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Abstract of the Dissertation

Numerical Simulation of Elastic, Viscoelastic, and
Granular Materials

by

Theodore Finn Gast

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2016

Professor Joseph M. Teran, Chair

Practical time steps in today’s state-of-the-art simulators typically rely on Newton’s method

to solve large systems of nonlinear equations. In practice, this works well for small time

steps but is unreliable at large time steps at or near the frame rate, particularly for difficult

or stiff simulations. Recasting backward Euler as a minimization problem allows Newton’s

method to be stabilized by standard optimization techniques. The resulting solver is capable

of solving even the toughest simulations at the 24Hz frame rate and beyond. Simple colli-

sions can be incorporated directly into the solver through constrained minimization without

sacrificing efficiency. Several collision formulations are presented including for self collisions

and collisions against scripted bodies, which are designed for the unique demands of this

solver. Finally the Material Point Method (MPM) can be formulated to use the solver, and

we present formulations for its use for simulating various materials.

For simulating viscoelastic fluids, foams and sponges, we design our discretization from

the upper convected derivative terms in the evolution of the left Cauchy-Green elastic strain

tensor. We combine this with an Oldroyd-B model for plastic flow in a complex viscoelastic

fluid. While the Oldroyd-B model is traditionally used for viscoelastic fluids, we show that

its interpretation as a plastic flow naturally allows us to simulate a wide range of complex

material behaviors. In order to do this, we provide a modification to the traditional Oldroyd-

B model that guarantees volume preserving plastic flows. Our plasticity model is remarkably

ii



simple (foregoing the need for the singular value decomposition (SVD) of stresses or strains).

We show that implicit time stepping can be achieved with an optimization based approach

and that this allows for high resolution simulations at practical simulation times.

We demonstrate that the Drucker-Prager plastic flow model combined with a Hencky-

strain-based hyperelasticity accurately recreates a wide range of visual sand phenomena with

moderate computational expense. We use the Material Point Method (MPM) to discretize

the governing equations for its natural treatment of contact, topological change and his-

tory dependent constitutive relations. The Drucker-Prager model naturally represents the

frictional relation between shear and normal stresses through a yield stress criterion. We

develop a stress projection algorithm used for enforcing this condition with a non-associative

flow rule that works naturally with both implicit (non-optimization based) and explicit time

integration. We demonstrate the efficacy of our approach on examples undergoing large de-

formation, collisions and topological changes necessary for producing modern visual effects.
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CHAPTER 1

Introduction

Numerical simulation of solid and fluid materials draws on a long history of applied math-

ematics for the approximation of partial differential equations. In particular the field of

computer graphics provides an inspiration for solution techniques that have different require-

ments from more traditional fields. In particular it requires techniques where robustness is

often more important than accurate results, as long as the results are visually realistic. This

is because software implementation will often be used by artists with little knowledge of the

math and physics involved. Thus techniques that require sophisticated parameter tuning

to achieve reliable results are unmanagable. To that end we present an optimization based

integration technique, which is robust to poor parameter choices. In particular it is robust

to taking large time steps, and in fact the choice of a larger time step than would be al-

lowed by other methods, sometimes provides for a more effiecient solution. Subsequently we

present material point methods for the simulation of a variety of materials, including snow,

foam, sponges, and sand. All of which are able to take advantage of the robustness of the

optimization based integrator with the exception of the sand model as its forces do not come

from a potential.

1.1 Optimization based integration

The most commonly used time integration schemes in use today for graphics applications

are implicit methods. Among these, backward Euler [BW98, HFL01, VM01, MTG11,

LBO13] or variants on Newmark methods [Kan99, BFA02, BMF03] are the most com-

mon, though even more sophisticated schemes like BDF-2 [HE01, CK05], implicit-explicit
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Figure 1.1: Cube being stretched: initial configuration (left), our method at t = 0.4 s and
t = 3.0 s (middle), and standard Newton’s method at t = 0.4 s and t = 3.0 s (right). Both
simulations were run with one time step per 24Hz frame. Newton’s method requires three
time steps per frame to converge on this simple example.

schemes [EEH00, SG09], or even the more exotic exponential integrators [MSW13] have re-

ceived consideration. Integrators have been the subject of comparison before (see for exam-

ple [HE01, VM01, PF02]), seeking good compromises between speed, accuracy, robustness,

and dynamic behavior.

These integrators require the solution to one or more nonlinear systems of equations each

time step. These systems are typically solved by some variation on Newton’s method. Even

the most stable simulators are typically run several time steps per 24Hz frame of simulation.

There is growing interest in running simulations at larger time steps [SSF13], so that the

selection of ∆t can be made based on other factors, such as damping or runtime, and not only

on whether the simulator works at all. One of the major factors that limits time step sizes is

the inability of Newton’s method to converge reliably at large time steps (See Figures 1.1, 1.2,

and 2.8), or if a fixed number of Newton iterations are taken, the stability of the resulting

simulation. We address this by formulating our nonlinear system of equations as a minimiza-

tion problem, which we demonstrate can be solved more robustly. The idea that dynamics,

energy, and minimization are related has been known since antiquity and is commonly lever-

aged in variational integrators [STW92, KMO99, Kan99, LMO04, KYT06, SG09, GSO10].

The idea that the nonlinear system that occurs from methods like backward Euler can be

formulated as a minimization problem has appeared many times in graphics in various forms

[HFL01, KYT06, MTG11, LBO13, MSW13]. [KYT06] point out that minimization leads to

a method that is both simpler and faster than the equivalent nonlinear root-finding prob-

lem, and [LBO13] show that a minimization formulation can be used to solve mass-spring
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Figure 1.2: Cube being stretched and then given a small compressive pulse, shown with our
method (top) and standard Newton’s method (bottom). Both simulations were run with one
time step per 24Hz frame. In this simulation, Newton’s method is able to converge during the
stretch phase, but a simple pulse of compression, as would normally occur due to a collision,
causes it to fail to converge and never recover. Newton’s method requires five time steps per
frame to converge on this simple example.

systems more efficiently. [KMO99] use a minimization formulation as a means of ensuring

that a solution to their nonlinear system can be found assuming one exists. [GHF07] shows

that a minimization formulation can be used to enforce constraints robustly and efficiently.

[HFL01] shows that supplementing Newton’s method with a line search greatly improves

robustness. [MTG11] also shows that supplementing Newton’s method with a line search

and a definiteness correction leads to a robust solution procedure. Following their example,

we show that recasting the solution of the nonlinear systems that result from implicit time

integration schemes as a nonlinear optimization problem results in substantial robustness

improvements. We also show that additional improvements can be realized by incorporating

additional techniques like Wolfe condition line searches which curve around collision bodies,

conjugate gradient with early termination on indefiniteness, and choosing conjugate gradi-

ent tolerances based on the current degree of convergence. In addition we show that the

optimization integrator approach to the MPM snow simulator of [SSC13]. This allows us to

take much larger time steps than the original method and results in a significant speedup.
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Figure 1.3: A soft sponge is twisted. It fractures and collides with itself. The failure and
contact phenomena are resolved automatically by the MPM approach.

1.2 Viscoelastic materials

Viscoelastic behavior is exhibited by a wide range of everyday materials including paint, gels,

sponges, foams and various food components like ketchup and custard [Lar99]. These mate-

rials are often special kinds of colloidal systems (a type of mixture in which one substance is

dispersed evenly throughout another), where dimensions exceed those usually associated with

colloids (up to 1µm for the dispersed phase) [HR97, Lar99]. For example, when a gas and

a liquid are shaken together, the gas phase becomes a collection of bubbles dispersed in the

liquid: this is the most common observation of foams. While a standard Newtonian viscous

stress is a component of the mechanical response of these materials, they are non-Newtonian

in the sense that there are other, often elastoplastic, aspects of the stress response to flow

rate and deformation. Comprehensive reviews are given in [MR02, PK96, Sch94, Lar99].

Discretization of these materials is challenging because of the wide range of behaviors

exhibited and by the nonlinear governing equations. These materials can behave with elastic

resistance to deformation but can also undergo very large strains and complex topological

changes characteristic of fluids. While Lagrangian approaches are best for resolving the

solid-like behavior and Eulerian approaches most easily resolve the fluid-like behavior, these

materials are in the middle ground and this makes discretization difficult. The Material

Point Method is naturally suited for this class of materials because it uses a Cartesian

grid to resolve topology changes and self-collisions combined with Lagrangian tracking of

mass, momentum and deformation on particles. In practice, the particle-wise deformation
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information can be used to represent elastoplastic stresses arising from changes in shape,

while an Eulerian background grid is used for implicit solves.

We show that the MPM approach in [SSC13] can be generalized to achieve a wide range

of viscoelastic, complex fluid effects. As in [SSC13], we show that implicit time stepping can

easily be used to improve efficiency and allow for simulation at high spatial resolution. With

our Oldroyd-inspired approach, we avoid the need for the SVD of either elastic or plastic

responses. While SVD computation is not a bottleneck for MPM when done efficiently (see

e.g. [MZS11]), it is not a straightforward implementation. More standard SVD implementa-

tions can have a dramatic impact on performance (see e.g. [CPS10]). Thus although it is not

essential for performance to avoid the SVD, it is preferable to avoid the need to implement

them when, as with our model, they are not necessary for achieving desired behaviors.

1.3 Sand

Sand dynamics are ubiquitous in every day environments. Its characteristic flowing and

piling motions must be recreated with a high level of accuracy when animating scenes like

beaches or playgrounds. Sand and many other similar everyday materials like salt, powder,

rubble, etc are granular materials composed of many discrete macroscopic grains colliding

and sliding against one another. These materials exhibit complex behaviors with aspects

comparable to both fluids (e.g. they can assume the shape of a container) and solids (they

can support weight and form stable piles) [JNB96, BBS00].

Unfortunately, this complex material behavior makes it very difficult to develop numer-

ical methods capable of reproducing sand dynamics. Given the incredibly high number of

grains in practical scenarios, a continuum description of the governing equations is useful

for simulation. However, it is difficult to design a single constitutive law that reproduces all

sand behaviors. Furthermore, these laws are relatively complex and require subtle aspects

of elastic and plastic response. On the other hand, a Lagrangian view where all grains are

simulated only requires a description of the frictional contact between grains. Unfortunately,

numerical methods designed from this view would require the computationally prohibitive

5



Figure 1.4: Viennetta ice cream is poured onto a conveyor belt and forms characteristic
folds. A particle view is shown on the bottom.
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Figure 1.5: A solid ball drops into a sandbox, spraying sand in all directions.

simulation of many millions or even of billions of individual grains. Furthermore, it is diffi-

cult to tune the grain frictional parameters to match observed piling and flowing behaviors

in everyday experiments.

We build on the work of Mast et al. [Mas13, MAM14] and develop an implicit version

of their Drucker-Prager-based elastoplasticity model for granular materials. The Drucker-

Prager conception of elastoplasticity is often used in the mechanical engineering literature

for granular materials [DP52], and we show that it can be adopted to animation applications

with relatively simple implementation and efficient runtimes. This is useful because the

models are well developed and the literature can be consulted to reduce the difficulty of

parameter tuning. We use the Material Point Method (MPM) [SCS94] to discretize the

equations since it provides a natural and efficient way of treating contact, topological change

and history dependent behavior. Furthermore, we show that this can be done with little more

effort than was used for simulating snow dynamics in the MPM approach of Stomakhin et

al. [SSC13]. Lastly, we replace the particle/grid transfers used by Mast et al. with APIC

transfers [Jia15, JSS15] and show that this allows for more stable behavior, particularly with

simulations that have higher numbers of particle per cell.

1.4 Related Work

1.4.1 Viscoelastic materials

Terzopoulos and Fleischer were the first in computer graphics to show the effects possible

with simulated elastoplastic materials [TF88a, TF88b]. Since those seminal works, many

researchers have developed novel methods capable of replicating a wide range of material
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behaviors. Generally, these fall into one of three categories: Eulerian grid, Lagrangian mesh

or particle based techniques. In addition to the following discussion, we summarize some

aspects of our approach relative to a few representative approaches in Table 3.2.

Goktekin et al. [GBO04] showed that the addition of an Eulerian elastic stress with Von

Mises criteria plasticity to the standard level set based simulation of free surface Navier

Stokes flows can capture a wide range of viscoelastic behaviors. Losasso et al. also use an

Eulerian approach [LIG06]. Rasmussen et al. experiment with a range of viscous effects for

level set based free surface melting flows in [REN04]. Batty et al. use Eulerian approaches

to efficiently simulate spatially varying viscous coiling and buckling [BB08, BH11]. Carlson

et al. also achieve a range of viscous effects in [CMH02].

Lagrangian methods naturally resolve deformation needed for elastoplasticity; however,

large strains can lead to mesh tangling for practical flow scenarios and remeshing is required.

Bargteil et al. show that this can achieve impressive results in [BWH07]. This was later

extended to embedded meshes in [WT08] and further treatment of splitting and merging

was achieved in [WTG09]. Batty et al. used a reduced dimension approach to simulate thin

viscous sheets with adaptively remeshed triangle meshes in [BUA12].

Ever since Desbrun and Gascuel [DG96] showed that SPH can be used for a range of

viscous behavior, particle methods have been popular for achieving complex fluid effects.

Like Goktekin et al., Chang et al. [CBL09] also use an Eulerian update of the strain for

elastoplasic SPH simulations. Solenthaler et al. show that SPH can be used to compute

strain and use this to get a range of elastoplastic effects [SSP07]. Becker et al. show that

this can be generalized to large rotational motion in [BIT09]. Gerszewski et al. also update

deformation directly on particles [GBB09]. [KAG05] and [MKN04] also add elastic effects

into SPH formulations. Paiva et al. use a non-Newtonian model for fluid viscosity in [PPL06]

and [PPL09].

Although MPM is a hybrid grid/particle method, particles are arguably the primary

material representation. MPM has recently been used to simulate elastoplastic flows to

capture snow in [SSC13] and varied, melting materials in [SSJ14]. Yue et al. use MPM to
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Figure 1.6: A kinematic bullet is fired at a sponge, resulting in significant deformation and
fracture.

simulate Herschel-Bulkley plastic flows for foam in [YSB15]. Their approach is very similar

to ours, however their treatment of plasticity is much more accurate and can handle a wider

range of phenomena (notably, shear thickening). They also provide a novel particle splitting

technique useful for resolving shearing flows that are problematic for a wide range of MPM

simulations. However, their plastic flow update is more complicated and this is likely why

they resort to explicit time stepping. With our comparatively simple plastic flow model, we

show that semi-implicit time stepping as in [SSC13] can be achieved.

1.4.2 Granular Materials

Continuum approaches have been used in a number of graphics applications. Zhu and Bridson

animate sand as a continuum with a modified Particle-In-Cell fluid solver [ZB05]. Narain

et al. improve on the method of Zhu and Bridson by removing cohesion artifacts associated

with incompressibility [NGL10]. Both of these works led to a number of generalizations and

improvements. Nkulikiyimfura et al. [NKK12] develop a GPU version of the Zhu and Bridson

approach. Laenerts and Dutre use an SPH version to couple water with porous granular

materials [LD09]. Alduan and Otuday [AO11] generalize the unilateral incompressibility

developed by Narain et al. to SPH. Imhsen et al. show how to improve the convergence of

the method of Alduan and Otaduy [AO11] and also detail refinement of base simulations to

upscale to millions of grains [IWT13]. Chang et al. [CBZ12] use a modified Hooke’s law

to handle friction between grains. MPM is a useful discretization choice for granular and

more general elastoplastic flows for computer graphics [YSB15, SSC13, SSJ14, RGJ15, Jia15,
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Figure 1.7: A sand castle is hit with a deformable ball while falling. The sand and ball are
fully coupled in the simulation.

JSS15] and engineering applications [Mas13, MAM14].

Many methods are developed by modeling interactions between individual grains or parti-

cle idealizations of grains, rather than from a continuum. Miller and Pearce simulate interac-

tions between particles to model sand, solid and viscous behaviors [MP89]. Luciani et al. use

a similar approach [LHM95]. Bell et al. got very impressive results by simulating many sand

grains as spherical rigid bodies with friction [BYM05]. Milenkovic also simulated individ-

ual grains to solve for piles of rigid materials via energy minimization/optimization [Mil96].

Mazhar et al. use Nestov’s method to simulate millions of individual grains [MHN15]. Ya-

suda et al. use the GPU to get real-time results with rigid grains [YHK08]. Alduan et al.

use an adaptive resolution version of the method by Bell et al. [BYM05] to improve per-

formance [ATO09]. Brackbill et al. simulate individual grains but use the MPM to resolve

collisions and friction between grains [BBS00, CB02]. Macklin et al. show that the extremely

efficient position based dynamics methods can be applied by casting granular interactions as
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hard constraints in [MMC14].

When extreme computational efficiency is required, simplified approaches like height fields

[SOH99, ON03, LM93, CW13, CLH96] and cellular automata [PGM06] have been used to

provide real-time interaction.

1.5 Contributions

We summarize our specific contributions as

● Substantial robustness improvements from recasting the nonlinear systems from im-

plicit time integration schemes as a optimization problem.

● The optimization approach can be applied to the MPM snow simulator which results

in a significant speedup.

