =∑
g

wgNg.

25



Then

1

∆t ∫Ωtn
∑
g

wgNg ⋅m(x, tn)∑
h

(vn+1
h − vnh)Nhdx =

∫
∂Ωtn

σ(x, tn)T∑
g

wgNg ⋅ n(x)ds(x)

− ∫
Ωtn
∑
g

wg∇Ng ∶ σ(x, tn)dx

+ ∫
Ωtn
∑
g

wgNg ⋅∑
g

gngNgdx,

1

∆t
∑
gh

wg ⋅ (vn+1
h − vnh)∫

Ωtn

Ngm(x, tn)Nhdx =

∫
∂Ωtn

σ(x, tn)T∑
g

wgNg ⋅ n(x)ds(x)

− ∫
Ωtn
∑
g

wg∇Ng ∶ σ(x, tn)dx

+ ∫
Ωtn
∑
g

wgNg ⋅∑
h

gnhNhdx.

This must hold for all choices of w. In particular, if we pick w∗ so that w∗ = 1 at grid

node g and index i and w∗ = 0 otherwise, we get that

1

∆t
∑
h

(vn+1
hi − vnhi)∫

Ωtn

Ngm(x, tn)Nhdx = ∫
∂Ωtn

Ngσ(x, tn)kin(x)kds(x)

− ∫
Ωtn

Ng,kσ(x, tn)ikdx

+ ∫
Ωtn

Ng∑
h

gnhiNhdx.

To simplify our computations, we approximate

∫
Ωtn

Ngm(x, tn)Nhdx ≈ δgh∫
Ωtn

Ngm(x, tn)dx ≈ δgh∑
p

Ng(xp)mp = δghmg.

From the transfers, mgvg = (mvg), so our equations become

1

∆t
((mv)n+1

gi − (mv)ngi) = ∫
∂Ωtn

Ngσ(x, tn)kin(x)kds(x)
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− ∫
Ωtn

Ng,kσ(x, tn)ikdx + ∫
Ωtn

Ng∑
h

gnhiNhdx.

Furthermore, as we store deformation information on particles, we have an approx-

imation to the Cauchy stress on the particles, σnp . Using the approximation V n
p ≈

V 0
p J(Xp, tn) and approximating

Jnp ≈ J(Xp, t
n) = det(F (Xp, t

n)),

this allows us to approximate

∫
Ωtn

Ng,kσ(x, tn)ikdx ≈∑
p

Ng,k(xnp)σnpikV 0
p J

n
p

=∑
p

Ng,k(xnp)
1

Jnp
P n
pijF

n
pkjV

0
p J

n
p ,

which simplifies to

∑
p

Ng,k(xnp)P n
pijF

n
pkjV

0
p . (3.1)

This expression arises naturally as the gradient of an energy on the grid. To this end,

recalling that for X ∈ Ω vn+1(φ(X, tn)) =V(X, tn+1), note that

∂

∂t
F (X, tn+1) = ∂

∂t

∂

∂X
φ(X, tn+1)

= ∂

∂X

∂

dt
φ(X, tn+1)

= ∂

∂X
V(X, tn+1)

= ∂

∂x
vn+1(x) ∂

∂X
(φ(X, tn))

= ∂

∂x
vn+1(x)F (X, tn).

Using a first-order approximation on particles, this becomes

F n+1
p = (I +∆t

∂vn+1

∂x
(xnp))F n

p .
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Using the interpolation functions on the grid yields a discretization of ∂vn+1

∂x (xnp) so that

F n+1
p = (I +∆t∑

g

vn+1
g

∂Ng

∂x
(xnp))F n

p .

We can think of vn+1 as calculated from x̂g via vn+1
g = 1

∆t(x̂g − xg), where xg is the

location of the grid node indexed by g [Stomakhin et al., 2013]. This allows us to write,

for x̂ a vector on the grid,

F n+1
p (x̂) = (I +∆t∑

g

1

∆t
(x̂g −xg)

∂Ng

∂x
(xnp))F n

p .

As in [Stomakhin et al., 2013], we assume we have an energy Φ(x̂) with an energy

density such that Φ(x̂) = ∑pψ(Fp(x̂))V 0
p with ∂ψ

∂F = P . Let ,hη denote differentiation

with respect to the η coordinate of the grid node index by h. Observe that

Fp(x̂) = (I +∑
g

(x̂ng −xng )(∇Ng)T (xp))F n

Fpαβ(x̂) = F
n
pαβ +∑

g

(x̂gα − xngα)Nn
g,γ(xp)F n

pγβ

Fpαβ,hη(x̂) = δαηNh,γ(xnp)F n
pγβ.

Then

Φ =∑
p

V 0
p Ψp

Φ,hη =∑
p

V 0
p (∂Ψ

∂F
)
αβ

Fαβ,hη

Φ,hη =∑
p

V 0
p PpηβNh,γ(xnp)F n

pγβ.

This is precisely expression 3.1 at x̂ = x, so that we may finally write our momentum
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update as

1

∆t
((mv)n+1

gi − (mv)ngi) = ∫
∂Ωtn

Ngσ(x, tn)kin(x)kds(x)

− ∫
Ωtn

Ng,kσ(x, tn)ikdx + ∫
Ωtn

Ng∑
h

gnhiNhdx

1

∆t
((mv)n+1

gi − (mv)ngi) = ∫
∂Ωtn

Ngσ(x, tn)kin(x)kds(x)

− ∂Φ

∂x̂gi
(x) + ∫

Ωtn

Ng∑
h

gnhiNhdx.

3.4 Overview

This follows the procedure outlined in [Stomakhin et al., 2013]. Define

wip ∶= N∆x
i (xp),

where i is a grid index, xp is particle position, and N∆x
i is the interpolating function

centered at grid node indexed by i, as defined above.

Particles → Grid → Particles

● Transfer mass using mn
i = ∑pmpwn

ip

● Transfer velocity using mn
i v

n
i = ∑p vpmpwnip

Particles → Grid → Particles

● Compute the MPM approximation to the total potential energy,

Φ(x) = ∑p Ψ(x)V 0
p

● Forces are given by fi(x) = − ∂Φ
∂xi

(x)

● Implicit update is given by vn+1
i = vni +∆tm−1

i fi(xi +∆tvn+1
i )
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● Perform grid-based collisions

● Solve the system given by the implicit update after grid-based collisions are pro-

cessed

Particles → Grid → Particles

● Calculate ∇vn+1
p = ∑i v

n+1
i (∇wnip)T

● Update deformation gradient F n+1
p = (I +∆t∇vn+1

p )F n
p

● Update particle velocities

vn+1
p = (1 − α)∑i v

n+1
i wnip + α(vnp +∑i(vn+1

i − vni )wnip)

● Perform particle-based body collisions on vn+1
p

● Update particle positions xn+1
p = xnp +∆tvn+1

p
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CHAPTER 4

Plasticity

Our plasticity treatment assumes a multiplicative decomposition of the deformation

gradient. Detailed descriptions of the plastic rate of deformation and flow rule are pro-

vided. Von Mises, Bingham, Herschel-Bulkley and Oldroyd-B models are discussed, as

well as isochoric plasticity, shear effects, and material softening and hardening. Novel

discretizations are proposed that preserve symmetry and positive-definiteness of strain

tensors.

4.1 Multiplicative Decomposition

4.1.1 Permanent Deformation

This section closely follows the treatment in [Bonet and Wood, 2008].

Let φ be a deformation map on Ω, and Q ∈ Ω. Consider the linearization of φ via the

deformation gradient F ,

φ(Q + dX, t) = φ(Q, t) +F (Q, t)dX.

This approximation is valid for all dX sufficiently small. Define

Bε(Q) ∶= {Q + dY ∣ ∥dY∥ ≤ ε}
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φ(Bε(Q), t) ∶= {φ(X, t) ∣ X ∈ Bε(Q)}.

In the following, fix Q and ε.

Consider excising φ(Bε(Q), t) from φ(Ω, t) and letting it come to rest completely in-

dependently of φ(Ω, t). Define

R(φ(Bε(Q), t))

as this rest configuration for φ(Bε(Q), t). We assume that there is a tensor Fp such that

R(φ(Bε(Q), t)) = {φ(Q, t) +Fp(Q, t)dY ∣ ∥dY∥ ≤ ε},

and a tensor Fe such that

F = FeFp.

Note that if Fp = I, then

R(φ(Bε(Q), t)) = {φ(Q, t) + dY ∣ ∥dY∥ ≤ ε},

so that R(φ(Bε(Q), t)) is simply a translation of the reference configuration. This

means that φ has not caused any permanent deformation in Bε(Q). In another case,

consider if Fp = F , so that

R(φ(Bε(Q), t)) = {φ(Q, t) +F (Q, t)dY ∣ ∥dY∥ ≤ ε}

≈ φ(Bε(Q), t).

This would indicate that the deformation φ has permanently deformed Bε(Q) to

φ(Bε(Q), t). In general, if Fp is not a rotation, the deformation φ has permanently

deformed Bε(Q). We summarize the principle below.
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Multiplicative Decomposition of the Deformation Gradient

Given a deformation F , we assume that it can be multiplicatively decomposed into the

product of a recoverable elastic part Fe and a plastic part Fp as F = FeFp. We call Fe

and Fp the elastic and plastic deformation gradient, respectively.

