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ABSTRACT

This thesis presents efficient and easy to implement algorithms for the simulation
of embedded interface evolutions in applications of physically based modeling. It is
organized in two parts.

In the first part, we provide the mathematical and numerical background necessary
for the development of our methods. We outline a state-of-the-art cut-cell algorithm
that allows us to efficiently and conveniently embed level set surfaces into a regular
mesh, eliminating the need for boundary aligned elements. An implicit discretization of
dynamic non-linear elasticity is derived, which combines the finite element method with
the aforementioned embedded mesh approach.

The second part is concerned with the development of specialized algorithms to spe-
cific problems involving embedded surfaces. First, we introduce a general and efficient
method to recover piecewise constant coefficients occurring in elliptic partial differential
equations as well as the interface where these coefficients have jump discontinuities. For
this inverse problem, we use an output least squares approach with level set and aug-
mented Lagrangian methods. Our formulation incorporates the inherent nature of the
piecewise constant coefficients, which eliminates the need for a complicated non-linear
solve at every iteration. Instead, we obtain an explicit update formula and therefore
vastly speed up computation. We employ our approach to the example problems of
Poisson’s equation and linear elasticity, and simultaneously recover both coefficients and
interface for these problems.

In another application of the background developed in the first part, we utilize the
shape derivative of the classical Griffith’s energy of fracture mechanics in a level set
evolution for the simulation of dynamic ductile fracture. The level set is defined in
the undeformed configuration of the object, and its evolution is designed to represent
a transition from undamaged to failed material. No re-meshing is needed since the re-
sulting topological changes are handled naturally by the level set method. We provide
a new mechanism for the generation of fragments of material during the progression of
the level set in the Griffith’s energy minimization. Collisions between different mate-
rial pieces are resolved with impulses derived from the material point method over a
background Eulerian grid. This provides a stable means for colliding with embedded in-
terfaces. We demonstrate the efficacy of our algorithm by presenting compelling results
of many realistic-looking fracture simulations, which may be used in computer graphics
and movies.
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1
Introduction

1.1 Motivation

The process of earning a PhD is often considered a journey, a quest for knowledge as well
as for personal growth. My journey was even a physical one, and it started before I even
thought about towards a doctorate. In March 2008 I was lucky enough to depart for a
year to study abroad at the University of California, Los Angeles (UCLA). Upon arrival, I
was offered the great opportunity to talk to many of the researchers in the Department of
Mathematics there and given the choice to freely decide which project interested me the
most. Certainly, all of them had their own appeal, from swarm simulations and robots
to crime modeling and many more. One conversation stood out: Professor Joseph Teran
caught my attention by offering me the prospect to work on fracture mechanics and how
it could lead to applications in graphics, namely in special effects and animations for
movies. For a cinephile like myself, that temptation was simply too great to ignore! To
put it candidly: I was hooked.

However, it would be a long way to realize this goal of fracture for graphics. The
first project instead started with the simulation of two dimensional quasistatic, brittle
material, with application in engineering. This project led to not only my Diploma thesis
([54]) but also to my first publication ([119]). One noteworthy aspect and the reason I
recall it here is the method of crack propagation. As is commonplace in the literature
of this specific field, we used a fracture criterion that relies on the computation of a so
called propagation angle, which, in turn, is determined from the current deformation of
the material. However, while this angle changes according to the current state and the
current stress, the length of each increment is fixed and determined a priori. In other
words, the propagation speed is always the same. Furthermore, this approach does not
allow the crack to split or merge. This inflexibility was something that I wanted to
overcome from the beginning - but I did not yet have the appropriate tools to do so.
During this first project, and before having accomplished hardly anything yet, Joseph
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Teran asked me to continue my work as a PhD student, and I was thankful that Martin
Burger agreed to make it possible despite some logistical impediments.

After graduating with my Diploma in August 2009 in Münster, I went back to Los
Angeles the following month and was excited to continue my research. A new project was
quickly found, and it combined a multitude of very interesting mathematical aspects: it
dealt with an inverse problem, for which my home Institute for Computational and Ap-
plied Mathematics at the Westfälische Wilhelms-Universität Münster is well positioned;
it investigated linear elasticity, with which I was already quite accustomed from my
Diploma thesis; and it featured level set methods, which had interested me since I had
first learned about them in a seminar a few years prior. This project was successful (not
without its own obligatory ups and downs, of course); it resulted in my first first-author
publication and is part of this dissertation in Chapter 3.

During this project I learned a lot about evolving level sets and how to use them
in combination with shape optimization techniques. This finally gave me the tools I
had been looking for: it opened a way to avoid the restrictions imposed by many other
crack propagation methods by allowing completely arbitrary fracture evolutions, with a
variable propagation speed and without any requirements on a priori crack initialization.
Consequently, we once again approached the problem of fracture mechanics, this time
under the premise of developing an efficient and versatile propagation method for highly
dynamic simulations, with inertia effects and in 3D. After countless hours of work, and
certainly some more complications, I was finally where I had wanted to arrive: movie-
grade fracture! The results of this work can be found in Chapter 4.

With the conclusion of this project, my pursuit of a doctorate degree comes to an
end as well. It was a hard one, a joyful one, one that was frustrating at times, but also
exciting as well as certainly humbling - all aspects inherent to mathematics itself in one
form or another, however as mentioned before, also to the PhD process in general.

Mathematically speaking, the journey revolves around evolving interfaces. This is a
phenomenon that occurs all around us, from the macroscopic growth of living organism,
the branching of a tree, to the cells that go through mitosis at the micro scale, in a rapidly
moving and splashing body of water or the growth of crystals. While we may marvel
at these wonders of nature, the mathematical description of their surfaces can prove to
be non-trivial due to changes of their form, including branching, opening and closing of
holes, etc. As one uses the derivative of a function to analyse its rate of change, we will
use a similar approach to understand the change in the shape of a surface. This allows
the development of optimization algorithms whose objective is to minimize a suitable
energy as a function of an evolving shape.
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The next stop on this mathematical venture are so called inverse problems. While
the forward problem is the task of finding a solution to a problem for which one is
given all the model parameters (the equation, initial and boundary conditions, etc.),
the inverse problem is concerned with the recovery of parts of the equation from a given
observation of the solution. An intuitive example would be an object under some lighting
conditions: The forward problem solves for the shape of the shadow from the geometry
of the object. Conversely, the inverse problem tries to infer the geometry of the object
from a given shadow. As is obvious from the example, the inverse problem is often very
difficult to solve and might not have a unique solution. Additional information, like the
shadows of the same object under different angles of light incidence, can improve the
conditions for finding a solution. The difficulty that frequently arises when dealing with
inverse problems is called the ill-posedness of the problem. It was first categorized by
Jacques Hadamard in 1902. According to his work, a problem is well-posed if it meets
the following three conditions:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the initial conditions, in other words, the
solution’s behavior hardly changes when there is a slight change in the initial
conditions.

Problems not fulfilling these requirements are called ill-posed. Inverse problems have a
well-established place in modern science and technology. They are crucial to applica-
tions like radar, sonar, medical imaging (e.g. computer tomography), image processing
techniques (e.g. denoising and debluring), analysis of properties of astronomical objects
based on the emitted or reflected light, unmixing problems (e.g. spectrography), and
many more.

The final stop in this journey is in creating physically based simulations for computer
graphics. Once again, many examples can be found in well-known applications. Almost
every modern professional movie with special effects contains computer generated images
(CGI); nowadays animated movies are often fully rendered by computers; and computer
games using photo-realistic graphics combined with physically correct behavior have
arrived in the mainstream. And in the future, computer graphics can even help to
advance medicine via visualization of internal organs or by providing customized virtual
surgery environments as a method of preparation before major operation, individualized
for every patient.

During the creation of an animated movie, instead of drawing everything by hand,
artists often utilize computer simulations. They model the objects and characters, from
the skeleton over body mass to hair and clothing, directly in the computer. Numerical
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mathematics are then used to realistically simulate their behavior when set in motion.
In the example of a character, the motion of only the skeleton and muscles might be
specified by the artist, and then the body mass, hair and clothing all move as a result.
This computer assistance allows the animators to spend more time on creative aspects
of the story, while the simulation handles providing more realism. However, it also takes
full control out of their hands and fully realistic behavior might not be desirable at all
times. Instead, it only needs to look realistic for the viewer and artistic considerations
may sometimes be more important than physical correctness. This motivates the incor-
poration of controlling features into the numerical methods. Furthermore, efficiency is
vital for these applications. While it is true that computers steadily become faster, the
computational budget for a set project typically remains the same. Thus, an efficient
method can improve the appearance of the final result since it allows the simulation of a
more complex object within the same time frame. For a real-time application like video
games or virtual surgery simulators efficiency is even key to their feasibility.

1.2 Organization of this Work and Contributions

This thesis is organized as follows:

In Chapter 2, we present the theory and background of the mathematical tools neces-
sary to develop our methods. It includes results from shape optimization as well as many
different numerical concepts and methods, such as the level set method, the development
of a level set based embedded meshing algorithm and a derivation of a finite element
discretization of dynamic elasticity. This first part lays the foundation to understand
and follow the methods we develop in the second part of this thesis. Implementation
details are given where they apply to both our algorithms.

The second part of this thesis, consisting of Chapters 3 and 4, can be considered
its main part. It is concerned with applications based on the fundamentals outlined
earlier. For these applications we elaborate and expand on the basis given before and
investigate additional concepts as they are needed specifically for each problem. Details
to additional, advanced implementation aspects are also presented.

The first of the two applications is the inverse problem of parameter and interface
estimation of elliptic partial differential equations (PDEs). In our case, we concern
ourselves with the two well-known problems of Poisson’s equation and linear elasticity.
We assume to have solutions to each of these PDEs and try to recover the values of the
coefficients that constitute the equations. Since we allow these coefficients to have jump
discontinuities, we also recover the interface where these jumps occur. Our contribution



1.2 Organization of this Work and Contributions 5

is an efficient and easy to implement algorithm. We accomplish this by incorporating
the piecewise constant nature of the coefficients directly into the method. Numerical
results for both equations and different 2D geometric setups are given, and several noise
levels are investigated.

The second application is the aforementioned dynamic fracture for graphics applica-
tions. We generalize an energy-driven level set based evolution to dynamic non-linear
elasticity, which yields realistic fracture simulations. We provide a new mechanism for
the generation of fragments of material during the progression of the level set in the
energy minimization. Collisions between different material pieces are resolved with im-
pulses derived from the material point method over a background Eulerian grid. With
this extension of the material point method, we present a solution to the problem of col-
lisions between embedded surfaces. Our resulting algorithm is again easy to implement
and efficient to execute. It also allows us to control the fracture propagation speed and
if desired even guide its path. Results for both 2D and 3D are presented, ranging from
stretching of block to hitting complex geometries with multiple projectiles. Dynamics
are fully simulated and yield compelling effects, including secondary fracture resulting
from collisions of fragment pieces with the material.

Since this work is heavily based on numerical methods and algorithmic considerations,
we here list some facts about the programming work done for this dissertation. The
results of this aspect are shown in the respective subsections of Chapters 3 and 4.

• programming in Microsoft Windows as well as Linux environments

• over 17,000 lines of C++ code developed

• substantial contributions to many different aspects of the scientific computing li-
brary called Sake, local to the Teran work group at UCLA

• (almost) everything beyond basic data structures was newly written: from dis-
cretization over solver to level set advection and reinitialization

• extensive use of sparse and efficient data structures, iterators etc. (for matrices,
cutting algorithms, collision handling and more)

• utilization different libraries: STL, Boost1 , PETSc2

• heavy use of multi-threading with OpenMP3

• handling output to .vtk files, including writing customized interfaces to this format,
and visualization with Paraview4

1Boost C++ Libraries: http://www.boost.org/
2PETSc (Portable, Extensible Toolkit for Scientific Computation): http://www.mcs.anl.gov/petsc/
developers/projects.html

3OpenMP (API for multi-platform shared-memory parallel programming in C/C++ and Fortran):
http://www.openmp.org/

4Paraview (open source scientific visualization): http://www.paraview.org/

http://www.boost.org/
http://www.mcs.anl.gov/petsc/developers/projects.html
http://www.mcs.anl.gov/petsc/developers/projects.html
http://www.openmp.org/
http://www.paraview.org/


6 1 Introduction

• rendering with POV-ray5

5POV-ray (the Persistence of Vision Raytracer): http://www.povray.org/

http://www.povray.org/
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2
Background

In this chapter we will present all the background required to understand the methods we
will develop in the later chapters. This background consists of both theoretical results as
well as numerical concepts and algorithms. The goal is to lay the foundation consisting
of the components that are common to each of our methods.

First, we introduce the definition and some essential results of shape derivatives.
These will be integral to both our methods and build the cornerstone of our evolving
interfaces. Those interfaces will be represented and evolved using the level set method as
described in Section 2.2. The implicit description of the interface inherent to this method
allows to handle any occurring topological changes naturally. One minor drawback is
that the level set function needs to be reinitialized as a signed distance function, a
process we describe in Section 2.2.1.

We use the information provided by the interface representation to embed the surface
into a regular triangle or tetrahedron mesh (in 2D and 3D respectively). This process,
which we detail in Section 2.3, builds the ground infrastructure of our discretization.
It allows for accurate computation of mesh-based forces while eliminating the necessity
for remeshing every time the interface moves. Instead, integrals are evaluated over the
material volume of partially filled elements.

In Section 2.4 we step through all aspects of the elasticity discretization according
to the finite element method (FEM). We use a fully implicit backward Euler scheme
to allow for larger time steps. The resulting non-linear system is solved via Newton’s
method. Lastly, we show how to solve the occurring symmetric but indefinite linear
systems via the minimal residual method (MINRES) in Section 2.5.

2.1 Shape Derivative

Since our methods investigate and use the evolution of the boundary of a domain (or
subset thereof), we first need to understand how a functional, which is dependent on
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the domain, behaves under these changes. Therefore, we first need to define the shape
derivative.

Definition 2.1 (Shape Derivative). Let Ω ⊂ Rd be open and bounded. The shape
derivative of a functional J(Ω) at Ω is defined as the Frechét derivative in W 1,∞(Rd;Rd)

at 0 of the application θ 7→ J((I + θ)(Ω)) = {x+ θ(x)|x ∈ Ω}, i.e.

J((I + θ)(Ω)) = J(Ω) + J
′
(Ω)[θ] + o(θ),

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd) and lim
θ→0

|o(θ)|
||θ|| = 0.

We now derive two essential statements about shape derivatives (cf. [2, 131]) and use
them in the subsequent investigations. The first one provides the means to compute the
derivative of a function integral with respect to the region of integration.

Lemma 2.2. Let Ω ⊂ Rd be a smooth open set and and f ∈ W 1,1(Rd). Then

J(Ω) :=

∫
Ω

f(x) dx

is differentiable at Ω and

J ′(Ω)[θ] =

∫
Ω

∇ · (θ(x)f(x)) dx

=

∫
∂Ω

θ(x) · n(x)f(x) ds(x)

for any θ ∈ W 1,∞(Rd;Rd).

Proof. Let Ω
′

= (I + εθ)(Ω) be a small perturbation of Ω in the direction of θ, and let
γ: Rd → Rd, Ω 7→ Ω

′ be the mapping between the two sets, i.e. γ(X) = (I + εθ)(X).
Then

J((I + εθ)(Ω)) =

∫
Ω′
f(y) dy

=

∫
Ω

f(γ(x)) det(Dγ)(x) dx,
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where Dγ denotes the Jacobian of γ. The directional derivative of J is then given by

J ′(Ω)[θ] =
∂

∂ε
|ε=0J((I + εθ)(Ω))

=
∂

∂ε
|ε=0

∫
Ω

f(γ(x)) det(Dγ)(x) dx

=

∫
Ω

∇f(x) · θ(x) + f(x) ∇ · θ dx

=

∫
Ω

∇ · (fθ) dx

where we used det(Dγ)|ε=0 = det(D(I + εθ))|ε=0 = 1 as well as

∂

∂ε
|ε=0 det(Dγ) =

∂

∂ε
|ε=0 det(D(I + εθ))

=
∂

∂ε
|ε=0(1 + ε∇ · θ +O(ε2))

= ∇ · θ

and ∇f · θ+ f∇ · θ = ∇ · (fθ) for any differentiable scalar valued function f and vector
field θ. The divergence theorem completes the proof.