● A new volume-preserving Oldroyd-B rate-based description of plasticity

● Semi-implicit MPM discretization of viscoelasticity and viscoplasticity, allowing for

high spatial resolution simulations

● Rate-based plasticity that does not require an SVD

● An implicit version of MPM Drucker-Prager elastoplasticity model for granular mate-

rials.

● Demonstrate APIC transfers [Jia15, JSS15] allow for more stable behavior, particularly

with simulations that have higher numbers of particle per cell.
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CHAPTER 2

Optimization Integrator

2.1 Time Integration

The equations of motion for simulating solids are

ẋ = v Mv̇ = f f = f(x,v),

where f are forces. As is common in graphics we assume M is a diagonal lumped-mass

matrix. Since we are interested in robustness and large time steps, we follow a backward

Euler discretization. This leads to

xn+1 − xn

∆t
= vn+1 M

vn+1 − vn

∆t
= fn+1 = f(xn+1,vn+1).

Eliminating vn+1 yields

M
xn+1 − xn −∆tvn

∆t2
= f(xn+1,

xn+1 − xn

∆t
),

which is a nonlinear system of equations in the unknown positions xn+1. This system of

nonlinear equations is normally solved with Newton’s method. If we define

h(xn+1) = M
xn+1 − xn −∆tvn

∆t2
− f(xn+1,

xn+1 − xn

∆t
), (2.1)

then our nonlinear problem is one of finding a solution to h(x) = 0. To do this, one would

start with an initial guess x(0), such as the value predicted by forward Euler. This estimate
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Figure 2.1: Convergence of Newton’s method (middle) and our stabilized optimization for-
mulation (bottom) for a simple 36-dof simulation in 2D. The initial configuration (top) is
parameterized in terms of a pixel location, with the rest configuration occurring at (3

5 ,
1
2).

Initial velocity is zero, and one time step is attempted. Time steps are (left to right) 170, 40,
20, 10, and 1 steps per 24Hz frame, with the rightmost image being ∆t = 1 s. Color indi-
cates convergence in 0 iterations (black), 15 iterations (blue), 30 or more iterations (cyan),
or failure to converge in 500 iterations (red). Note that Newton’s method tends to converge
rapidly or not at all, depending strongly on problem difficulty and initial guess.

is then iteratively improved using the update rule

x(i+1) = x(i) − (∂h

∂x
(x(i)))

−1

h(x(i)).

Each step requires the solution of a linear system, which is usually symmetric and positive

definite and solved with a Krylov solver such as conjugate gradient or MINRES.

If the function h(x) is well-behaved and the initial guess sufficiently close to the solution,

Newton’s method will converge very rapidly (quadratically). If the initial guess is not close

enough, Newton’s method may converge slowly or not at all. For small enough time steps,

the forward and backward Euler time steps will be very similar (they differ by O(∆t2)), so a
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good initial guess is available. For large time steps, forward Euler will be unstable, so it will

not provide a good initial guess. Further, as the time step grows larger, Newton’s method

may become more sensitive to the initial guess (see Figure 2.1). The result is that Newton’s

method will often fail to converge if the time step is too large. Figures 1.2, 1.1, and 2.8

show examples of simulations that ought to be routine but where Newton fails to converge

at ∆t = 1/24 s.

Sometimes, only one, or a small fixed number, of Newton steps are taken rather than

trying to solve the nonlinear equation to a tolerance. The idea is that a small number of

Newton steps is sufficient to get most of the benefit from doing an implicit method while

limiting its cost. Indeed, even a single Newton step with backward Euler can allow time

steps orders of magnitude higher than explicit methods. Linearizing the problem only goes

so far, though, and even these solvers tend to have time step restrictions for tough problems.

2.1.1 Assumptions

We have found that when trying to be very robust, assumptions matter. Before introducing

our formulation in detail, we begin by summarizing some idealized assumptions we will make.

In practice, we will relax some of these as we go along.

A1: Masses are positive

A2: f = −∂Φ
∂x for some function Φ

A3: Φ is bounded from below

A4: Φ is C1

Assumption (A1) implies that M is symmetric and positive definite and is useful for theoret-

ical considerations; scripted objects violate this assumption, but they do not cause problems

in practice.

Conservative forces always satisfy assumption (A2), and most practical elastic force mod-

els will satisfy this. We will show in Section 2.3.2 that even some damping models can be
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put into the required form. Friction can be given an approximate potential which is valid for

small ∆t (See [PKM02]). Since our examples focus on taking larger time steps we address

the problem by incorporating friction explicitly after the Newton solve.

Assumption (A3) is generally valid for constitutive models, with the global minimum

occurring at the rest configuration. Gravity is an important example of a force that violates

this assumption. In Section 2.1.3, we show that assumption (A3) can be safely relaxed to

include forces like gravity.

Assumption (A4) is a difficult assumption. Technically, this assumption is a show-

stopper, since we know of no constitutive model that is both robust and satisfies it ev-

erywhere. To be practical, this must be immediately loosened to C0, along with a restriction

on the types of kinks that are permitted in Φ. The practical aspects of this are discussed in

Section 2.2.3.

2.1.2 Minimization problem

The solution to making Newton’s method converge reliably is to recast the equation solving

problem as an optimization problem, for which robust and efficient methods exist. In prin-

ciple, that can always be done, since solving h(x) = 0 is equivalent to minimizing ∥h(x)∥

assuming a solution exists. This approach is not very convenient, though, since it requires

a global minimum of ∥h(x)∥. Further minimization using Newton’s method would require

the Hessian of ∥h(x)∥, which involves the second derivatives of our forces. The standard

approach only requires first derivatives. What we really want is a quantity E that we can

minimize whose second derivatives only require the first derivatives of our forces. That is,

we need to integrate our system of nonlinear equations h(x). Assumption (A2) allows us to

do this. This way of recasting the problem also requires only a local minimum be found.

We can write (2.1) as

h(x) = M
x − xn −∆tvn

∆t2
+ ∂Φ

∂x
.
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We note that if we set

x̂ = xn +∆tvn E(x) = 1

2∆t2
(x − x̂)TM(x − x̂) +Φ,

then we have h = ∂E
∂x . If the required assumptions are met, a global minimum of E always

exists.1 By assumption (A4), E(xn+1) is smooth at its minima, so ∂E
∂x (xn+1) = 0 or equiv-

alently h(xn+1) = 0.2 Any local minimum is a solution to our original nonlinear equation

(2.1). Although we are now doing minimization rather than root finding, we are still solving

exactly the same equations. The discretization and dynamics will be the same, but the solver

will be more robust. In particular, we are not making a quasistatic approximation.

2.1.3 Gravity

A graphics simulation would not be very useful without gravity. Gravity has the potential

energy function −MgTx, where g is the gravitational acceleration vector, but this function

is not bounded. An object can fall arbitrarily far and liberate a limitless supply of energy,

though in practice this fall will be stopped by the ground or some other object. Adding the

gravity force to our nonlinear system yields

h(x) = M
x − xn −∆tvn

∆t2
−Mg + ∂Φ

∂x
,

which can be obtained from the bounded minimization objective

E(x) = 1

2∆t2
(x − x̂ −∆t2g)TM(x − x̂ −∆t2g) +Φ.

1Assumptions (A1) and (A3) ensure that E is bounded from below. Let B be a lower bound on Φ. Then,
let L = Φ(x̂) − B + 1 and Ω be the region where 1

2∆t2
(x − x̂)TM(x − x̂) ≤ L. Note that Ω is a closed and

bounded ellipsoid centered at x̂. E must have a global minimum when restricted to the set Ω since it is a
continuous function on a closed and bounded domain. Outside Ω, we have E(x) > L+B = E(x̂) + 1, so that
the global minimum inside Ω is in fact a global minimum over all possible values of x.

2Relaxation of assumption (A4) is discussed in Section 2.2.3, where Φ is allowed to have ridge-type kinks.
Since these can never occur at a relative minimum, the conclusion here is unaffected.
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A more convenient choice of E, and the one we use in practice, is obtained by simply adding

the effects of gravity Φg = −MgTx into Φ. Since all choices E will differ by a constant shift,

this more convenient minimization objective will also be bounded from below.

2.2 Minimization

The heart of our simulator is our algorithm for solving optimization problems, which we

derived primarily from [NW06], though most of the techniques we apply are well-known. We

begin by describing our method as it applies to unconstrained minimization and then show

how to modify it to handle the constrained case.

2.2.1 Unconstrained minimization

Our optimization routine begins with an initial guess, x(0). Each iteration consists of the

following steps:

1. ⋆ Register active set

2. Compute gradient ∇E and Hessian H of E at x(i)

3. Terminate successfully if ∥∇E∥ < τ

4. Compute Newton step ∆x = −H−1∇E

5. Make sure ∆x is a downhill direction

6. Clamp the magnitude of ∆x to ` if ∥∆x∥ > `

7. Choose step size α in direction ∆x using a line search

8. Take the step: x(i+1) = x(i) + α∆x

9. ⋆ Project x(i+1)

Here, τ is the termination criterion, which controls how accurately the system must by

solved. The length clamp ` guards against the possibility of the Newton step being enormous
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(if ∥∆x∥ = 10100, computing Φ(x(i) +∆x) is unlikely to work well). Its value should be very

large. Our line search is capable of choosing α > 1, so the algorithm is very insensitive with

respect to the choice `. We normally use ` = 103. Steps beginning with ⋆ are only performed

for constrained optimization and will be discussed later. A few of the remaining steps require

further elaboration here.

Linear solver considerations: Computing the Newton step requires solving a sym-

metric linear system. The obvious candidate solver for this is MINRES that can handle

indefinite systems, and indeed this will work. However, there are many tradeoffs to be made

here. In contrast to a normal Newton solve, an accurate estimate for ∆x is not necessary

for convergence. Indeed, we would still converge with high probability if we chose ∆x to be

a random vector. The point of using the Newton direction is that convergence will typically

be much more rapid, particularly when the superconvergence of Newton’s method kicks in.

(Choosing ∆x = −∇E leads to gradient descent, for example, which can display notoriously

poor convergence rates.) When the current estimate is far from the solution, the exact New-

ton direction tends to be little better than a very approximate one. Thus, the idea is to

spend little time on computing ∆x when ∥∇E∥ is large and more time when it is small. We

do this by solving the system to a relative tolerance of min(1
2 , σ

√
max(∥∇E∥, τ)). The 1

2

ensures that we always reduce the residual by at least a constant factor, which guarantees

convergence. The scale σ adjusts for the fact that ∇E is not unitless (we usually use σ = 1).

If our initial guess is naive, we must make sure we take at least one minimization iteration,

even if ∇E is very small. Using τ here ensures that we do not waste time solving to a tiny

tolerance in this case.

Conjugate gradient: One further optimization is to use conjugate gradient as the solver

with a zero initial guess. If indefiniteness is encountered during the conjugate gradient solve,

return the last iterate computed. If this occurs on the first step, return the right hand side. If

this is done, ∆x is guaranteed to be a downhill direction, though it might not be sufficiently

downhill for our purposes. In practice, indefiniteness will only occur if far from converged,

in which case little time is wasted in computing an accurate ∆x that is unlikely to be very

useful anyway. Indeed, if the system is detectably indefinite and ∆x is computed exactly, it
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Figure 2.2: Line search showing the gradient descent direction (green), Newton direction
(red), and effective line search path (blue).The constraint is initially feasible (left), active
(middle), and touching but inactive (right). Constraints are projected if violated or active,
but only inactive constraints may separate.

might not even point downhill. Since we are searching for a minimum of E (even a local one),

the Hessian of E will be symmetric and positive definite near this solution. (Technically, it

need only be positive semidefinite, but in practice this is of little consequence.) Thus, when

we are close enough to the solution for an accurate Newton step to be useful, conjugate

gradient will suffice to compute it. This is very different from the normal situation, where a

solver like MINRES or an indefiniteness correction are employed to deal with the possibility

of indefiniteness. In the case of our solver, neither strategy is necessary, and both make the

algorithm slower.

Downhill direction: Making sure ∆x points downhill is fairly straightforward. If ∆x ⋅

∇E < −κ∥∆x∥∥∇E∥, then we consider ∆x to be suitable. Otherwise, if −∆x is suitable, use it

instead. If neither ∆x nor −∆x are suitable, then we use the gradient descent direction −∇E.

Note that if the conjugate gradient strategy is used for computing the Newton direction, then

−∆x will never be chosen as the search direction at this stage. We have found κ = 10−2 to

work well.

Line search: For our line search procedure, we use an algorithm for computing α such

that the strong Wolfe Conditions are satisfied. See [NW06] for details. The line search

procedure guarantees that E never increases from one iteration to the next and that, provided
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certain conditions are met, sufficient progress is always made. One important attribute of

this line search algorithm is that it first checks to see if ∆x itself is a suitable step. In this

way, the line search is almost entirely avoided when Newton is converging properly.

Initial guess: A good initial guess is important for efficient simulation under normal

circumstances. Under low-∆t or low-stress conditions, a good initial guess is obtained by

replacing fn+1 by fn resulting in

M
x(0) − xn −∆tvn

∆t2
= f(xn).

Solving for xn+1 yields the initial guess

x(0) = xn +∆tvn +∆t2M−1f(xn).

Figure 2.3: Random test with 65 × 65 × 65 particles simulated with ∆t = 1/24 s for three
stiffnesses. Low stiffness recovering over 100 time steps (top), medium stiffness recovering
over 40 time steps (bottom left), and high stiffness recovering in a single time step (bottom
right). The red tetrahedra are inverted, while the green are uninverted.

Figure 2.4: A torus falls on the ground (constraint collisions) and collides with itself
(penalty collisions).
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This initial guess is particularly effective under free fall, since here the initial guess is correct

and no Newton iterations are required. On the other hand, this initial guess is the result of

an explicit method, which will be unstable at large time steps or high stress. Under these

conditions, this is unlikely to be a good initial guess and may in fact be very far from the

solution. Under these situations, a better initial guess is obtained from x(0) = xn + ∆tvn.

In practice, we compute both initial guesses and choose the one which produces the smaller

value of E. This way, we get competitive performance under easy circumstances and rugged

reliability under tough circumstances.

2.2.2 Constrained minimization

We use constrained minimization for some of our collisions, which may result in a large

active set of constraints, such as when an ball is bouncing on the ground. As the ball

rises, constraints become deactivated. As the ball hits the ground, more constraints become

activated. The change in the number of active constraints from iteration to iteration may

be quite significant. This would render a traditional active set method impractical, since

constraints are activated or deactivated one at a time. Instead, we use the gradient-projection

method as our starting point, since it allows the number of active constraints to change

Figure 2.5: Point test with 65 × 65 × 65 particles simulated with ∆t = 1/24 s for three
stiffnesses. Low stiffness recovering over 120 time steps (top), medium stiffness recovering
in 5 time steps (bottom left), and high stiffness recovering in a single time step (bottom
right).
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quickly. The downside to this choice is that its reliance on the ability to efficiently project

to the feasible region limits its applicability to simple collision objects.

Projections: Let P (x) be the projection that applies Pbp to xp for all body-particle

pairs (b, p) that are labeled as active or are violated (φb(xp) < 0). Note that pairs such

that φb(xp) = 0 (as would be the case once projected) are considered to be touching but not

violated. The iterates x(i) obtained at the end of each Newton step, as well as the initial

guess, are projected with P .

Register active set: Let E′ be the objective that would be computed in the uncon-

strained case. The objective function for constrained optimization is E(x) = E′(P (x)).

Compute the gradient ∇E′. Constraints that are touching and for which ∇E′ ⋅ ∇φb ≥ 0 are

labeled as active for the remainder of the Newton step. All others are labeled as inactive.

No constraint should be violated at this stage. Note that E′(x(i)) = E(x(i)) is true before

and after every Newton step, since constraints are never violated there.

Curved paths: Note that configurations are always projected to the feasible region

before E is computed. One may interpret this as performing line searches along curved

paths, as illustrated is Figure 2.2.

When the unprojected line search curve passes through the medial axis of an object,

it is possible for the search curve to be disconnected. This causes a discontinuity in the

energy as seen from the line search. If the line search does not stop at the discontinuity, the

discontinuity has no effect. If it does, the constraint causing the discontinuity will be active

(in which case the discontinuity is projected out) or separating (in which case we move away

from the discontinuity) in the next Newton step. Thus a disconnected search curve is not a

problem for our method.

Discretized level sets: While discontinuities in the curved paths do not pose a problem

when the level set is computed correctly, the situation can be quite different when the level

set is approximated. This occurs when a grid-based level set is used to approximate a

collision object. As a particle moves from cell to cell, the level set approximation (and thus

projected location) changes slightly but unpredictably. The resulting kinks or discontinuities
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in the search path produce kinks or discontinuities in the objective function along the search

line, which may cause the integrator to get stuck. For this reason, we restrict our use of

optimization constraints to analytic level sets.

Derivatives: Note also that E must be differentiated twice, and that involves differen-

tiating the projection function P twice. Since P depends on the first derivatives of φb, the

Hessian H of E would seem to require third derivatives. We note, however, that the only

occurrence of the third derivative of φb occurs multiplied by φb. Since H is used only at

the beginning of the Newton step when the configuration is feasible, φb(xp) = 0 or Pbp is the

identity function. The third derivative term is zero either way, so only the second derivatives

of φb are required.