4.1.2 Strains

This section closely follows the treatment in [Bonet and Wood, 2008]. We note that for

any rotation matrix Z,

{φ(Q, t) +ZFp(Q, t)dY ∣ ∥dY∥ ≤ ε}

is a valid rest configuration for φ(Bε(Q), t), so we expect the treatment of plasticity to

be equivalent for all Fp with respect to rotation on the left.

Now, we can write

Gp = ZFp

Ge = FeZT

so that F =GeGp. Our strain tensors become

Ĉp ∶=GT
pGp = F T

p Z
TZFp = F T

p Fp =Cp

Ĉe ∶=GT
eGe = ZF T

e FeZ
T = ZCeZ

T

b̂e ∶=GeG
T
e = FeZTZF T

e = FeF T
e = be

b̂p ∶=GpG
T
p = ZFpF T

p Z
T = ZbpZ

T

Hence the only meaningful strains in this treatment are the right plastic Cauchy-Green
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strain Cp and the left elastic Cauchy-Green strain be.

4.2 Plastic flow

This section closely follows [Bonet and Wood, 2008].

We assume that the stress power has an additive decomposition into elastic and plastic

parts,

Λ ∶= τ ∶ ∂v
∂x

= Λe +Λp

where we define

Λe ∶= τ ∶
∂Fe(X, t)

∂t
Fe(X, t)−1.

4.2.1 Plastic rate of deformation

It can be shown that [Bonet and Wood, 2008]

Λ = τ ∶ ∂v
∂x

= τ ∶ (1

2
(DF
Dt

(Cp)−1F T+F (Cp)−1DF

Dt

T

)b−1
e )

Λe = τ ∶
∂Fe(X, t)

∂t
Fe(X, t)−1

= τ ∶ ((1

2

D

Dt
be)b−1

e )

so that

Λp = Λ −Λe

= τ ∶ (−1

2
(F D

Dt
[(Cp)−1]F T)b−1

e ) .
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We define [Bonet and Wood, 2008]

Θ = −1

2
(F D

Dt
[(Cp)−1]F T)b−1

e

as the plastic rate of deformation. The plastic flow is then determined by how Θ relates

to the stress in the material. Note that we can rearrange the above equation to get

F
D

Dt
[(Cp)−1]F T = −2Θbe.

4.2.2 Plastic flow rule

Per [Bonet and Wood, 2008], plastic behavior is determined by considering a plastic

flow rule for the left elastic Cauchy-Green strain, be ∶= FeF T
e . Recall that Cp = FpF T

p ,

so that

be = FC−1
p F

T .

Then
Dbe
Dt

= DF
Dt

(Cp)−1F T+F (Cp)−1DF

Dt

T

+F D

Dt
[(Cp)−1]F T .

Recalling that DF
Dt =

∂v
∂xF , we get

Dbe
Dt

= ∂v
∂x

be + be
∂v

∂x

T

+ g(be)

where

g(be) = F
D

Dt
[(CP )−1]F T

is the plastic flow rate. The expression for the material derivative of be above will allow

us to write be as a function of grid velocities in Chapter 5 (similar to the treatment of the

deformation gradient F ) and control its behavior via the plastic flow rate. g typically

damps be to a quantity that will result in the loss of elastic resistance to deformation

(e.g., in the Oldroyd-B case, this quantity is I). As the elastic stress is a function of be,
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the derivatives of be with respect to velocities will manifest in the resulting forces on

grid nodes. A detailed example is shown in Chapter 5.

4.2.3 Oldroyd-B

In the Oldroyd-B case,

g(be) =
1

W
(I − be),

which we can see corresponds to

Θ = − 1

2W
(b−1

e − I).

Note that in the method discussed in Chapter 5, Θ is never computed, as the method

directly uses g(be) to model plastic effects.

4.2.4 Bingham Plasticity

In the Bingham Plasticity case,

g(be) = −
2

3
tr(be)max

⎛
⎜
⎝

0,
∥b̂e − 1

d tr(b̂e)I∥ − (2
3
)

1
2 σY

η

⎞
⎟
⎠

b̂e − 1
d tr(b̂e)I

∥b̂e − 1
d tr(b̂e)I∥

,

[Yue et al., 2015], where η and σY are material parameters and b̂e = J−
2
3be.

4.2.4.1 Yield stress and viscosity

From [Yue et al., 2015], σY is called the yield stress. We can see from the definition

that g(be) ≠ 0 only when the norm of the deviatoric part of b̂e is larger than (2
3
)

1
2 σY .

Thus, σY directly controls how easily the material enters the plastic regime. The larger
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the magnitude of σY , the less likely the flow will be plastic. Conversely, the smaller

the value of σY , the more likely the flow will enter the plastic regime. η is the viscosity

parameter and is directly related to the viscosity in the fluid.

4.2.5 Herschel-Bulkley

In the Herschel-Bulkley case,

g(be) = −
2

3
tr(be)max

⎛
⎜
⎝

0,
∥b̂e − 1

d tr(b̂e)I∥ − (2
3
)

1
2 σY

η

⎞
⎟
⎠

1
h

b̂e − 1
d tr(b̂e)I

∥b̂e − 1
d tr(b̂e)I∥

,

[Yue et al., 2015] where η, σY , and h are material parameters.

4.2.5.1 Effective viscosity

For the discussion of the parameter h, suppose that the flow is in the plastic regime (i.e.,

g(be) ≠ 0) and isolate the term

a ∶= ∥b̂e −
1

d
tr(b̂e)I∥ − σY .

Then h varies the effect of a
η on g(be). As in [Yue et al., 2015], rewrite (aη)

1
h as

b ∶= a

η
1
ha1− 1

h

.

We can see that the rewrite of (aη)
1
h as

b ∶= a

η
1
ha1− 1

h
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demonstrates that Herschel-Bulkley flow corresponds to Bingham plasticity with vis-

cosity determined by η
1
ha1− 1

h . This quantity

η
1
ha1− 1

h

is called the effective viscosity [Yue et al., 2015].

4.2.5.2 Shear Thinning Phenomena

Note that if h < 1, then 1
h > 1 so that 1 − 1

h < 0 and we can write a1− 1
h = 1

aq for some

q > 0, so that the denominator of b becomes

η
1
h

aq
.

Hence, the the denominator of b decreases with an increase in the norm of the deviatoric

part of b̂e. That is, the greater the stress, the smaller the viscosity, and the fluid flows

more easily. This models shear thinning phenomena [Yue et al., 2015].

4.2.5.3 Shear Thickening Phenomena

In the other case, h > 1, so we may write the denominator of b as

η
1
har

for some r > 0. This means the denominator of b increases with an increase in the norm

of the deviatoric part of b̂e. That is, the greater the stress, the larger the viscosity, and

the fluid flows less easily. This models shear thickening phenomena [Yue et al., 2015].
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4.2.6 Von Mises condition

In the Von Mises model, Θ (hence g(be)) relates to the stress via the principle of

maximum plastic dissipation. The principle of maximum plastic dissipation [Bonet and

Wood, 2008] requires that the flow maximize the rate of plastic dissipation Λp = τ ∶ Θ

subject to f(τ, ε) ≤ 0.

Let τ ′ = τ − tr(σm)JI be the deviatoric component of the Kirchhof stress. Von Mises

plasticity defines a yield function

f(τ, ε) = (3

2
τ ′ ∶ τ ′)

1
2

− Y (ε)

where Y > 0 is called the yield stress and ε is called the hardening parameter. f deter-

mines the elastic and plastic regimes for the material. The material behaves elastically

as long as f < 0. Otherwise, the material flows plastically as f = 0 is satisfied.

As in [Simo, 1988], we treat this as constrained minimization problem. Define

H(τ) = −τ ∶ Θ + γf(τ, ε).

Using the Karush-Kuhn-Tucker conditions, we see that the solution to the constrained

minimization problem satisfies

∂H

∂τ
= 0, γ ≥ 0 and γf(τ, ε) = 0.

As ∂(τ ∶Θ)
∂τ = Θ, this becomes

Θ = γ ∂f
∂τ
, γ ≥ 0 and γf(τ, ε) = 0.

Θ = γ ∂f∂τ explicitly relates the plastic flow to the stress. This allows us to calculate the
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plastic flow as we are able to compute the stress. For details on computing γ, see [Simo,

1988], [Bonet and Wood, 2008].

4.3 Volume Preserving Plasticity for Von Mises Model

With the plastic flow rule defined above, we get [Bonet and Wood, 2008]

Θ = γ (3

2
)

1
2 τ ′

(τ ′ ∶ τ ′) 1
2

.

Let

g(be) ∶= −2Θbe,

which is our plastic flow from above. Note that tr(Θ) = 0 since τ ′ is the deviatoric part

of τ .