Remark: The above lemma can also be interpreted as a special case of the Reynold’s
transport theorem

d

dτ

∫
Ω(τ)

fdV =

∫
Ω(τ)

∂f

∂τ
dV +

∫
∂Ω(τ)

(vb · n)fdA,

for an f that is independent of the change of the domain Ω, i.e. independent of τ , and
if one interprets θ from above as the change to the domain, i.e. its velocity vb.

The next lemma contains the well-known result that the derivative of the length of
a curve is given by its curvature - which is precisely the part we will be using in our
subsequent investigations.

Lemma 2.3. Let Ω ⊂ Rd be a smooth open set and f ∈ W 2,1(Rd). Then

J(Ω) :=

∫
∂Ω

f(x) ds

is differentiable at Ω and

J ′(Ω)[θ] =

∫
∂Ω

θ(x) · n(x)

(
∂f

∂n
(x) + f(x)κ(x)

)
ds
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for any θ ∈ W 1,∞(Rd;Rd), where κ = ∇ · n is the mean curvature of ∂Ω.

Proof. We refer the interested reader to [131], page 80.

2.2 Level Set Evolution

We will only give a brief description of the level set method and refer to [106] for a more
detailed survey. The level set method was first developed by Osher and Sethian in [107]
and has since become a popular and powerful tool in many applications, ranging from
image segmentation (e.g. [147]), to dynamic fluid, smoke and fire simulations (see [85]
and references therein).

The idea of the level set method is as simple as it is effective: instead of an explicit
representation of a surface, we model it as the zero isocontour of a (continuous) function
φ, i.e. as the set Γ := {X ∈ Rd | φ(X) = 0}. One intuitive example is a circle with
radius r around the origin, described by the equation

X2
1 +X2

2 − r2 = 0 (2.1)

This formulation has many powerful advantages. First, the sign of φ at any given
point easily indicates which side of the interface this point is on. Further, the implicit
representation allows for natural handling of changes in the topology of the interface,
such as splitting and merging, because these can be executed by changing the definition
of the function values. This versatility makes it perfectly suited for problems like inverse
shape reconstruction (see Chapter 3) and fracture propagation (see Chapter 4), where
topological changes occur frequently.

The level set function φ can be evolved throughout an artificial time s ∈ R+ by
computing the total derivative

dφ
ds

(X(s), s) =
∂φ

∂s
+∇φ · v. (2.2)

There are many choices for the velocity field v; classical ones are mean curvature or
a flow field. It can also be chosen - and we will elaborate on this later - as a descent
direction of an energy functional. In that case, the interface (hopefully) moves towards
a stationary point. The velocity in the gradient descent direction can be found using
the lemmata from Section 2.1 (using the same notation) by setting

θ(x) = −f(x)n(x). (2.3)

Its normal component V := θ · n(= f) can then be used as the advection velocity in the
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Hamilton-Jacobi equation

∂φ

∂s
− |∇φ|V = 0, (2.4)

where we also used n = ∇φ
|∇φ| . Equation (2.4) is called the level set equation.

We further replace |∇φ| with an approximation of the Dirac delta-function (see [147]):

∂φ

∂s
− δε(φ)V = 0. (2.5)

One possible choice is the following C∞ representation (see [147]):

δε(x) =
1

π

ε

ε2 + x2
. (2.6)

The shape optimization can then be implemented with a forward-Euler scheme, yielding

φk+1(X) = φk(X) + ∆s δε(φ
k(X))V (X). (2.7)

which evolves φ with some time step ∆s.

2.2.1 Reinitialization

The most common choice for the level set function φ is that of a signed distance function,
i.e.

φ(X) =


min
X0∈Γ

(|X −X0|) if X ∈ Ω+

− min
X0∈Γ

(|X −X0|) if X ∈ Ω−
, (2.8)

where Ω+ denoted the domain enclosed by the interface Γ and Ω− the one outside of it,
i.e. Ω− = Ω \ (Ω+ ∪ Γ). Reformulating the example of the circle given in (2.1) in this
fashion yields √

X2
1 +X2

2 − r = 0. (2.9)

One of the properties of a signed distance function is that |∇φ| = 1, which simplifies
the level set equation (2.4). However, it is well known (e.g. [106, 113]) that the solution
to the evolution given by (2.4) is generally not a signed distance function any more, even
if the initial φ is. Instead, the solution can become too flat or too steep around the inter-
face. The process of re-establishing the signed distance property is called reinitialization.
This procedure of replacing the function φ is theoretically justified in [31] where it is
shown that the interface at time s, Γ(s) := {X ∈ Rd | φ(X, s) = 0}, given by the solution
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of equation (2.4) depends only on the initial interface Γ(0) := {X ∈ Rd | φ(X, 0) = 0}
but not on the particular choice of the initial function φ(·, s). While in theory reinitial-
ization is necessary after every change to φ, numerically it might be beneficial not doing
so - an example and more details about this can be found in Chapter 3.

A straight-forward way to reinitialize φ as signed distance is to approximate the
location of the interface (e.g. by interpolation), then recompute the distance between
all grid nodes and this surface ([91]). However, doing this for the entire domain Ω is
computationally expensive and might lead to a non-smooth φ. A more elegant way is to
solve the eikonal equation

|∇φ(X)| = f(X) X ∈ Ω ⊂ Rd (2.10)

φ(X) = 0 X ∈ Γ ⊂ Ω (2.11)

for the special case of

f(X) ≡ 1. (2.12)

This can be done with various discretization schemes (e.g. [113, 137]). A computationally
efficient method is the fast sweeping method described in [149], which we will summarize
here for completeness.

Assuming we have φ defined on an equidistant grid with spacing h and grid indices
(i, j, k), the basic idea is to update the values of φ as the minimum of its current value
and the solution of a Godunov-type upwind scheme

[(φijk − a1)+]2 + [(φijk − a2)+]2 + [(φijk − a3)+]2 = h2 (2.13)

where

a1 := min(φ(i−1)jk, φ(i+1)jk) (2.14)

a2 := min(φi(j−1)k, φi(j+1)k) (2.15)

a3 := min(φij(k−1), φij(k+1)) (2.16)

x+ := max(0, x). (2.17)

For boundary nodes one-sided differences are used instead of equations (2.14) - (2.16).

The solution is propagated through Gauss-Seidel iterations in multiple “sweeping
steps”. The boundary condition is enforced by initializing and fixating the values around
the interface. If the level set evolution is sufficiently well behaved, this can be done by
using the values resulting from the solution to (2.4) for the nodes directly adjacent to
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the interface. Alternatively, the distance to the interface can be recomputed for these
nodes.

For all nodes not adjacent to the interface, we first save their sign and then initialize
their value to a large value clarge with the property

Mφ ≤ clarge ≤ ∞, (2.18)

where Mφ is the largest possible value for φ in the entire domain Ω. Since any such
value is sufficient, a numerical representation of positive infinity can be used in practice
for clarge.

All grid nodes initialized with clarge will be updated by finding the solution to (2.13).
First, we order the a` defined by (2.14) - (2.16), such that a1 ≤ a2 ≤ a3 < a4 := ∞.
Then, there is a p such that x̄ is the unique solution of

(x− a1)2 + · · ·+ (x− ap)2 = h2 (2.19)

that satisfies

ap < x̄ ≤ ap+1. (2.20)

We find x̄ by the following iterative process: For p = 1, define x̃ as the unique solution
of

(x− a1)2 = h2 (2.21)

under the requirement

x̃ > a1, (2.22)

which obviously is

x̃ = a1 + h. (2.23)

If x̃ ≤ a2, then x̄ = x̃. If not, find the unique solution x̃ of

(x− a1)2 + (x− a2)2 = h2 (2.24)

with

x̃ > a2, (2.25)
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computed as

x̃ =
a1 + a2 +

√
2h2 − (a1 − a2)2

2
. (2.26)

In two dimensions, we are guaranteed to have found our solution at this point. In 3D we
continue in the obvious fashion: If x̃ ≤ a3, then x̄ = x̃, else find x̃ as the unique solution
of

(x− a1)2 + (x− a2)2 + (x− a3)2 = h2 (2.27)

that satisfies

x̃ > a3, (2.28)

given by

x̃ =

√
(−2a1 − 2a2 − 2a3)2 − 12(a2

1 + a2
2 + a2

3 − h2) + 2a1 + 2a2 + 2a3

6
, (2.29)

which concludes this part of the algorithm. This scheme can be generalized to higher
dimensions if desired.

The correct distance is propagated from the interface outwards by employing multiple
sweeping steps in all possible combination of directions:

(1) i = 1 : Ni, j = 1 : Nj (2.30)

(2) i = 1 : Ni, j = Nj : 1 (2.31)

(3) i = Ni : 1, j = 1 : Nj (2.32)

(4) i = Ni : 1, j = Nj : 1 (2.33)

in two dimensions, and in 3D all 23 directions

(1) i = 1 : Ni, j = 1 : Nj, k = 1 : Nk (2.34)

(2) i = 1 : Ni, j = 1 : Nj, k = Nk : 1 (2.35)

(3) i = 1 : Ni, j = Nj : 1, k = 1 : Nk (2.36)

(4) i = 1 : Ni, j = Nj : 1, k = Nk : 1 (2.37)

(5) i = Ni : 1, j = 1 : Nj, k = 1 : Nk (2.38)

(6) i = Ni : 1, j = 1 : Nj, k = Nk : 1 (2.39)

(7) i = Ni : 1, j = Nj : 1, k = 1 : Nk (2.40)

(8) i = Ni : 1, j = Nj : 1, j = Nk : 1, (2.41)
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where Ni, Nj, Nk are the number of grid nodes in x = X1, y = X2, and z = X3 direction
respectively.

Lastly, we re-establish the correct signs for all nodes. Since these were saved in the
initialization phase, a simple loop is sufficient. The entire method then reads as shown
in Algorithm 2.1.

The main advantage of this algorithm is its optimal complexity of O(N) for N grid
nodes and that it converges after 2d sweeps if executed in the order as outlined above.
For an analysis of the convergence behaviour as well as error estimates, we again refer
to the original work of [149].

2.3 Level Set Based Embedded Meshing

We will now explain how we incorporate the implicit representation of the level set
method into our discretization. Similar to [82], we use a signed distance function φ

in material coordinates X to create an embedded Lagrangian mesh. For any given
domain Ω0 ⊂ Rd and its interface Γ = ∂Ω0, we create a larger domain Ω∗ that encloses
Ω0 but is of regular shape and easy to tessellate. A convenient choice for Ω∗ is the
bounding box of Ω0. We then start with a simple regular lattice Gh of Ω∗ with spacing
h := ∆x = ∆y (= ∆z). We define the values of the level set function φ at the nodes
of Gh. The computational meshMh finally consists of all elements in Gh with at least
one node Xi having φ(Xi) < 0. Some of the elements will have negative φ values on all
nodes, we call these inside elements. Integration on these elements will be independent
of the embedding. Elements that contain both nodes with positive and negative level
set values will be denoted as boundary elements. These elements are partially filled with
material and the integration will reflect that (see below). We refer to any node incident
on a boundary element that has a positive φ value as a virtual node since it is outside
but still participates in the discretization by virtue of the embedding. In other words,
it is located outside of the domain, however, some portion of the material is associated
with this node. See Figure 2.1 for a 2D example.

In practice, we only use simplices, i.e. triangles in 2D and tetrahedra in 3D, which
correspond to elements with linear basis functions in the FEM framework (see Section 2.4
below), and we will focus our language on this case. Let us suppose that Ω0 ⊂ Rd is
tesselated by simplices Mh = {S1, . . . , SN} with grid vertices X1, . . . ,Xn ∈ Rd and
with Sαk denoting the kth grid vertex of simplex Sα. We create a linear approximation
of the sub-element location of the zero isocontour to define the boundary of the material
region. That is, we introduce either a triangle or (convex) quadrilateral (simple line
segments in 2D) on each boundary element depending on the number of edge crossings,
as we will explain now.
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Algorithm 2.1 Fast-sweeping.
// Input: φ, h
// Initialization
for all i = 1 to Ni do
for all j = 1 to Nj do
for all k = 1 to Nk do
signs(i, j, k)← sign(φijk)
if φijk is incident to interface then
fixed_nodes(i, j, k)← true
φijk ← |φijk|

else
φijk ← clarge

end if
end for

end for
end for

// Sweeping steps
for all sweeps = 1 to 2d do
// loop directions as outlined in (2.30) - (2.33) or (2.34) - (2.41)
for all i do
for all j do
for all k do
if not fixed_nodes(i, j, k) == true then
φ̄ijk = upwind_solution(φijk)
φijk ← min(φ̄ijk, φijk)

end if
end for

end for
end for

end for

// Re-establishing the signs
for all i = 1 to Ni do
for all j = 1 to Nj do
for all k = 1 to Nk do
φ(i, j, k)← signs(i, j, k) · φijk

end for
end for

end for
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Figure 2.1: Our level set based embedding in a regular grid in 2D. Boundary cells are shown in
green, virtual nodes are depicted with green triangles, nodes that have a discrete
stencil independent of embedding are in blue.

For a boundary element Sα ∈Mh, we check each edge, which we identify by the pair
of incident indices, (i = Sαk , j = Sα` ). If φ(Xi)φ(Xj) < 0, we locate the interface Γ on
this edge via the intersection point. Its barycentric coordinates w = (wk)k ∈ Rd+1 are
defined by

wk =
φ(Xj)

φ(Xi)− φ(Xj)
(2.42)

w` =
φ(Xi)

φ(Xi)− φ(Xj)
; (2.43)

all other components of w are equal to zero (cf. [92]). Note that since
∑d+1

k=1wk = 1,
it suffices to store only the d independent entries in order to save memory. Further,
absolute values are not needed in the computation of (2.42) and (2.43) as φ(Xi) and
φ(Xj) are of opposite sign, thus the above always results in the desired positive weights.

Now, in 3D there are two distinct possibilities in any boundary element (in 2D only
one trivial case occurs): (i) three vertices are of the same sign and the fourth is of the
opposite or (ii) two each share the same sign. The first case leads to three edge crossings
and therefore a triangle as material surface in this element, the second results in four
intersections and thus a quadrilateral insertion. Note that the vertices of the embedded
surface are not degrees of freedom in our discretization. Only the element nodes themself
give rise to degrees of freedom, and the intersection points are fully dependent on those
vertices via their barycentric coordinates. Figure 2.2 shows a 3D illustration of this
division process and the resulting material portion.
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(a) Cube divided into tetrahedra. (b) Tetrahedra cut by a level set. (c) Material portion of cut tetra-
hedra.

Figure 2.2: Illustration of our tetrahedralization and embedding on a 3D uniform grid. Each
cell is subdivided into 6 tetrahedra. The linear interpolation of the interface
results in the addition of either a triangular or quadrilateral embedded surface in
every cut element.

2.3.1 Integration

As mentioned before and elaborated below, we will use a finite element discretization.
Therefore, we will need to be able to evaluate integration over the material part of each
element for accurate forces. However, instead of recalculating a subtesselation of the
material region every time the embedding information changes (as done in e.g. [7]), we
use the fact that we already have a detailed surface representation within each element
from the procedure outlined above. Further, all occurring integrands will be polynomials
(or approximated as such). We then apply Gauß’ divergence theorem to transform the
volume integral to one over the material surface (cf. [58]). This transformation is, of
course, not unique; however it is very easy to perform due to the polynomial nature
of the integrands. We will demonstrate the idea with the following 3D example and a
monomial:

f(x, y, z) = xpyqzr with p, q, r ∈ N (2.44)∫
Sα
xpyqzr dX =

∫
∂Sα
∇ ·
(

1

p+ 1
xp+1yqzr, 0, 0

)
n(X) dS(X). (2.45)

We split up any occurring quadrilateral into four triangles by simply adding the mid-
point as an additional intersection point. We can additionally perform a change of co-
ordinates to map each such triangle to the standard one defined by {(0, 0), (1, 0), (0, 1)}.
Lastly, we apply a Gaussian quadrature rule on the standard triangle. The weights and
quadrature points for these can be found in Table 2.2 (from [38]). In two dimensions,
any surface integral is simply mapped to the interval [0, 1]. The weights and quadrature
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points for this simpler case can be found in any text book on numerical analysis. For
completeness, we state them in Table 2.1.

order weights points

1 1 1
2

1
2

3
1
2

1
2
−
√

3
3

1
2

+
√

3
3

1
2

1
2

+
√

3
3

1
2
−
√

3
3

Table 2.1: Gaussian quadrature weights and points

order weights points

1 1 1
3

1
3

1
3

2

1
3

1
6

1
6

2
3

1
3

1
6

2
3

1
6

1
3

2
3

1
6

1
6

3

−27
48

1
3

1
3

1
3

25
48

1
5

1
5

3
5

25
48

1
5

3
5

1
5

25
48

3
5

1
5

1
5

Table 2.2: Gaussian quadrature weights and points for triangles

With a specific discretization in mind (e.g. as detailed in Section 2.4), all integrands
can be predetermined as they will be products of basis functions. By working out the
specific cases that can occur, one is able to always apply the quadrature scheme of
minimal but appropriate order. Again, since the integrands are polynomials, this results
in exact evaluation.