2.2.3 Practical considerations

There are a few matters of practicality relating to assumption (A4) that are worth mentioning

regarding the effective use of this method. The most important of these is that the method

does not tolerate discontinuities in E, not even very minute ones, except under some special

circumstances that we mention below. In practice, what tends to happen is that a line search

encounters a discontinuity in E, where E rises abruptly. The line search dutifully advances

the configuration right up to location of this discontinuity. If in the next Newton iteration

the descent direction points into the discontinuity, no progress can be made. The solver is

stuck.

Discontinuities in ∇E can also cause problems and are impossible to avoid in general.

These are kinks in E, which can be broken down into two types: valleys and ridges. The

classification is based on whether the kink is ridge-like or valley-like. Ridge-type kinks are

acceptable in practice. Valley-type kinks must be avoided, since they can also cause the

solver to become stuck for the same reason. A minimum that occurs at a valley-type kink

is also problematic since it does not correspond to a solution of (2.1). Thus, the corotated

constitutive model, though not completely unusable with this solver, is ill-advised (the fixed

variant has no such valleys [SHS12] and is fine). Mass-spring systems are also fine. In
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Figure 2.6: 125 tori are dropped into a bowl at 5 time steps per frame, resulting in significant
deformation and tough collisions.

practice, we have only encountered problems when evaluating self-collision models. The

self-collision model we propose works well with the method.

The second practical consideration is that E can be somewhat noisy. This is particularly

true with forces that involve an SVD, since its computation often involves a balance between

speed and accuracy. If the Newton tolerance τ is set too low, the solver will be forced to

optimize an objective E where the actual change in E is hidden by the noise. Even with our

noisy SVD, we found there is typically at least a three-order-of-magnitude range between

the largest value of τ below which no change in output is visually observed and the smallest

value above which E is not too noisy to optimize reliably. If we make the E computation

robust, E can be optimized down to roundoff level.

Another practical consideration is that occasionally very large changes in the configura-

tion are considered by the line search. For most forces, this is of little consequence. For

self-collisions, however, this poses a major performance hazard. We note that when this oc-

curs, the other components of E become very large, too. We first compute all contributions

to E except self-collisions. Since our self-collision potential has a global minimum of zero,

the real E will be at least as large as the estimate. If this partial E is larger than E(x(i)),

we do not compute self-collisions at all. While this presents a discontinuity in E to the

optimizer, it is safe to do so under these conditions, since the optimizer will avoid the large

value in E by taking a smaller step along the search line.
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2.3 Forces

Our formulation is fairly insensitive to the underlying forces, provided it has a continuous

potential energy function. We use five forces in our simulations. The simplest of these is

gravity, which we addressed in Section 2.1.2. We also employ a hyperelastic constitutive

model (Section 2.3.1), a Rayleigh damping model (Section 2.3.2), and two collision penalty

force models (Sections 2.4.2 and 2.4.3).

2.3.1 Elastic

A suitable hyperelastic constitutive model must have a few key properties to be suitable for

this integrator. The most important is that it must have a potential energy function defined

everywhere, and this function must be continuous. The constitutive model must be well-

defined for any configuration, including configurations that are degenerate or inverted. This

is true even if objects do not invert during the simulation, since the minimization procedure

may still encounter such states. Examples of suitable constitutive models are those defined

by the corotated hyperelasticity energy [ST08, ZST10, MG04, EKS03, CPS10, MZS11] (but

see Section 2.2.3), and the fixed corotated hyperelasticity variant [SHS12]. Stress-based

extrapolated models [ITF04, TSI05] are unsuitable due to the lack of a potential energy

function in the extrapolated regime, but energy-based extrapolation models [SHS12] are fine.

We use the fixed corotated variant [SHS12] for all of our simulations for its combination of

simplicity and robustness.

2.3.2 Damping

At first, one might conclude that requiring a potential energy may limit our method’s ap-

plicability, since damping forces cannot be defined by a potential energy function. A very

simple damping model is given by f = −kMvn+1. Eliminating the velocity from the equation
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yields

f(xn+1) = −kMxn+1 − xn

∆t
(k > 0).

The scalar function

Φ(xn+1) = k

2∆t
(xn+1 − xn)TM(xn+1 − xn)

has the necessary property that f = −∂Φ
∂x . Note that this Φ looks very similar to our inertial

term in E, and it is similarly bounded from below. That this Φ is not a real potential energy

function is evident from its dependence on xn and ∆t, but it is nevertheless suitable for use

in our integrator. This simple drag force is not very realistic, though, so we do not use it in

our simulations.

A more realistic damping force is Rayleigh damping. Let ψ be an elastic potential energy

function. The stiffness matrix corresponding to this force is − ∂2ψ
∂x∂x , and the Rayleigh damping

force and associated objective are

f = −k( ∂2ψ

∂x∂x
(xn+1))vn+1 Φc =

k

∆t
((xn+1 − xn)T ∂ψ

∂x
− ψ).

This candidate Φc has at least two serious problems. The first is that second derivatives

of Φc involve third derivatives of ψ. The second is that ∂2ψ
∂x∂x may be indefinite, in which

case the damping force may not be entirely dissipative. Instead, we approximate Rayleigh

damping with a lagged version. Let D = ∂2ψ
∂x∂x(xn). Since D does not depend on xn+1, the

lagged Rayleigh damping force and associated objective are

f = −kDvn+1 Φd =
k

2∆t
(xn+1 − xn)TD(xn+1 − xn).

This solves the first problem, since the second derivative of Φd is just k
∆tD. Since D is

not being differentiated, it is safe to modify it to eliminate indefiniteness as described in

[TSI05, SHS12]. This addresses the second problem. We did not use the damping model
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Figure 2.7: Sphere dropping hard on the ground with ∆t = 1/24 s with constraint collisions
(top) and collisions as a post-process (bottom). Penalty collisions produce a result very
similar to constraint collisions, though some penetration with the ground occurs. Note that
the post-processing approach leads to inversion during recovery from the collision.

found in [KYT06], which uses ψ(xn+1) with xn used as the rest configuration, because it is

not defined when xn is degenerate.

2.4 Collisions

Collisions are a necessary part of any practical computer graphics simulator. The simplest

approach to handling collisions is to process them as a separate step in the time integration

scheme. This works well for small time steps, but it causes problems when used with large

time steps as seen in Figure 2.8. Such arrangement often leads to the collision step flattening

objects to remove penetration and the elastic solver restoring the flattened geometry by

pushing it into the colliding object. To get around this problem, the backward Euler solver

needs to be aware of collisions. A well-tested strategy for doing this is to use penalty

collisions, and we do this for two of our three collision processing techniques.

2.4.1 Object collisions as constraints

Our first collision processing technique takes advantage of our minimization framework to

treat collisions with non-simulated objects as inequality constraints. Treating collisions or

contacts as constraints is not new and in fact forms the basis for LCP formulations such
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Figure 2.8: Two spheres fall and collide with one another with ∆t = 1/24 s: initial config-
uration (left), our method (top), and Newton’s method (bottom). Notice the artifacts caused
by Newton not converging. Newton’s method requires six time steps per frame to converge on
this example.

as [KSJ08, GZO10]. Unlike LCP formulations, however, our formulation does not attempt

to be as complete and as a result can be solved about as efficiently as a simple penalty

formulation.

Our constraint collision formulation works reliably when the level set is known analyti-

cally. This limits its applicability to analytic collision objects. While this approach is feasible

only under limited circumstances, these circumstances occur frequently in practice. When

this approach is applicable, it is our method of choice, since it produces better results (e.g.,

no interpenetration) for similar cost. When this formulation is not applicable, we use a

penalty collision formulation instead.

We begin by representing our collision objects (indexed with b) by a level set, which we
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denote φb to avoid confusion with potential energy. By convention, φb(x) < 0 for points x in

the interior of the collision object b. Our collision constraint is simply that φb(xn+1
p ) ≥ 0 for

each simulation particle p and every constraint collision object b. With such a formulation,

we can project a particle at xp to the closest point x′p on the constraint manifold using

x′p = Pbp(xp) = xp − φb(xp)∇φb(xp).

We show how to solve the resulting minimization problem in Section 2.2.2.

We apply friction after the Newton solve. The total collision force felt by particles is

∆tfcol = ∇E′(xn+1) − ∇E(xn+1) = ∇E′(xn+1) − ∇E′(P (xn+1)),

where E′ is the objective in the absence of constraints (See Section 2.2.2). Only collision

pairs that are active at the end of the minimization will be applying such forces. We use the

level set’s normal and the collision force to apply Coulomb friction to colliding particles. In

particular, we use the rule (vn+1
p → v̂n+1

p )

n = ∇φ vn+1
p,n = (n ⋅ vn+1

p )n vn+1
p,t = vn+1

p − vn+1
p,n

v̂n+1
p = vn+1

p,n +max(1 −
µ∆t(n ⋅ fp,col)
m∥vp,t∥

,0)vn+1
p,t .

Our constraint collision formulation is not directly applicable to grid-based level sets,

since we assume that Pbp(Pbp(xp)) = Pbp(xp) and Pbp(x) is continuous. Continuity of Pbp(x)

can be achieved, for example, with C1 cubic spline level set interpolation. However, it will

not generally be true that Pbp(Pbp(xp)) = Pbp(xp). Alternatively, the projection routine can

be modified to iterate the projection to convergence, but then continuity is lost.
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2.4.2 Object penalty collisions

When a collision object is not analytic, as will normally be the case for characters for

instance, we use a penalty formulation instead. As in the constraint formulation, we assume

our collision object is represented by a level set φb. The elastic potential energy Φbp(xp)

of our penalty force is Φbp(x) = 0 if φb(xp) > 0 and Φbp(xp) = kφb(xp)3 otherwise. Since

Φbp is a potential energy, we must differentiate it twice for our solver. It is important

to compute the derivatives of φb exactly by differentiating the interpolation routine rather

than approximating them using central differences. While a C1 cubic spline interpolation is

probably a wiser interpolation strategy since it would avoid the energy kinks that may be

caused by a piecewise linear encoding of the level set, we found linear interpolation to work

well, too, and we use linear interpolation in our examples.

As in the constraint case, we apply friction after the Newton solve. The total collision

force felt by a particle due to object penalty collisions is obtained by evaluating the penalty

force at xn+1 and using this force as the normal direction. That is,

fcol = −
∂Φbp

∂x
(xn+1) fp,n = ∥fp,col∥ n =

fp,col
fp,n

vn+1
p,n = (n ⋅ vn+1

p )n vn+1
p,t = vn+1

p − vn+1
p,n

v̂n+1
p = vn+1

p,n +max(1 −
µ∆tfp,n
m∥vp,t∥

,0)vn+1
p,t .

2.4.3 Penalty self-collisions

We detect self-collisions by performing point-tetrahedron inclusion tests, which we accelerate

with a bounding box hierarchy. If a point is found to be inside a tetrahedron but not one of

the vertices of that tetrahedron, then we flag the particle as colliding.

Once we know a particle is involved in a self collision, we need an estimate for how close

the particle is to the boundary. If this particle has collided before, we use the primitive it

last collided with as our estimate. Otherwise, we compute the approximate closest primitive

in the rest configuration using a level set and use the current distance to this surface element
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Figure 2.9: A torus is pushed through a hole (constraint collisions).

as an estimate.

Given this upper bound estimate of the distance to the boundary, we perform a bounding

box search to conservatively return all surface primitives within that distance. We check these

candidates to find the closest one. Now we have a point-primitive pair, where the primitive

is the surface triangle, edge, or vertex that is closest to the point being processed. Let d

be the square of the point-primitive distance. The penalty collision energy for this point is

Φ = kd
√
d + ε, where ε is a small number (10−15 in our case) to prevent the singularities when

differentiating. Note that this penalty function is approximately cubic in the penetration

depth. This final step is the only part that must be differentiated.

As with the other two collision models, we apply friction after the Newton solve. In the
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most general case, a point n0 collides with a surface triangle with vertices n1, n2, and n3. As

with the object penalty collision model, collision forces are computed by evaluating Φ(xn+1)

and its derivative. The force applied to n0 is denoted f ; its direction is taken to be the

normal direction n. The closest point on the triangle to n0 has barycentric weights w1, w2,

and w3. Let w0 = −1 for convenience. Let Q = I − nnT , noting than Q2 = Q. If we apply a

tangential impulse Qj to these particles, their new velocities and kinetic energy will be

v̂n+1
ni

= vn+1
ni

+wim−1
ni

Qj KE =
3

∑
n=0

1

2
mni

(v̂n+1
ni

)T v̂n+1
ni
.

We want to minimize this kinetic energy to prevent friction from causing instability. Since

M is positive definite, we see that KE is minimized when

∇KE = Qv +m−1Qj = 0 v =
3

∑
n=0

wiv
n+1
ni

m−1 =
3

∑
n=0

wim
−1
ni
wi.

Figure 2.10: A stack of deformable boxes of varying stiffness is struck with a rigid kinematic
cube (constraint collisions) with ∆t = 1/24 s. The green boxes are 10 times as stiff as the
blue boxes.
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Figure 2.11: An armadillo is squeezed between 32 rigid cubes (constraint collisions) with
∆t = 1/24 s. When this torture test is run at 1, 2, 4 and 8 steps per frame the average
runtime per frame is 46, 58, 88, and 117 seconds respectively.

If we let j = −mQv then ∇KE = 0 and Qj = j. This leads to the friction application rule

v̂n+1
ni

= vn+1
ni

+wim−1
ni

min(µ∥f∥
∥j∥

,1)j.

Note that all three friction algorithms decrease kinetic energy but do not modify positions, so

none of them can add energy to the system, and thus stability ramifications are unlikely even

though friction is applied explicitly. This approach to friction can have artifacts, however,

since friction will be limited to removing kinetic energy from colliding particles. This limits

the amount of friction that can be applied at large time steps. An approach similar to the

one in [KSJ08] that uses successive Quadratic Programming solves could possibly be applied
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Figure 2.12: Our approach works naturally with the material point method simulations
from [SSC13]. Here we demonstrate with a snowball that drops to the ground and fractures.
Notably, we provide a new treatment of particle position updates that naturally prevents
penetration in solid objects like the ground.

to eliminate these artifacts. However [ZJ11] found existing large-scale sparse QP solvers to

be insufficiently robust, and thus we did not use this method.

2.5 Accelerating material point method

In this section we describe the application of this optimization approach to the snow sim-

ulation from [SSC13]. Their approach to simulating snow uses the material point method

(MPM), a hybrid Eulerian-Lagrangian formulation that uses unstructured particles as the

primary representation and a background grid for applying forces. They used an energy-

based formulation to facilitate a semi-implicit treatment of MPM. While this leads to a

significant time step improvement over more standard explicit treatments, it still requires a

small time step in practice to remain stable. We show how to modify their original formu-

lation so that we are able to take time steps on the order of the CFL condition. We also

provide an improved treatment of collisions with solid bodies that naturally handles them

as constraints in the optimization. Although the optimization solve is for grid velocities,

we show that a backward Euler (rather than forward Euler) update of particle positions in

the grid based velocity field automatically guarantees no particles penetrate solid bodies.

In addition to the significantly improved stability, we demonstrate in Section 2.6.1 that in

many cases a worthwhile speedup can be obtained with our new formulation.
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2.5.1 Revised MPM time integration

In Section 4.1 of [SSC13], the original method is broken down into 10 steps. From the

original method, steps 3-6 and 9-10 are modified. We begin by summarizing these steps as

they apply to our optimization-based MPM integrator.

1. Rasterize particle data to the grid. First, mass and momentum are transferred

from particles to the grid using mn
i = ∑pmpwnip and mn

i vni = ∑p vnpmpwnip. Velocity

is then obtained by division using vni = mn
i vni /mn

i . Transferring velocity in this way

conserves momentum.

2. Compute particle volumes. First time step only. Our force discretization requires

a notion of a particle’s volume in the initial configuration. Since cells have a well-

defined notion of volume and mass, we can estimate a cell’s density as ρ0
i =m0

i /h3 and

interpolate it back to the particle as ρ0
p = ∑i ρ

0
iw

0
ip. Finally, we can define a particle’s

volume to be V 0
p =mp/ρ0

p. Though rather indirect, this approach automatically provides

an estimate of the amount of volume that can be attributed to individual particles.

3. Solve the optimization problem. Minimize the objective (2.2) using the methods

of Section 2.2. This produces a new velocity estimate vn+1
i on the grid. This step

replaces steps 3-6 of the original method.

4. Update deformation gradient. The deformation gradient for each particle is up-

dated as Fn+1
p = (I + ∆t∇vn+1

p )Fn
p , where we have computed ∇vn+1

p = ∑i v
n+1
i (∇wnip)T .

Note that this involves updates for the elastic and plastic parts of F. See [SSC13] for

details, as they are unchanged.

5. Update particle velocities. Our new particle velocities are vn+1
p = (1 − α)vn+1

PICp +

αvn+1
FLIPp, where the PIC part is vn+1

PICp = ∑i v
n+1
i wnip and the FLIP part is vn+1

FLIPp =

vnp +∑i(vn+1
i − vni )wnip. We typically used α = 0.95.