Now,

d

dt
(det(be)) = det(be)b−1

e ∶ d
dt
be

= det(be) tr
⎛
⎝
b−1
e (∂V

∂X
F −1be + be (

∂V

∂X
)
T

+ g(be))
T⎞
⎠

= det(be) (2 tr(∂v
∂x

) + tr (b−1
e g(be)T ))

= det(be) (2 tr(∂v
∂x

) + tr (−b−1
e be2ΘT ))

= 2 det(be) (tr(∂v
∂x

))

= 2 det(be)∇ ⋅ v

Define

Jp ∶= det(Fp).
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Also note that

d

dt
(J2) = 2J

dJ

dt

= 2J
∂J

∂F
∶ ∂F
∂t

= 2J2F −T ∶ ∂F
∂t

= 2J2 tr(F −T (∂F
∂t

)
T

)

= 2J2 tr(F −T (∂v
∂x
F )

T

)

= 2J2 tr(F −TF T (∂v
∂x

)
T

)

= 2J2 tr(∂v
∂x

)

= 2J2∇ ⋅ v

Hence, J2 = det(be), and since det(F ) = J , be = FeF T
e and F = FeFp, we get that

Jp = 1, so the flow is isochoric.

4.4 Plasticity via the SVD

A common technique [Stomakhin et al., 2013] for enforcing plastic behaviors of a ma-

terial is to clamp the singular values of Fe. This does not use a plastic flow rate but

does take advantage of the multiplicative decomposition of the deformation gradient.

First, perform a singular value decomposition of Fe to get

Fe =UΣVT .

Let c, s > 0. The parameters c and s will determine how much compression and stretch-

ing the material is allowed to undergo before causing permanent deformation in the
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object. Assume that the diagonal entries of Σ are σ1, σ2, σ3. Then, define

Σ̂ = diag(clamp
(1−c,1+s)(σ1), clamp

(1−c,1+s)(σ2), clamp
(1−c,1+s)(σ3)),

and set

Fe ←UΣ̂VT

Fp ←VΣ̂−1UTF

which will preserve F = FeFp. Assuming Σ̂ ≠ Σ, Fp will map to a new rest state. As a

result, this modification transfers meaningful deformation information from Fe to Fp,

resulting in the loss of deformation resistance in the material.

4.5 Material softening and hardening

4.5.1 Hardening

The constitutive model in [Stomakhin et al., 2013] uses plastically-varying Lamé pa-

rameters to simulate material hardening under compression. In particular, they use

µ(Fp) = µ0e
ζ(1−det(Fp))

λ(Fp) = λ0e
ζ(1−det(Fp))

where ζ > 0 and controls the severity of hardening. If a material is undergoing plastic

compression, say 0 < det(F n+1
p ) < det(F n

p ) < 1, then

ζ(1 − det(F n
p )) < ζ(1 − det(F n+1

p )),

so µ,λ are increasing, hence the material is hardening.
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4.5.2 Softening

We present a novel modification to the material hardening treatment. Note that we can

also simulate material softening under compression by considering ζ < 0. If a material

is undergoing plastic compression, say 0 < det(F n+1
p ) < det(F n

p ) < 1, then (as ζ < 0)

ζ(1 − det(F n+1
p )) < ζ(1 − det(F n

p ))

so µ,λ are decreasing, hence the material is softening. An example with this modifica-

tion from [Chong et al.] is shown in Figure 4.1.

4.6 be update that preserves symmetry and positive-definiteness of

strain

As be ∶= FeF T
e , it is easy to see that be is a symmetric positive-definite matrix. The

temporal update of be requires special care in order to ensure that be remain symmetric

positive-definite for all time.

The update used in Chapter 5 can be improved with an update that preserves the sym-

metry and positive-definiteness of the strain for all time. As noted in that chapter, mod-

ifications to the algorithm were required in order to avoid inverted configurations of be.

These modifications would not be necessary if a better update were used. This section

will describe novel modifications that preserve symmetry and positive-definiteness of

the strain.

First, we note that in the case of no plasticity, F = Fe, so that the update for Fe would

be

F n+1
e = (I +∆t(∂v

∂x
)
n+1

)F n
e
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Figure 4.1: Bullets shoot at a leg. The bone is modeled using the material softening
modification from Chapter 4.
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and the corresponding update for be is

bn+1
e = F n+1

e (F n+1
e )T

= (I +∆t(∂v
∂x

)
n+1

)bne (I +∆t(∂v
∂x

)
n+1

)
T

=QTbneQ

by setting

Q ∶= (I +∆t(∂v
∂x

)
n+1

)
T

.

We immediately note that bn+1
e is symmetric positive-definite assuming that bne is sym-

metric positive-definite. Furthermore, in the case of no plasticity, this differs from the

update used in Chapter 5 by ∆t2 ∂v∂xb
n
e (∂v∂x)

T
, so adding this additional term to the

right-hand side of the original update remains consistent. In what follows, we use this

to define symmetric positive-definite updates for be with different plastic flow rates.

4.6.1 Oldroyd-B

In the Oldroyd-B case, g(be) = 1
Wi(I − be), where Wi is the Weissenberg number. If

we use the consistent discretization

1

∆t
(bn+1

e − bne ) = (∂v
∂x

)
n+1

bne + ((∂v
∂x

)
n+1

bne)
T

+∆t(∂v
∂x

)
n+1

bne ((
∂v

∂x
)
n+1

)
T

+ 1

Wi
(I − bn+1

e ),

then we can see that

(1 + ∆t

Wi
)bn+1

e = ∆t

Wi
I + (I +∆t(∂v

∂x
)
n+1

)bne (I +∆t(∂v
∂x

)
n+1

)
T

.
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Wi > 0 so that 1 + ∆t
Wi > 0. For convenience, set a = 1

1+ ∆t
Wi

,Q = (I +∆t (∂v∂x)
n+1)

T
. For

symmetry, note that

bn+1
e = a( ∆t

Wi
I +QTbneQ)

is the sum of symmetric matrices assuming bne is symmetric, so is symmetric.

For positive-definiteness,

bn+1
e = a( ∆t

Wi
I +QTbneQ)⇒

vT (bn+1
e )v = a(vT ∆t

Wi
Iv + vTQTbneQv)⇒

vT (bn+1
e )v = a( ∆t

Wi
vTv + (Qv)TbneQv)⇒

vT (bn+1
e )v > 0,assuming bne is positive − definite and v ≠ 0.

As b0
e = F 0

e (F 0
e )T is symmetric positive-definite, we get that bne is symmetric positive-

definite for all n.

4.6.2 Herschel-Bulkley-like fluid

In a Herschel-Bulkley-like case,

g(be) = −
2

3
tr(be)max(0,

∥be − 1
d tr(be)I∥ − σY

η
)

1
h be − 1

d tr(be)I
∥be − 1

d tr(be)I∥
.

Note that we have replaced b̂e with be, as in a later example, we will use the analogous

strain density (with be ∶= ( J
JHB

)
2
3 bHBe , where bHBe satisfies the flow rule above and

46



JHB =
√

det(bHBe )) from Chapter 5. We discretize this as

bn+1
e = bne +∆t

⎛
⎝
(∂v
∂x

)
n+1

bne + bne ((
∂v

∂x
)
n+1

)
T⎞
⎠
+∆t2 (∂v

∂x
)
n+1

bne ((
∂v

∂x
)
n+1

)
T

− 2∆t

3
tr(bne )max(0,

∥bne − 1
d tr(bne )I∥ − σY

η
)

1
h bn+1

e − 1
d tr(bne )I

∥bne − 1
d tr(bne )I∥

.

With Q as defined before, set

a ∶= 2∆t

3
tr(bne )max(0,

∥bne − 1
d tr(bne )I∥ − σY

η
)

1
h

∥bne −
1

d
tr(bne )I∥−1

b = 1

d
tr(bne )

c = (1 + a)−1.

For symmetry, note that

(1 + a)bn+1
e =QTbneQ + abI

is the sum of symmetric matrices assuming bne is symmetric, so is symmetric.

Note that if bne is positive-definite, then a ≥ 0, b > 0, c > 0 and

bn+1
e =QTbneQ − abn+1

e + abI

(1 + a)bn+1
e =QTbneQ + abI

bn+1
e = c(abI +QTbneQ)⇒

vTbn+1
e v = c(abvTv + vTQTbneQv)⇒

vTbn+1
e v = c(abvTv + (Qv)TbneQv)⇒

vTbn+1
e v > 0,assuming bne is positive − definite and v ≠ 0.
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As b0
e = F 0

e (F 0
e )T , it is symmetric positive-definite, so that bne is symmetric positive-

definite for all n.

An example that uses this symmetric positive-definite update with the analogous strain

density (with be ∶= ( J
JHB

)
2
3 bHBe , where bHBe satisfies the flow rule above and JHB =

√
det(bHBe )) from Chapter 5 can be seen in Figure 4.2. As the method detailed in

Chapter 5 required special care when be inverts, modifying the be update to guarantee

that be is symmetric positive-definite benefits the method.

4.7 Recast be update in terms of fe

Define fe as satisfying ḟe = ∂v
∂x fe +

1
2Wi(f−Te − fe). Then

ḟef
T
e = ∂v

∂x
fef

T
e +

1

2Wi
(I − fef

T
e )

feḟ
T
e = fef

T
e

∂v

∂x

T

+ 1

2Wi
(I − fef

T
e ).

so that

D(fefTe )
Dt

= ḟef
T
e + feḟ

T
e

= ∂v
∂x

fef
T
e + fef

T
e

∂v

∂x

T

+ 1

Wi
(I − fef

T
e ).