2.4 Finite Element Discretization for Elasticity1

In this section we will give an extensive overview about the discretization of elasticity in
the framework of the finite element method (FEM) (see also our work in [141], or alter-
natively [127]). We use linear basis function in order to keep integration simple. Even
though our applications will feature both quasistatic as well as dynamic discretization,

1Section based on Publication [141]: J.M. Teran, J.L. Hellrung, and J. Hegemann. Simulation of
Elasticity, Biomechanics, and Virtual Surgery. IAS/Park City Mathematics Series, 2012. To appear.
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we will here focus on the latter due to its generality. Furthermore, we discuss a non-
linear constitutive model for the same reason. The case of quasistatic, linear elasticity
can be easily deduced from what is presented here, or looked up in the author’s Diploma
thesis [54], which also contains a detailed derivation of the equilibrium equation. The
same applies to the even easier case of Poisson’s equation, investigated in Section 3,
which is discretized in a completely analogous fashion (alternatively, see [41]).

2.4.1 Governing Equations and Backward Euler

We will quantify the deformation of the objects of interest in terms of the mapping ϕ
between an initial (or material) Ω0 ∈ Rd and current (or deformed) Ω ∈ Rd configuration.
We will label points in Ω0 as X and points in Ω as x (see Figure 2.3), which leads to
the following notation:

ϕ(·, t) : Ω0 → Ω (2.46)

ϕ (X, t) = x. (2.47)

From this, we define the displacement

u(·, t) : Ω0 → Rd (2.48)

u (X, t) = ϕ (X, t)−X. (2.49)

The deformation gradient refers to ∂ϕ
∂X

and is often denoted with F :

F (·, t) : Ω0 → Rd×d (2.50)

F =
∂ϕ

∂X
. (2.51)

We use a hyperelastic idealization of the material response to deformation with a
Finite Element Method (FEM) discretization. For hyperelastic materials, the first Piola-
Kirchoff stress P is related to an elastic energy density Ψ as ([16])

P =
∂Ψ

∂F
, (2.52)

where F is the deformation gradient.
(Remark: For the case of linear elasticity it is more common to use the Cauchy stress
tensor σ instead, and we will do so in Chapter 3. Moreover, in that case all deformations
are assumed to be small enough such that σ ≈ P , see [63].)
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Figure 2.3: We will be solving for the mapping between the current configuration and a rest
configuration. Stresses will arise via elasticity to resist changes in shape induced
by this motion.

The equations of motion for dynamic elasticity are given by Newton’s second law in
density form ([52]): 

ρ0
∂2u

∂t2
= ∇X · P (u) + f ext ∈ Ω0

u(·, t) = g(·, t) ∈ ∂ΩD

(P · n̂) (·, t) = h(·, t) ∈ ∂ΩN,

(2.53)

with ρ0 being the material density. To allow for larger time steps, we use an implicit
backward Euler scheme to update the particle positions. We first introduce an auxiliary
variable, v (“velocity”), to transform (2.53) into a first-order system (in time):

∂u

∂t
= v, (2.54)

ρ0
∂v

∂t
= ∇X · P + f ext. (2.55)

The backward Euler time discretization thus gives

1

∆t
(u (·, t+ ∆t)− u(·, t)) = v (·, t+ ∆t) , (2.56)

ρ0
1

∆t
(v (·, t+ ∆t)− v(·, t)) =

(
∇X · P

)
t+∆t

+ f ext (·, t+ ∆t) . (2.57)

Eliminating v (·, t+ ∆t) from (2.57) gives a (non-linear) equation which must be
solved for u (·, t+ ∆t) at each time-step. To simplify the notation, we will refer to the
unknown u (·, t+ ∆t) as u, and to the known variables u(·, t) and v(·, t) as u0 and v0,
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respectively. Thus, equation (2.57) is equivalent to

ρ0u−∆t2∇X · P = ρ0 (u0 + ∆tv0) + ∆t2f ext, (2.58)

where ∇X ·P is evaluated at t+ ∆t (hence depends on the unknown u) and f ext is also
evaluated at t+ ∆t.

2.4.2 Weak Formulation and FEM Discretization

We now derive the weak formulation of (2.58) to obtain a finite element discretization
in space. We multiply both sides with a test function w, integrate over Ω0, apply
integration by parts, and simplify the integrals over ∂Ω0 by stipulating that w ≡ 0

on ∂ΩD. It will be convenient, at this point, to use the following short-hand notation:
subscripts will denote coordinates (1, . . . , d) and (later) superscripts will denote grid
vertices; subscripts separated by a comma will be used to indicate a partial derivative
with respect to the corresponding coordinate. With these, we can formulate the weak
form as

∑
i

(
ρ0uiwi −∆t2

∑
j

Pij,jwi

)
=
∑
i

(
ρ0 ((u0)i + ∆t(v0)i) + ∆t2f ext

i

)
wi (2.59)

∫
Ω0

∑
i

(
ρ0uiwi −∆t2

∑
j

Pij,jwi

)
=

∫
Ω0

∑
i

(
ρ0 ((u0)i + ∆t(v0)i) + ∆t2f ext

i

)
wi (2.60)

∑
i

(∫
Ω0

ρ0uiwi + ∆t2
∑
j

Pijwi,j

)
=
∑
i

(∫
Ω0

(
ρ0 ((u0)i + ∆t(v0)i) + ∆t2f ext

i

)
wi

+∆t2
∫
∂Ωn

hiwi

)
. (2.61)

For the finite element discretization, we will again assume a mesh of simplices S1, . . . , SN

with grid verticesX1, . . . ,Xn ∈ Rd and with Sαk denoting the kth grid vertex of simplex
Sα. Our finite element space will consist of continuous R-valued functions which are
affine over each simplex Sα. Our finite element space is the span of the affine linear
nodal basis functions {Na}. Na takes the value 1 at Xa and the value 0 at all other
grid vertices:

Na(Xb) =

{
1 if a = b

0 else.
(2.62)

We then take our test function in the weak formulation (2.61) to bew = (wi = δijN
a)i,

where j ranges over 1, . . . , d and a ranges over 1, . . . , n, to obtain dn equations for u.
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Likewise, we discretize each coordinate of u as ui =
∑

b u
b
iN

b, giving a (non-linear)
system of equations for the coefficients ~u :=

{
ubi
}
:

0 = qai (~u) :=
∑
b

(∫
Ω0

ρ0N
aN b

)
ubi + ∆t2

∑
j

(∫
Ω0

PijN
a
,j

)
− bai (2.63)

with

bai :=

∫
Ω0

(
ρ0 ((u0)i + ∆t(v0)i) + ∆t2f ext

i

)
Na + ∆t2

∫
∂Ωn

hiN
a. (2.64)

We solve the system defined by (2.63) via Newton iterations:

∂~q

∂~u
(~u) ∆~u+ ~q (~u) = 0, (2.65)

~u← ~u+ ∆~u. (2.66)

2.4.3 Computing the RHS

We will now go through the implementation details of the various computational steps
necessary to advance one time step, from time t to time t+ ∆t. We start by assembling
the right-hand side of the linear equation system defined by (2.65).

Computing ~b

The first part of the right-hand side,~b and its components defined in (2.64), only depends
on u0, v0 and f ext, which remain constant throughout the Newton iterations, and thus
needs to be computed only once per time step. We will evaluate ~b via an element-
based loop, requiring the evaluation of the integrals (for simplicity reasons, we assume
homogeneous Neumann boundary conditions, i.e. h ≡ 0 here, but the general case can
be easily incorporated into our framework). This leaves us with the computation of∫

Sα

(
ρ0 ((u0)i + ∆t(v0)i) + ∆t2f ext

i

)
Na. (2.67)

We assume that the value of f ext are given at each grid vertex Xb and the value of ρ0

for each element Sα. Then, we can expand (u0)i =
∑

b(u0)biN
b, (v0)i =

∑
b(v0)biN

b, and
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f ext
i =

∑
b f

ext,b
i N b, yielding∫
Sα

(
ρ0

(
(u0)i + ∆t(v0)i

)
+ ∆t2f ext

i

)
Na

=

∫
Sα

(
ρα0
(∑

b

(u0)biN
b + ∆t

∑
b

(v0)biN
b
)

+ ∆t2
∑
b

f ext,b
i N b

)
Na

=

∫
Sα

∑
b

(
ρα0
(
(u0)bi + ∆t(v0)bi

)
+ ∆t2f ext,b

i

)
NaN b

=
∑
b

(
ρα0
(
(u0)bi + ∆t(v0)bi

)
+ ∆t2f ext,b

i

)∫
Sα
NaN b. (2.68)

This will be non-zero only for a, b ∈ Sα due to the local support of the Na. It thus suf-
fices to evaluate

∫
Sα
NaN b for a, b ∈ Sα. Similarly to Subsection 2.3.1, we use a change

of coordinates to the standard element, i.e. the triangle {(0, 0), (1, 0), (0, 1)} in two di-
mensions, and in 3D the tetrahedron defined by {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. For
inside elements, i.e. those which are not intersected by Γ and are therefore entirely filled
with material (see the notation of Section 2.3), we can thus compute the integrals as

∫
Sα
NaN b =


1

6
area (Sα) if a = b,

1

12
area (Sα) if a 6= b

(2.69)

and

∫
Sα
NaN b =


1

10
volume (Sα) if a = b,

1

20
volume (Sα) if a 6= b

(2.70)

respectively. The volume terms are easily computed from the element coordinates. For
cut elements, these unfortunately cannot be precomputed and we have to refer back to
Subsection 2.3.1.

Computing ~q

The second part of the right-hand side, ~q, needs to be updated after every increment to
~u during the Newton steps. As defined in (2.63), its computation requires the evaluation
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of the integrals

∑
b

(∫
Sα
ρ0N

aN b

)
ubi + ∆t2

∑
j

(∫
Sα
PijN

a
,j

)
− bai

= ρα0
∑
b

(∫
Sα
NaN b

)
ubi + ∆t2

∑
j

(∫
Sα
PijN

a
,j

)
− bai , (2.71)

where we have used the fact that ρ0 is given element-wise. We already addressed the
evaluation of

∫
NaN b, so now we will focus on

∫
PijN

a
,j.

Since P = P (F ) = P (F (u)), we must first compute F from u. First, notice from
the equations (2.49) and (2.51) that

F =
∂u

∂X
+ I. (2.72)

Since

u =
∑
a

uaNa, (2.73)

we can thus compute F as

F =
∑
a

ua
∂Na

∂X
+ I, (2.74)

and the ∂Na

∂X
are easy to obtain due to the polynomial nature of the Na.

2.4.4 Matrix Assembly

The most complicated part of the discretization is the evaluation of ∂~q
∂~u
. We begin by

differentiating (2.63) with respect to ubj:

∂qai
∂ubj

= δij

∫
Ω0

ρ0N
aN b + ∆t2

∑
k,`,m

∫
Ω0

∂Pik
∂F`m

∂F`m
∂ubj

Na
,k. (2.75)

Given that F =
∑

a u
a ∂Na

∂X
+ I (from (2.74)), one can show that ∂F`m

∂ubj
= δj`N

b
,m. Substi-

tuting this into the equation above yields

∂qai
∂ubj

= δij

∫
Ω0

ρ0N
aN b + ∆t2

∑
k,m

∫
Ω0

∂Pik
∂Fjm

Na
,kN

b
,m. (2.76)

The computation of the first integral is easily done, as described above, so the challenge
remains to evaluate the fourth-order tensor ∂Pik

∂Fjm
. We follow the formula in [134] (an

alternative way can be found in [88]). For a given F with singular value decomposition
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(SVD)

F = UΣV T, (2.77)

where U and V are unitary and Σ is a diagonal matrix containing the singular values
σi. Following the above reference, we obtain the second derivative of the energy density
in diagonal space, i.e. ∂P

∂F
(Σ), by simply computing the derivatives of the energy density

with respect to the singular values of F , a task typically much easier than to compute
∂P
∂F

(F ) directly. To obtain ∂P
∂F

(F ) from the quantity ∂P
∂F

(Σ), we look at the linearization
of the stress P around a given F :

δP =
∂P

∂F
(F ) : δF , (2.78)

which can be shown to be ([133, 141])

δP = U

(
∂P

∂F
(Σ) :

(
UTδFV

))
V T. (2.79)

Let us define Ĝ = ∂P
∂F

(Σ) and have a closer look at (2.79) componentwise:

δPij =
∑
p,r

Uip

(∑
s,t

Ĝprst

∑
k,m

UT
skδFkmVmt

)
V T
rj (2.80)

and with some re-ordering

=
∑
k,m

δFkm
∑
p,r,s,t

ĜprstUipUksVmtVjr︸ ︷︷ ︸
=:Gijkm

. (2.81)

By comparing (2.81) with (2.78), we can see that

∂Pik
∂Fjm

= Gikjm, (2.82)

which we can now utilize for (2.76).

This gives all the information necessary to evaluate ∂~q
∂~u

and thus assemble the system
to solve for a solution at each iterations of (2.65). As a sanity check, one sees the
symmetry when interchanging a, i ↔ b, j. We will handle a specific constitutive model
and choice for the energy density Ψ in our application discussed in Chapter 4.
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2.5 Solving the Linear System

For the quasistatic problem of Chapter 3, which yields a symmetric, positive definite
system of equations and can therefore be solved with a conjugate gradient (CG) method,
we again refer to the Diploma thesis [54] for details on properties and implementation.
We will instead again focus on the slightly more general case of the dynamic problem,
discussed in Section 2.4 and occurring in Chapter 4, which gives rise to a symmetric,
indefinite linear system. We use the minimal residual method (MINRES) to solve such
a system.

The MINRES algorithm is a variant of the conjugate gradient method that still works
in the case of indefiniteness. It was introduced in [110] and its convergence behaviour
further analysed in [109]. It minimizes the 2-norm of the residual of a linear equation
system

A~x = ~b (2.83)

with a symmetric, indefinite matrix A. An implementation is given by Algorithms 2.2.
The computation of the matrix-vector multiplication A~vk in each iteration is the

obvious starting point for parallelization, and this is exactly how we modified our im-
plementation. Further, we use a simple Jacobi (or diagonal) preconditioning:

M−1
1 AM−1

2 ~y = M−1
1
~b (2.84)

and

~x = M−1
2 ~y (2.85)

with

(M1)ij =


sign(Aij)

√
|Aii| if i = j and Aii 6= 0

1 if i = j and Aii = 0

0 else

(2.86)

(M2)ij =


√
|Aij| if i = j and Aii 6= 0

1 if i = j and Aii = 0

0 else.

(2.87)

The above preconditioning is easy to implement, stable and fast to execute, while
yielding decent convergence improvements for our numerical experiments. Note that
constructing effective and stable preconditioners for symmetric indefinite systems is in
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Algorithm 2.2 The MINRES algorithm.

// Input: sym. matrix A, rhs ~b, initial guess ~x0, tolerance tol
// Initialization
~v1 ← ~b−A~x0

r ← ‖~v1‖2

β1 ← r; η ← β1

γ0 ← 1; γ1 ← 1
σ0 ← 0; σ1 ← 0
~v0 ← ~0; ~w0 ← ~0; ~w−1 ← ~0;
for all k = 1 to max_iter do
// check for convergence
if r < tol then
break

end if
~vk ← 1

βk
~vk

αk ← ~vT
kA~vk

~vk+1 ← A~vk − αk~vk − βk~vk−1

βk+1 ← ‖~vk+1‖2

δ ← γkαk − γk−1σkβk

ρ1 ←
√
δ2 + β2

k+1

ρ2 ← σkαk + γk−1γkβk
ρ3 ← σk−1βk
γk+1 ← δ

ρ1

σk+1 ← βk+1

ρ1

~wk ← 1
ρ1

(~vk − ρ3 ~wk−2 − ρ2 ~wk−1)
~xk ← ~xk−1 + γk+1η ~wk
η ← −σk+1η
r ← |σk+1|r

end for
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general still an open problem [145]. For more details on preconditioning in general
as well as different techniques we refer to [12, 120] and references therein. For the
inverse problem discussed in Chapter 3, we also give an overview on preconditioning
that particular class of problems in Section 3.5.
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3
Inverse Parameter and Interface Estimation1

3.1 Introduction

The identification of coefficients occurring in elliptic partial differential equations (PDEs)
is a problem that arises in several different fields, including solid and fluid mechanics,
image processing and many more (see e.g. [97]). In the case of medical imaging, inverse
parameter estimation could potentially be used to determine the properties and loca-
tion of different tissue types while using minimally invasive technologies (see [89] and
references therein) instead of dissecting the patient. Classifying the elastic properties of
tissue and locating abnormalities can help to identify and pinpoint cancerous growth [90].
Further, the elastic properties of bones, muscles and tissue in contact can be approxi-
mated as piecewise constant but their actual values may vary from patient to patient.
Knowing their exact characteristics can be used to reset, adjust and finetune simulations
[121]. This allows for better understanding of the biomechanical configuration at hand
and therefore better, individualized treatment for every patient.