6. Update particle positions. Particle positions are updated using xn+1
p = xnp+∆tv(xn+1

p )

as described in Section 2.5.3. This step replaces steps 9-10 of the original method.
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Figure 2.13: The extension of our method to [SSC13] is robust to large deformation and
collisions scenarios. Here we demonstrate this for with two snowballs that smash into each
other and fall to the ground.

2.5.2 Optimization formulation

The primary modification that we propose is to use the optimization framework in place of

the original solver. For this, we must formulate their update in terms of an optimization

objective E. The original formulation defined the potential energy Φ(xi) conceptually in

terms of the grid node locations xi. Here we use the index i to refer to grid node indices.

Their grid is a fixed Cartesian grid and never moves, and they solve for vn+1
i . We will follow

the same conceptual formulation here. This leads to the objective

E(vi) = ∑
i

1

2
mi∥vi − vni ∥2 +Φ(xni +∆tvi), (2.2)

where mi is the mass assigned to grid index i. Our final vn+1
i is computed so that E(vn+1

i )

is minimized. We solve this minimization problem as in Section 2.2. Note that we apply

plasticity explicitly as in the original formulation.

Using larger time steps causes our linear systems to become slower to solve. In the case

of MPM, we found it beneficial to use the diagonal preconditioner

Lii = ∑
p

diag(mpwipI +∆t2V 0
p H),
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Figure Ours? Steps
frame

Time
frame (s) # dofs Solves

step

2.6 Y 5 200 984k 2.2
1.1 mid Y 1 0.51 18.5k 2.8
1.1 rt N 1/3 8.7/1.1 18.5k 15/0.7
1.2 top Y 1 0.52 18.5k 2.9
1.2 bot N 1/5 3.8/1.3 18.5k 6.6/0.6
2.8 top Y 1 4.25 28.0k 8.1
2.8 bot N 1/6 33/7.3 28.0k 26/0.8
2.4 Y 5 1.13 7.9k 2.1

2.3 top Y 1 68.0+ 824k 12.3
2.3 lt Y 1 1470+ 824k 236.8
2.3 rt Y 1 667+ 824k 109.6
2.5 top Y 1 43.1+ 824k 10.7
2.5 lt Y 1 831+ 824k 155.9
2.5 rt Y 1 444+ 824k 88.8
2.7 top Y 1 0.42 14.0k 3.8
2.7 bot N 1∗ 1.13 14.0k 9.8
2.9 Y 1 0.45 7.9k 8.6
2.11 Y 1 46.1 73.8k 34.7
2.10 Y 1 17.1 138k 6.9

Table 2.1: Optimization integrator performance. Time step sizes and average running times
for the examples in the paper. The last column shows the average number of linear solves per
time step. Each of the Newton’s method examples fails to converge at the frame rate. For
fairer comparison, timing information for all but the one marked ∗ is shown at the frame
rate and the stable time step size. The stress tests marked + spend the majority of their time
on the first frame or two due to the difficult initial state.

where

H = (λp + µp)∇wip∇wTip + µp∇wTip∇wipI.

This preconditioner approximates the diagonal of the stiffness matrix at the rest configura-

tion. This works well since snow is unable to deform much without hardening or fracturing.

We use an approximation to the diagonal, rather than the exact diagonal, because we never

explicitly form the matrix. This approximation suffices for preconditioning and is more

efficient.

The original method performed solid body collisions while computing new grid velocities.
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We treat body collisions using constraints in our optimization problem. We assume sticking

collisions and let P (vi) = 0 for all grid nodes i that lie inside a collision object. Note that

we do not permit separation during optimization, though separation may occur during other

steps in the algorithm.

2.5.3 Particle position update

One of the difficulties with running the method of [SSC13] with larger time steps is the

particle-based solid body collisions. They were needed under the old formulation to prevent

settling into the ground, but at the same time they cause bunching of particles at collision

objects. These problems are exacerbated at larger time steps, and another approach is

required. Instead, we show that altering the way we update particle positions can avoid the

need for a separate particle collision step.

For each particle position xp we solve the backward Euler update equation

xn+1
p = xnp +∆tv(xn+1

p ) v(xn+1
p ) = ∑

i

vn+1
i Nh

i (xp),

where v(xn+1
p ) is the interpolated grid velocity at the particle location xn+1

p . These updates

are independent per particle and so are relatively inexpensive. A solution to this backward

Euler equation always exists nearby provided a suitable CFL condition is respected (no

particle moves more than ∆x in a time step). Note that pure PIC velocities are used in

the particle position updates. While a combination of FLIP/PIC is still stored on particles

(to avoid excessive dissipation in subsequent transfer to grid), PIC velocities for position

updates lead to more stable behavior.

The motivation for our modification can be best understood in the case of sticking colli-

sions. Inside a collision object, we will have vn+1
i = 0 due to the collision constraints imposed

during optimization. If we then assume that we will interpolate v(xn+1
p ) = 0 here, then we

can see from xn+1
p = xnp +∆tv(xn+1

p ) that xn+1
p = xnp . Note that if a particle ends up inside the

collision object, then it must have already been there. Thus, it is not possible for particles

to penetrate collision objects. In our implementation, v(xn+1
p ) = 0 will only be true if we
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Figure 2.14: A snowball smashes into a wall and sticks to it.

are slightly inside collision objects, but in practice this procedure actually stops particles

slightly outside collision objects.

We solve this equation with Newton’s method. Since Newton’s method need not converge,

some care is required, though in practice nothing as sophisticated as Section 2.2 is needed.

We always use the Newton direction but repeatedly halve the length of the Newton step

until the objective E = ∥xn+1
p −xnp −∆tv(xn+1

p )∥ no longer increases. (If halving the step size

14 times does not suffice, we take the reduced step anyway.) Typically, only one Newton

step is required for convergence. We have never observed this to fail.

We use a quadratic spline rather than the cubic of the original formulation to reduce

stencil width and improve the effectiveness of the modified position update. That is, we let

N(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
4 − x2 ∣x∣ < 1

2

1
2x

2 − 3
2 ∣x∣ +

9
8

1
2 ≤ ∣x∣ < 3

2

0 ∣x∣ ≥ 3
2 .

Using a quadratic stencil also has the advantage of being more efficient. We do not use a

linear spline since it is not smooth enough for Newton’s method to be effective in the particle

position update.

Since MPM involves a grid, we limit our time step so that particles do not travel more

that one grid spacing per time step. That is, we choose ∆t so that ν∆x
∆t ≥ maxp ∥vnp ∥ for some

ν < 1. We chose ν = 0.6 for our examples. Although the time step restriction is computed
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based on vnp rather than vn+1
p , this suffices in practice.

2.6 Results

We begin by demonstrating how robust our solver is by considering the two most difficult

constitutive model tests we are aware of: total randomness and total degeneracy. The

attributes that make them tough constitutive model tests also make them tough solver tests:

high stress, terrible initial guess, tangled configurations, and the need to dissipate massive

amounts of unwanted energy. Figure 2.3 shows the recovery of a 65 × 65 × 65 cube (824k

dofs) from a randomized initial configuration for three different stiffnesses with ∆t = 1/24 s.

Figure 2.5 repeats the tests with all points starting at the origin. The recovery times vary

from about 3 s for the softest to a single time step for the stiffest. We were surprised to

find that a single step of backward Euler could untangle a randomized cube, even at high

resolution.

Figure 2.4 is a classical torus drop demonstrating that our self collisions are effective

at stopping collisions at the torus’s hole. Figure 2.9 uses constraints for all collision body

collisions and demonstrates that our constraint collisions are effective with concave and

convex constraint manifolds. Figure 2.10 demonstrates our method with stiffer deformable

bodies with sharp corners. Figure 2.11 demonstrates our constraint collisions are effective for

objects with sharp corners. Finally, Figure 2.6 shows a more practical example which uses

all three types of collisions: self collisions, constraint collisions (with ground) and penalty

collisions (against a bowl defined by a grid-based level set).

2.6.1 MPM results

We demonstrate the advantages of using our optimization integrator by applying it to the

MPM snow formulation from [SSC13]. We run three examples using both the original for-

mulation and our modified formulation. We compare with the snowball examples from the

original paper. In each case, for our formulation we use the CFL ν = 0.6. Figure 2.14 shows

a snowball hitting a wall using sticky collisions, which causes the snow to stick to the wall.
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Figure 2.12 shows a dropped snowball hitting the ground with sticky collisions. Figure 2.13

shows two snowballs colliding in mid air with sticky collisions against the ground. On av-

erage, we get a speed up of 3.5 times over the original method. These results are tabulated

in Table 2.2. Notably, we are able to take significantly larger time steps, however some of

the potential gains from this are lost to an increased complexity per time step. Nonetheless,

we provide a significant computational savings with minimal modification to the original

approach.

2.7 Conclusions

We have demonstrated that backward Euler solved with Newton’s method can be made more

robust by recasting the resulting system of nonlinear equations as a nonlinear optimization

problem so that robust optimization techniques can be employed. The resulting method is

extremely robust to large time step sizes, high stress, and tangled configurations.

Runtimes and other performance-related information for all of our sims are provided in

Figure 2.1. All Lagrangian simulations were run single-threaded on a 3.1 − 3.5GHz Xeon

core, the MPM simulations were run with 10 threads for 2.13 and 12 threads for 2.12 and 2.14

. Our solver’s performance is competitive with a standard Newton solver for those examples

where both were run. In general, we take more Newton steps but spend less time on each,

and the resulting runtime for typical examples is about the same for the two solvers, though

our solver is faster for all of the difficult examples in this paper. Taking a large time step

size can actually be slower than taking a smaller one, even with the same solver. For time

integrators (like backward Euler) that have a significant amount of damping at large time

steps, constitutive models are often tuned to take into account the numerical damping. If

the integrator is forced to simulate a portion of a simulation at a smaller time step, the

dynamic behavior can change noticeably. Solving with constraints is about the same speed

as using penalty collisions.

Note that Figures 2.6 and 2.4 were run with smaller time steps sizes to avoid collision

artifacts. This indicates that a self-collision scheme that is more tolerant of large time steps
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Figure Average ∆t (s) Time/frame (s) Speedup Grid # of
Ours Orig Ours Orig factor size particles

2.12 3.4 × 10−3 4.4 × 10−4 59 184 3.1 600 × 300 × 600 2.8 × 105

2.14 1.5 × 10−3 1.4 × 10−4 85 431 5.1 200 × 240 × 600 2.8 × 105

2.13 1.6 × 10−3 1.7 × 10−4 288 780 2.7 800 × 300 × 800 5.6 × 105

Table 2.2: Performance comparison of our modified MPM snow formulation (“Ours”) with
the original formulation (“Orig”).

is required. The scheme does not have problems with collisions between different objects at

the frame rate as long as they are not too thin. Continuous collision detection could perhaps

be used. We leave both of these problems for future work.

The current method has a couple disadvantages compared with current techniques. It

requires a potential energy to exist (which is how most constitutive models are defined

anyway) and is sensitive to discontinuities in this energy. The method also occasionally fails

to make progress due to valley shaped kinks in our collision processing. In practice, this only

occurs when the system is already fairly close to a solution, since otherwise any energy kinks

are overwhelmed by the strong gradients in the objective. From a practical perspective, this

means this sort of breakdown can be dealt with by simply ignoring it. This does, however,

prevent the method from being absolutely robust. We leave this weakness to be addressed

in future work.

Our method was derived and implemented on top of a backward Euler integrator, which

is known for being very stable but quite damped. The nonlinear system of equations for

other A-stable integrators such as trapezoid rule and BDF-2 can also be readily converted

into minimization form and solved similarly. Being second order schemes, their use would

reduce damping at large time steps, though trapezoid rule’s oscillatory properties should be

taken into account.
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CHAPTER 3

Viscoelastic Materials

3.1 Governing equations

The governing equations arise from basic conservation of mass and momentum as

D

Dt
ρ + ρ∇ ⋅ v = 0, ρ

D

Dt
v = ∇ ⋅σ + ρg (3.1)

where ρ is the mass density, v is the velocity, σ is the Cauchy stress and g is gravitational

acceleration. As is commonly done with viscoelastic complex fluids, we write the Cauchy

stress as σ = σN +σE where σN = µN

2 (∂v
∂x +

∂v
∂x

T) is the viscous Newtonian component and σE

is the elastic component. We express the constitutive behavior through the elastic component

of the left Cauchy Green strain. Specifically, the deformation gradient of the flow F can be

decomposed as a product of elastic and plastic deformation as F = FEFP and the elastic

left Cauchy Green strain is bE = FE(FE)T [BW97]. With this convention, we can define the

elastic portion of the Cauchy stress via the stored elastic potential ψ(bE) as σE = 2
J
∂ψ
∂bE bE.

3.1.1 Left Cauchy-Green strain plasticity and the upper convected derivative

We can define the plastic flow using the temporal evolution of the elastic right Cauchy Green

strain as in [BW97]. Rewriting FE = F(FP )−1, bE = F(CP )−1FT where CP = (FP )TFP is

the right plastic Cauchy Green strain. The Eulerian form of the temporal evolution is then

obtained by taking the material derivative of bE to get

DbE

Dt
= DF

Dt
(CP )−1FT+F(CP )−1DF

Dt

T

+F
D

Dt
[(CP )−1]FT . (3.2)
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With this view, the plastic flow is defined via D
Dt[(CP )−1]. Combining this with D

DtF = ∂v
∂xF

(see e.g. [BW97]), the previous equation can be rewritten as

DbE

Dt
= ∂v

∂x
bE + bE

∂v

∂x

T

+ g(bE) (3.3)

where g(bE) = F D
Dt[(CP )−1]FT is used to describe the plastic flow rate. This equation is

often abbreviated as
▽

bE = g(bE). (3.4)

Here, the operator
▽

bE (often referred to as the upper convected derivative) is defined to be
▽

bE ≡ D
Dtb

E − ∂v
∂xbE − bE ∂v

∂x

T (see e.g. [Lar99]).

3.1.2 Von Mises plasticity

The Von Mises model [BW97] achieves plasticity through the rate g(bE) = −2γ̇δ ∂f(τ)∂τ bE,

where τ is the Kirchhoff stress, γ̇ is the plastic multiplier, f(τ) is the Von Mises yield

condition, and δ = 1 if f(τ) ≥ 0, δ = 0 otherwise. However, this is relatively difficult to

discretize given the conditional nature of the function. It is often more straightforward to

just work directly with FE and FP in that case (see e.g [SSC13]), however Yue et al [YSB15]

do discretize this directly.

3.1.3 Oldroyd-B plasticity

The Oldroyd-B model [Lar99, TFS08] can be see as an alternative definition of g(bE) =
1
Wi(I − bE). Combining this with g(bE) = F D

Dt[(CP )−1]FT shows that the plastic flow of

this model is D
Dt[(CP )−1] = 1

Wi(C−1 − (CP )−1) where C = FTF is the right Cauchy Green

strain. This expression for g(bE) is very simple in comparison with that of Von Mises. This

simplicity allows for a much easier treatment of temporal discretization needed for implicit

time stepping. Specifically, we show in Section 3.2 that this simple definition of g(bE)

facilitates the implicit description of the plastic flow in terms of discrete grid node velocities.

We can see, both from the 1
Wi(I − bE) and D

Dt[(CP )−1] = 1
Wi(C−1 − (CP )−1) terms that the
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plasticity achieves a strong damping of the elastic component of the stress. The severity of

this damping is inversely proportionate to the Weissenberg number Wi. That is, the smaller

the Weissenberg number, the faster the elastic strain is damped to the identity, thus releasing

elastic potential and associated resistance to deformation. Thus, the Weissenberg number

directly controls the amount of the plasticity.

3.1.4 Volume preserving plasticity

The plastic flow in the Oldroyd model will not generally be volume preserving. Since many

plastic flows, including those of foams, exhibit this behavior we provide a modification to the

standard Oldroyd model that will satisfy this. If we define bEOB to obey
▽

bEOB = 1
Wi(I−bEOB),

then we define a new elastic left Cauchy Green strain as

bE ≡ ( J

JOB
)

2
3

bEOB, (3.5)

where J = det(F) and JOB =
√

det(bEOB). Using this definition, det(bE) = J2 and since by

definition det(bE) = det(FE)2 and J = det(FE)det(FP ) we see that it must be true that

det(FP ) = 1, and thus the plastic flow is volume preserving.

3.1.5 Modified plastic flow

This modification to the Oldroyd plasticity obeys

▽

bE = D

Dt

⎛
⎝
( J

JOB
)

2
3⎞
⎠
bEOB +

1

Wi
( J

JOB
)

2
3

(I − bEOB) (3.6)

which has the plastic flow

D

Dt
[(CP )−1] = D

Dt

⎛
⎝
( J

JOB
)

2
3⎞
⎠
(CP

OB)−1+

1

Wi
( J

JOB
)

2
3

(C−1 − (CP
OB)−1).

(3.7)

46



Figure 3.1: A pie with a stiff crust and soft whipped cream is thrown at a mannequin.

We do not need to solve for bE using the definition of its plastic flow. In practice, we solve

for the comparatively simple bEOB and then obtain the elastic stress as bE = ( J
JOB

)
2
3 bEOB. We

only provide this derivation here to show that there is a plastic flow associated with this

definition of the elastic strain.