Recall that

ḃe =
∂v

∂x
be + be

∂v

∂x

T

+ 1

Wi
(I − be).

As fefTe and be satisfy the same differential equation, we must have that be = fefTe with

this definition of fe.
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Figure 4.2: Cross sections of Herschel-Bulkley-like fluids in containers. A cylinder
spins at high speed at the bottom of the container. These simulations use the be up-
date that preserves symmetry and positive-definiteness of be and the analogous strain
density from Chapter 5. Fluid on the top uses σY = .1, h = 1.0101, η = 1, fluid on the
bottom uses σY = 1e − 6, h = 10, η = 1.
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4.7.1 Discretization of fe in the Material Point Method case

This suggests a separate approach to maintaining symmetry and positive-definiteness

of be. Note that

g = h +O(∆tm)⇒ ggT = hhT +O(∆tm).

So, to update be, we simply require an update for fe.

As an example for a Material Point Method update, we can use

1

∆t
(F n+1

e −F n
e ) = (∂v

∂x
)
n+1

F n
e +

1

2W
((F n

e )
−T −F n

e )

from which we get

F n+1
e = F n

e +∆t(∂v
∂x

)
n+1

F n
e +

∆t

2W
((F n

e )
−T −F n

e ) .

Finally, for updating be, we simply use bn+1
e = F n+1

e (F n+1
e )T , which will guarantee that

be is symmetric positive-definite.
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CHAPTER 5

The Material Point Method for Viscoelastic Fluids,

Foams and Sponges

5.1 Abstract

We present a new Material Point Method (MPM) for simulating viscoelastic fluids,

foams and sponges. We design our discretization from the upper convected derivative

terms in the evolution of the left Cauchy-Green elastic strain tensor. We combine this

with an Oldroyd-B model for plastic flow in a complex viscoelastic fluid. While the

Oldroyd-B model is traditionally used for viscoelastic fluids, we show that its interpre-

tation as a plastic flow naturally allows us to simulate a wide range of complex material

behaviors. In order to do this, we provide a modification to the traditional Oldroyd-B

model that guarantees volume preserving plastic flows. Our plasticity model is remark-

ably simple (foregoing the need for the singular value decomposition (SVD) of stresses

or strains). Lastly, we show that implicit time stepping can be achieved in a manner

similar to [Stomakhin et al., 2013] and that this allows for high resolution simulations

at practical simulation times.
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5.2 Introduction

Non-Newtonian fluid behavior is exhibited by a wide range of everyday materials in-

cluding paint, gels, sponges, foams and various food components like ketchup and

custard [Larson, 1999]. These materials are often special kinds of colloidal systems (a

type of mixture in which one substance is dispersed evenly throughout another), where

dimensions exceed those usually associated with colloids (up to 1µm for the dispersed

phase) [Hiemenz and Rajagopalan, 1997; Larson, 1999]. For example, when a gas and

a liquid are shaken together, the gas phase becomes a collection of bubbles dispersed in

the liquid: this is the most common observation of foams. While a standard Newtonian

viscous stress is a component of the mechanical response of these materials, they are

non-Newtonian in the sense that there are other, often elastoplastic, aspects of the stress

response to flow rate and deformation. Comprehensive reviews are given in [Morrison

and Ross, 2002; Prudhomme and Kahn, 1996; Schramm, 1994; Larson, 1999].

Discretization of these materials is challenging because of the wide range of behaviors

exhibited and by the nonlinear governing equations. These materials can behave with

elastic resistance to deformation but can also undergo very large strains and complex

topological changes characteristic of fluids. While Lagrangian approaches are best for

resolving the solid-like behavior and Eulerian approaches most easily resolve the fluid-

like behavior, these materials are in the middle ground and this makes discretization

difficult. The Material Point Method is naturally suited for this class of materials be-

cause it uses a Cartesian grid to resolve topology changes and self-collisions combined

with Lagrangian tracking of mass, momentum and deformation on particles. In prac-

tice, the particle-wise deformation information can be used to represent elastoplastic

stresses arising from changes in shape, while an Eulerian background grid is used for

implicit solves.

We show that the MPM approach in [Stomakhin et al., 2013] can be generalized to
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achieve a wide range of viscoelastic, complex fluid effects. As in [Stomakhin et al.,

2013], we show that implicit time stepping can easily be used to improve efficiency and

allow for simulation at high spatial resolution. With our Oldroyd-inspired approach,

we avoid the need for the SVD of either elastic or plastic responses. While SVD com-

putation is not a bottleneck for MPM when done efficiently (see e.g [McAdams et al.,

2011]), it is not a straightforward implementation. More standard SVD implementa-

tions can have a dramatic impact on performance (see e.g. [Chao et al., 2010]). Thus

although it is not essential for performance to avoid the SVD, it is preferable to avoid

the need to implement them when, as with our model, they are not necessary for achiev-

ing desired behaviors.

We summarize our specific contributions as

● A new volume-preserving Oldroyd-B rate-based description of plasticity

● Semi-implicit MPM discretization of viscoelasticity and viscoplasticity, allowing

for high spatial resolution simulations

● Rate-based plasticity that does not require an SVD

5.3 Related work

Terzopoulos and Fleischer were the first in computer graphics to show the effects possi-

ble with simulated elastoplastic materials [Terzopoulos and Fleischer, 1988a,b]. Since

those seminal works, many researchers have developed novel methods capable of repli-

cating a wide range of material behaviors. Generally, these fall into one of three cat-

egories: Eulerian grid, Lagrangian mesh or particle based techniques. In addition to

the following discussion, we summarize some aspects of our approach relative to a few

representative approaches in Table 5.3.
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Eulerian grid based approaches: Goktekin et al. [Goktekin et al., 2004] showed

that the addition of an Eulerian elastic stress with Von Mises criteria plasticity to the

standard level set based simulation of free surface Navier Stokes flows can capture a

wide range of viscoelastic behaviors. Losasso et al. also use an Eulerian approach

[Losasso et al., 2006]. Rasmussen et al. experiment with a range of viscous effects

for level set based free surface melting flows in [Rasmussen et al., 2004]. Batty et

al. use Eulerian approaches to efficiently simulate spatially varying viscous coiling

and buckling [Batty and Bridson, 2008; Batty and Houston, 2011]. Carlson et al. also

achieve a range of viscous effects in [Carlson et al., 2002].

Lagrangian mesh based approaches: Lagrangian methods naturally resolve defor-

mation needed for elastoplasticity; however, large strains can lead to mesh tangling for

practical flow scenarios and remeshing is required. Bargteil et al. show that this can

achieve impressive results in [Bargteil et al., 2007]. This was later extended to embed-

ded meshes in [Wojtan and Turk, 2008] and further treatment of splitting and merging

was achieved in [Wojtan et al., 2009]. Batty et al. used a reduced dimension approach to

simulate thin viscous sheets with adaptively remeshed triangle meshes in [Batty et al.,

2012].

Particle Methods: Ever since Desbrun and Gascuel [Desbrun and Gascuel, 1996]

showed that SPH can be used for a range of viscous behavior, particle methods have

been popular for achieving complex fluid effects. Like Goktekin et al., Chang et al.

[Chang et al., 2009] also use an Eulerian update of the strain for elastoplasic SPH sim-

ulations. Solenthaler et al. show that SPH can be used to compute strain and use this

to get a range of elastoplastic effects [Solenthaler et al., 2007]. Becker et al. show that

this can be generalized to large rotational motion in [Becker et al., 2009]. Gerszewski

et al. also update deformation directly on particles [Gerszewski et al., 2009]. [Keiser

et al., 2005] and [Müller et al., 2004] also add elastic effects into SPH formulations.

Paiva et al. use a non-Newtonian model for fluid viscosity in [Paiva et al., 2006] and
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[Paiva et al., 2009].

Although MPM is a hybrid grid/particle method, particles are arguably the primary

material representation. MPM has recently been used to simulate elastoplastic flows to

capture snow in [Stomakhin et al., 2013] and varied, melting materials in [Stomakhin

et al., 2014]. Yue et al. use MPM to simulate Herschel-Bulkley plastic flows for foam

in [Yue et al., 2015]. Their approach is very similar to ours, however their treatment of

plasticity is much more accurate and can handle a wider range of phenomena (notably,

shear thickening). They also provide a novel particle splitting technique useful for

resolving shearing flows that are problematic for a wide range of MPM simulations.

However, their plastic flow update is more complicated and this is likely why they

resort to explicit time stepping. With our comparatively simple plastic flow model, we

show that semi-implicit time stepping as in [Stomakhin et al., 2013] can be achieved.

5.4 Governing equations

The governing equations arise from basic conservation of mass and momentum as

D

Dt
ρ + ρ∇ ⋅ v = 0

ρ
D

Dt
v = ∇ ⋅σ + ρg

(5.1)

where ρ is the mass density, v is the velocity, σ is the Cauchy stress and g is gravita-

tional acceleration. As is commonly done with viscoelastic complex fluids, we write

the Cauchy stress as σ = σN +σE where

σN = µ
N

2
(∂v
∂x

+ ∂v
∂x

T

)

is the viscous Newtonian component and σE is the elastic component. We express the
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constitutive behavior through the elastic component of the left Cauchy-Green strain.