In [68], Ito and Kunisch suggested combining an output least squares and equation
error formulation with the augmented Lagrangian method to solve inverse parameter
estimation problems, an approach that has since become very successful, see e.g. [28, 29,
33, 50, 77, 152]. Usually, these methods discretize the coefficients over the entire domain
and use a total variation regularization to achieve an essentially piecewise constant
solution for the coefficients. This, and the homogeneous structure of the coefficients in
many applications, e.g. geophysical sciences [5, 76], inverse scattering [81] and medical
imaging as mentioned before, motivates to include the piecewise constant nature of the
coefficients into the approach to these problems.

In addition to estimating the coefficients of a PDE, the geometry of the domain of

1Chapter based on Publication [55]: J. Hegemann, A. Cantarero, C. L. Richardson, and J. M. Teran.
An explicit update scheme for inverse parameter and interface estimation of piecewise constant
coefficients in linear elliptic PDEs. SIAM Journal on Scientific Computing, 35(2):A1098-A1119,
2013.
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interest is important for many applications, such as the locations of cavities within a
material or an optimal shape design under certain exterior conditions. For this so-called
inverse geometric problem, where the unknown is a geometric shape, many different
approaches have been proposed, e.g. [59, 60, 61, 75, 76]. In [122], Santosa suggested the
use of the level set method, developed by Osher and Sethian [107], for inverse obstacle
problems. The implicit representation of an interface as the zero level set of a function
allows for natural handling of topology changes, such as splitting and merging. There-
fore, the level set is capable of evolving towards a solution from almost any initial shape,
requiring little or no a priori knowledge. This versatility is highly desirable for solving
shape optimization and shape reconstruction problems since the topology of the solution
is usually unknown, cf. [21, 22, 23, 24, 25, 40, 69, 108, 114, 115, 116, 132, 143, 144].

Much of the previous work has been done on the model inverse problem arising from
Poisson’s equation, 

−∇ · (β∇u) = f in Ω,

u = g1 on ∂ΩD,

∂u

∂n
= g2 on ∂ΩN,

with applications ranging from electrical impedance tomography [17, 34, 132] and DC
resistivity [130] to ground water and oil reservoir investigations [73, 74]. Some authors,
e.g. [30, 39, 100, 139], have combined the two aforementioned approaches for the case of
Poisson’s equation. The goal of these papers is to recover the coefficients as well as the
unknown interface.

There has been some work to extend these or similar techniques to the related elliptic
inverse problem originating in linear elasticity,

−∇ · σ(u) = f in Ω,

u = g on ∂ΩD,

σ · n = h on ∂ΩN,

where

σ(u) = 2µε(u) + λ tr(ε(u)) I,

ε(u) =
1

2
(∇u+∇uT),

with applications in material property determination and inclusion detection [79, 123] as
well as design optimization [1, 2, 11, 27, 83, 126, 148] and medical imaging [62, 71]. The
goal of these works has been either to estimate the Lamé parameters [48, 49, 70, 102] or



3.2 Problem Formulation 33

to solve the inverse geometric problem [4, 10].
In our investigation, we also combine the augmented Lagrangian approach with the

level set method. As opposed to the aforementioned work of [30], we do not use the
whole finite element space to approximate the coefficients in each element combined
with a total variation regularization. That approach requires an additional non-linear
solve for the coefficients at every grid point at every iteration. The versatility of allowing
the coefficients to spatially vary is typically dominated by the TV norm, which leads to
smoothing of the solution and to essentially piecewise constant results.

Our approach incorporates the information about the nature of the piecewise con-
stant coefficients directly into the method, which allows us to avoid the additional solve
corresponding to the coefficients and instead obtain an explicit, and therefore very ef-
ficient, update at each iteration. Furthermore, we obtain the velocity for the level set
evolution by use of the shape derivative of our objective functional, leading to an equally
efficient update of the interface geometry.

The apparent limitation to truly piecewise constant coefficients is justified in many
applications, where the materials are essentially homogeneous. Other authors have suc-
cessfully included the assumption of piecewise constant coefficients into their approaches
[36, 39, 100, 139]. However, our method uses a different objective functional and is more
efficient because we use only one linear solve per iteration; all other variables are up-
dated explicitly. For simplicity, we limit our investigations to the example problems of
Poisson’s equation and linear elasticity, but the methodology is rather general and can
be extended to other inverse problems constrained by linear elliptic PDEs.

3.2 Problem Formulation

Let Ω ⊂ Rd be open and bounded, with a smooth or piecewise smooth boundary ∂Ω.
We model two elliptic inverse problems: Poisson’s equation as well as linear elasticity.
Due to the ill-posedness of both inverse problems, we use output-least-squares with an
observation u0 ∈ L2(Ω) of the solution to recover the unknown coefficients occurring in
the respective PDE. We allow the coefficients to have jump discontinuities across some
unknown interface Γ in Ω and recover Γ as well. This interface Γ, which separates the
domain into two disjoint open sets Ω1 and Ω2, is assumed to be (piecewise) smooth and
is represented implicitly by a level set function φ. The subsets Ω1 and Ω2 correspond to
the regions of positive and negative function values of φ, see Figure 3.1:

Ω1 = {x ∈ Ω|φ(x) < 0},

Ω2 = {x ∈ Ω|φ(x) > 0},

Γ = {x ∈ Ω|φ(x) = 0} = ∂Ω1\∂Ω = ∂Ω2\∂Ω.
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(The limitation to two regions is for simplicity only; a generalization to arbitrary numbers
of subregions is easily obtainable via multiple level sets, see e.g. [30, 138, 147].) We
assume the coefficients to be constant in each Ωi and denote the restriction of a value
in one region by a subscript i.

Figure 3.1: Problem setting: Two materials, represented by Ω1 and Ω2, with different, un-
known properties are in contact. The interface between them, where the param-
eters have a jump discontinuity, is unknown as well.

3.2.1 Poisson’s Equation

We employ Poisson’s equation as a first case to show the simplicity of our approach:
−∇ · (β∇u) = f in Ω,

u = g on ∂ΩD,

∂u

∂n
= 0 on ∂ΩN,

(3.1)

with piecewise constant coefficient

β =

{
β1 in Ω1,

β2 in Ω2.
(3.2)

We solve the constrained minimization problem

min
β1,β2,Γ

∫
Ω

|u− u0|2 dx+ w|Γ| such that u ∈ H1(Ω) is a solution to (3.1), (3.3)

where |Γ| = Hd−1(Γ) denotes the (d−1)-dimensional Hausdorff measure of Γ and w > 0

is a weighting parameter. The corresponding augmented Lagrangian functional for any
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r > 0 is defined as

LA(u, v, β1, β2,Γ; r, w) =
1

2

∫
Ω

|u− u0|2 dx+

∫
Ω

(∇v · β∇u− fv) dx

+
r

2

∫
Ω

|∇ · β∇u+ f |2 dx+ w|Γ|. (3.4)

The use of the augmented Lagrangian framework, rather than a regular Lagrangian
approach, is motivated by its superior stability properties for iterative schemes, especially
in case of noise present in the observation u0 (see e.g. [28]). We find the saddle point of
(3.4) by solving the first order optimality conditions:

∂LA

∂u
= u− u0 −∇ · β∇v + r∇ · β∇(∇ · β∇u+ f) = 0, (3.5)

∂LA

∂βi
=

∫
Ωi

∇v · ∇u dx+ r

∫
Ωi

(∇ · βi∇u+ f)∆u dx = 0 for i = 1, 2. (3.6)

For the derivative with respect to the geometry, we use the results about shape deriva-
tives given in Section 2.1. In order to apply these lemmas, we split the integral into the
subsets Ωi, yielding

∂LA

∂Ω
[θ] =

2∑
i=1

∫
∂Ωi\∂Ω

(
1

2
|u− u0|2 +∇u · βi∇v − fv

+
r

2
|∇ · βi∇u+ f |2

)
θ(x) · ni(x) ds+ w

∫
∂Ωi\∂Ω

κi(x)θ(x) · ni(x) ds (3.7)

= 0,

where ni is the outside normal to Ωi, and κi = ∇·ni is the mean curvature of ∂Ωi. Since
n2 = −n1 on Γ = ∂Ω1 ∩ ∂Ω2 and thus also κ1 = −κ2 =: κ, we are left with the following
equation that needs to vanish on the interface:

V = ∇u · (β1 − β2)∇v + wκ. (3.8)

With A representing the operator (−∇ · β∇) and since A∗ = A for this problem, we
can rewrite (3.5) as

(rA2 + I)u = u0 − Av + rAf, (3.9)

with the boundary conditions specified in (3.1).
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3.2.2 Linear Elasticity

We mainly focus on the identification of unknown interfaces and material parameters in
the more complicated case of linear elasticity. The governing equations are given by

−∇ · σ(u) = f in Ω,

u = g on ∂ΩD,

σ · n = 0 on ∂ΩN.

(3.10)

The displacement u and the associated stress σ(u) are related by Hooke’s law,

σ(u) = C : ε(u) = 2µε(u) + λ tr(ε(u)) I, (3.11)

where C is the fourth order elasticity tensor and the strain is given by

ε(u) =
∇u+∇uT

2
. (3.12)

The Lamé coefficients

µ =
E

2(1 + ν)
, (3.13)

λ =
νE

(1 + ν)(1− 2ν)
(3.14)

depend on Young’s modulus E and Poisson’s ratio ν. We consider a piecewise homo-
geneous material, and thus µ and λ are piecewise constant and are defined analogously
to (3.2). In our approach we solve for µ and λ but use (3.13) and (3.14) to recover the
physically meaningful material parameters E and ν.

We have a similar constrained minimization problem,

min
µ1,λ1,µ2,λ2,Γ

∫
Ω

|u− u0|2 dx+ w|Γ| such that u ∈ [H1(Ω)]2 is a solution to (3.10).

(3.15)

Again, we define the corresponding augmented Lagrangian functional for any r > 0 as

LA(u,v, µ1, λ1, µ2, λ2,Γ; r, w) =
1

2

∫
Ω

|u− u0|2 dx,

+

∫
Ω

((2µε(u) + λ tr(ε(u)) I) : ε(v)− f · v) dx,

+
r

2

∫
Ω

|∇ · σ(u) + f |2 dx+ w|Γ|, (3.16)
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and compute its optimality conditions,

∂LA

∂u
= u− u0 −∇ · σ(v) + r∇ · σ(∇ · σ(u) + f) = 0 (3.17)

and for i = 1, 2

∂LA

∂µi
= 2

∫
Ωi

ε(u) : ε(v) dx

+ 2r

(∫
Ωi

∇ · (2µiε(u) + λitr(ε(u))I) · (∇ · ε(u)) dx

+

∫
Ωi

f · (∇ · ε(u)) dx
)

(3.18)

= 0,

∂LA

∂λi
=

∫
Ωi

tr(ε(u))I : ε(v) dx

+ r

(∫
Ωi

∇ · (2µiε(u) + λitr(ε(u))I) · (∇ · tr(ε(u))I) dx

+

∫
Ωi

f · (∇ · tr(ε(u))I)) dx
)

(3.19)

= 0.

Using the same argument and notation as before, the shape derivative in this case is
given by

∂LA

∂Ω
[θ] =

2∑
i=1

∫
∂Ωi\∂Ω

(
1

2
|u− u0|2 + ε(u) : Ci : ε(v)− f · v

+
r

2
|∇ · σi(u) + f |2

)
θ(x) · ni(x) ds+ w

∫
∂Ωi\∂Ω

κi(x)θ(x) · ni(x) ds (3.20)

= 0,

yielding

V = ε(u) : (C1 −C2) : ε(v) + wκ, (3.21)

which needs to vanish on the interface.

Again, using the corresponding linear operator A = ∇ · σ(·), we obtain u by solving

(rA2 + I)u = u0 −Av + rAf (3.22)

with the boundary conditions of the original problem (3.10).
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For a more rigorous analysis of augmented Lagrangian methods for identifying dis-
continuous parameters in elliptic systems, we refer the interested reader to [33, 50]. For
a detailed analysis of convergence of level set methods for elliptic inverse problems as
well as a more general functional-analytic framework of level set methods and shape
reconstruction, we refer to [21, 22, 24].

3.3 Optimization Algorithm

In order to solve the equations derived in the previous section, we use an alternating
optimization algorithm. We denote the iterations by n and discretize all operators and
functions in an appropriate manner.

3.3.1 Coefficient Updates

For the coefficients, we use the optimality conditions to derive an explicit update rule:

For the case of Poisson’s equation we start with the equations in (3.6) at iteration
n + 1 and assume that we already solved for u = un+1 and v = vn+1. For a given
i ∈ {1, 2}, βn+1

i is constant over Ωi, thus yielding

0 =

∫
Ωi

∇v · ∇u dx+ r

∫
Ωi

(∇ · βn+1
i ∇u+ f)∆u dx (3.23)

⇒ βn+1
i =

−
∫

Ωi
∇v · ∇u dx

r
∫

Ωi
(∆u)2 dx

−
∫

Ωi
f∆u dx∫

Ωi
(∆u)2 dx

(3.24)

since we assume f 6= 0 for this case. While ∇u and ∇v can be evaluated numerically,
we use a different approach for ∆u. Since βi is constant over Ωi, we can write ∆u = − f

βi

within each region Ωi. In this occurrence of the coefficient, we approximate it by its
value from the previous iteration, yielding ∆u = − f

βni
. This allows us to write an

explicit update equation:

βn+1
i = −

∫
Ωi
∇v · ∇u dx

r/(βni )2
∫

Ωi
f 2 dx

+ βni

∫
Ωi
f 2 dx∫

Ωi
f 2 dx

(3.25)

= βni −
∫

Ωi
∇v · ∇u dx

r/(βni )2
∫

Ωi
f 2 dx

. (3.26)

For linear elasticity we first look at (3.18). Again, we use that the coefficient µn+1
i is
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constant over Ωi, thus

0 = 2

∫
Ωi

ε(u) : ε(v) dx

+ 2r

(∫
Ωi

∇ · (2µn+1
i ε(u) + λitr(ε(u))I) · (∇ · ε(u)) dx

+

∫
Ωi

f · (∇ · ε(u)) dx
)

(3.27)

⇒ 2rµn+1
i

∫
Ωi

|∇ · ε(u)|2 dx = r

∫
Ωi

−∇ · (λitr(ε(u))I − f) · (∇ · ε(u)) dx

−
∫

Ωi

ε(u) : ε(v) dx (3.28)

Similarly to before, we use the PDE to substitute 2µi∇ · ε(u) = −∇ · λitr(ε(u))I − f
and use µi = µni from the previous iteration for this term, allowing us to write

2rµn+1
i

∫
Ωi

|∇ · ε(u)|2 dx = 2µni

∫
Ωi

|∇ · ε(u)|2 dx−
∫

Ωi

ε(u) : ε(v) dx (3.29)

⇒ µn+1
i = µni −

∫
Ωi
ε(u) : ε(v) dx

2r
∫

Ωi
|∇ · ε(u)|2 dx

. (3.30)

In the same way, (3.19) leads to

0 =

∫
Ωi

tr(ε(u))I : ε(v) dx

+ r

(∫
Ωi

(
∇ · (2µn+1

i ε(u) + λitr(ε(u))I)− f
)

· (∇ · tr(ε(u))I) dx

)
(3.31)

⇒ λn+1
i r

∫
Ωi

|∇ · tr(ε(u))I|2 dx = r

∫
Ωi

(−∇ · (2µiε(u))− f) · (∇ · tr(ε(u))I) dx

−
∫

Ωi

tr(ε(u))I : ε(v) dx. (3.32)

This time, we use λi∇· tr(ε(u))I = −∇· (2µiε(u))−f from the original problem, with
λi = λni for this occurrence:

λn+1
i r

∫
Ωi

|∇ · tr(ε(u))I|2 dx = r

∫
Ωi

(−∇ · (2µiε(u))− f) · (∇ · tr(ε(u))I) dx

−
∫

Ωi

tr(ε(u))I : ε(v) dx (3.33)
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⇒ λn+1
i = λni −

∫
Ωi

tr(ε(u))I : ε(v) dx
r
∫

Ωi
|∇ · tr(ε(u))I|2 dx

. (3.34)

3.3.2 Interface Update

As mentioned in Sections 2.2 and 3.2, we represent the interface Γ implicitly by the zero
contour of a level set function φ. The interface is advected according to the level set
equation (2.5),

∂φ

∂t
− δε(φ)V = 0,

and we obtain the speed V as given by (3.8) and (3.21) respectively.