3.1.6 Elasticity

We define constitutive behavior through the compressible Neo-Hookean elastic potential

energy density as

ψ(bE) = µ
2
(tr(bE) − 3) − µ ln(J) + λ

2
(J − 1)2 (3.8)

with associated Cauchy stress

σE = µ
J
(bE − I) + λ(J − 1)I. (3.9)

3.2 Material point method

We closely follow the algorithm from [SSC13]. The only difference is in the discrete Eulerian

grid node forces and force derivatives. All steps in the algorithm not related to the update of

grid node velocities are the same; we simply change the nature of stress-based forces. In this

section, we describe how to modify the potential-based definition of these forces to discretize
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our new governing equations. We refer the reader to [SSC13] for all other steps in the MPM

time stepping algorithm.

Using the notation from [SSC13], we denote position, velocity and deformation gradient of

particle p at time tn as xnp , vnp and Fn
p respectively. Eulerian grid node locations are denoted

as xi where i = (i, j, k) is the grid node index. The weights at time tn are wnip = Ni(xnp), where

Ni(x) is the interpolation function associated with grid node i and the weight gradients are

∇wnip = ∇Ni(xnp). As in [SSC13], we define the forces on the Eulerian grid nodes as the

derivative of an energy with respect to grid node locations. We do not actually move grid

nodes, but we consider their movement to define grid node velocities vi as x̂i = xi + ∆tvi.

Using x̂ to denote the vector of all grid nodes, we define the potential

Φ(x̂) = ∑
p

(ΦE(x̂)V 0
p +ΦN(x̂)V n

p ) (3.10)

where ΦE(x̂) is the elastoplastic component of the potential energy density ΦE(x̂) = ψ(b̂E(x̂))

and ΦN(x̂) is the Newtonian viscous potential energy density

ΦN(x̂) = µN ε̂p(x̂) ∶ ε̂p(x̂) = ∑
i,j

µN ε̂pij(x̂)ε̂pij(x̂). (3.11)

Here ε̂p(x̂) = 1
2
(∇v̂(x̂) + (∇v̂(x̂))T ) is the strain rate at xnp induced by the grid node motion

defined by x̂ over the time step and ∇v̂(x̂) = ∑i
x̂i−xi

∆t (∇wnip)T . As in [SSC13], V 0
p is the volume

of the material originally occupied by the particle p. However, for the viscous Newtonian

potential, we are approximating an integral over the time tn configuration of the material so

we have V n
p = det(Fn

p)V 0
p .

As in [SSC13], we store a deformation gradient Fn
p on each particle and update it using

F̂(x̂) = (I +∆t∇v̂(x̂))Fn
p . (3.12)
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We use this to define Ĵp(x̂) = det(F̂(x̂)) in the definition of

b̂E(x̂) =
⎛
⎝

Ĵp(x̂)2

det(b̂EOBp
(x̂))

⎞
⎠

1
3

b̂EOBp
(x̂). (3.13)

Similar to the treatment in Equation 3.12, we store bE
n

OBp
on each particle and discretize the

upper convected derivative terms in the evolution equation for bEOB to get

b̂EOBp
(x̂) =∆t∇v̂(x̂)bEn

OBp
+∆tbE

n

OBp
(∇v̂(x̂))T

+ ∆t

Wi
I + (1 − ∆t

Wi
)bE

n

OBp

(3.14)

The force on the grid nodes is defined as f(x̂) = −∂Φ
∂x̂ (x̂) and it is used in the implicit update

of grid velocities vn+1
i exactly as in [SSC13]. We work out these derivatives as well as the

∂f
∂x̂(x̂) in (§3.5).

3.3 Results

In Figure 1.3, a sponge is twisted with top and bottom fixed by Dirichlet boundary conditions.

Dynamic fracture and self collision are naturally handled. In Figure 1.6, the top and bottom

of a sponge are held in place as we shoot it with a kinematic bullet. The animation is in slow

motion to show the detailed material response after the impact. In Figure 3.3, we simulate

a stream of shaving foam hitting the ground, and compare it with real world footage. Our

method captures the S-shaped buckling and merging behaviors. It also exhibits similar

elasto-plastic responses. In Figure 3.2, we simulate toothpaste falling onto a toothbrush.

Unlike the shaving foam, Newtonian viscosity dominates material behavior. Figure 1.4 shows

a simulation of manufacturing Viennetta ice cream. It captures the characteristic folding

behavior. In Figure 3.1, we model a pie and throw it at a mannequin. The fracture pattern

of the crust is prescored with weak MPM particles. The cream exhibits detailed splitting and

merging behavior. For the particle-grid transfers, we used the affine Particle-In-Cell (APIC)

method from [JSS15]. We found that using APIC greatly reduced positional artifacts of the
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Figure 3.2: A simulation of toothpaste. Unlike the shaving foam, Newtonian viscosity
dominates material behavior.

pie particles. We do not perform any explicit particle resampling because self-collision and

topology change are naturally handled by MPM.

The material parameters used in our examples are given in Table 3.1. The simulation

times are shown in Table 3.3. All simulations were performed on Intel Xeon machines. All

renderings were done with Mantra in Houdini. For foam, toothpaste, and Viennetta ice

cream, surfaces were reconstructed with OpenVDB [Mus14] and rendered with subsurface
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ρ µ λ µN Wi

Twisting sponge 2 3.6 × 102 1.4 × 103 0 50
Shooting sponge 1 3.6 × 102 1.4 × 103 0 50
Shaving foam 0.2 5 50 1 × 10−4 0.5
Toothpaste 1 0.839 8.39 1 × 10−1 0.4

Viennetta ice cream 1 1 10 5 × 10−5 0.1
Pie cream 0.2 5 50 1 × 10−7 1 × 10−4

Pie crust 0.5 5 × 105 4 × 106 1 × 10−8 1 × 1030

Pie crust scored 0.5 5 10 1 × 10−5 1

Table 3.1: Viscoelastic material parameters.

scattering. The sponges were rendered as a density field.

3.4 Discussions

We found that using a Jacobi preconditioner greatly reduced simulation run times. For

example, in the shooting sponge test (Figure 1.6), the Jacobi preconditioner reduces the

number of CG iterations by a factor of 6.

While we have used our method successfully in simulating a variety of materials, it has

some limitations. Many of these are related to the Oldroyd-B model. For example, unlike the

approach in [YSB15], our approach cannot handle shear thickening. Therefore, the model

cannot be applied to materials such as oobleck. Our method also does not handle material

softening or hardening.

Our update rule of bEOB allows for inversion which the constitutive model cannot handle.

While bEOB should remain positive definite, we have found this to be only partially required.

In particular, (3.8) involves the quantity tr(bE), which we must ensure is bounded from

below. If bE is positive definite, then tr(bE) > 0. We also compute det(bEOB)
−

1
3 , which is

problematic if bEOB may become singular. We avoid these problems in practice by taking

advantage of the optimization-based integrator from [GSS15]. We add a large penalty to

our objective when the determinant or trace of bEOB becomes infeasible; the line search in

our optimizer then discards these configurations. While bounding the trace and determinant

does not enforce definiteness in 3D, this strategy worked well in practice. Not enforcing these

produces popping artifacts.
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Method Elastoplastic Viscosity No SVD Implicit No Remeshing

[BB08] 7 3 3 3 3

[WTG09] 3 3 7 �† 7

[BH11] 7 3 3 3 �‡

[BUA12] 7 3 3 3 7

[SSC13] 3 7 7 3 3

[SSJ14] 3 7 7 3 3

[YSB15] 3 3 3 7 3

Our method 3 3 3 3 3

Table 3.2: Viscoelastic feature comparison. †This method is not implicit in elasticity. ‡This
method requires adaptive refinement of a BCC lattice.

Min/Frame Particle # Threads CPU ∆x Grid Resolution

Twisting sponge 5.3 9.1 × 105 20 3.00GHz 0.0366 2453

Shooting sponge 2.0 7.2 × 105 16 2.90GHz 0.0402 1753

Shaving foam 0.93 1.1 × 106 12 3.47GHz 0.0019 2573

Toothpaste 0.28 2.8 × 105 16 2.90GHz 0.0082 244 × 487 × 244

Viennetta ice cream 1.11 1.2 × 106 12 2.67GHz 0.0026 385 × 96 × 64

Pie 23.6 1.3 × 106 12 3.07GHz 0.0024 3333

Table 3.3: Viscoelastic simulation performance.
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3.5 Derivatives

While the potential energy contains many elements and computing its second derivatives

seems like a hopeless task, this is not the case. Breaking the potential energy into small

pieces makes the implementation straightforward to implement and debug. We present

pseudocode that may be used to compute the potential energy Φ = ∑p Φp along with its

derivatives, ∂Φ
∂xi

= ∑p Φp,i and ∂2Φ
∂xi∂xi

= ∑p Φp,ij. The following computational steps may

be used to compute the potential energy contribution of a particle Φp. Note that all of

the quantities computed below, except for the final result Φp, are intermediate quantities

used to break the computation into many parts. Most of them have no particular physical

52



Figure 3.3: Simulated shaving foam (right) is compared with real world footage (left). The
simulation captures the characteristic S-shaped buckling and elastic behavior.

significance, and most have no particular relationship to similarly named quantities elsewhere
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in this manuscript. The bold capitalized quantities are matrices, and the rest are scalars.

Ap ←∑
i

(x̂i − xni )(∇wnip)T Bp ←Apb
En

OBp

Gp ← bE
n

OBp +
∆t

Wi
(I − bE

n

OBp) F̂p ← (I +Ap)Fn
p

Sp ←Gp +Bp +BT
p Hp ← F̂−1

p

Jp ← det(F̂p) ap ←
λ

2
(Jp − 1)2

qp ←
1

2∆t2
(∥Ap∥2

F +AT
p ∶ Ap) bp ← µ ln(Jp)

cp ← µNP qp det(Fn
p) gp ← tr(Sp)

Kp ← S−1
p hp ← det(Sp)

kp ← h
−

1
d

p mp ← J
2
d
p

np ← kpgp pp ←
µ

2
mpnp

Φp ← Vp(pp − bp + ap + cp)

The next set of routines are for the first derivatives of the quantities above, with the final

result being the potential energy derivative for a particle, Φp,i. Note that these routines

use the quantities computed above. Intermediate quantities of the form cp,i are related to

the intermediates above by cp,i = ∂cp
∂x̂i

, which allows for incremental testing. All quantities

computed below are vectors.

bpi ← bE
n

OBp∇wnip fpi ← (Fn
p)T∇wnip

hpi ←HT
p fpi kpi ←KT

p bpi

Jp,i ← Jphpi ap,i ← λ(Jp − 1)Jp,i

qp,i ←
1

∆t2
(Ap∇wnip +AT

p∇wnip) bp,i ← µhpi

cp,i ← µNP det(Fn
p)qp,i gp,i ← 2bpi

kp,i ← −
2kp
d
kpi mp,i ←

2mp

d
hpi

pp,i ←
µ

2
(mp,inp +mpnp,i) np,i ← kp,igp + kpgp,i

Φp,i ← Vp(pp,i − bp,i + ap,i + cp,i)
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The final set of routines are for second derivatives, with the final result being the potential

energy Hessian for a particle, Φp,ij. Intermediate quantities of the form cp,ij are related to

the intermediates above by cp,ij =
∂cp,i
∂x̂j

. All quantities computed below are matrices.

Jp,ij ← Jphp,ih
T

p,j − Jphp,jh
T

p,i

ap,ij ← λJp,iJ
T
p,j + λ(Jp − 1)Jp,ij

bp,ij ← −µhp,jh
T

p,i

qp,ij ←
1

∆t2
((∇wnip)T∇w,jI +∇w,j(∇wnip)T )

cp,ij ← µNP det(Fn
p)qp,ij

kp,ij ←
4kp
d2
kp,ik

T

p,j +
2kp
d
kp,jk

T

p,i +
2kp
d
b
T

p,ikp,jKp

mp,ij ←
4mp

d2
hp,ih

T

p,j −
2mp

d
hp,jh

T

p,i

np,ij ← kp,ijgp + kp,igT,j + gp,ikT,j

pp,ij ←
µ

2
(mp,ijnp +mp,in

T
,j + np,imT

,j + np,ijmp)

Φp,ij ← Vp(pp,ij − bp,ij + ap,ij + cp,ij)
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CHAPTER 4

Granular Materials

4.1 Background

Conservation laws. We represent the sand as an elastoplastic continuum, whose state

can be described at each location by its density ρ(x, y, z) and velocity v(x, y, z). Our sand

experiences internal stress σ and gravity g. The motion of the sand satisfies conservation of

mass

Dρ

Dt
+ ρ∇ ⋅ v = 0 (4.1)

and conservation of momentum, which can be simplified to the Euler-Lagrange equations,

ρ
Dv

Dt
= ∇ ⋅σ + ρg. (4.2)

Figure 4.1: Sand falls through the narrow neck of an hourglass, accumulating at the bottom.
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Here, we have used Dφ
Dt =

∂φ
∂t +v ⋅∇φ to denote the material derivative of an arbitrary function

φ(x, y, z). The text of Gonzalez and Stuart [GS08] provides useful background for these

equations.

Deformation gradient. The deformation gradient represents how deformed a material

is locally. For example, let x0
1 and x0

2 be two nearby points embedded in the material (see

Figure 4.2) at the beginning of the simulation, and let x1 and x2 be the same two points in

the current configuration. Then (x2 −x1) = F(x0
2 −x0

1). The deformation gradient F evolves

according to

DF

Dt
= (∇v)F. (4.3)

Elastic and plastic deformation gradient. We represent plasticity by factoring de-

formation gradient into elastic and plastic parts as F = FEFP . The deformation gradient is a

measure of how a material has locally rotated and deformed due to its motion. By factoring

the deformation gradient in this way, we divide this deformation history into two pieces. The

plastic part, FP , represents the portion of the material’s history that has been forgotten. If

a metal rod is bent into a coiled spring, the rod forgets that it used to be straight; the coiled

spring behaves as though it was always coiled (see Figure 4.3). The twisting and bending

involved in this operation is stored in FP . If the spring is compressed slightly, the spring

will feel strain (deformation). This is elastic deformation, which is stored in FE. The spring

remembers this deformation. In response, the material exerts stress to try to restore itself

to its coiled shape. In this way, we see that only FE should be used to compute stress. The

full history of the metal rod consists of being bent into a spring shape (FP ) and then being

b

b

x0
1

x0
2

Ω0

b

b

xn
1

xn
2

Ωn

Fn
p

Figure 4.2: Relationship between deformation and Fn
p .
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compressed (FE).

Constitutive model. A constitutive model relating the state to the stress is needed.

The text of Bonet andWood [BW08] provides useful background for elastoplastic constitutive

modeling. Following Mast el al. [Mas13, MAM14], we use Drucker-Prager elastoplasticity

[DP52]. The elastic part of this relation is expressed through the deformation gradient F.

For perfectly hyperelastic materials the constitutive relation is defined through the po-

tential energy, which increases with non-rigid deformation from the initial state. However,

in the case of large-strain elastoplasticity, there will be some permanent (or plastic) defor-

mation and the potential will only increase for deformation beyond this state. In this case,

the stress in the material is

σ = 1

det(F)
∂ψ

∂FE
FET (4.4)

where ψ(FE) is the elastic energy density designed to penalize non-rigid FE (see Section 4.4.3

for more detailed discussion).

With the Drucker-Prager model, frictional interactions between grains of sand can be

expressed in the continuum via a relation between shear and normal stresses. Using a

Coulomb friction model, shear stresses resisting sliding motions between grains can only

be as large as a constant times the normal stress holding them together. For example, if

shear stresses larger than this value are required to maintain a static pile, plastic flow will

commence when the limit is reached and the material will move. This constraint defines a

original rest shape

new rest shape

current shape

FP,n
p

FE,n
p

Fn
p

Figure 4.3: Relationship between Fn
p , FE,n

p , and FP,n
p .
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Figure 4.4: A rake is dragged around a rock, producing a circular pattern in the sand.

feasible region of stresses, the surface of the feasible region is often referred to as the yield

surface. The decomposition of the deformation gradient into elastic and plastic components

F = FEFP can be viewed as a means of projecting the deformation to satisfy the constraint.

Notably, the projection must be designed carefully to ensure for increase of entropy as well

as volume preserving plastic flow. We discuss the model in more detail in (§4.5) as well as

(§4.14).

Discretization. Traditional approaches for discretization are typically either Eulerian

or Lagrangian, which differ by their frame of reference. An Eulerian description computes

quantities of interest at fixed locations in space. These methods feature fixed grids. Eulerian

methods are ideal for handling collisions and changes in topology, making them a popular

choice for fluids.

A Lagrangian description uses quantities that move with the material being described.

These methods tend to use moving particles often connected by a mesh. This representation

automatically conserves mass, and the mesh provides a straightforward way to determine

how deformed the material is. Lagrangian methods are preferred for elastic solids.

Some materials, such as sand, exhibit characteristics of both fluids and solids. Sand can

support a load like a solid, but it can also flow like a liquid. For materials like these, there

is growing interest in hybrid methods, such as the Material Point Method, which combine

aspects of both types of discretization, seeking to obtain some of the benefits of each.