Specifically, the deformation gradient of the flow F can be decomposed as a product of

elastic and plastic deformation as

F = F EF P

and the elastic left Cauchy-Green strain is

bE = F E(F E)T

[Bonet and Wood, 2008]. With this convention, we can define the elastic portion of the

Cauchy stress via the stored elastic potential ψ(bE) as

σE = 2

J

∂ψ

∂bE
bE.

5.4.1 Left Cauchy-Green strain plasticity and the upper convected derivative

We can define the plastic flow using the temporal evolution of the elastic right Cauchy-

Green strain as in [Bonet and Wood, 2008]. Rewriting

F E = F (F P )−1,bE = F (CP )−1FT

where CP = (F P )TF P is the right plastic Cauchy-Green strain. The Eulerian form of

the temporal evolution is then obtained by taking the material derivative of bE to get

DbE

Dt
= DF
Dt

(CP )−1F T+F (CP )−1DF

Dt

T

+F D

Dt
[(CP )−1]F T . (5.2)

With this view, the plastic flow is defined via D
Dt[(CP )−1]. Combining this with

D

Dt
F = ∂v

∂x
F
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(see e.g. [Bonet and Wood, 2008], Chapter 2), the previous equation can be rewritten

as
DbE

Dt
= ∂v
∂x

bE + bE
∂v

∂x

T

+ g(bE) (5.3)

where

g(bE) = F D

Dt
[(CP )−1]F T

is used to describe the plastic flow rate. This equation is often abbreviated as

▽

bE = g(bE). (5.4)

Here, the operator
▽

bE (often referred to as the upper convected derivative) is defined to

be
▽

bE ≡ D

Dt
bE − ∂v

∂x
bE − bE

∂v

∂x

T

(see e.g. [Larson, 1999]).

5.4.2 Von Mises plasticity

The Von Mises model [Bonet and Wood, 2008] achieves plasticity through the rate

g(bE) = −2γ̇δ
∂f(τ)
∂τ

bE,

where τ is the Kirchhoff stress, γ̇ is the plastic multiplier, f(τ) is the Von Mises yield

condition, and δ = 1 if f(τ) ≥ 0, δ = 0 otherwise. However, this is relatively difficult to

discretize given the conditional nature of the function. It is often more straightforward

to just work directly with F E and F P in that case (see e.g [Stomakhin et al., 2013]),

however Yue et al [Yue et al., 2015] do discretize this directly.
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5.4.3 Oldroyd-B plasticity

The Oldroyd-B model [Larson, 1999; Teran et al., 2008] can be see as an alternative

definition of

g(bE) = 1

Wi
(I − bE).

Combining this with g(bE) = F D
Dt[(CP )−1]F T shows that the plastic flow of this

model is
D

Dt
[(CP )−1] = 1

Wi
(C−1 − (CP )−1)

where C = FTF is the right Cauchy-Green strain. This expression for g(bE) is very

simple in comparison with that of Von Mises. This simplicity allows for a much easier

treatment of temporal discretization needed for implicit time stepping. Specifically, we

show in Section 5.5 that this simple definition of g(bE) facilitates the implicit descrip-

tion of the plastic flow in terms of discrete grid node velocities. We can see, both from

the 1
Wi(I−bE) and D

Dt[(CP )−1] = 1
Wi(C−1−(CP )−1) terms that the plasticity achieves

a strong damping of the elastic component of the stress. The severity of this damp-

ing is inversely proportionate to the Weissenberg number Wi. That is, the smaller the

Weissenberg number, the faster the elastic strain is damped to the identity, thus releas-

ing elastic potential and associated resistance to deformation. Thus, the Weissenberg

number directly controls the amount of the plasticity.

5.4.4 Volume preserving plasticity

The plastic flow in the Oldroyd model will not generally be volume preserving. Since

many plastic flows, including those of foams, exhibit this behavior we provide a mod-

ification to the standard Oldroyd model that will satisfy this. If we define bEOB to obey
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▽

bEOB = 1
Wi(I − bEOB), then we define a new elastic left Cauchy-Green strain as

bE ≡ ( J

JOB
)

2
3

bEOB, (5.5)

where J = det(F ) and JOB =
√

det(bEOB). Using this definition, det(bE) = J2 and

since by definition det(bE) = det(F E)2 and J = det(F E)det(F P ) we see that it must

be true that det(F P ) = 1, and thus the plastic flow is volume preserving. In detail,

det(bE) = ( J

JOB
)

2

det(bEOB) = J2

bE = F E(F E)T ⇒ det(bE) = det(F E)2

J = det(F ) = det(F E)det(F P )⇒ J2 = det(F E)2 det(F P )2

Plugging the first equation into the left side of the third equation and the second equa-

tion into the right-hand side of the third equation, we get that det(F P ) = 1, as desired.

5.4.5 Modified plastic flow

This modification to the Oldroyd plasticity obeys

▽

bE = D

Dt

⎛
⎝
( J

JOB
)

2
3⎞
⎠
bEOB +

1

Wi
( J

JOB
)

2
3

(I − bEOB) (5.6)

which has the plastic flow

D

Dt
[(CP )−1] = D

Dt

⎛
⎝
( J

JOB
)

2
3⎞
⎠
(CP

OB)−1+

1

Wi
( J

JOB
)

2
3

(C−1 − (CP
OB)−1).

(5.7)
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We do not need to solve for bE using the definition of its plastic flow. In practice, we

solve for the comparatively simple bEOB and then obtain the elastic stress as

bE ← ( J

JOB
)

2
3

bEOB.

We only provide this derivation here to show that there is a plastic flow associated with

this definition of the elastic strain.

5.4.6 Elasticity

We define constitutive behavior through the compressible Neo-Hookean elastic poten-

tial energy density as

ψ(bE) = µ
2
(tr(bE) − 3) − µ ln(J) + λ

2
(J − 1)2 (5.8)

with associated Cauchy stress

σE = µ
J
(bE − I) + λ(J − 1)I. (5.9)

5.5 Material Point Method

We closely follow the algorithm from [Stomakhin et al., 2013]. The only difference is in

the discrete Eulerian grid node forces and force derivatives. All steps in the algorithm

not related to the update of grid node velocities are the same; we simply change the

nature of stress-based forces. In this section, we describe how to modify the potential-

based definition of these forces to discretize our new governing equations. We refer

the reader to [Stomakhin et al., 2013] for all other steps in the MPM time stepping

algorithm.
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Using the notation from [Stomakhin et al., 2013], we denote position, velocity and

deformation gradient of particle p at time tn as xnp , vnp and F n
p respectively. Eulerian

grid node locations are denoted as xi where i = (i, j, k) is the grid node index. The

weights at time tn are

wnip = Ni(xnp),

where Ni(x) is the interpolation function associated with grid node i and the weight

gradients are

∇wnip = ∇Ni(xnp).

As in [Stomakhin et al., 2013], we define the forces on the Eulerian grid nodes as

the derivative of an energy with respect to grid node locations. We do not actually

move grid nodes, but we consider their movement to define grid node velocities vi as

x̂i = xi +∆tvi. Using x̂ to denote the vector of all grid nodes, we define the potential

Φ(x̂) =∑
p

(ΦE(x̂)V 0
p +ΦN(x̂)V n

p ) (5.10)

where ΦE(x̂) is the elastoplastic component of the potential energy density ΦE(x̂) =

ψ(b̂E(x̂)) and ΦN(x̂) is the Newtonian viscous potential energy density

ΦN(x̂) = µN ε̂p(x̂) ∶ ε̂p(x̂) =∑
i,j

µN ε̂pij(x̂)ε̂pij(x̂). (5.11)

Here

ε̂p(x̂) =
1

2
(∇v̂(x̂) + (∇v̂(x̂))T )

is the strain rate at xnp induced by the grid node motion defined by x̂ over the time step

and

∇v̂(x̂) =∑
i

x̂i −xi

∆t
(∇wnip)T .

As in [Stomakhin et al., 2013], V 0
p is the volume of the material originally occupied by

the particle p. However, for the viscous Newtonian potential, we are approximating an
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integral over the time tn configuration of the material so we have V n
p = det(F n

p )V 0
p .

As in [Stomakhin et al., 2013], we store a deformation gradient F n
p on each particle

and update it using

F̂ (x̂) = (I +∆t∇v̂(x̂))F n
p . (5.12)

We use this to define Ĵp(x̂) = det(F̂ (x̂)) in the definition of

b̂E(x̂) =
⎛
⎝

Ĵp(x̂)2

det(b̂EOBp
(x̂))

⎞
⎠

1
3

b̂EOBp
(x̂). (5.13)

Similar to the treatment in Equation 5.12, we store bEn

OBp
on each particle and discretize

the upper convected derivative terms in the evolution equation for bEOB to get

b̂EOBp
(x̂) =∆t∇v̂(x̂)bEn

OBp
+∆tbE

n

OBp
(∇v̂(x̂))T

+ ∆t

Wi
I + (1 − ∆t

Wi
)bEn

OBp
.