The curvature term wκ = w∇ · ∇φ|∇φ| in both velocities is discretized with the semi-
implicit finite difference scheme of Vese and Chan in [147]. The level set values are
defined on a regular Cartesian grid (consisting of the nodes of our triangle mesh); and
we will use multi-index notation to identify the grid nodes and multi-index subscripts to
indicate function values at the corresponding grid nodes. For a grid spacing h = ∆x =

∆y, define

C1 =
1√(

φni+1,j−φni,j
h

)2

+
(
φni,j+1−φni,j−1

h

)2
, (3.35)

C2 =
1√(

φni,j−φni−1,j

h

)2

+
(
φni−1,j+1−φni−1,j−1

h

)2
, (3.36)

C3 =
1√(

φni+1,j−φni−1,j

h

)2

+
(
φni,j+1−φni,j

h

)2
, (3.37)

C4 =
1√(

φni+1,j−1−φni−1,j−1

h

)2

+
(
φni,j−φni,j−1

h

)2
, (3.38)

as well as

C = 1 +m(C1 + C2 + C3 + C4), (3.39)

m = w
∆s

h2
δε(φ

n
i,j), (3.40)
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with δε as defined in (2.5). The update steps are then given as

φn+1
i,j =

1

C

[
φni,j +m

(
C1φ

n
i+1,j + C2φ

n
i−1,j + C3φ

n
i,j+1 + C4φ

n
i,j−1

)
+∆s δε(φ

n
i,j) (∇u · (β1 − β2)∇v)i,j

]
(3.41)

for Poisson’s equation, and

φn+1
i,j =

1

C

[
φni,j +m

(
C1φ

n
i+1,j + C2φ

n
i−1,j + C3φ

n
i,j+1 + C4φ

n
i,j−1

)
+∆s δε(φ

n
i,j) (ε(u) : (C1 −C2) : ε(v))i,j

]
(3.42)

in the case of linear elasticity.
The level set evolution then reaches its steady state once the optimality condition of

the Lagrangian functional is fulfilled. One important detail for the evolution here is that
we have to be careful not to reinitialize the level set function φ too often. Our inverse
problems are ill-posed and therefore, the evolution is very slow and it might take a long
time for a nodal value to change sign. By reinitializing too often, these small changes
could be revoked. In our method, we reinitialize either when a certain percentage of
nodal values of φ have changed signs or after a fixed number of iterations have passed
since the last reinitialization. A different strategy is to reinitialize after the L2-norm of
φ has changed more than a given percentage.

3.3.3 Algorithm

We now outline our algorithm. First, we initialize φ0 with the initial guess for the
interface, the coefficients (β0

i or µ0
i , λ0

i , (i = 1, 2) respectively) with positive values
and v0 as a zero-vector. We also choose a fixed number of iterations reinit_number
and a percentage reinit_ratio for the level set reinitialization condition, as well as
initialize the helper variables number_sign_changes and iterations_since_reinit as
zero. Algorithm 3.1 provides the pseudo-code for our method.

Remarks:

• The update order for the different variables is not important. Given an order, it
is most efficient to use the most recent values on hand to update the remaining
variables.

• Note that (rA2 + I) never has to be built explicitly; only its application is needed,
which makes computations efficient. The matrix (rA2 + I) is obviously symmetric
and positive definite, and therefore we can use a (preconditioned) conjugate gra-
dient method or similar to solve the equation to obtain u. We need only one solve
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Algorithm 3.1 An explicit update scheme for inverse parameter and interface estima-
tion of piecewise constant coefficients in linear elliptic PDEs.
Initialization
for all n do
Solve (rA2 + I)un+1 = u0 − Avn + rAf
vn+1 ← vn + r(Aun+1 − f) // explicit update of the Lagrange multiplier
for all i = 1 to 2 do // explicit update of the coefficients
// in case of Poisson’s equation

βn+1
i ← βni −

∫
Ωi
∇vn+1·∇un+1

r/(βni )2
∫
Ωi
f2

or // in case of linear elasticity

µn+1
i ← µni −

∫
Ωi
ε(un+1):ε(vn+1)

2r
∫
Ωi
|∇·ε(un+1)|2

λn+1
i ← λni −

∫
Ωi

tr(ε(un+1))I:ε(vn+1)

r
∫
Ωi
|∇·tr(ε(un+1))I|2

end for
φn+1 ← Advect(φn) // as described in Section 3.3.2
for all i = 1 to number_nodes do // check φ for a sign changes
if φni · φn+1

i < 0 then
number_sign_changes← number_sign_changes+ 1

end if
end for
if iterations_since_reinit > reinit_number
or number_sign_changes/number_nodes > reinit_ratio then
Fast_sweep(φn+1) // reinitialization as a signed distance function
number_sign_changes← 0
iterations_since_reinit← 0

end if
Check convergence based on
Ei ← µi(3λi+2µi)

λi+µi

νi ← λi
2(λi+µi)

and the interface
end for
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per iteration since both the Lagrange multiplier v and the coefficients are updated
explicitly.

3.4 Numerical Examples

For all examples we use a regular triangle grid of the domain Ω = [0, 1]2 with uniform
spacing ∆x = ∆y = h = 1/256. The PDE solves for u are completed using FEM. The
time step of the level set evolution is fixed to ∆t = h and coincides with a minimizing
step of the Lagrangian functional LA. For the approximation of the interface in (2.5), we
set ε = h. We reinitialize φ either when 10% of the vertices have changed sign or when
100 iterations have passed since the last reinitialization. The convergence is often very
fast in the beginning of the computation and then slows down after an initial phase. This
accounts for the high total number of iterations we observe and is typical for augmented
Lagrangian methods, cf. [30].

3.4.1 Poisson’s Equation

We demonstrate our algorithm for the case of Poisson’s equation using an example where
Ω1 is composed of two different shapes, a square and an ellipse, included in Ω. We choose
the simple case of f = 1 and homogeneous boundary conditions. The exact solution is
computed with β1 = 5.0 and β2 = 1.0 and we choose r = 1.0 and w = 5 ·10−6 and obtain
a very accurate recovery of the coefficients and the interface, see Table 3.1 and Figure
3.2.

Figure 3.2: Interface recovery for Poisson’s equation: exact solution with initial (left) and
final configuration (right).



44 3 Inverse Parameter and Interface Estimation

coefficient exact recovered relative error

β1 5.0 5.00252 0.0504%
β2 1.0 1.00089 0.089%

Table 3.1: Recovered coefficients for Poisson’s equation.

3.4.2 Linear Elasticity

We focus our numerical experiments on examples in linear elasticity and present multiple
settings: we use the same geometric setting as before, with and without the addition of
uniformly distributed noise, and also employ a more elaborate geometry. For all these
examples, f is set equal to zero.

Square and ellipse

For this example, we choose the same geometric setting as above, with Ω1 being a square
and an ellipse. The boundary conditions are given as pure stretching by u = (−0.01, 0)

on the left and u = (0.01, 0) on the right, and free on top and bottom (see Figure
3.3 for an illustration). The material parameters are set to E1 = 200.0, ν1 = 0.28

and E2 = 117.0, ν2 = 0.33, for which we choose the initial guesses E1 = E2 = 150.0,
ν1 = ν2 = 0.30. We choose r = 0.001, w = 10−6 and are able to recover the coefficients
(see Table 3.2) and the interface (see Figure 3.4 for the evolution) very accurately for
this case.

coefficient exact recovered relative error

E1 200.0 200.068 0.034%
ν1 0.28 0.280609 0.2175%
E2 117.0 117.547 0.4675%
ν2 0.33 0.329976 0.0073%

Table 3.2: Recovered coefficients for linear elasticity example “square and ellipse”.

Square and ellipse with noise

We now use the same setting as described above and add noise to the exact solution.
We obtain our observation u0 as follows:

u0 = u∗ + σ
||u∗||L2

||S||L2

S,

where u∗ is the exact solution for a given set of coefficients. The vector S contains nodal
values si ∈ Rd, with (si)j ∈ [−1, 1] uniformly random, and σ controls the noise level. See
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Figure 3.3: Illustration of the boundary displacements used in the examples: the undeformed
domain on the left is deformed into the configuration on the right, either by pure
stretching in the example “square and ellipse” (upper right) or by pulling and
shearing in the example “elaborate geometry” (lower right). Note that the bound-
ary displacements used in this picture are exaggerated for illustration purposes,
the displacements used in the experiments are much smaller.

Table 3.3 and Figure 3.5 for the results with σ = 5%, w = 10−5 and r = 0.005. Table
3.4 and Figure 3.6 show the results for σ = 10%, w = 2.0 · 10−5 and r = 0.005, and the
results of Table 3.5 and Figure 3.7 were computed with σ = 20%, w = 2.0 · 10−5 and
r = 0.0075,

coefficient exact recovered relative error

E1 200.0 190.139 4.9305%
ν1 0.28 0.280381 0.1361%
E2 117.0 111.176 4.9778%
ν2 0.33 0.330018 0.0055%

Table 3.3: Recovered coefficients for linear elasticity example “square and ellipse”, with σ =
5% noise.
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coefficient exact recovered relative error

E1 200.0 221.334 10.6670%
ν1 0.28 0.278046 0.6979%
E2 117.0 129.226 10.4957%
ν2 0.33 0.329707 0.0888%

Table 3.4: Recovered coefficients for linear elasticity example “square and ellipse”, with σ =
10% noise.

coefficient exact recovered relative error

E1 200.0 233.301 16.6505%
ν1 0.28 0.274761 1.8711%
E2 117.0 134.272 14.7624%
ν2 0.33 0.330961 0.2912%

Table 3.5: Recovered coefficients for linear elasticity example “square and ellipse”, with σ =
20% noise.

Elaborate geometry

In our last example, we show that we can target a more complicated geometry as shown
in Figure 3.8 on the left. The material properties are given as in the previous example,
but we change the initial guesses to E1 = 230.0, ν1 = 0.30 and E2 = 80.0, ν2 = 0.35, the
boundary conditions are specified as u = (−0.02,−0.01) on the left and u = (0.02, 0.01)

on the right, and free on top and bottom, i.e. we pull and shear the material (see
Figure 3.3 for an illustration). For this example, we set w = 10−5 and r = 0.004. The
results can be seen in Table 3.6 and Figure 3.8 and show how accurately we can recover
coefficients and interface even in this setting.

coefficient exact recovered relative error

E1 200.0 207.974 3.9870%
ν1 0.28 0.281306 0.4664%
E2 117.0 121.568 3.9042%
ν2 0.33 0.330681 0.2063%

Table 3.6: Recovered coefficients for linear elasticity example “elaborate geometry”.

Elaborate geometry with noise

Just as before, we add different noise levels to this geometry. The results for σ = 5%

(with w = 10−4 and r = 0.005), σ = 10% (with w = 2.0 · 10−4 and r = 0.005), and
σ = 20% (with w = 2.0 · 10−4 and r = 0.005) are presented in Tables 3.7 - 3.9 and
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Figures 3.9 - 3.11.

coefficient exact recovered relative error

E1 200.0 211.515 5.7575%
ν1 0.28 0.279285 0.2554%
E2 117.0 123.206 5.3043%
ν2 0.33 0.330886 0.2685%

Table 3.7: Recovered coefficients for linear elasticity example “elaborate geometry”, with σ =
5% noise.

coefficient exact recovered relative error

E1 200.0 214.159 7.0795%
ν1 0.28 0.271017 3.2082%
E2 117.0 123.369 5.4436%
ν2 0.33 0.33157 0.4758%

Table 3.8: Recovered coefficients for linear elasticity example “elaborate geometry”, with σ =
10% noise.

coefficient exact recovered relative error

E1 200.0 207.135 3.5675%
ν1 0.28 0.268389 4.1468%
E2 117.0 116.33 0.5727%
ν2 0.33 0.330973 0.2948%

Table 3.9: Recovered coefficients for linear elasticity example “elaborate geometry”, with σ =
20% noise.

3.4.3 Parameter Choices

Lastly, we explain the effects of our choices for the parameters r and w on the results
presented here. It is well known that the weight on the interface length, w, controls its
smoothness: high values can lead to “over-smoothed” interface and even loss of smaller
objects (see Figure 3.12 on the left), small values can lead to jagged contours and small
noise artefacts can occur (see Figure 3.12 on the right). The augmented weight r needs
to be large enough to ensure convergence, especially in the presence of noise. Choosing
a larger r is always possible and can lead to better convergence in terms of total number
of iterations, but at the price of higher computational cost per iteration due to its roll in
Equation (3.9) and (3.22) respectively. In fact, for most examples shown in this section
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we used very similar r-values for simplicity reasons and to demonstrate our ability to
handle different observations with the same parameter.

3.5 Conclusion

We have presented a fast, accurate and easy to implement algorithm to solve for the
arising coefficients as well as the discontinuity interface in elliptic PDEs, demonstrating
it for the problems of Poisson’s equation and linear elasticity. The advantage of our
approach is the treatment of the coefficients as truly piecewise constant. This provides
us with a fast explicit update at every iteration since we only need one linear solve
at every iteration, all other variables are updated explicitly and we do not need an
additional non-linear solve. Further, our approach is general and can be employed to
any linear elliptic inverse problem. As presented in this paper, this allows us to provide
the simultaneous recovery of coefficients and interface for Poisson’s equation and linear
elasticity. For the case of Poisson’s equation we have to assume a non-zero right hand
side but for linear elasticity the forcing term can be of any nature. Several numerical
examples show that our method is numerically stable and can handle not only a variety
of geometries but also a wide range of noise.

The essential difference of our method compared to previous work in the literature,
e.g. [28, 29, 30], is that we reduce the computational cost per iteration from a non-linear
solve, originating from the TV regularization, to an explicit update equation for the
coefficients. Further, our methods seems to be able to tolerate much higher noise levels
than reported from those methods, especially for non-trivial interfaces. Some authors,
like [69], can also deal with high observation error, however, they only solve for the
interface and assume the constant coefficients to be known a priori.

Due to the ability of our method to handle input data polluted with noise, we ex-
pect it to work with experimental data. In the case of medical imaging, the interior
measurement u0 could be acquired by techniques involving ultrasound or MRI, see
[71, 75, 89, 90, 121] and references therein.

Currently, our method is based on a first order accurate solver on a triangular mesh.
The incorporation of a second order method (cf. [8, 80, 146]) could potentially enhance
every iteration. Also, a more advanced preconditioner, possibly based on multigrid
approaches (see [87] and the references therein) or especially designed for saddle point
problems with PDE constraint [13, 14, 18, 118, 124], could further improve the runtime
performance.
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Figure 3.4: Interface evolution for linear elasticity example “square and ellipse”: after 0, 1000,
2000, 5000, 10000, 12000 iterations (from top left to bottom right).



50 3 Inverse Parameter and Interface Estimation

Figure 3.5: Interface evolution for linear elasticity example “square and ellipse”, with σ = 5%
noise: after 0, 1000, 3000, 5000, 10000, 13000 iterations (from top left to bottom
right).
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Figure 3.6: Recovered interface for linear elasticity example “square and ellipse”, with σ =
10% noise.

Figure 3.7: Recovered interface for linear elasticity example “square and ellipse”, with σ =
20% noise.
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Figure 3.8: Interface evolution for linear elasticity example “elaborate geometry”: after 0, 1000,
2000, 3000, 4000, 5000 iterations (from top left to bottom right).
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Figure 3.9: Recovered interface for linear elasticity example ‘elaborate geometry”, with σ = 5%
noise.

Figure 3.10: Recovered interface for linear elasticity example “elaborate geometry”, with σ =
10% noise.
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Figure 3.11: Recovered interface for linear elasticity example “elaborate geometry”, with σ =
20% noise.