The Material Point Method stores information on Lagrangian particles, but it computes

forces using a fixed Eulerian grid. The use of particles makes mass conservation trivial, and it

provides a simple means of moving information around. The use of a fixed grid provides auto-
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Particle state

Particle velocity (§5.3)

Updated positions (§5.4)

Plasticity, hardening (§5.5)

Grid velocity, mass (§5.1)

Forces (§6)

Collisions (§8)

Friction (§8.1)

Particles Grid

Figure 4.5: Overview of MPM stages.

matic handling of topology changes (merging and separating) and collisions between regions

of material. Since MPM uses two distinct representations, information must be transferred

between them. These transfers play a very important role in the numerical behavior of a hy-

brid method. Furthermore, to simplify topology changes, MPM does not store connectivity

between particles. This avoids the need for complex remeshing, but deformation must now

be tracked in an Eulerian way.

In the next section, we outline our discretization steps.

4.2 Overview

Before presenting the algorithm in detail, we first provide an overview of the steps that are

involved in the algorithm and the role that they play, which is summarized in Figure 4.5.

1. Transfer to grid. Transfer mass and momentum from particles to the grid. Use mass

and momentum to compute velocity on the grid. (§4.3.1)

2. Apply forces. Compute elastic forces using a deformation gradient that has been

projected into the plastic yield surface and apply the forces to the grid velocities.

(§4.4)

3. Grid collisions. Project grid velocities for collisions against scripted bodies and

obstacles, ignoring friction (§4.6). For implicit, this is merged with the force application

step (§4.3.6).

4. Friction. Compute and apply friction based on the collisions that were resolved. The
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velocity before and after this step are retained for use during the transfers. (§4.6.1)

5. Transfer to particles. Transfer velocities from grid to particles, being careful to

handle friction in a manner that does not lead to inconsistencies. (§4.3.3)

6. Update particles. Update remaining particle state, including positions and defor-

mation gradient. (§4.3.4)

7. Plasticity and hardening. Project the deformation gradient for plasticity, updat-

ing the elastic and plastic parts. Perform hardening, which updates the plastic yield

surface. (§4.3.5)

4.3 Algorithm

Notation. It is helpful to establish the conventions for notation (see Table 4.1 for a complete

list). Scalars are represented by non-bold Latin or Greek characters (mp, αnp , Gk). Vectors

are represented by bold lowercase Latin characters (vnp , xn+1
i ). Matrices are represented by

bold uppercase Latin characters or bold Greek characters (I, F̂P,n+1
p , σ). Derivatives alter

this in the usual way, so that ∇Gki is a vector and (∇v)p is a matrix.

Many quantities are indexed with subscripts, which indicate where quantities are stored.

Quantities that are stored at grid nodes are indexed with i and particle quantities have the

index p. Collision-related quantities have an index k relating them to a particular collision

interaction. A quantity may have more than one subscript (wnip, ∇Gki). The quantity Fn+1
p

represents the quantity corresponding to one index, and ⟨Fn+1
p ⟩ represents a vector of all such

quantities.

Superscript n is used to indicate a quantity near the beginning of the time step, before

forces are applied, (mn
i , Bn

p ). Superscript n+ 1 indicates a quantity near the end of the time

step, after forces are applied, (xn+1
i , FP,n+1

p ).

Stars, tildes, and bars are used to distinguish intermediate quantities (v⋆

i , ṽn+1
i , vn+1

i ), and

some effort is made to group them, but the adornments do not have any intrinsic meaning.
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Variable Where Type Meaning
I - matrix identity matrix

∆t - scalar time step size
h - scalar grid resolution
D
Dt

- - material derivative
g - vector gravity
σ - matrix Cauchy stress
ρ - scalar density
v - vector velocity
mp particles† scalar particle mass
V 0
p particles† scalar initial particle volume

αnp , α
n+1
p particles† scalar yield surface size

qnp , q
n+1
p particles† scalar hardening state

Bn
p , B

n+1
p particles† matrix affine momentum

Fnp , F
n+1
p particles matrix deformation gradient

FE,np , FE,n+1
p particles† matrix elastic deformation gradient

FP,np , FP,n+1
p particles† matrix plastic deformation gradient

vnp , v
n+1
p particles† vector particle velocity

xnp , x
n+1
p particles† vector particle position

Cn
p particles matrix particle velocity derivative (APIC)

Dn
p particles matrix affine inertia tensor (APIC)

F̂n+1
p particles matrix deformation gradient, before plasticity

F̂E,n+1
p particles matrix elastic deformation gradient, before plasticity

F̂P,n+1
p particles matrix plastic deformation gradient, before plasticity
(∇v)p particles matrix grid-based velocity gradient
vp particles vector particle affine velocity field
Zp particles matrix → matrix project to yield surface
mn
i grid scalar grid node mass

vni grid vector rasterized velocity
vn+1
i grid vector final grid velocity, no friction

ṽn+1
i grid vector final grid velocity
v⋆i grid vector velocity with explicit forces
xni grid vector Cartesian grid node locations
xn+1
i grid vector grid positions moved by vn+1

i
fi grid matrix → vector compute forces
λk - scalar Lagrange multiplier for enforcing collison
Gk - vector → scalar collision criterion
∇Gki grid vector → vector collision criterion gradient
N̂ - scalar → scalar interpolation spline
N - vector → scalar tensor product interpolation spline
∇N - vector → scalar tensor product interpolation spline gradient
wip mixed scalar interpolation weight
∇wip mixed vector interpolation weight gradient

Table 4.1: †These quantities are state on particles.

Superscripts E and P are used to denote the elastic or plastic part of a deformation

gradient (FE,n
p , FP,n

p ).

Generally, quantities that live on particles, have indicators of time, and those that lack

other adornments are state variables (αnp , FE,n
p , xnp ; not vni , F̂E,n+1

p ). There are two exceptions
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to this. We do not store the deformation gradient itself, so Fn
p for us is not a state variable.

The mass mp is a state variable, but we omit a time indicator because it never changes.

State variables are those that persist from the end of one time step to the beginning of the

next.

Particle state. In MPM, the primary representation of state is stored on particles. We

maintain mass mp, position xnp , velocity vnp , and affine momentum Bn
p , which is related to

the velocity spatial derivatives. The extra matrix Bn
p stored per particle is used for APIC

transfers [JSS15]. Up to a constant scale, this quantity approximates the spatial derivative

of the grid velocity field at the end of the previous time step.

We also store the elastic and plastic components of the deformation gradient, FE,n
p and

FP,n
p . Note that while we use FE,n

p to compute forces, FP,n
p is not required and need not be

stored. For plasticity, we must store one parameter αnp , which defines the size of the yield

surface and may change per particle as a result of hardening.

Weights. We will frequently need to transfer information between particle and grid

representations. We do this by associating with each particle p and grid node i a weight wnip

which determines how strongly the particle and node interact. If the particle and grid node

are close together, the weight should be large. If the particle and node are farther apart,

the weight should be small. We compute our weights based on a kernel as wnip = N(xnp −xni ),

where xnp and xni are the locations of the particle and grid node locations. We will also need

the spatial derivatives of our weights, ∇wnip = ∇N(xnp −xni ), when we compute forces. We use

time indices on the fixed grid node locations xni to distinguish them from estimates (such as

xn+1
i ) of where those nodes would end up if evolved with node velocities. We also indicate

time on weights wnip since they were computed using quantities at this time.

N̂(x)

Figure 4.6: Cubic (blue) and quadratic (red) splines used for computing interpolation
weights.
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Choosing a kernel N leads to trade offs with respect to smoothness, computational effi-

ciency, and the width of the stencil. We prefer tensor product splines for their computational

efficiency, as they are relatively inexpensive to compute, differentiate, and store. The mul-

tilinear kernel typically employed for FLIP fluid solvers is the simplest of these options,

but it is not suitable here. There are two reasons for this (see [SKB08]). The first is that

∇wnip would be discontinuous and produce discontinuous forces. The second is that ∇wnip
may be far from zero when wnip ≈ 0, leading to large forces being applied to grid nodes with

tiny weights. Quadratic and cubic b-splines work well, and we choose cubic b-splines for

convenience. Our kernel is

N̂(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ∣x∣3 − ∣x∣2 + 2

3 0 ≤ ∣x∣ < 1

1
6(2 − ∣x∣)3 1 ≤ ∣x∣ < 2

0 2 ≤ ∣x∣

(4.5)

N(u) = N̂(ux
h

)N̂(
uy
h

)N̂(uz
h

), (4.6)

where h is the grid spacing. Sometimes the quadratic kernel is also useful. We plot the

quadratic and cubic kernels in Figure 4.6. We use the cubic spline for all of our examples.

Initialization. Particle locations are initialized with Poisson disk sampling. Initial

values for mp, xnp , and vnp = v(xnp) are chosen based on the needs of the example, with

v(x) the desired initial velocity field. Bn
p is initialized so that Cn

p = Bn
p(Dn

p)−1 = ∇v is the

gradient of the initial velocity field and Dn
p is computed from (4.8). Our initial setups have no

deformation, so FE,n
p = FE,n+1

p = I. We initialize our hardening parameter with qnp = 0, from

which we can compute αnp using (4.30) and (4.31). Initial particle volume V 0
p is computed

from the seeding density.
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4.3.1 Transfer to grid

The first step of each time step is the transfer of state particles to the fixed Cartesian grid.

We begin by distributing the mass of each particle to its neighboring grid nodes.

mn
i = ∑

p

wnipmp (4.7)

Grid nodes far enough from any particle that they do not receive mass are inactive and do

not participate in any further computations.

The next task is to transfer velocity. We do this using the APIC transfers in [JSS15].

The velocity state on the particle is represented by vnp and Bn
p . The affine momentum Bn

p is

related to the velocity spatial derivatives Cn
p through Cn

p = Bn
p(Dn

p)−1, where Dn
p is a matrix

that behaves as an inertia tensor and is

Dn
p = ∑

i

wnip(xni − xnp)(xni − xnp)T =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h2

3 I cubic

h2

4 I quadratic
(4.8)

where h is the grid spacing. Although the definition of the inertia tensor Dn
p depends on the

relative positions of the grid nodes and particles through a relatively high-degree polynomial

(both explicitly and through wnip), it simplifies to a constant multiple of the identity in the

cases of the quadratic and cubic splines presented.

With Cn
p , we can define an affine velocity field vp(x) for particle p by vp(x) = vp+Cn

p(x−

xnp). The momentum contribution from particle p to node i is wnipmpvp(xni ). This leads to

the full form of the velocity transfer,

vni =
1

mn
i

∑
p

wnipmp(vnp +Bn
p(Dn

p)−1(xni − xnp)) (4.9)

4.3.2 Grid update

We next update velocities on the grid. This involves applying forces and processing for

collisions with scripted objects. We present two approaches for doing this, explicit and
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implicit. For most of our examples, explicit is more efficient, since we are running with

relatively low stiffness. For stiff examples, implicit becomes advisable. We defer the implicit

formulation until (§4.3.6).

Explicit. The simplest approach for handling forces is explicit. In this case, we compute

and apply an explicit force (§4.4)

v⋆

i = vni +
∆t

mn
i

fi(⟨FE,n
p ⟩). (4.10)

After forces are applied, we can process the velocities for collisions v⋆

i → vn+1
i and then apply

friction vn+1
i → ṽn+1

i . The collision processing is described in (§4.6).

E = 1kPa

E = 10kPa

E = 100kPa

E = 1000kPa

Figure 4.7: Sand with a very low Young’s modulus tends to be bouncy. The behavior is
more like sand as the Young’s modulus approaches its physical value.
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4.3.3 Transfer to particles

Next we transfer velocities from the grid back to particles. Since we are using APIC, we

need to compute new velocities vn+1
p and affine momentum Bn+1

p . Velocities are interpolated

back to particles in the straightforward way

vn+1
p = ∑

i

wnipṽ
n+1
i . (4.11)

The transfer for Bn+1
p is

Bn+1
p = ∑

i

wnipṽ
n+1
i (xni − xnp)T . (4.12)

4.3.4 Update particle state

Next, we update the particle’s position and deformation gradient. Positions are updated by

interpolating moving grid node positions

xn+1
p = ∑

i

wnipx
n+1
i . (4.13)

Since the particles move with the flow, the material derivative in Equation 4.3 is just a normal

time derivative and a simple difference yields the particle deformation gradient update

Fn+1
p = Fn

p +∆t(∇v)pFn
p (4.14)

Figure 4.8: A shovel digs through sand and pushes it aside.

67



Figure 4.9: A stick is dragged through a bed of sand, tracing out a butterfly shape in the
sand.

where (∇v)p is calculated by differentiating (4.11)

(∇v)p = ∑
i

vn+1
i (∇wnip)T . (4.15)

Note that we only store the elastic (FE,n
p ) and plastic (FP,n

p ) parts of Fn
p rather than Fn

p itself.

These are related by Fn
p = FE,n

p FP,n
p (§4.5). During this evolution step, we assume that the

plastic part is not changing (F̂n+1
p = Fn

p ), which gives us the rule

F̂E,n+1
p = FE,n

p +∆t(∇v)pFE,n
p . (4.16)

The plastic update is covered in (§4.5).

Note that the update of the particle position and deformation gradient use, vn+1
i , while

the velocity and related quantities use ṽn+1
i . The use of the frictional velocity in the updates

of positional updates resulted in less stable behavior with implicit time stepping. With

explicit time stepping, ṽn+1
i could be used for both position and velocity related updates.

4.3.5 Plasticity, hardening

The final step is to apply plasticity and hardening. Plasticity is performed by projecting

the elastic deformation gradient to its yield surface, an action denoted by Z(⋅, ⋅) which we

describe in detail later (§4.5). Plasticity does not change the full deformation gradient, so
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that Fn+1
p = F̂E,n+1

p F̂P,n+1
p = FE,n+1

p FP,n+1
p . This allows us to update the plastic part.

FE,n+1
p = Z(F̂E,n+1

p , αnp) (4.17)

FP,n+1
p = (FE,n+1

p )−1F̂E,n+1
p F̂P,n+1

p (4.18)

The last step is hardening which updates αnp → αn+1
p (§4.5.3).

4.3.6 Implicit velocity update

The implicit velocity update is

vn+1
i = vni +

∆t

mn
i

fi(⟨FE,n+1
p ⟩) +∑

k

∇Gkiλk (4.19)

subject to the additional conditions Gk ≥ 0, λk ≥ 0, and Gkλk = 0. Here, Gk(⟨xn+1
i ⟩) ≥ 0, with

xn+1
i = xni +∆tvn+1

i , is the collision-free criterion for all object-node collision pairs k. (§4.6)

These forces are implicit, since FE,n+1
p depends on vn+1

i through (4.16), (4.15), and (4.17).

As in the explicit case, we complete the grid update by applying friction vn+1
i → ṽn+1

i and

described in (§4.6).

Note that we are implicit in plasticity, but we are not implicit in hardening or friction. In

the absence of plasticity, these are just the Karush-Kuhn-Tucker (KKT) conditions [NW06]

for minimization. Unlike solving a minimization problem, however, our linear systems are

not generally symmetric, and we do not have an objective with which to do line searches.

Solving the system. Since the collision constraints are independent, we use the pro-

jection method to eliminate the collisions. We solve the nonlinear system of equations using

Newton’s method. Note that because of plasticity, the systems will in general be asymmet-

ric, and we solve with GMRES. These systems usually converge sufficiently in three or fewer

iterations of GMRES, rarely (< 1%) taking more than four iterations. We limit GMRES to

15 iterations and allow multiple Newton iterations.
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4.3.7 Initialization

Particle locations are initialized with Poisson disk sampling. Initial values for mp, xnp , and

vnp = v(xnp) are chosen based on the needs of the example, with v(x) the desired initial

velocity field. Bn
p is initialized so that Cn

p = Bn
p(Dn

p)−1 = ∇v is the gradient of the initial

velocity field and Dn
p is computed from (4.8). Our initial setups have no deformation, so

FE,n
p = FE,n+1

p = I. We initialize our hardening parameter with qnp = 0, from which we can

compute αnp using (4.30) and (4.31). Initial particle volume V 0
p is computed from the seeding

density.

4.4 Forces

Here we derive the MPM forces on Eulerian grid nodes fi(⟨FE
p ⟩). These forces are obtained

by differentiating a discretization of the potential energy with respect to the motion of grid

nodes.

Figure 4.10: Sand is poured from a spout into a pile in a lab (left) and with our method
(right).
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4.4.1 Continuous setting

Elastic materials are characterized by their ability to store potential energy and then release

it by doing work to cause motion (kinetic energy). Let Ψ be the total potential energy

stored by a material at a given time. In a real material, potential energy is stored locally

in response to deformation. This is called energy density, or energy per unit volume, and

represented by ψ. Since this depends only on the local deformation, we can write ψ(F). The

function ψ(F) captures the essential information about the way an elastic material responds

to deformation. This relationship depends on the material; we choose our model in (§4.4.3).

In much the same way that total mass is computed by integrating the density of a material

over its volume Ω, potential energy is computed by integrating energy density Ψ = ∫Ωψ dV .

4.4.2 Discrete setting

We discretize the potential energy with a sum on particles,

Ψ = ∑
p

V 0
p ψ(FE

p ) (4.20)

Note that V 0
p is the volume of material attributed to a particle in the initial configuration.