(5.14)

The force on the grid nodes is defined as f(x̂) = −∂Φ
∂x̂(x̂) and it is used in the implicit

update of grid velocities vn+1
i exactly as in [Stomakhin et al., 2013]. We work out these

derivatives as well as the ∂f
∂x̂(x̂) in the appendix.

5.5.1 MPM overview

We show how this implementation differs from the one provided in the Material Point

Method section. Most importantly, we track the left eleastic Cauchy-Green strain on

the particles. Furthermore, our model uses a different potential to account for viscosity

effects. Define

wip ∶= N∆x
i (xp),

where i is a grid index, xp is particle position, and N∆x
i is the interpolating function

centered at grid node indexed by i with spacing ∆x, as defined above.
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Particles → Grid → Particles

● Transfer mass using mn
i = ∑pmpwn

ip

● Transfer velocity using mn
i v

n
i = ∑p vpmpwnip

Particles → Grid → Particles

● Compute the MPM approximation to the total potential energy,

Φ(x) = ∑p(ΨE(x)V 0
p +Ψ(x)N(x)V n

p )

● Forces are given by fi(x) = − ∂Φ
∂xi

(x)

● Implicit update is given by vn+1
i = vni +∆tm−1

i fi(xi +∆tvn+1
i )

● Perform grid-based collisions

● Solve the system given by the implicit update after grid-based collisions are pro-

cessed

Particles → Grid → Particles

● Calculate ∇vn+1
p = ∑i v

n+1
i (∇wnip)T

● Update deformation gradient F n+1
p = (I +∆t∇vn+1

p )F n
p

● Update left elastic Cauchy-Green strain

bE
n+1

OBp
= ∆t∇vn+1

p bE
n

OBp
+∆tbE

n

OBp
(∇vn+1

p )T + ∆t
WiI + (1 − dt

Wi)bE
n

OBp

● Update particle velocities

vn+1
p = (1 − α)∑i v

n+1
i wnip + α(vnp +∑i(vn+1

i − vni )wnip)

● Perform particle-based body collisions on vn+1
p
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Min/Frame Particle # Threads CPU ∆x Grid Resolution
Twisting sponge 5.3 9.1 × 105 20 3.00GHz 0.0366 2453

Shooting sponge 2.0 7.2 × 105 16 2.90GHz 0.0402 1753

Shaving foam 0.93 1.1 × 106 12 3.47GHz 0.0019 2573

Toothpaste 0.28 2.8 × 105 16 2.90GHz 0.0082 244 × 487 × 244

Viennetta ice cream 1.11 1.2 × 106 12 2.67GHz 0.0026 385 × 96 × 64

Pie 23.6 1.3 × 106 12 3.07GHz 0.0024 3333

Table 5.1: Simulation performance.

ρ µ λ µN Wi
Twisting sponge 2 3.6 × 102 1.4 × 103 0 50
Shooting sponge 1 3.6 × 102 1.4 × 103 0 50

Shaving foam 0.2 5 50 1 × 10−4 0.5
Toothpaste 1 0.839 8.39 1 × 10−1 0.4

Viennetta ice cream 1 1 10 5 × 10−5 0.1
Pie cream 0.2 5 50 1 × 10−7 1 × 10−4

Pie crust 0.5 5 × 105 4 × 106 1 × 10−8 1 × 1030

Pie crust scored 0.5 5 10 1 × 10−5 1

Table 5.2: Material parameters.

● Update particle positions xn+1
p = xnp +∆tvn+1

p

5.6 Results

In Figure 5.1, a sponge is twisted with top and bottom fixed by Dirichlet boundary

conditions. Dynamic fracture and self collision are naturally handled. In Figure 5.2,

the top and bottom of a sponge are held in place as we shoot it with a kinematic bul-

let. The animation is in slow motion to show the detailed material response after the

impact. In Figure 5.3, we simulate a stream of shaving foam hitting the ground, and

Method Elastoplastic Viscosity No SVD Implicit No Remeshing
[Batty and Bridson, 2008] 7 3 3 3 3

[Wojtan et al., 2009] 3 3 7 �† 7

[Batty and Houston, 2011] 7 3 3 3 �‡

[Batty et al., 2012] 7 3 3 3 7

[Stomakhin et al., 2013] 3 7 7 3 3

[Stomakhin et al., 2014] 3 7 7 3 3

[Yue et al., 2015] 3 3 3 7 3

Our method 3 3 3 3 3

Table 5.3: Feature comparison with some existing methods. †This method is not im-
plicit in elasticity. ‡This method requires adaptive refinement of a BCC lattice.
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Figure 5.1: A soft sponge is twisted. It fractures and collides with itself. The failure
and contact phenomena are resolved automatically by the MPM approach.
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Figure 5.2: A kinematic bullet is fired at a sponge, resulting in significant deformation
and fracture.
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Figure 5.3: Simulated shaving foam (right) is compared with real world footage (left).
The simulation captures the characteristic S-shaped buckling and elastic behavior.
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Figure 5.4: The Weissenberg controls the damping of the left elastic Cauchy-Green
strain to the identity. The smaller the Weissenberg, the more plastic the flow.
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Figure 5.5: Viennetta ice cream is poured onto a conveyor belt and forms characteristic
folds.
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Figure 5.6: Particle rendering of a pie thrown at a mannequin.

70



Figure 5.7: Particle rendering of Viennetta ice cream. Colored particles on the right
correspond to the determinant of the left elastic Cauchy-Green strain on a particle: red
particles have determinant greater than 1, blue particles have determinant less than 1.
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Figure 5.8: A pie with a stiff crust and soft whipped cream is thrown at a mannequin.
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Figure 5.9: A simulation of toothpaste. Unlike the shaving foam, Newtonian viscosity
dominates material behavior.
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compare it with real world footage. Our method captures the S-shaped buckling and

merging behaviors. It also exhibits similar elasto-plastic responses. In Figure 5.9, we

simulate toothpaste falling onto a toothbrush. Unlike the shaving foam, Newtonian vis-

cosity dominates material behavior. Figure 5.5 shows a simulation of manufacturing

Viennetta ice cream. It captures the characteristic folding behavior. In Figure 5.8, we

model a pie and throw it at a mannequin. The fracture pattern of the crust is prescored

with weak MPM particles. The cream exhibits detailed splitting and merging behavior.

For the particle-grid transfers, we used the affine Particle-In-Cell (APIC) method from

[Jiang et al., 2015] [Jiang, 2015]. We found that using APIC greatly reduced positional

artifacts of the pie particles. We do not perform any explicit particle resampling because

self-collision and topology change are naturally handled by MPM.

The material parameters used in our examples are given in Table 5.2. The simulation

times are shown in Table 5.1. All simulations were performed on Intel Xeon machines.

All renderings were done with Mantra in Houdini. For foam, toothpaste, and Viennetta

ice cream, surfaces were reconstructed with OpenVDB [Museth, 2014] and rendered

with subsurface scattering. The sponges were rendered as a density field.

5.7 Discussions

We found that using a Jacobi preconditioner greatly reduced simulation run times. For

example, in the shooting sponge test (Figure 5.2), the Jacobi preconditioner reduces the

number of CG iterations by a factor of 6.

While we have used our method successfully in simulating a variety of materials, it

has some limitations. Many of these are related to the Oldroyd-B model. For example,

unlike the approach in [Yue et al., 2015], our approach cannot handle shear thickening.

Therefore, the model cannot be applied to materials such as oobleck. Our method also

does not handle material softening or hardening.
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Our update rule of bEOB allows for inversion which the constitutive model cannot han-

dle. While bEOB should remain positive definite, we have found this to be only partially

required. In particular, (5.8) involves the quantity tr(bE), which we must ensure is

bounded from below. If bE is positive definite, then tr(bE) > 0. We also compute

det(bEOB)−
1
3 , which is problematic if bEOB may become singular. We avoid these prob-

lems in practice by taking advantage of the optimization-based integrator from [Gast

et al., 2015]. We add a large penalty to our objective when the determinant or trace of

bEOB becomes infeasible; the line search in our optimizer then discards these configu-

rations. While bounding the trace and determinant does not enforce definiteness in 3D,

this strategy worked well in practice. Not enforcing these produces popping artifacts.

5.8 Acknowledgements

UCLA authors were partially supported by NSF CCF-1422795, ONR

(N000141110719, N000141210834), Intel STC-Visual Computing Grant (20112360)

as well as a gift from Disney Research. We also thank Matthew Wang for providing his

3D head model for the pie example.

75



CHAPTER 6

Future Work

We discuss potential extensions to the established results. A high-order discretiza-

tion of the left elastic Cauchy-Green strain is proposed that preserves symmetry and

positive-definiteness of the strain. We discuss applying this high-order update to solve

the incompressible Oldroyd-B equations.

6.1 High-order discretization of the left elastic Cauchy-Green

strain update

6.1.1 Advection

Let G be a Lagrangian function with corresponding Eulerian g (i.e., g is push-forward

of G).

Define the downwind quantities

gnd ∶= g(xn+1 −∆tu(xn+1 − 1

2
∆tu(xn+1, tn), tn+ 1

2 ), tn)

gn−1
d ∶= g(xn+1 − 2∆tu(xn+1 −∆tu(xn+1, tn), tn), tn−1).
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Now,

2

∆t
(xn+1 −xn+ 1

2 ) = u(xn+1, tn+1) +O(∆t)

=U(φ−1(xn+1, tn+1), tn+1) +O(∆t)

=U(φ−1(xn+1, tn), tn) +O(∆t)

= u(xn+1, tn) +O(∆t).