Figure 3.12: Interfaces for linear elasticity example “square and ellipse” and different w-values:
on the left, a high w-value leads to over-smoothing of the square and failure to
detect the smaller ellipse to the upper right; on the right, a small w-value causes
noisy artefacts.
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4
A Level Set Method for Ductile Fracture1

4.1 Introduction

The scientific investigations of fracture mechanics have a long history, dating back to
the study of metal fatigue during World War I by A. A. Griffith with his seminal work
in [53]. Other well-known incidents are the frequent failures of Allied-built ships, see
Figure 4.1, which were reduced by intensified fracture research. A more extensive history
of fracture mechanics can be found in [37]. It is still a very active field; applications
range from stress analysis of structural elements in power plants [117], airplanes [99]
and bridge failures [35] to the development of advanced materials [78], and many more.
Another application that has arisen fairly recently is the computer simulation of fracture
propagation for graphics. It is used in movies, e.g. [57], as well as real-time applications
and environments, like [111] and their demonstration in a Star Wars computer game.

Simulation of fracture and failure phenomena was introduced to computer graphics in
the pioneering work of [142]. Early approaches typically made use of simple separation
along mesh element boundaries [84, 96, 101, 129] or even element deletion [44]. The
available geometric detail in this type of approach was increased somewhat by subdivision
of elements in the mesh prior to splitting [15, 94]; however, those approaches had the
tendency to introduce elements with poor aspect ratios. More geometrically rich fracture
patterns were generated by allowing failure along more arbitrary paths (albeit with the
expense of re-meshing) [98, 103, 105]. Embedded methods have been developed to
minimize the complexity of re-meshing by embedding material surfaces into the existing
mesh [6, 47, 93, 95, 128]. Although these works generalized the approach to fracture,
the embedding idea goes back at least to free form deformations [26, 43, 125, 140]. Also,
particle-based methods can provide flexibility for topology change [112]. Computer
graphics approaches primarily use a principal stress failure criterion [72, 93, 95, 96, 103,

1Chapter based on Publication [56]: J. Hegemann, C. Jiang, C. Schroeder, and J.M. Teran. A Level Set
Method for Ductile Fracture. ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), 2013. Accepted.
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Figure 4.1: A T2 tanker split apart in harbor during World War II due to fracture (Source:
http://en.wikipedia.org/wiki/File:TankerSchenectady.jpg).

105]. This has also been used for nearly rigid materials where an instantaneous linear
elastic response after collision events was used to determine stresses [6, 135, 150]. Grain
boundaries in this type of treatment can help to quickly create plausible fracture patterns
[6, 57, 150]. Other interesting models for crack patterns were developed in [65, 66, 98].

Our focus is on ductile fracture of elasto-plastic solids. We use a level set method to
evolve damaged regions of material with an embedded approach to reduce meshing com-
plexity. Level set methods have proven very effective for handling topological changes
for fluids and we show that they can also be used to reduce remeshing efforts for failure
of solids. The level set evolves in material space to minimize Griffith’s energy as an
alternative to the principle stress criteria popular in computer graphics. This is a gener-
alization of the work in [3] to large-strain, ductile materials. The level set description of
the material region is used to simplify the determination of material connectivity in the
embedded meshing approach from [128, 140] and is similar to the ideas used in [82]. We
accurately compute the integrals in the FEM discretization of the elastic forces taking
into account sub-cell geometric detail as is commonly done with discretizations using
the extended finite element method (XFEM) [9, 119]. We provide a new mechanism
for generating fragments of material in damaged regions (as defined by the level set
evolution). Finally, we employ a material point method treatment of collision response.

In our approach, we extend the method of [3] from the quasistatic, linear elasticity
to dynamics and arbitrary constitutive models. Second, we generalize this work to
embedded geometries where the material boundary is initially defined from a level set.
Also, we provide a new fragment generation algorithm to prevent volume loss inherent
in [3]. This fragment generation procedure is specifically designed for an evolving level

http://en.wikipedia.org/wiki/File:TankerSchenectady.jpg
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set definition of healthy and damaged material. The resulting algorithm is significantly
less complex than explicit remeshing strategies commonly used in computer graphics.
Lastly, we demonstrate the application of the material point method (MPM) to the
longstanding problem of embedded surface collisions. Collisions with these types of
surfaces (e.g. resulting from marching tetrahedra) are notoriously difficult to resolve
due to the inherently ill-conditioned sliver triangles arising from isosurface contouring.
We also provide a significant improvement to the MPM approach with the addition of
barycentrically bound ghost particles. These are used to improve material coverage of
the background MPM grid in large deformation scenarios. In an additional investigation,
we show that this modification can be done in a way to conserve total linear momentum.

4.2 Embedded Mesh and Duplication

As discussed in Section 2.3, we use a signed distance function φ in material coordinates
X to create an embedded Lagrangian mesh for our material. The mesh consists of all
tetrahedral elements in a regular background lattice with at least one node Xp having
φ(Xp) < 0. However, since we want to allow for separation of different parts of the
material, e.g. fragments broken off as part of the simulation, we will use connectivity in
this mesh which is slightly different than that of the background lattice. We refer to any
node incident on a boundary tetrahedron that has a positive φ value as a virtual node
since it is outside but still participates in the discretization by virtue of the embedding.
We define a boundary tetrahedron as one having nodes with both positive and negative
φ values.

The level set will evolve to minimize the Griffith’s energy of the material, which we
will describe in Section 4.4. During this process, we treat the evolution as a phase change
from “healthy” to “damaged” material. As this process occurs, we create a mesh for both
damaged and healthy regions. To illustrate this, let φ define the healthy region at some
time step prior to evolution (by way of describing the healthy material as the region
where φ < 0), and let φ̂ denote the new level set after evolution. Our energy evolution
is defined so that material cannot transition from damaged to healthy. Therefore, the
region with φ̂ < 0 is contained in the region with φ < 0 (and in fact φ̂ ≥ φ). To create the
healthy and damaged material meshes, we first create sub-element approximations to the
zero isocontour of both φ and φ̂ using the previously described process (see Section 2.3)
of triangle and quadrilateral insertion on boundary elements (as defined by the respective
level sets). Note that both level sets will often cut the same tetrahedron, and therefore
some elements may have material surfaces introduced by both level sets. Since our strict
evolution from healthy to damaged enforces φ̂ ≥ φ (see Section 4.4), there will never be
any crossings between these surfaces.
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Figure 4.2: Elements are duplicated for the healthy (blue) and damaged (green) regions. The
degrees of freedom along segments are merged if an endpoint is material on both
segments (yellow dots) or if the segment is cut by both level sets for the damaged
region (yellow lines).

We combine sub-element geometric information with the level set values to define the
material connectivity of the computational mesh. Our procedure is similar to the con-
nectivity criteria of [128, 140], but our procedure is specifically designed for an evolving
level set definition of our healthy material and fragments generated in the evolution.
First, we create a copy of each tetrahedron that has at least one node p with φ̂(Xp) < 0.
That is, this copy has its nodes disconnected from its neighbors with the introduction of
potentially temporary virtual nodes. These elements will form the healthy mesh. Sec-
ond, we create a copy for all tetrahedra that either have (i) a vertex with the product
φ̂(Xp)φ(Xp) < 0 (these nodes transitioned from healthy to damaged in the evolution
from φ to φ̂) or (ii) an incident edge that is cut by both φ̂ and φ (these edges correspond
to where the transition occurred at a material node, but without incurring a sign change).
These tetrahedra comprise the newly damaged region as defined by the evolution. Note
that some tetrahedra will give rise to copies for both damaged and healthy regions. This
copying procedure is the same as in [128, 140]. In the final step, we merge nodes across
element faces based on material connectivity. However, our means of establishing this is
simplified greatly by our level set and sub-element geometric information. Specifically,
faces of adjacent healthy tetrahedral elements (those copied based on the criterion that
at least one node p has φ̂(Xp) < 0) are merged if at least one original node on the face
has φ̂ < 0. Faces of adjacent damaged copies are merged if they either share a node that
transitioned (φ̂(Xp)φ(Xp) < 0) or if they share an edge that was cut twice. In cases
where not all copies of a node are merged, multiple duplicates of a node remain and thus
new degrees of freedom are added to the system. Similarly, the newly created fragments
also give to new degrees of freedom. This duplication process allows the material to
separate in accordance with material connectivity or lack thereof. The entire procedure
of splitting and merging as well as fragment generation is illustrated in Figure 4.2.

During any time step, the portion of the domain undergoing fracture can be considered
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as composed of two regions: a healthy region Ω0
h and a damaged region Ω0

d that is being
shed from the healthy region through fracture. In addition, there are fragments created
in previous time steps which are simulated but are not subject to further fracture. For
simplicity, we will not mention these previously fractured regions further as they are
simulated in a straightforward manner.

4.3 Elasto-Plastic Dynamics

For this method, we define our elasto-plastic constitutive relation from the corotational
energy density in [88] (similar but different constitutive models can be found in [133])
as

Ψ̃(F ) = µ‖F −R‖2
F +

λ

2
(tr(S − I))2, (4.1)

where F = RS is the polar decomposition of the deformation gradient and ‖ · ‖F the
Frobenius norm

‖A‖F =

√√√√ m∑
i

n∑
j

|Aij|2 for A ∈ Rm×n. (4.2)

In practice, we compute the singular value decomposition (SVD) of F

F = UΣV , (4.3)

which allows us to obtain (see [51])

R = UV T, (4.4)

and with that

S = RTF . (4.5)

There are many algorithms to compute the SVD, see e.g. [51]. We use the one described
in [86].

For this constitutive model, we can now specify derivatives of the energy density
Ψ = Ψ̃ as needed according to Section 2.4. The first derivative is easily computed as

P = 2µ (F −R) + λ(tr(RTF − I))R. (4.6)

For the second derivative, we first formulate the energy density of (4.1) in terms of the
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singular values σi:

Ψ̂(σ) = µ

d∑
i

(σi − 1)2 +
λ

2

(
d∑
i

(σi − 1)

)2

. (4.7)

As mentioned before, we can differentiate Ψ̂ very easily with respect to the σi, yielding

∂Ψ̂

∂σi
= 2µ(σi − 1) + λ

d∑
i

(σi − 1) (4.8)

∂2Ψ̂

∂σi∂σj
= 2µδij + λσi (4.9)

and substitute these into the framework outlined in Section 2.4.4 to obtain ∂P
∂F

(Σ), which
we will once again label Ĝ for notational convenience. Most of its components are zero,
except

Ĝ1111 = 2µ+ λ, (4.10)

Ĝ2222 = 2µ+ λ, (4.11)

Ĝ3333 = 2µ+ λ, (4.12)

Ĝ1122 = Ĝ2211 = λ, (4.13)

Ĝ1133 = Ĝ3311 = λ, (4.14)

Ĝ2233 = Ĝ3322 = λ, (4.15)

Ĝ1221 = Ĝ2112 =
3λ+ 2µ− λσ3

σ1 + σ2

− λ, (4.16)

Ĝ1331 = Ĝ3113 =
3λ+ 2µ− λσ2

σ1 + σ3

− λ, (4.17)

Ĝ2332 = Ĝ3223 =
3λ+ 2µ− λσ1

σ2 + σ3

− λ, (4.18)

Ĝ1212 = Ĝ2121 = 2µ+ λ− 3λ+ 2µ− λσ3

σ1 + σ2

, (4.19)

Ĝ1313 = Ĝ3131 = 2µ+ λ− 3λ+ 2µ− λσ2

σ1 + σ3

, (4.20)

Ĝ2323 = Ĝ3232 = 2µ+ λ− 3λ+ 2µ− λσ1

σ2 + σ3

, (4.21)

As detailed in Section 2.4, this suffices to implement an implicit backward Euler scheme.

4.3.1 Plasticity

In addition to the discretization outlined in Section 2.4, we incorporate a plasticity model
for some of our simulations. Plasticity describes an irreversible deformation (as opposed
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to a fully elastic one). This behavior typically occurs after some initial reversible stage
is exceeded. The plastic regime itself is often similarly limited to a certain range of
deformation, depending on the material.

To accurately model this kind of behavior, we use the multiplicative decomposition
of the deformation gradient into an elastic and a plastic part as discussed in [67]:

F = FeFp. (4.22)

For a given F , we obtain Fe via (4.22) and compute its SVD:

Fe = UeΣeV
T

e (4.23)

We clamp the singular values to [σmin,e, σmax,e]. For the limiting values, we choose

σmin,e =
1

σe
, (4.24)

σmax,e = σe (4.25)

for a given value σe, which controls the limitation of the initial elastic phase of the
deformation. We denote Σ̂e = clamp(Σe) and compute

F̂e = UeΣ̂eV
T

e (4.26)

as well as

F̂p = VeΣ̂
−1
e U

T
e F . (4.27)

For the thus obtained F̂p, we once more compute the SVD:

F̂p = UpΣpV
T

p . (4.28)

If the singular values in Σp do not exceed another limit criterion, we update Fe = F̂e

and Fp = F̂p, and store

F−1
p = VpΣ

−1
p U

T
p (4.29)

for the next iteration.

In place of the energy density defined by (4.1), we reflect the change to the elastic
response due to plasticity by defining the energy density

Ψ(F ) = Ψ̃(FF−1
p ). (4.30)
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For notational convenience, we also write

Ψe(Fe) = Ψ̃(F = Fe). (4.31)

Its derivative with respect to F is given by the chain rule as

Pik =
∂Ψ

∂Fik

=
∑
rs

∂Ψe

∂(Fe)rs

∂(Fe)rs
∂Fik

=
∑
rs

∂Ψe

∂(Fe)rs

∑
t

∂

∂Fik
(Frt(F

−1
p )ts)

=
∑
rs

∂Ψe

∂(Fe)rs

∑
t

(F−1
p )tsδirδkt

=
∑
s

∂Ψe

∂(Fe)is
(F−1

p )ks

⇒ P = Pe(Fe)F
−T
p . (4.32)

Similarly, we can then compute the Hessian as

∂Pik
∂Fjm

=
∂

∂Fjm

∑
`

(Pe)i`(F
−T
p )`k

=
∑
`

∑
rs

∂(Pe)i`
∂(Fe)rs

∂(Fe)rs
∂Fjm

(F−T
p )`k

=
∑
`

∑
rs

∂(Pe)i`
(∂Fe)rs

(F−1
p )msδrj(F

−T
p )`k

⇒ ∂Pik
∂Fjm

=
∑
`,s

∂(Pe)i`
∂(Fe)js

(F−1
p )ms(F

−1
p )k`. (4.33)

The values of Pe(Fe) and ∂(Pe)i`
∂(Fe)js

(Fe) are equivalent to the corresponding ones of the
non-plastic case and thus we have all components readily available to evaluate (4.32)
and (4.33).

4.4 Griffith’s Energy Evolution

In his famous work [53], Griffith developed an energy based approach to understand
formerly unexplained fracture phenomena. He incorporated an energy balance approach
to the formation of new fracture surfaces. To illustrate the idea, consider a loaded elastic
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plate with an initial crack of length a. Its total energy U can be written as

U = U0 + Ua + Uγ − F

with

U0: total elastic energy of the loaded but uncracked plate (constant),
Ua: change in the stored elastic energy due to the formation of the initial crack;

introducing the crack causes the plate to lose stiffness and therefore potential
energy, so Ua < 0,

Uγ: change in the elastic surface energy due to the introduction of new surface
along the crack; energy is consumed to disrupt the chemical bonds between the
molecules of the material and stored in the new surface, so Uγ > 0,

F : work performed by external forces.

Crack growth can only occur if an increment of the crack length a decreases the stored
energy, which yields

dU
da
≤ 0.

With the definition of U , and U0 being constant this means

d
da

(Ua + Uγ − F ) ≤ 0,

which can be rearranged to

d
da

(F − Ua) ≥
dUγ
da

,

where

dF
da

: energy provided by external work per crack increment da,

dUa
da

: elastic energy released by a potential crack increment da.

It thus follows that(
dF
da
− dUa

da

)
: energy available for crack growth,

dUγ
da

: surface energy of the crack surface per crack increment da.
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In other words: In order for the crack to grow the energy provided by external forces
and released from the plate by a crack increment must exceed the energy needed to form
the new crack surfaces.

Griffith’s idea was revisited by Francfort and Marigo in [46], and again in [45], to
bypass the requirements of an initial crack as well as a well-defined crack path. Their
model formulated quasistatic brittle fracture as a global energy minimization problem.
Although such a global energy minimization postulate is not proven for real fracture
propagation, it is common practice in contemporary material science and we operate
under the same assumption.