Only the elastic portion of the deformation gradient FE
p contributes to the energy [BW08].

If the state of the system is described by a finite number of positions x1, . . . ,xm (picture

a bunch of point masses connected by springs), then the potential energy can be written

Φ(x1, . . . ,xm). Moving one of these points causes the amount of energy to change (energy is

required to stretch or compress the springs). The springs will push back on these points so

as to release this built-up energy. In this way, the force felt by particle j will be fj = − ∂Ψ
∂xj

.

With MPM, grid nodes are temporarily Lagrangian, and can be moved to define the force.

If the current grid node velocity is vi, then its position can be approximated as xi = xni +∆tvi.

Considering a different ending position implies a different velocity to get there. These node

velocities are used in (4.15) to compute (∇v)p, which is in turn used by (4.16) to compute

a new deformation gradient FE
p . This deformation gradient will be used to compute energy
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τ1

τ2

τ1

τ2

τ1

τ2

Figure 4.11: Sand particles are colored based on their current plastic deformation behavior.
The plot shows the locations of these particles in principal stress space. Green particles lie
within the yield surface and experience no plasticity. Blue particles are projected to the yield
surface along a direction that avoids volume change. Red particles are experiencing tension
and are projected to the tip of the conical yield surface; these particles are separating freely
with no stress.

density using a model ψ(FE
p ), which finally gives us total potential energy. In this way, the

potential energy of the material can be expressed in terms of the locations of the grid nodes.

We can use this relationship, summarized below, to compute forces on grid nodes.

Ψ(⟨xi⟩) = ∑
p

V 0
p ψ(FE

p (⟨xi⟩)) (4.21)

FE
p (⟨xi⟩) = (I +∑

i

(xi − xni )(∇wnip)T)FE,n
p (4.22)

This relationship can be differentiated to deduce the desired equation for computing grid

node forces

fi(⟨FE
p ⟩) = −

∂Ψ

∂xi
= −∑

p

V 0
p (
∂ψ

∂F
(FE

p ))(FE,n
p )T∇wnip. (4.23)

Note that FE
p is the function parameter but FE,n

p is a known value which is not changing

during the current time step. Also note that all deformation is assumed to be elastic. When

computing the force, the effect of further plastic flow is ignored [BW08].

Gravity. We include gravity as an additional term in (4.23)

f gravi = ∑
p

wnipmpg =mn
i g. (4.24)
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4.4.3 Constitutive model

We adopt the energy density ψ(F) from Mast et al. [Mas13]. This model uses the same

energy density as St. Venant-Kirchhoff, but it replaces the left Cauchy Green strain with

the Hencky strain 1
2 log(FFT ). This not only removes the failures of traditional St. Venant

Kirchhoff under large deformation, but also makes a number of aspects of the Drucker-Prager

plastic projection very simple (see (§4.14.5)). The model is most conveniently written in

terms of the singular value decomposition F = UΣVT as

ψ(F) = µ tr ((log Σ)2) + 1

2
λ(tr(log Σ))2

, (4.25)

where Σ is diagonal so log Σ is computed by taking the logarithm of the diagonal entries.

The force computation (4.23) requires the derivative of this, which is

∂ψ

∂F
(F) = U(2µΣ−1 log Σ + λ tr(log Σ)Σ−1)VT . (4.26)

4.5 Plasticity

Elastic and plastic deformation gradient. We represent plasticity by factoring defor-

mation gradient into elastic and plastic parts as Fn
p = FE,n

p FP,n
p . The deformation gradient

is a measure of how a material has locally rotated and deformed due to its motion. By

factoring the deformation gradient in this way, we divide this deformation history into two

pieces. The plastic part, FP,n
p , represents the portion of the material’s history that has been

forgotten. If a metal rod is bent into a coiled spring, the rod forgets that it used to be

straight; the coiled spring behaves as though it was always coiled (see Figure 4.3). The

twisting and bending involved in this operation is stored in FP,n
p . If the spring is compressed

slightly, the spring will feel strain (deformation). This is elastic deformation, which is stored

in FE,n
p . The spring remembers this deformation. In response, the material exerts stress to

try to restore itself to its coiled shape. In this way, we see that only FE,n
p should be used to

compute stress. The full history of the metal rod consists of being bent into a spring shape
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(FP,n
p ) and then being compressed (FE,n

p ).

4.5.1 Projecting to the yield surface

The only algorithmic aspect of our plasticity treatment that has not yet been defined is our

function Z(FE
p , αp), which projects the deformation gradient FE

p to the yield surface defined

by the parameter αp. The Drucker-Prager plasticity model is based on Coulomb friction

interactions between sand particles. In the continuum setting, this means that the shear

stress cannot be larger than a coefficient of friction times the normal stress. This results in

a simple constraint on the principal stresses which we derive in (§4.11.1).

In the space of principal stress, the yield surface looks like a cone (see Figure 4.13).

There are three possible cases that must be considered. If the stress lies within the yield

Figure 4.12: Varying the friction angle changes the shape of a pile of sand. A larger angle
produces a taller sand pile with steeper sides.
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τ1

τ2

Figure 4.13: The yield surface has the shape of a cone with its tip at the origin, which
corresponds to no stress. Green particles are inside the yield surface and exhibit an elastic
response. Blue particles are under compression but experience more shear than friction al-
lows. These configurations are projected to the yield surface along a direction that avoids
volume change. Red particles are experiencing tension and are projected to the tip of the
conical yield surface. These particles separate freely without stress.

surface (Case I), then there is static friction between sand particles, and no plasticity occurs.

If the sand is undergoing expansion (Case II), then there is no resistance to motion; this

corresponds to the tip of the cone. Otherwise, there is dynamic friction (Case III), and we
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Figure 4.14: Three particles in a collapsing pile of sand are colored for reference. As these
particles deform plasticly, their yield surface changes as they undergo hardening, resulting in
a wider cone for projection. Hardening causes each particle to have its own yield surface.

should project to the side of the cone. Examples of these cases in an actual simulation can

be seen in Figure 4.11.

As with energy density, plasticity is most conveniently defined in terms of the singular

value decomposition of the deformation gradient, FE
p = UpΣpVp

T . Let εp = log Σp and

ε̂p = εp−
tr(εp)
d

I δγp= ∥ε̂p∥F +
dλ + 2µ

2µ
tr(εp)αp (4.27)

where d is the spatial dimension and δγp is the amount of plastic deformation. If δγp ≤ 0, then

the candidate FE
p is already in the yield surface and should be returned without modification

(Case I). If ∥ε̂p∥F = 0 or tr(εp) > 0, then we need to project to the cone’s tip (Case II), in

which case we should return UpVp
T . Otherwise, we should project to the cone surface (Case

III) by returning UpeHpVp
T , where

Hp = εp − δγp
ε̂p

∥ε̂p∥F
(4.28)

Note that the operations log Σp and eHp involve diagonal matrices, so that the logarithm

and exponential functions are simply applied to the diagonal elements. Note also that the

result of this projection Z has a straightforward singular value decomposition (Up and Vp do

not change), and this decomposition will be required when computing the force. We avoid

the extra decomposition by returning the diagonal part (Σp, I, or eHp) rather than the full

result (FE
p , UpVp

T , or UpeHpVp
T ).
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4.5.2 Note on preventing undesired volume change

The method as described has the desirable feature that sand is prevented from compressing

arbitrarily as a byproduct of losing volume in the plasticity projection. To see this, note that

a change in det(FE
p ) corresponds to a change in volume of the elastic deformation. In Case

I, FE
p is unchanged, so volume is not changed. In Case II, the sand expands, and volume

should be gained. In Case III, the sand deforms plasticly and an associative flow rule [BW08]

would lead to excessive volume gain. Instead, noting that tr(ε̂p) = 0, the Drucker-Prager

model uses a non-associative flow to preserve volume during the plastic projection

det(Upe
HpVp

T ) = etr(Hp) = etr(εp) = det(Σp) = det(FE
p ).

The key to retaining volume in this case is to ensure that tr(Hp) = tr(εp), which means the

projection to the cone should locate the closest point on the cone that does not change the

trace, rather than the closest point on the cone. We discuss this in more detail in (§4.12.2).

4.5.3 Hardening

We adopt the hardening model of Mast et al. [MAM14], where plastic deformation can

increase the friction between sand particles. The amount of hardening depends on the

amount of correction that occurred due to plasticity. In Case I, no plasticity occurred, so

δqp = 0. In Case II, all of the stress was removed, so δqp = ∥εE,n+1
p ∥F . In Case III, the amount

of plasticity that occurred was δqp = δγp. In each case, δqp ≥ 0. We define our hardening

update using

qn+1
p = qnp + δqp (4.29)

φF p = h0 + (h1q
n+1
p − h3)e−h2q

n+1
p (4.30)

αn+1
p =

√
2

3

2 sinφF p
3 − sinφF p

(4.31)
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Figure 4.15: Comparison on notched sand block fall. Initial (left), ours (middle), and
Narain et al. [2010] (right).

The quantity qnp is the hardening state, φF p is often referred to as the friction angle, the

internal coefficient of friction is tanφF p, and (4.30) models a curve with a maximum and an

asymptote. Plausible values of φF p lie in [0, π2 ), with φF p = 0 behaving as a fluid. Feasible

hardening parameters satisfy h0 > h3 ≥ 0 and h1, h2 ≥ 0. The values we use are listed in

Table 4.2. Figure 4.14 illustrates the change in yield surface as particles undergo hardening

in 2D.

4.6 Collisions

We separate our collision response into two distinct steps: resolving the actual collision and

applying friction. The motivation for this is that the collision response can be added into

the implicit solve, but doing the same for friction would be more difficult. In the explicit

case, this separation does not matter.

We use a signed distance function φ(x) to represent each obstacle, with the convention

that negative is inside the object and positive is outside. If we could process particles for

collisions directly, then the collision constraint would be φ(xn+1
p ) ≥ 0. In practice, processing

collisions directly on particles produces poor results, since it causes xn+1
p and FE,n+1

p to get

out of sync. This can cause objects to slowly seep into the ground. Instead, it is necessary

to process collisions using the grid velocities.

Since xn+1
p will be computed based on vn+1

i , one could adjust vn+1
i to enforce φ(xn+1

p ) ≥ 0.

While this would likely lead to good results, it complicates collision processing in both the
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explicit and implicit cases. Instead, we process collisions against the nodes themselves as

in [GSS15]. This is difficult because φ(xn+1
i ) ≥ 0 does not make sense. There should be

grid nodes inside obstacles. A set of constraints Gk(⟨xn+1
i ⟩) ≥ 0 or Gk(⟨xn+1

i ⟩) = 0 on grid

nodes is needed that avoid collisions for particles, at least approximately, but which can be

applied independently per grid node in an straightforward manner. This depends on the

type of collision being applied. We support three types of collisions: sticky, slipping, and

separating. Note that a grid node must have received mass during the transfer in order to

be considered for a collision constraint of any type.

Sticky. Sticky collisions enforce that a point remains fixed to a particular reference

point on the collision object. We enforce this by requiring vn+1
i = vn+1

b , where vn+1
b is the

velocity of the collision object at the candidate position. In terms of positions, this is

Gk(xn+1
i ) = xn+1

i − xni − ∆tvn+1
b = 0. The constraint can be enforced by directly setting the

velocity.

Separating. Separating constraints have two cases. If a node is already inside a collision

body (φ(xni ) < 0), then it should not penetrate any deeper, φ(xn+1
i ) ≥ φ(xni ). If a node is

originally outside the object (φ(xni ) ≥ 0) then it should remain φ(xn+1
i ) ≥ 0. These cases can

be combined into the constraint φ(xn+1
i ) ≥ min(φ(xni ),0). Note that movement along and

away from the collision object are fully permitted by this rule, even if the collision surface

is curved. An unsatisfied constraint of the form φ(xi) ≥ a or φ(xi) = a can be enforced by

xi ← xi − (φ(xi) − a)∇φ(xi), noting that ∇φ is the normal direction.

Slipping. For a slipping constraint, we do not want to allow separation for existing

collisions, but sliding along the surface is permitted. If a node is already inside a collision

body (φ(xni ) < 0), then it should stay at its current depth, φ(xn+1
i ) = φ(xni ). If a node is

originally outside the object (φ(xni ) ≥ 0) then no collision constraint is enforced. By not

enforcing this constraint for non-penetrating nodes, penetration becomes possible and leads

to enforcement in the next time step. Slipping constraints are enforced as in the separating

case.

With a mathematical description for the constraints for all cases and a method for directly
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enforcing those constraints, direct enforcement (v⋆

i → vn+1
i ) is all that is required for the

explicit case. The implicit case uses the constraints Gk that have been defined in order to

couple collision enforcement with force application (§4.3.6).

4.6.1 Friction

To apply friction, we look not at the manner in which collisions were enforced but the effect

that this enforcement had on the velocities. In the explicit case, velocities before (v⋆

i ) and

after (vn+1
i ) are already available. ∆vi = vn+1

i − v⋆

i is the velocity change attributable to

collisions.

In the implicit case, the collision contribution is from the last term of Equation 4.19.

We compute the velocity estimate before forces as v⋆

i = vni + ∆t
mn

i
fi(⟨FE,n+1

p ⟩). Although vn+1
i

would be the after-collision velocity if the implicit solve had converged, this is not often done

in practice. Instead, we repeat collision processing on v⋆

i to compute the difference for ∆vi.

For both cases, ∆vi is the velocity change that collisions caused. Corresponding to this,

an impulse j =mn
i ∆vi must have been applied. Since each node participates in at most one

collision (the constraints do not mix), the normal direction n is known. (If it were not, it

could be approximated as n = j
∥j∥ .) This divides velocity into normal and tangential parts:

vin = n ⋅vn+1
i and vit = vn+1

i −nvin. The tangential direction is t = vit

∥vit∥
. The Coulomb friction

law limits the amount of friction that can be applied to µb∥j∥, where µb is the coefficient of

friction. If ∥vit∥ ≤ µb
mn

i
∥j∥, then friction suffices to eliminate tangential motion entirely, and

ṽn+1
i = nvin. Otherwise, ṽn+1

i = vn+1
i − µb

mn
i
∥j∥t.

4.7 Rendering

Zhu and Bridson [ZB05] render sand with a reconstructed surface. Narain et al. [NGL10]

associate a number of render points sampled near each particle for high resolution rendering.

In our examples we have a sufficient number of simulated particles to simply render each

particle as a matte sphere. The color of each particle is randomly chosen from yellow (RGB
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ρ E ν Friction Angle Hardening Parameters
Castle 2200 3.537 × 105 0.3 — 35/0/0.2/10

Effect of friction angle 2200 3.537 × 105 0.3 20/25/30/35/40 —
Hourglass 2200 3.537 × 105 0.3 — 35/9/0.3/10
Butterfly 2200 3.537 × 105 0.3 — 35/9/0.2/10

Butterfly close 2200 3.537 × 105 0.3 — 35/9/0.2/10
Raking 2200 3.537 × 105 0.3 — 35/9/0.2/10

Raking close 2200 3.537 × 105 0.3 — 35/9/0.2/10
Pile from spout 2200 3.537 × 105 0.3 30 —

Splash 1582 3.537 × 106 0.3 22 —
Shovel 2200 3.537 × 105 0.3 — 35/9/0.2/10

Effect of Young’s Modulus 2200 103,4,5,6 0.3 — 35/9/0.3/10

Table 4.2: Sand material parameters. Friction angle φF and hardening parameters h0, h1,
and h3 are listed in degrees for convenience; all formulas in the text use radians.

225/169/95 with a probability of 0.85), brown (RGB 107/84/30 with a probability of 0.1)

and white (RGB 255/255/255 with a probability of 0.05) to further improve realism. All

scenes were rendered using SideFX’s Mantra. For scenes with rapidly flowing sand (such as

the hourglass) we turned on motion blur where appropriate.

4.8 Results

Flowing and Piling. We demonstrate the accuracy of our model by showing the character-

istic behaviors of sand flowing and piling. In Figure 4.1, we simulate sand flowing inside an

hourglass. The sand forms a smooth granular flow and piles up at the bottom. Figure 4.10

shows a stream of sand inflow hitting a high frictional surface. We compare this simu-

lation with real world footage. Our model successfully captures the interesting avalanche

instability [Yos03] of this experiment.

Easy Tuning. We list the parameters used in our examples in Table 4.2 and the runtime

performance of those simulations in Table 4.3. In Figure 4.12, we simulate columns of dry

sand with different friction angles collapsing on the ground. Different friction angles directly

affect the interaction between sand grains, therefore the final piling angle. While the real

Young’s modulus of sand is 3.537 × 107, we found that sometimes choosing a moderately

smaller value does not change the visual appearance. In Figure 4.7, we show 2D inflow sim-

ulations with different Young’s modulus. A moderately smaller Young’s modulus improves

the efficiency of the implicit solve. However, the material may exhibit jiggling behavior if it
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is too small. We assert physically accurate Young’s modulus is always the best choice unless

an artistic elastic effect is desirable.

Two-way Coupling. The benefits of using MPM include automatic self collision and

coupling between different materials. In Figure 1.7, we show an elastic ball interacting with

a dry sand castle. MPM naturally handles the two-way coupling without requiring any

additional treatment other than assigning different constitutive models to different particles.