Plugging this into the definition of gnd , we get

gnd ∶= g(xn+1 −∆tu(xn+1 − 1

2
∆tu(xn+1, tn), tn+ 1

2 ), tn)

= g(xn+1 −∆tu(xn+1 − (xn+1 −xn+ 1
2 ) +O(∆t2), tn+ 1

2 ), tn)

= g(xn+1 −∆tu(xn+ 1
2 +O(∆t2), tn+ 1

2 ), tn)

= g(xn+1 −∆tu(xn+ 1
2 , tn+

1
2 ) +O(∆t3), tn).

Also,

1

∆t
(φ(X, tn+1) − φ(X, tn)) =U(X, tn+ 1

2 ) +O(∆t2)
1

∆t
(xn+1 −xn) = u(xn+ 1

2 , tn+
1
2 ) +O(∆t2)

xn+1 −∆tu(xn+ 1
2 , tn+

1
2 ) = xn +O(∆t3).

Plugging this in above, we get

gnd = g(xn +O(∆t3), tn)

= g(xn, tn) +O(∆t3).

Similarly, gn−1
d = g(xn−1, tn−1) +O(∆t3). To summarize,

gnd = g(xn, tn) + +O(∆t3)
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gn−1
d = g(xn−1, tn−1) +O(∆t3).

6.1.2 Approximating matrix inverse

Suppose A = B + O(∆tm). This allows us to write A = B − ∆tmC. Then for small

enough ∆t,

A−1 = (B −∆tmC)−1

= ((I −∆tmCB−1)B)−1

= B−1(I −∆tmCB−1)−1

= B−1
∞

∑
n=0

(∆tmCB−1)n

= B−1 +O(∆tm).

To summarize,

A = B +O(∆tm)⇒A−1 = B−1 +O(∆tm),

so that (where fe is the push-forward of the elastic deformation gradient Fe)

fned(xn+1) = fe(xn, tn) +O(∆t3)⇒

(fned(xn+1))−1 = f−1
e (xn, tn) +O(∆t3)

fn−1
ed (xn+1) = fe(xn−1, tn−1) +O(∆t3)⇒

(fn−1
ed (xn+1))−1 = f−1

e (xn−1, tn−1) +O(∆t3).

Finally, using extrapolation, we get

f−1
e (xn+1, tn+1) = 2f−1

e (xn, tn) − f−1
e (xn−1, tn−1) +O(∆t2)

= 2(fned(xn+1))−1 − (fn−1
ed (xn+1))−1 +O(∆t2).
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6.1.3 Backward Differentiation Formula

Let G be a Lagrangian function with corresponding Eulerian g (i.e., g is push-forward

of G).

Note

G(X, tn) = G(X, tn+1) −∆tGt(X, tn) +
1

2
∆t2Gtt(X, tn) +O(∆t3)

G(X, tn−1) = G(X, tn+1) − 2∆tGt(X, tn) + 2∆t2Gtt(X, tn) +O(∆t3).

This means

G(X, tn+1) = 2G(X, tn) −G(X, tn−1) +O(∆t2).

Using previous identities and the fact that g is the push-forward of G, we get

g(xn+1, tn+1) = 2g(xn, tn) − g(xn−1, tn−1) +O(∆t2)

= 2gnd (xn+1) − gn−1
d (xn+1) +O(∆t2).

We also see that

1

2∆t
(3G(X, tn+1) − 4G(X, tn) +G(X, tn−1)) = Gt(X, tn+1) +O(∆t2).

Using previous identities, the fact that g is the push-forward of G, and that Dg
Dt is the

push-forward of Gt, we get

Dg

Dt
(xn+1, tn+1) = 1

2∆t
(3g(xn+1, tn+1) − 4g(xn, tn) + g(xn−1, tn−1)) +O(∆t2)

= 1

2∆t
(3g(xn+1, tn+1) − 4gnd (xn+1) + gn−1

d (xn+1)) +O(∆t2).
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6.1.4 Second order update

Using extrapolation, Taylor series expansions, and downwind approximations, we get

1

2∆t
(3fe(xn+1, tn+1) − 4fned(xn+1) + fn−1

ed (xn+1)) =

∂v

∂x
(xn+1, tn+1)fe(xn+1, tn+1)

+ 1

2Wi
(f−Te (xn+1, tn+1) − fe(xn+1, tn+1))

+O(∆t2)

= ∂v
∂x

(xn+1, tn+1) (2fned(xn+1) − fn−1
ed (xn+1))

+ 1

2Wi
(f−Te (xn+1, tn+1) − fe(xn+1, tn+1))

+O(∆t2)

= ∂v
∂x

(xn+1, tn+1) (2fned(xn+1) − fn−1
ed (xn+1))

+ 1

2Wi
(2fned(xn+1)−T − fn−1

ed (xn+1)−T

− fe(xn+1, tn+1))

+O(∆t2).

Solving for fe(xn+1, tn+1), we get

(3 + ∆t

Wi
)fe(xn+1, tn+1) = 4fned(xn+1) − fn−1

ed (xn+1)

+ 2∆t(∂v
∂x

(xn+1, tn+1) (2fned(xn+1) − fn−1
ed (xn+1)))

+ ∆t

Wi
(2fned(xn+1)−T − fn−1

ed (xn+1)−T ) +O(∆t3).

Recall that if g = h + O(∆tm) then ggT = hhT + O(∆tm), and that be = fefTe . So

for updating be, we use bn+1
e = fn+1

e (fn+1
e )T , which will guarantee that be is symmetric

positive-definite and preserve second order accuracy. As the update is second order

accurate, it is a candidate for use in a high-order method for solving the incompressible
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Oldroyd-B equations.

Note that the update can also be used as an alternative to the be update in the Material

Point Method by replacing any downwind quantities at time n with the Lagrangian

particle quantity at time n.

6.2 Incompressible Oldroyd-B

A second order virtual node method for elliptic problems is discussed in [Bedrossian

et al., 2010] with an extension to three dimensions in [Hellrung et al., 2012]. An ex-

tension of these methods to incompressible linear elasticity is developed in [Zhu et al.,

2012], and Stokes flow in two-dimensions is treated in [Assêncio and Teran, 2013].

[Schroeder et al., 2014] extends these methods to a high order numerical method for

solving multiphase Navier-Stokes flow in an irregular domain. It solves Navier-Stokes

flow in three dimensions and handles interfacial discontinuities using a cut-cell finite-

element method implementation.

The method is second order accurate for velocities in L∞, first order accurate for pres-

sures in L∞, and second order in time. It is a virtual node method that duplicates

grid cells to aid in discretizing jump conditions across an interface. The computa-

tional domain is embedded in a Cartesian Marker-and-Cell (MAC) grid that allows

for efficient computations and prevents costly remeshing of the domain. The inter-

face and boundaries of the domain are represented by levelsets, which are updated

in time using Runge-Kutta and updated in space using a weighted essentially non-

oscillatory (WENO) scheme. Inertial terms are discretized using an efficient variant

of semi-Lagrangian and the backward differentiation formula and fluid variables are

discretized using a variational formulation.

We propose using the update outlined in the previous section for the incompressible
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Oldroyd-B equations,

ρ(∂u
∂t

+ (u ⋅ ∇)u) = ∇ ⋅ (−pI + µε + be)

∇ ⋅ u = 0

Dbe
Dt

= (∇u)be + be(∇u)T +
1

Wi
(I − be),

where ε is the rate of strain tensor.

As [Schroeder et al., 2014] solves the Navier-Stokes equations and incompressible

Oldroyd-B adds an additional stress tensor to the force balance equation, we would

use the framework in [Schroeder et al., 2014] for the terms not involving be. In the

update proposed above, we have

(3 + ∆t

Wi
)fe(xn+1, tn+1) = 4fned(xn+1) − fn−1

ed (xn+1)

+ 2∆t(∂v
∂x

(xn+1, tn+1) (2fned(xn+1) − fn−1
ed (xn+1)))

+ ∆t

Wi
(2fned(xn+1)−T − fn−1

ed (xn+1)−T ) ,

which will affect the system present in [Schroeder et al., 2014], as velocities are at time

n + 1.

Alternatively, one could use extrapolated quantities for the velocities, so that these

terms end up on the right-hand side of the linear solve in [Schroeder et al., 2014],

which would not affect the resulting system. This amounts to changing the update to

(3 + ∆t

Wi
)fe(xn+1, tn+1) =

4fned(xn+1) − fn−1
ed (xn+1)

+ 2∆t((2(∂v
∂x

)
n

d

− (∂v
∂x

)
n−1

d

)(2fned(xn+1) − fn−1
ed (xn+1)))

+ ∆t

Wi
(2fned(xn+1)−T − fn−1

ed (xn+1)−T ) .
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Preliminary results suggest that the updates above are unstable. Further work is re-

quired to ensure stability, maintain second order accuracy, and preserve symmetry and

positive-definiteness of the strain.
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CHAPTER 7

Conclusion

We have provided a Material Point Method that presents a new volume-preserving (iso-

choric) Oldroyd-B rate-based description of plasticity. The method successfully models

complex materials. Complex phenomena such as elastic deformation, large topology

change, and plastic effects are handled by the method. The method also handles self-

collision and fracture. The discretization is a straightforward extension of an existing

Material Point Method and does not require the use of the singular value decomposi-

tion, which simplifies implementation. Furthermore, the discretization of viscoelastic-

ity and viscoplasticity is semi-implicit which allows for high-resolution simulations.