Basing on these models, we use a Griffith-type energy minimization as our fracture
evolution criterion similar to the method developed by Allaire et al in [3]. Reusing the
notation for the healthy region Ω0

h = {X|φ(X) < 0} and the damaged Ω0
d = {X|φ(X) >

0}, the Griffith’s energy is defined as

EG(φ) =

∫
Ω0

h

Ψ dX +

∫
Ω0

d

κ dX. (4.34)

The coefficient κ is the rate of Griffith’s energy release. In the damaged region, it
represents the energy that was necessary to create the damage to this part of material.
It can be used to limit the tendency to shrink Ω0

h and is therefore intuitively used to
increase the material’s resistance to fracture. Without this term, we could easily release
the elastic energy stored in Ω0

h by evolving until we had Ω0
h = ∅.

In order to obtain the speed for a level set evolution, we interpret EG as a functional
in Ω0

h and use Lemma 2.2 from Section 2.1 to differentiate (4.34) with respect to Ω0
h:

E ′G(Ω0
h)[θ] =

∫
∂Ω0

h

Ψ(X,F (X))θ · n0(X) ds(X) +

∫
∂(Ω\Ω0

h)

κθ · n1(X) ds(X). (4.35)

Since ∂(Ω \ Ω0
h) = ∂Ω0

h and n0 = −n1 where θ 6= 0, we can rewrite this as

E ′G(Ω0
h)[θ] =

∫
∂Ω0

h

(Ψ(X,F (X))− κ)θ · n0(X) ds(X) (4.36)

As discussed in Section 2.2, the level set function φ representing the boundary of Ω0
h

can be evolved through a pseudo-time by solving

∂φ

∂t
− δε(φ)V = 0, (4.37)
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and the speed can now be chosen as

V (X) = Ψ(X,F (X))− κ. (4.38)

Finally, to ensure that material only transitions from healthy to damaged, we disregard
any change in φ at nodes where its value decreases as this would correspond to a growth
in the healthy region and thus violate the irreversibility of fracture, i.e. we enforce

V (X) = max(0,Ψ(X,F (X))− κ). (4.39)

The obtained velocity corresponds again to the idea of Griffith that a transition from
healthy phase to damaged phase only occurs if the release of elastic energy exceeds a
threshold κ. An illustration of the energy evolution is given in Figure 4.4 among the
results in Section 4.7.

Since the level set function is defined on the mesh nodes, we need to compute the
energy density Ψ on the nodes as well. We do this by computing its value as specified
in Section 4.3 within each mesh simplex Sα (where it is piecewise constant), and then
employing a weighted average over all elements that contain this node:

Ψ(Xp) =

∑
α|p∈Sα Ψ(Sα)

∫
Sα
Np(X) dX∑

α|p∈Sα
∫
Sα
Np(X) dX

, (4.40)

with Np being the linear basis function of node p.

In practice, we enforce a CFL restriction on ∆s so that φ does not move the boundary
of the healthy region by more than one mesh spacing in one pseudo-time step. This
results in the necessity for multiple executions of the update (2.7), though sometimes it
might be more visually pleasing to use only a limited number of steps.

Furthermore, to avoid artifacts and since the energy values driving the level set up-
date are often very large, we not only reinitialize φ after every update but also take
extra precautions while doing so. Before we apply the fast sweeping method detailed in
Section 2.2.1, we first identify the location of the new interface, as defined by the new
φ̂, solution to the level set update (4.37), within the boundary elements of the mesh
as detailed in Section 2.3. We then use the embedded surface triangles to recompute
the exact distance from the surface to the mesh vertices of the containing boundary
elements. This re-evaluation procedure is only necessary at nodes where the level set
value, and thus the interface, has changed, i.e. if |φ(Xi) − φ̂(Xi)| > ε, where ε can be
chosen as a multiple of machine precision. We then use these exact distances around
the interface in the initialization phase of the more efficient fast sweeping method to
propagate the signed distance property to all other nodes of the mesh.
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4.5 Collisions

Collisions between different (parts of) bodies are a problem completely separate from the
PDE governing the elasticity. The method of Bridson et al in [20] has become common
use in the computer graphics community; however, it poses fairly restrictive requirements
on the surface triangles of the colliding interfaces. Since the fracture surfaces can become
of arbitrary quality throughout their evolution, those required properties cannot be
guaranteed throughout our simulations. We therefore need a more robust approach. The
material point method (MPM) (e.g. [32, 136]) has been successfully used for collision
handling in fracture settings. However, we do not use an MPM discretization but rather
borrow parts of the ideas of Huang et al in [64] and use them to resolve collisions after
we advanced positions and velocities via an implicit FEM update.

We use an impulse-based response for rigid collision bodies and self-collision. This
is difficult because the embedded meshes that define the material regions have many
sliver triangles since they are generated by marching tetrahedra. We found that the
material point method for collision impulses outlined in [64] was effective at applying
impulses when the surface geometry contained sliver elements. This technique uses the
gradients of interpolating functions on a background regular Cartesian grid to estimate
normals to the boundary of the material region. This is convenient because it does
not rely on high-quality boundary geometry. However, this robustness does come at the
expense of accuracy, and we alleviate this by augmenting the original method by seeding
barycentrically bound ghost particles.

We will now outline this collision algorithm in more detail. For simplicity, we will
restrict our description to two colliding bodies, but any number of objects is possible. We
compute the connected components of all mesh particles based on material connectivity
as given by the mesh. We will use a subscript b to indicate that we store the contributions
to a grid node i separately for each of the two bodies.

4.5.1 Ghost Particles

As we will see in Section 4.5.2, the accuracy of the collision algorithm depends on the
number of material particles that contribute to any affected grid node. That is why
we increase the number of material particles by creating ghost particles in every mesh
element in addition to the degrees of freedom of the mesh. These dependent particles
only exist for the purpose of collisions and do not contribute to the elasticity simulation.
We use R and G to denote real and ghost particles, with P = R ∪G (or Rb, Gb, and Pb
when referring only to those particles in body b). The ghost particles do not represent
any new degrees of freedom but are solely defined by their barycentric relation to their
parent mesh vertices, with the barycentric weight wqr = 0 if ghost particle q ∈ G is not
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bound to real particle r ∈ R. We will further use the short-hand notation q ∈ Sα if q
is bound to the vertices of Sα. The number of ghost particles per element Sα as well
as their barycentric weights wqr can be determined a priori. We found in our numerical
experiments that nine ghost particles per element with the following weights present a
nice balance between improved accuracy and computational effort:

(w1
r)r = (0.25, 0.25, 0.25, 0.25), (4.41)

(w2
r)r = (0.1, 0.3, 0.3, 0.3), (4.42)

(w3
r)r = (0.3, 0.1, 0.3, 0.3), (4.43)

(w4
r)r = (0.3, 0.3, 0.1, 0.3), (4.44)

(w5
r)r = (0.3, 0.3, 0.3, 0.1), (4.45)

(w6
r)r = (0.4, 0.2, 0.2, 0.2), (4.46)

(w7
r)r = (0.2, 0.4, 0.2, 0.2), (4.47)

(w8
r)r = (0.2, 0.2, 0.4, 0.2), (4.48)

(w9
r)r = (0.2, 0.2, 0.2, 0.4). (4.49)

The positions and candidate velocities of ghost particles are computed in a straight-
forward manner as the linear combination of their parents, i.e.

xnq =
∑
r∈R

wqrx
n
r , (4.50)

v̄n+1
q =

∑
r∈R

wqr v̄
n+1
r , (4.51)

where q ∈ G. With v̄n+1
r we denote the candidate velocities at time tn+1, solution to

the elasticity update of Section 4.3. These velocities might change during the collision
processing.

The computation of the mass for ghost particles has to be done slightly more carefully
to conserve total mass. The particles masses mn

rα corresponding to an element Sα and
a real particle r are computed respecting the embedded boundaries as the integral

mn
rα =

∫
Sα
ρ0Nr dX. (4.52)

The mass associated with a node r can thus change if material gets damaged or breaks
off during the fracture evolution. The mass

∑
km

n
rα of real particle r is distributed to r

and embedded particles q proportional to their barycentric weights wqr (where wrr = 1)
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so that

mn
q =

∑
r∈R

wqrm
n
rα

Wrα

(4.53)

mn
r =

∑
α

mn
rα

Wrα

(4.54)

with

Wrα = 1 +
∑

q∈G∩Sα
wqr , (4.55)

where r ∈ R, q ∈ G ∩ Sα. The sum of all contributions Wrα is chosen so that∑
p∈P

mn
p =

∑
r∈R

mn
r +

∑
q∈G

mn
q

=
∑
r∈R

mn
r +

∑
α

∑
q∈G∩Sα

mn
q

=
∑
r∈R

∑
α

mn
rα

Wrα

+
∑
α

∑
q∈G∩Sα

∑
r∈R

wqrm
n
rα

Wrα

=
∑
r∈R

∑
α

mn
rα

Wrα

(
1 +

∑
q∈G∩Sα

wqr

)
︸ ︷︷ ︸

=Wrα

=
∑
r∈R

∑
α

mn
rα

=
∑
r∈R

∑
α

∫
Sα
ρ0Nr(X) dX

=
∑
α

∫
Sα
ρ0 dX

accounts for the total mass.

4.5.2 Rasterization

Next, we rasterize the particle masses to the collision grid as

mn
bi =

∑
p∈Pb

mn
pSi(x

n
p ), (4.56)
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where the Si are the standard continuous and piecewise trilinear (grid-based) nodal
shape functions with the property

Si(xj) = δij =

1 if i = j

0 else
(4.57)

for grid nodes xj. We use the (deformed) positions xnp of the previous time step, tn, as
the values of the current time step will depend on any changes we make to the velocity
field to avoid collisions.

The nodal velocity on the grid is computed as the ratio of rasterized momentum to
mass

v̄n+1
bi =

∑
p∈Pbm

n
p v̄

n+1
p Si(x

n
p )

mn
bi

. (4.58)

We use the gradient of the nodal mass to find the outward normals of grid node i for
body b

n̄nbi =
∇mn

bi

‖∇mn
bi‖

=

∑
p∈Pbm

n
p∇Si(xnp )

‖
∑

p∈Pbm
n
p∇Si(xnp )‖

. (4.59)

Note that for some grid nodes, the material barely overlaps with the support of the
associated shape function, and ghost particles cannot offer any improvements. These
nodes also barely contribute to the velocity field due to their low mass weights, so in
practice this ghost particle strategy leads to acceptable results.

4.5.3 Contact Handling on the Grid

If particles from the two different bodies register at the same grid node i, a collision may
occur. All contact velocities are relative to the center of mass at this grid node

v̄com,n+1
i =

mn
1,iv̄

n+1
1,i +mn

2,iv̄
n+1
2,i

mn
1,i +mn

2,i

. (4.60)

The normals of the two bodies as defined by (4.59), nn1,i and nn2,i, might not be
colinear. However, this is necessary to guarantee conservation of momentum (see below).
Therefore, we use the average of the two normals

nn1,i =
n̄n1,i − n̄n2,i
‖n̄n1,i − n̄n2,i‖

(4.61)
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and set

nn2,i = −nn1,i. (4.62)

(Other choices are possible, e.g. in case of significant differences in volume or stiffness, see
[64]. We employ a different choice when colliding with a rigid body, see Subsection 4.5.5.)
With these normals, we can determine approach and departure of the two bodies. An
approach happens and collision may occur if

(v̄n+1
bi − v

com,n+1
i ) · nnbi > 0. (4.63)

This condition is equivalent for b = 1 and b = 2:

(v̄n+1
1,i − v

com,n+1
i ) · nn1,i > 0

⇔ (v̄n+1
1,i −

m1,iv̄
n+1
1,i +m2,iv̄

n+1
2,i

m1,i +m2,i

) · nn1,i > 0

⇔ (
m1,iv̄

n+1
1,i +m2,iv̄

n+1
1,i − (m1,iv̄

n+1
1,i +m2,iv̄

n+1
2,i )

m1,i +m2,i

) · nn1,i > 0

⇔ m2,i

m1,i +m2,i

(v̄n+1
1,i − v̄n+1

2,i ) · nn1,i > 0.

Since both bodies were rasterized to node i, we have m2,i

m1,i+m2,i
> 0 and m1,i

m1,i+m2,i
> 0,

thus

⇔ m1,i

m1,i +m2,i

(v̄n+1
1,i − v̄n+1

2,i ) · nn1,i > 0

By construction, nn1,i = −nn2,i, yielding

⇔ m1,i

m1,i +m2,i

(v̄n+1
2,i − v̄n+1

1,i ) · nn2,i > 0

⇔ (
m1,iv̄

n+1
2,i +m2,iv̄

n+1
2,i − (m1,iv̄

n+1
1,i +m2,iv̄

n+1
2,i )

m1,i +m2,i

) · nn2,i > 0

⇔ (v̄n+1
2,i − v

com,n+1
i ) · nn2,i > 0.

If contact according to (4.63) occurs, the candidate velocities v̄n+1
bi need to be cor-

rected by applying an appropriate impulse

vn+1
bi = v̄n+1

bi +
∆t

mbi

f ct
bi . (4.64)
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This corrected velocity vn+1
bi must satisfy the impenetrability condition∑

b

vn+1
bi · n

n
bi = 0. (4.65)

We find the normal component of the collision force f ct
bi by substituting (4.65) into (4.64),

which yields (using also (4.60))

f ct,n
i = f ct

bi · nnbi

=
1

∆t

mn
1,im

n
2,i

mn
1,i +mn

2,i

(v̄n+1
2,i − v̄n+1

1,i ) · nn1,i

=
mn
bi

∆t
(vcom,n+1

i − v̄n+1
bi ) · nnbi. (4.66)

For friction-less contact with no tangential component - as we assume it for object-object
collisions - we can directly insert this result back into (4.64) to obtain our final corrected
velocity:

vn+1
bi = v̄n+1

bi − [(v̄n+1
bi − v

com,n+1
i ) · nnbi]nnbi. (4.67)

A tangential component can be computed in a similar fashion, starting from a no-slip
condition; the resulting force can then be modeled with Coulomb friction.

4.5.4 Interpolation back to the Particles

After all grid velocities are corrected as necessary via (4.67), we use the grid shape
functions defined in (4.57) to compute the new velocities of the Lagrangian particles.
We loop through all real particles r ∈ R, find the cube it is contained in and find its
new value as

vn+1
r = ξ[vnr +

∑
i

Si(x
n
r )(vn+1

bi − v
n
bi)] + (1− ξ)

∑
i

Si(x
n
r )vn+1

bi (4.68)

with b such that r ∈ b; ξ ∈ [0, 1] is a control parameter that defines the ratio between
PIC (Particle-In-Cell method [42]) versus FLIP (Fluid-Implicit-Particle method [19]).
For our simulations, we found that full FLIP, i.e. ξ = 1, serves our purposes best. Since
typically only a small portion of the Lagrangian particles are involved in collisions, we
do not need the numerical viscosity introduced by PIC for stability. On the other hand,
FLIP preserves more of the dynamics (cf. [151]), which is desirable for our application.

The final displacements of the particles for this time step are then given by

un+1
r = unr + ∆tvn+1

r , (4.69)
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which is consistent with the backward Euler time discritization used in Section 2.4.
These displacements and velocities are the ones used in our level set evolution as well as
for the initial state in the next time step of the PDE solver. Once again, ghost particles
were created only for the purpose of improved initialization; no velocity is interpolated
back to them.

4.5.5 Ground and other Rigid Bodies

We use the above method not only for object-object collisions but also to model collisions
with the ground and other rigid bodies. In those cases, only minor adjustments are made.
First, instead of employing the average in (4.61) we use the (possibly analytic) normal
defined by the rigid body, e.g. in case of ground collisions

nnbi = −ez, (4.70)

or in case of a ball with midpoint xball

nnbi = − xnbi − xball

‖xnbi − xball‖
, (4.71)

as outward normal for deformable body b. Further, we do not compute the center of mass
velocity according to (4.60), but rather set it equal to that of the rigid body. For the
special case of ground collisions, we can also introduce some friction by simply damping
the x and y velocity component by a factor ζ ∈ [0, 1].

4.5.6 Collision Implementation Remarks

An illustration of the different steps of the collision handling is shown in Figure 4.3. We
also point out the following remarks regarding its implementation:

• The background grid and all grid-based variables do not need to be stored, leading
to no additional memory costs once collisions are resolved.

• The size of the background grid can easily be determined as the bounding box of
all particle positions in deformed configuration.