The method convincingly models materials such as foams, sponges, and toothpaste.

We have also discussed a modification to an existing constitutive model for modeling

material weakening under plastic compression. This modification successfully models

bone, and can be used in conjunction with a model for materials that weaken under

extension, such as tissue and muscle, to model extreme deformation in human limbs.

Discretizations of the left elastic Cauchy-Green strain that preserve symmetry and

positive-definiteness of the strain have also been provided. These intuitive discretiza-

tions preserve the accuracy of the updates and follow from considering a fully elastic

update of the Cauchy-Green strain.
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APPENDIX A

Material Point Method for Viscoelastic Fluids, Foams

and Sponges

We provide the energy derivatives for the density presented in Chapter 5. Pseudocode

for implementation is also detailed.

A.1 Energy Derivatives

To simplify expressions, we use S ∶= bEOB.

Ψ(F , ε,S) = µ
2

det(F )
2
d det(S)− 1

d tr(S) − µ log(det(F )) + λ
2
(det(F ) − 1)2

+ µNε ∶ εdet(F n)
∂Ψ

∂F
= (µ

d
det(F ) 2

d det(S)− 1
d tr(S) − µ + λ(det(F ) − 1)det(F ))F −T

∂Ψ

∂S
= µ

2
det(F ) 2

d det(S)− 1
d (−1

d
S−1 tr(S) + I)

∂Ψ

∂ε
= 2µN det(Fn)ε

∂2Ψ

∂Fmn∂Fij
= µ
d

det(F ) 2
d det(S)− 1

d tr(S) (2

d
F −T
mnF

−T
ij −F −1

jmF
−1
ni )

+ λdet(F )(det(F )F −T
mnF

−T
ij + (det(F ) − 1) (F −T

mnF
−T
ij −F −1

jmF
−1
ni ) )

− µF −1
jmF

−1
ni

∂2Ψ

∂Smn∂Sij
= − µ

2d
det(F ) 2

d det(S)− 1
d( − S−1

imS
−1
nj tr(S) + S−1

ij δmn
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+ S−1
mn(−

1

d
S−1
ij tr(S) + δij))

∂2Ψ

∂Smn∂Fij
= µ
d

det(F ) 2
dF −T

ij det(S)− 1
d (−1

d
S−1
mn tr(S) + δmn)

∂2Ψ

∂εmn∂εij
= 2µN det(F n)δimδjn

F̂ (x̂) = (I +∑
i

(x̂ni −xni )(∇wni )T )F n

F̂αβ = F n
αβ + (x̂iα − xniα)wni,γF n

γβ

F̂αβ,jσ = δασwnj,γF n
γβ

ε̂(x̂) = 1

2∆t
(∑

i

(x̂ni −xni )(∇wni )T + (∑
i

(x̂ni −xni )(∇wni )T )T)

ε̂αβ =
1

2∆t
((x̂iα − xniα)wni,β + (x̂iβ − xniβ)wni,α)

ε̂αβ,jσ =
1

2∆t
(δασwnj,γδγβ + δβσwnj,γδγα)

Ŝ(x̂) = Sn +∑
i

(x̂ni −xni )(∇wni )TSn + (∑
i

(x̂ni −xni )(∇wni )TSn)
T

+ ∆t

W
(I − Sn)

Ŝαβ = Snαβ + (x̂iα − xniα)wni,γSnγβ + (x̂iβ − xniβ)wni,γSnγα +
∆t

W
(δαβ − Snαβ)

Ŝαβ,jσ = δασwnj,γSnγβ + δβσwnj,γSnγα

Φ = VpΨp

Φ,jσ =∑
p

V 0
p (Ψ∂F

p,σβw
n
jp,γF

n
pγβ +

1

∆t
Ψ∂ε
p,σβw

n
jp,β + 2Ψ∂S

p,σβS
n
pβγw

n
jp,γ)

Φ,(jσ)(kτ) =∑
p

V 0
p w

n
jp,γF

n
pγβ(Ψ∂F ∂F

p,(σβ)(τκ)w
n
kp,ωF

n
pωκ + (Ψ∂S∂F

p,(σβ)(τκ)w
n
kp,ωS

n
pωκ

+Ψ∂S∂F
p,(σβ)(ητ)w

n
kp,ωS

n
pωη))

+∑
p

1

2∆t2
V 0
p w

n
jp,β(Ψ∂ε∂ε

p,(σβ)(τκ)w
n
kp,κ +Ψ∂ε∂ε

p,(σβ)(ητ)w
n
kp,η)+

+∑
p

2V 0
p w

n
jp,γS

n
pγβ(Ψ∂F ∂S

p,(σβ)(τκ)w
n
kp,ωF

n
pωκ + (Ψ∂S∂S

p,(σβ)(τκ)w
n
kp,ωS

n
pωκ
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+Ψ∂S∂S
p,(σβ)(ητ)w

n
kp,ωS

n
pωη))

A.2 Computing Energy Derivatives

Breaking the potential energy into small pieces makes the implementation straight-

forward to implement and debug. We present pseudocode that may be used to com-

pute the potential energy Φ = ∑p Φp along with its derivatives, ∂Φ
∂xi

= ∑p Φp,i and
∂2Φ

∂xi∂xj
= ∑p Φp,ij. The following computational steps may be used to compute the

potential energy contribution of a particle Φp. Note that all of the quantities computed

below, except for the final result Φp, are intermediate quantities used to break the com-

putation into many parts. Most of them have no particular physical significance, and

most have no particular relationship to similarly named quantities elsewhere in this

manuscript. The bold capitalized quantities are matrices, and the rest are scalars.

Ap ←∑
i

(x̂i −xni )(∇wnip)T Bp ←Apb
En

OBp

Gp ← bE
n

OBp +
∆t

Wi
(I − bE

n

OBp) F̂p ← (I +Ap)F n
p

Sp ←Gp +Bp +BT
p Hp ← F̂ −1

p

Jp ← det(F̂p) ap ←
λ

2
(Jp − 1)2

qp ←
1

2∆t2
(∥Ap∥2

F +AT
p ∶Ap) bp ← µ ln(Jp)

cp ← µNP qp det(F n
p ) gp ← tr(Sp)

Kp ← S−1
p hp ← det(Sp)

kp ← h
−

1
d

p mp ← J
2
d
p

np ← kpgp pp ←
µ

2
mpnp

Φp ← Vp(pp − bp + ap + cp)
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The next set of routines are for the first derivatives of the quantities above, with the

final result being the potential energy derivative for a particle, Φp,i. Note that these

routines use the quantities computed above. Intermediate quantities of the form cp,i are

related to the intermediates above by cp,i = ∂cp
∂x̂i

, which allows for incremental testing.

All quantities computed below are vectors.

bpi ← bE
n

OBp∇wnip fpi ← (F n
p )T∇wnip

hpi ←HT
p fpi kpi ←KT

p bpi

Jp,i ← Jphpi ap,i ← λ(Jp − 1)Jp,i

qp,i ←
1

∆t2
(Ap∇wnip +AT

p∇wnip) bp,i ← µhpi

cp,i ← µNP det(F n
p )qp,i gp,i ← 2bpi

kp,i ← −
2kp
d
kpi mp,i ←

2mp

d
hpi

pp,i ←
µ

2
(mp,inp +mpnp,i) np,i ← kp,igp + kpgp,i

Φp,i ← Vp(pp,i − bp,i + ap,i + cp,i)

The final set of routines are for second derivatives, with the final result being the po-

tential energy Hessian for a particle, Φp,ij. Intermediate quantities of the form cp,ij are

related to the intermediates above by cp,ij =
∂cp,i
∂x̂j

. All quantities computed below are

matrices.

Jp,ij ← Jphp,ih
T

p,j − Jphp,jh
T

p,i

ap,ij ← λJp,iJ
T
p,j + λ(Jp − 1)Jp,ij

bp,ij ← −µhp,jh
T

p,i

qp,ij ←
1

∆t2
((∇wnip)T∇w,jI +∇w,j(∇wnip)T )

cp,ij ← µNP det(F n
p )qp,ij

kp,ij ←
4kp
d2
kp,ik

T

p,j +
2kp
d
kp,jk

T

p,i +
2kp
d
b
T

p,ikp,jKp
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mp,ij ←
4mp

d2
hp,ih

T

p,j −
2mp

d
hp,jh

T

p,i

np,ij ← kp,ijgp + kp,igT,j + gp,ikT,j

pp,ij ←
µ

2
(mp,ijnp +mp,in

T
,j + np,imT

,j + np,ijmp)

Φp,ij ← Vp(pp,ij − bp,ij + ap,ij + cp,ij)
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