• We choose the resolution of the background grid dependent on the resolution of
the material mesh to maintain volume coverage, a typical value is hgrid = 2hmesh.

• Since particles might be widely spread across the grid and not all grid nodes might
be used, sparse data structures can be used for efficiency.
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(a) Candidate particles velocities (b) Rasterized grid velocities

(c) Corrected grid velocities (d) Corrected particle velocities

Figure 4.3: From top left to bottom right : First, we rasterize the velocities from the Lagrangian
particles (including additional ghost particles) to the Eulerian background grid;
then, we detect where particles from different bodies register on the same grid
point and project out their normal components; the corrected grid velocities are
interpolated back to the mesh DoFs.

• The collision detection based on separate bodies does not cover collisions of dif-
ferent parts of the same piece of material. However, this limitation could be
circumvented by subdividing a body into smaller regions that register separately
onto the Eulerian grid. These subregions could then in turn collide with each other
(neighboring ones excluded to not interfere with elasticity forces). However, for
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our practical examples we found such an extension not necessary.

4.5.7 Conservation of Momentum and Suggested Improvements

In this subsection we will analyze the property of momentum conservation of our collision
handling. This will lead to the observation of some limitations of the proposed addition
of ghost particles. However, we will in turn develop some possible improvements that
will eliminate the shortcomings. These findings are an extension to our publication [56]
and go beyond its scope.

Lemma 4.1. For the case P = R, i.e. without the use of any ghost particles, the grid
based collision handling conserves linear momentum in each of its steps

(i) rasterization,

(ii) collision response,

(iii) interpolation back to the mesh particles via FLIP.

Proof. (i) We will start with the rasterization process. Let

pmesh =
∑
p∈P

mn
p v̄

n+1
p

be the total linear momentum of the mesh. Then, we need to show that the mesh
momentum is equal to the rasterized total grid momentum

pgrid =
∑
b,i

mn
biv̄

n+1
bi

=
∑
b,i

mn
bi

∑
p∈bm

n
p v̄

n+1
p Si(x

n
p )

mn
bi

=
∑
b,i

∑
p∈b

mn
p v̄

n+1
p Si(x

n
p );

the summation can be reordered to yield

pgrid =
∑
p∈P

mn
p v̄

n+1
p

∑
i

Si(x
n
p )︸ ︷︷ ︸

= 1 due to the nature of the Si

= pmesh.
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(ii) The collision handling as given by (4.67) conserves momentum at each node, i.e.

2∑
b=1

mn
biv

n+1
bi −

2∑
b=1

mn
biv̄

n+1
bi = 0. (4.72)

To show that this equality holds, we substitute (4.67) into the left-hand side of (4.72),
leading to

2∑
b=1

mn
biv

n+1
bi −

2∑
b=1

mn
biv̄

n+1
bi

=
2∑
b=1

mn
bi

{
v̄n+1
bi −

[
(v̄n+1

bi − v
com,n+1
i ) · nnbi

]
nnbi
}
−

2∑
b=1

mn
biv̄

n+1
bi , (4.73)

where the first two terms in each sum cancel each other out. Using nk1,i = −nk2,i and the
definition of vcom,n+1

i in (4.60) leads to

2∑
b=1

mn
biv

n+1
bi −

2∑
b=1

mn
biv̄

n+1
bi

=
2∑
b=1

mn
bi

[
(vcom,n+1

i − v̄n+1
bi ) · nnbi

]
nnbi (4.74)

=

[(
2∑
b=1

mn
bi(v

com,n+1
i − v̄n+1

bi )

)
· nn1i

]
nn1i (4.75)

=

[(
vcom,n+1
i

2∑
b=1

mn
bi −

2∑
b=1

mn
biv̄

n+1
bi

)
· nn1i

]
nn1i (4.76)

=

[(∑2
b=1m

n
biv̄

n+1
bi∑2

b=1m
n
bi

2∑
b=1

mn
bi −

2∑
b=1

mn
biv̄

n+1
bi

)
· nn1i

]
nn1i (4.77)

= 0, (4.78)

which concludes the statement of (4.72).
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(iii) Lastly, the interpolation of the corrected velocities back to the particles via FLIP
yields

pFLIP
mesh =

∑
p∈P

mn
pv

n+1
p (4.79)

=
∑
p∈P

mn
p

(
v̄n+1
p +

∑
b,p∈b

∑
i

Si(x
n
p )(vn+1

bi − v̄
n+1
bi )

)
(4.80)

=
∑
p∈P

mn
p v̄

n+1
p +mn

p

∑
b,p∈b

∑
i

Si(x
n
p )(vn+1

bi − v̄
n+1
bi ) (4.81)

=
∑
p∈P

mn
p v̄

n+1
p +

∑
b,i

(vn+1
bi − v̄

n+1
bi )

∑
p∈b

mn
pSi(x

n
p )︸ ︷︷ ︸

=mnbi︸ ︷︷ ︸
=0 as shown above

(4.82)

= pmesh. (4.83)

We will now see how ghost particles affect these momentum conservation properties.
First, let us look at the momentum of the mesh with ghost particles

pmesh, ghost =
∑
r∈R

mn
r v̄

n+1
r +

∑
q∈G

mn
q v̄

n+1
q (4.84)

=
∑
r∈R

(∑
α

mn
rα

Wrα

)
v̄n+1
r +

∑
α

∑
q∈Sα

[(∑
r∈R

wqrm
n
rα

Wrα

)(∑
r∈R

wqrv
n+1
r

)]
(4.85)

Here it becomes obvious that, unfortunately, the product of sums in the second term
prevents pmesh, ghost from generally being equal to pmesh. Though this did not seem to
have a noticeable affect on the graphical outcome of the results presented in Section 4.7,
we now propose some improvements to the method to overcome this issue. These im-
provements are a better alternative than the omission of ghost particles due to their
crucial role in improving the accuracy of the grid based velocity and normal field.

First, instead of interpolating the ghost particle velocities as the linear combination of
the velocities of their parents in (4.51), we need to transfer momentum from the parents
to the ghost particles. Second, for the conservation to hold while interpolating back to
the mesh, we need

∑
p∈bm

n
pSi(x

n
p ) = mn

bi (see (4.82)), which motivates the definition of
an improved FLIP-type velocity update to the real particles r ∈ R, where we interpolate
momenta back to real as well as ghost particles and then gather them at the respective
parents based on the barycentric weights.
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Lemma 4.2. The following changes to the process of ghost particles introduction will
reestablish momentum conservation:

(i) Define the velocity of any ghost particle q ∈ G as

v̄n+1
q =

∑
r∈R

wqrmrα
Wrα

v̄n+1
r∑

r∈R
wqrmrα
Wrα

with α such that q ∈ Sα. (4.86)

(ii) For any real particles r ∈ R, use the following velocity update:

vn+1
r =

1∑
αmrα

[(
vnr +

∑
i

Si(x
n
r )(vn+1

bi − v
n
bi)

)
mn
r

+
∑

α|r∈Sα

∑
q∈G∩Sα

(
vnq +

∑
i

Si(x
n
q )(vn+1

bi − v
n
bi)

)
wqrmrα

Wrα

]
. (4.87)

Proof. Note that the momentum computations for the transfer to the grid as well as
the collision response on the grid do not depend on the addition of the ghost particles,
thus these steps remain the same. The mesh momentum after the addition of the ghost
particles as well as the mesh momentum after the velocity update need to be recomputed.

(i) The above definition (4.86) conserves momentum on the mesh, since

pmesh, ghost =
∑
r∈R

mn
r v̄

n+1
r +

∑
q∈G

mn
q v̄

n+1
q (4.88)
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(4.89)
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r∈R
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(
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Wrα

)]
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=
∑
r∈R

v̄n+1
r

∑
α

mn
rα (4.92)

= pmesh, (4.93)

(ii) The new total momentum of the mesh with the interpolation defined in (4.87)
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reads as (since ghost particles are discarded after the collision step)

pFLIP
mesh =

∑
r∈R
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r

∑
α

mrα (4.94)
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; (4.95)

reordering the sums yields
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∑
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The two remaining sums in the second term cover all ghost particles, thus we can rewrite
the right hand side as

pFLIP
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(4.99)

= pmesh, ghost
(4.93)
= pmesh. (4.100)



4.6 Algorithm 79

4.6 Algorithm

Assembling all the pieces as discussed in the previous sections, our method reads as
shown in Algorithm 4.1.

Algorithm 4.1 A Level Set Method for Ductile Fracture
Initialization: create mesh, embed initial geometry, set initial displacements and ve-
locities, boundary conditions, tolerances etc.

for all k do
// first, obtain candidate positions and velocities based on the elastic response
ūn+1 ← fem_elasticity_update(un,vn, φn)
v̄n+1 ← ūn+1−un

∆t

// resolve collisions by way of the Eulerian background grid, using the candidate
velocities defined at the old positions
(un+1,vn+1)← collision_handling(un, v̄n+1)

// use the elastic energy densitiy based on the current displacement to advance the
material geometry defined by the level set function
Ψn+1 ← compute_energy_density(un+1)
φn+1 ← level_set_update(Ψn+1, φn)

// embed the surface of the new healthy region into the mesh; use the old and the
new interface to generate new fragments
embedded_geometry(φn+1, φn)

// reinitialize the level set function to signed distance
compute_exact_distance_in_boundary_elements(φn+1)
fast_sweeping(φn+1)

end for

4.7 Results

We now demonstrate the compelling, realistic effects that are possible with our method.
We show a number of different fracture scenarios, with varying geometric complexity.
All examples are computed using ε = h for δε in the interface approximation using
(2.6), where h = ∆x = ∆y = ∆z is the mesh spacing. The tolerance used in the
MINRES solver is set to 10−6 and Newton’s method solved to 10−3. The time stepping
∆t varies with simulation from 10−3 to 10−5s. Some representative resolutions, degree
of freedom counts and run times can be found in Table 4.1. The material parameters
are chosen to emulate real materials; however, sometimes they were adjusted for optical
effects, especially the fracture resistance κ. We keep κ constant in each example for
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reasons of simplicity, however, spatially varying energy release rates are also possible.
All renderings are created using the ray-tracing software POV-Ray2.

First, we show some 2D examples to illustrate our method. Figure 4.4 shows the
energy-driven failure evolution while a block with a predefined notch is stretched and
tears apart. The material parameters are E = 0.02 MPa, µ = 0.3 and ρ = 1.1 kg

m2 and
we show an energy release rate κ = 105 J

m2 . Figure 4.5 depicts the sequential generation
of fragments of material during a collision-induced failure process of fiberboard with the
properties E = 5 MPa, µ = 0.3, ρ = 3.1 kg

m2 and κ = 5000 J
m2 . Our collision handling

is further validated with two 3D examples: two rubber cubes (E = 0.1 GPa, µ = 0.3,
ρ = 1.1 kg

m3 ) fall onto the ground as well as each other in Figure 4.6; the scalability of the
method is displayed in Figure 4.7 with many long rectangular cuboids (slightly softer
rubber with E increased to 0.1 GPa) fall onto a partial sphere and the ground.

Figures 4.8, 4.9 and 4.10 depict 3-dimensional failure as a result of stretching. For
these tests, we simulate Jell-OTM as a representative of gelatin and estimate its material
parameters as E = 0.1 MPa, µ = 0.3 and ρ = 1.1 kg

m3 . The fracture resistance in
Figure 4.8 is set to κ = 105 J

m3 . Figure 4.9 shows how we can control the speed of
the fracture evolution via different energy release rates (note that all three objects are
subject to the same external load). Figure 4.10 demonstrates a first example of our
ability to fracture complex geometries as we tear off the limbs of an armadillo model.
The energy release rate in its arms and legs is given as κ = 3000 J

m3 . Figure 4.12 shows
the collision of two destructible objects. For this example we use fairly hard material
with E = 10 GPa, µ = 0.3 and ρ = 1.3 kg

m3 .
We also demonstrate our fracture response resulting from collisions with external

projectiles. The projectile speed is set to vproj = 100m
s , thus requiring time steps as

small as ∆t = 10−5s. We simulate the projectiles as rigid bodies of analytic shapes
and use their exact normals to resolve the collisions between them and the deformable
objects (see Section 4.5.5). Figure 4.11 uses the material parameters E = 5 MPa,
µ = 0.3, ρ = 1.1 kg

m3 and κ = 106 J
m3 and depicts a bullet through a soft, plastic wall.

In Figure 4.13 we shoot a thin sheet with E = 1.3 MPa, µ = 0.3, ρ = 0.5 kg
m3 and

κ = 1.5 · 104 J
m3 from the side. In Figure 4.14 we demolish the armadillo, this time with

material properties E = 2 GPa, µ = 0.3, ρ = 1.1 kg
m3 and κ = 106 J

m3 , by hitting it with
two spheres in succession. Lastly, Figure 4.16 presents the projectile penetrating a big
block of Jell-OTM gelatine, using E = 0.05 MPa, µ = 0.3, ρ = 1.1 kg

m3 and κ = 104 J
m3 . In

the examples in Figure 4.11 and 4.14 we further split damaged fragments using pre-scored
grain boundaries as in [6]. This post-processing is restricted to newly formed fragments
as determined by our fracture evolution and only used to obtain smaller fragments and
is not used to define the damaged region in the first place.

2POV-ray (The Persistence of Vision Raytracer): http://www.povray.org/

http://www.povray.org/
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example dofs level set grid min/frame

Stretching Jell-OTM 1.9M 128 × 128 × 128 4.1

Shooting Jell-OTM 1.0M 128 × 128 × 128 1.1

Stretching armadillo 1.0M 96 × 96 × 96 1.1

Table 4.1: Example degree of freedom counts, level set grid resolutions and simulation times.
Simulations were performed on a 16-core Intel Xeon E5-2690 2.90GHz machine.

Figure 4.4: Notch tears when stretched. We visualize the material configuration (bottom left),
the energy density of a subregion (top left) and the deformed configuration (right).
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Figure 4.5: Ring fractures upon hitting ground with material configuration (left) and the
deformed configuration (right) shown.

Figure 4.6: Two cubes collide with the ground and each other.
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Figure 4.7: Scalability of the collision handling: Many thin pieces fall onto a partial sphere
and the ground.
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Figure 4.8: A block of Jell-OTM tearing under external load.
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Figure 4.9: Stretching Jell-OTM blocks of different energy release rates, leading to different
fracture speeds.
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Figure 4.10: An armadillo is stretched until its limbs tear off.
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Figure 4.11: Shooting a bullet through a wall, causing irreversible plastic deformation.
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Figure 4.12: Two bullets collide in mid-air and shed small pieces.
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Figure 4.13: We shoot a thin sheet from the side.
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Figure 4.14: Shooting two spheres at an armadillo.
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Figure 4.15: Close-up of the fracture response to the impact of an external projectile.
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Figure 4.16: Shooting a bullet through Jell-OTM.
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4.8 Conclusion

Our level set approach to ductile fracture requires no Lagrangian re-meshing effort and
is very easy to implement. However, one drawback of our method is that is suffers from a
relative lack of accuracy, in the sense that the level set representation requires a layer of
non-zero thickness for the failure region, resulting in an inability to represent individual
crack-tip curves. Our grid based collision handling is not as precise as the method of
Bridson et al in [20] and can cause small regions of overlap in some areas and separation
distances in others. However in contrast to said work, the MPM method provides the
capability to resolve collisions between embedded interface, independent of the aspect
ratios of the embedded triangles.

Another advantage of our method is that we are not subject to various restrictions
observed in existing fracture simulation methods. Our method does not rely on a set
of pre-scored fracture paths or even initial cracks and neither are we limited to fracture
along element boundaries. We have the ability to propagate at any increment size
rather than being limited to an a priori minimum step size or by the mesh element size.
Remeshing is not necessary in our method due to the embedding of the material surface
into the mesh rather than using interface conforming elements (cf. [105, 104]). Some
previous works have also suffered from “back-cracking”, where a crack would propagate
in a backwards direction in addition to propagating in front of a given crack tip (see
Figure 12 in [105]).

In conclusion, our method presents a nice balance between accuracy and complexity
of implementation. Its foundation in Griffith’s energy and its ability to employ arbi-
trary fracture patterns lead to compelling, realistic fracture effects, as demonstrated in
our results. Furthermore, our level set evolution in the Griffith’s energy minimization
requires little more information than is already needed during standard simulation of
deformable objects. We can also control the fracture process in various ways with our
method, e.g. not only can we tune the propagation speed via kappa, but one could also
use a spatially varying energy release rate to guide the fracture pattern whenever a more
directed evolution is preferred.
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