Drawing and Scooping. We further demonstrate the versatility of our method by

performing various tasks in a sand box. Figure 4.9 shows drawing a butterfly with a wooden

stick. Figure 4.4 shows raking sand in a Zen garden. Figure 4.8 shows scooping sand.

APIC Stability. Our method benefits from the APIC particle/grid transfers [Jia15,

JSS15] due to its stability and low numerical dissipation. In Figure 4.16, we run a 2D inflow

simulation and compare our result with Mast et al. [Mas13, MAM14] where a traditional

FLIP transfer scheme is used. With the same material parameters and time step sizes, our

method does not suffer from the unstable ringing instability like FLIP does. We further

show the robustness and stability of our method in a 3D energetic scenario. In Figure 1.5, a

rigid ball is dropped into a 1m× 1m× 0.35m sand box with impact speed 6m/s. The impact

dynamics are stable and almost noise-free, resulting in a smooth and symmetric crown splash

visual appearance.

Scheme FPS Min/Frame ∆t Particles Threads CPU ∆x Grid
Castle Implicit 72 6.80 1 × 10−3 7.95 × 105 4 †2.67GHz 0.01 300 × 140 × 200

Friction angle Explicit 120 4.10 1 × 10−4 1.20 × 106 4 ‡3.33GHz 0.001 432 × 144 × 432

Hourglass Explicit 48 2.00 1 × 10−4 4.60 × 105 12 ⋆3.00GHz 0.0025 160 × 360 × 160

Butterfly Explicit 24 10.31 2.5 × 10−4 3.84 × 106 10 ⋆3.00GHz 0.0045 220 × 55 × 220

Butterfly close Explicit 48 21.23 1 × 10−4 4.10 × 106 8 ⋆3.00GHz 0.0014 280 × 140 × 210

Raking Explicit 24 9.78 2.5 × 10−4 3.84 × 106 10 ⋆3.00GHz 0.0045 220 × 55 × 220

Raking close Explicit 24 32.84 1 × 10−4 4.30 × 106 8 ○2.90GHz 0.0021 336 × 96 × 288

Pile from spout Implicit 120 4.34 1.5 × 10−4 9.94 × 105 8 †2.67GHz 0.000 83 240 × 96 × 240

Splash Explicit 240 9.27 5 × 10−5 6.60 × 106 8 §3.47GHz 0.0078 256 × 256 × 256

Shovel Explicit 24 24.8 1 × 10−4 1.96 × 106 4 §3.47GHz 0.005 160 × 100 × 100

E c Implicit 24 4.9 × 10−3 7.5 × 10−4 7.40 × 102 1 †2.67GHz 0.016 256 × 64

Table 4.3: Sand simulation performance. Note that ∆t denotes the maximum allowed time
step size. The actual ∆t is adaptive and may be restricted by CFL condition when the particle
velocities are high. In all of our simulations we use a CFL number of 1, i.e., we don’t allow
particles to move further than ∆x in a time step. CPU types used are: †Intel Xeon X5650,
‡Intel Xeon W3680, ⋆Intel Xeon E5-2690 v2, ○Intel Xeon E5-2690, §Intel Xeon X5690.
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Figure 4.16: Sand is poured into a pile with APIC (left) and FLIP (right) transfers. FLIP
tends to accumulate spurious velocities on particles. In some cases, FLIP leads to unstable
behavior, as was the case in this simulation.

Comparison with the state-of-the-art method. We compare the result of our

method with the algorithm proposed by Narain et al. [NGL10] for the collapse of a column

of granular material. The results shown in Figure 4.15 are at 150× 100× 150 grid resolution.

Performance data for this example at a variety of resolutions is shown in Table 4.4. Two

particle counts (initial and final) are listed for Narain et al., since their particle counts tend

to increase over time due to particle splitting and merging. Although their algorithm runs

8.7 times faster at the highest resolution, our algorithm avoids the stair-casing artifact and

is able to produce a less viscous flow of dry cohesion-less granular materials.

4.9 Discussion and limitations

Limitations. There are methods that are much faster, for example the position based dy-

namics approach in Macklin et al. [MMC14] or other existing continuum approaches such

as Narain et al. [NGL10]. However, when realism and intuitively designed parameters are
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Grid resolution Method Sec/Frame Particles

10 × 15 × 10
Ours 0.085 1.5K

Narain 0.019 1.8 − 2.4K

20 × 30 × 20
Ours 1.1 12K

Narain 0.16 13 − 20K

50 × 75 × 50
Ours 33 188K

Narain 3.4 194 − 330K

100 × 150 × 100
Ours 540 1.5M

Narain 62 1.5 − 2.7M

Table 4.4: Performance comparison with Narain et al. [2010].

more important than raw performance, our method provides an alternative with competitive

computational expense. Also, although the framework would generalize to a wide range of

yield surfaces and elastic potentials, we only investigated the Drucker-Prager model. How-

ever, the Drucker-Prager cone is only equivalent to the Coulomb friction shear/normal-stress

relation in two dimensions. In three dimensions, the elastic regime is described by the more

complicated region in the Mohr-Coulomb model, but the Drucker-Prager model is a decent

approximation [Mas13].

Future work. In future work, we will investigate a wider range of plastic flows and

yield surfaces and the effect of cohesion in modeling soil or wet-sands. We would also like to

investigate the importance of hardening to visual simulation of sand.

Discussion. We note that explicit time stepping was often faster than implicit time

stepping. Although implicit steps are generally larger than explicit, the cost required to

solve the nonlinear equations of the implicit step was often larger than just taking more

inexpensive explicit steps. Improvements in stability of explicit integration may be partly

due to a better position update and APIC transfers providing more stability than FLIP/PIC

blends as in Stomakhin et al. [SSC13], whose implicit scheme also benefited from a symmetric

treatment. Tuning time step and solver tolerances proved difficult to optimize, requiring

different values for different examples.
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4.10 Derivatives of elasticity and plasticity

As part of an implicit formulation, we encounter the combination

Y(F) = ∂ψ
∂F

(Z(F, α)) = W(Z(F, α)), (4.32)

where W(F) = ∂ψ
∂F(F). This corresponds to projecting a deformation gradient for plastic-

ity and then using the result as part of a force computation. This function Y must be

differentiated, resulting in the rank-four tensor

M = ∂Y

∂F
(F). (4.33)

The tensor M has 34 = 81 entries and no symmetries. Both the construction and application

of M are somewhat expensive, and both can be avoided.

If F = UΣVT , then it turns out that Z(F, α) = UẐ(Σ, α)VT and W(F) = UŴ(Σ)VT ,

where Ẑ(Σ, α) and Ŵ(Σ) are diagonal matrices. It follows then that Y(F) = UŶ(Σ)VT ,

with Ŷ(Σ) = Ŵ(Ẑ(Σ, α)), where Ŷ(Σ) is also a diagonal matrix. To be able to carry

out these steps, it is required of the energy density function ψ, that it depends only on the

singular values of F. In essence, we need to be able to define ψ̂ such that, ψ̂(Σ) = ψ(F).

This allows us to write the definition of Ŵ as Ŵ(Σ) = ∂ψ̂
∂Σ(Σ).

Note that we have taken advantage of these relationships to avoid computing the sin-

gular value decomposition more often than necessary. Indeed, Ŵ is implemented by En-

ergy_derivative, and Ẑ is implemented by Project.
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Since these functions are rather simple in diagonal space, it might not be too surprising

that the derivatives are also simpler there. Let M̂ be the diagonal space version of M,

defined by

Mijkl = M̂rsuvUirVjsUkuVlv, (4.34)

where index notation is used and summation is implied. In the pseudocode, the operation

A = M̂ ∶ T (4.35)

is requested. This is equivalent to Aij = M̂ijklTkl. What remains is to determine the structure

of M̂. The way that this is done follows from the approach taken in [SHS12], but we

summarize the result here.

Introducing the auxiliary variables Y ij,Dij, Sij, the nonzero entries of M̂ are (with no

summation implied)

M̂iijj = Y ij =
∂Ŷii
∂Σjj

(4.36)

M̂ijij =
Dij + Sij

2
i ≠ j (4.37)

M̂ijji =
Dij − Sij

2
i ≠ j (4.38)

Dij =
Ŷii − Ŷjj
Σii −Σjj

(4.39)

Sij =
Ŷii + Ŷjj
Σii +Σjj

(4.40)

Note that Dij = Dji and Sij = Sji, so that M̂ijij = M̂jiji and M̂ijji = M̂jiij. Thus, there are

only 9+3+3 = 15 distinct nonzero entries to compute, and 9+6+6 = 21 multiplications (plus

12 additions) are required to apply the tensor. Of the computations required, Y ij and Dij

merit further attention. Sij can be computed directly, since division by zero is not a concern

there.

First we describe the computation of Y. Since Ŷ is the composition of two functions, Y
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is computed using the chain rule. Note that both Ŵ and W are evaluated at Ẑ = Ẑ(Σ, α).

Y ij =
∂Ŷii
∂Σjj

= ∑
k

∂Ŵii

∂Σkk

∂Ẑkk
∂Σjj

= ∑
k

W ikZkj, (4.41)

where the matrices Y, W, and Z represent the derivatives of the functions Ŷ, Ŵ, and

Ẑ when diagonal matrices are treated as functions taking vector and returning a vector.

Differentiating Ŵ gives

W = Ẑ−1(2µI − 2µ ln(Ẑ) + λooT − λ tr(ln(Ẑ))I)Ẑ−1, (4.42)

where o is the all-ones vector.

Next, we need to differentiate the projection to get Z. There are three cases to consider.

In Case I, Z = I. In Case II, Z = 0. This leaves only Case III, in which case

ε = diag(lnΣ) w = diag(Σ−1) k = tr(lnΣ) s = ε − k
d

o ŝ = s

∥s∥
p = αk(dλ + 2µ)

2µ∥s∥
(4.43)

Z = Ẑ((1 + 2p

d
o − p

k
ε)wT − p(I − ŝŝT )Σ−1). (4.44)

With this, Y can be readily computed as Y = W Z by Equation (4.41).

Finally, for Dij, we can avoid potential numerical problems in the case where Σii ≈ Σjj

by writing

Dij =
Ŷii − Ŷjj
Σii −Σjj

= (
Ŷii − Ŷjj
Ẑii − Ẑjj

)(
Ẑii − Ẑjj
Σii −Σjj

). (4.45)
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This works as long as both factors can be robustly computed. Consider the first term.

Ŷii =
2µ ln Ẑii

Ẑii
+ λ tr(ln Ẑ)

Ẑii
(4.46)

Ŷii − Ŷjj =
2µ(ln(Ẑii) − ln(Ẑjj))

Ẑii
−
λ tr(ln Ẑ) + 2µ ln Ẑjj

ẐiiẐjj
(Ẑii − Ẑjj) (4.47)

Ŷii − Ŷjj
Ẑii − Ẑjj

= 2µ

Ẑii

ln(Ẑii) − ln(Ẑjj)
Ẑii − Ẑjj

−
λ tr(ln Ẑ) + 2µ ln Ẑjj

ẐiiẐjj
(4.48)

The only term that presents further difficulties is the divided difference on the natural log.

This can be computed by noting

ln(x) − ln(y)
x − y

= 1

y

ln(w + 1)
w

x = (w + 1)y (4.49)

= 1

y

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ∣w∣ < ε

log1p(w)/w ∣w∣ ≥ ε
(4.50)

Here we have made use of the log1p library routine, which is designed to be robust in this

case.

The next term that must be considered is the divided difference on Ẑ. Following the

same general procedure yields

Ẑii − Ẑjj
Σii −Σjj

= (1 − δγ

∥ε̂∥F
)(

exp(Hii) − exp(Hjj)
Hii −Hjj

)(
ln(Σii) − ln(Σjj)

Σii −Σjj

). (4.51)

The first term is not a problem, and we have already seen how to handle the last term. For

the middle term,

ex − ey
x − y

= ey e
w − 1

w
x = y +w (4.52)

= ey
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ∣w∣ < ε

expm1(w)/w ∣w∣ ≥ ε
(4.53)

where in this case we have made use of the expm1 library function.
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4.11 Yield surface and plastic flow

In the continuum conception of sand, mechanical interactions are expressed through elastic-

ity, modified with plasticity to model the effects of frictional contact. We use the Drucker-

Prager plasticity model, which is built to enforce that shear stresses do not exceed a coeffi-

cient times normal stresses in magnitude. In Section 4.11.1 we detail the connection between

Coulomb friction, and the Drucker-Prager stress condition.

The stress condition defines a notion of admissibility for states of stress. In stress space,

this is a region whose boundary is often referred to as the yield surface. This places a

constraint on the constitutive model defining the mechanical response of the body. The

multiplicative decomposition of the deformation gradient into elastic and plastic parts is a

means for designing a constitutive model that meets these constraints. For states of stress in

the interior of the feasible region, there is no plastic flow since the elastic constitutive model

suffices. However, as a state on the boundary of the region (yield surface) is approached,

plastic flow will be defined as means of modifying the constitutive model to satisfy the

constraints. In Section 4.12 we derive the plastic flow as a means of satisfying the Drucker-

Prager stress constraint.

4.11.1 Drucker-Prager yield surface derivation

x

n

d

−fnn

ffd

t

Consider a Coulomb friction interaction between two grains in con-

tact. If α̃ is the coefficient of friction, then the frictional force ff can

only be as large as the coefficient of friction times the normal force fn:

ff ≤ α̃fn. The Drucker-Prager model generalizes this to a continuum.

At any point in the continuum body, the Cauchy stress σ expresses

the local mechanical interactions in the material. Specifically, at point

x, σ(x) relates the force per area (or traction) t that material on one

side of an imaginary plane with normal n exerts on material on the other side, as t = σ(x)n.

If we consider this interaction to be from friction, we can use the Coulomb model to relate the

frictional force (per area) ff = dT t to the normal force (per area) fn = −nT t as dT t ≤ −α̃nT t.

89



Here, d is the normalized projection of the traction t into the plane orthogonal to n. In

terms of σ, this is expressed as dTσ(x)n ≤ −α̃nTσ(x)n.

The frictional force (per area) ff = dT t is often referred to as the shear stress (at x, in

direction n) and the normal force (per area) is often referred to as the normal stress (at x,

in direction n). If we consider all shear stresses to arise from friction, then we get a notion

of states of stress consistent with the Coulomb model of frictional interaction. That is, we

consider the stress field σ(x) as admissible (or consistent with the Coulomb model) if

dTσ(x)n ≤ −α̃nTσ(x)n (4.54)

for all x in the material and for arbitrary directions d and n with dTn = 0.

When the normal stress nTσ(x)n is positive, the material on one side of the imaginary

plane is pulling on the material on the other side. This does not arise from a contact/frictional

interaction and is a cohesive interaction. Note that Equation (4.54) implies that in the

presence of a positive normal stress, the shear stress would have to be zero. In fact, it can

be shown that it is not possible to be consistent with Equation (4.54) (for all d and n) with

a positive normal stress, and thus cohesion is not possible with this model.

4.11.1.1 Reformulation of stress admissibility

Consider the two dimensional case and states of stress consistent with Inequality (4.54). In

this case, given normal n, there are only two directions d orthogonal to it, namely d = ±Rn

where

R =
⎛
⎜
⎝

0 −1

1 0

⎞
⎟
⎠
. (4.55)

In this case, satisfaction of Inequality (4.54) is achieved when

± nTRσ(x)n + α̃nTσ(x)n ≤ 0 (4.56)
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for all directions n. Since the Cauchy stress must be symmetric (by conservation of angular

momentum), it has an eigen decomposition

σ = QDQT = Q
⎛
⎜
⎝

s1

s2

⎞
⎟
⎠

QT (4.57)

where Q is a rotation matrix. Rewriting Inequality (4.56) in terms of the eigen decomposition

gives

± nTRQDQTn + α̃nTQDQTn ≤ 0 (4.58)

and since R and Q commute (2D rotations commute), satisfaction of Inequality (4.56) is the

same as

ñT (±RD + α̃D) ñ ≤ 0 (4.59)

where ñ = Qn and

RD =
⎛
⎜
⎝

−s2

s1

⎞
⎟
⎠
. (4.60)

Since Inequality (4.59) must be true for all ñ and choice of sign, it is equivalent to require

that the maximum of

F (ñ, h) = ñT (hRD + α̃D) ñ (4.61)

subject to ∥ñ∥2 = 1 and h2 = 1, is less than 0. Using the method of Lagrange multipliers it

can be shown that this maximum is given by

s1 + s2

2
α̃ + ∣s1 − s2∣

2

√
1 + α̃2. (4.62)

Dividing by
√

1+α̃2
√

2
we obtain that

(s1 + s2)
α̃

√
2
√

1 + α̃2
+ ∣s1 − s2∣√

2
≤ 0

tr(σ(x))α + ∥σ(x) − tr(σ(x))
2

I∥
F

≤ 0 (4.63)
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Where ∥ ⋅ ∥F is the Frobenius norm and α = α̃
√

2
√

1+α̃2
.

If we solve the analogous maximization problem in three dimensions we obtain the Mohr-

Coulomb yield surface [Mas13]. However, there is a simple generalization of Inequality (4.63)

that works for both two and three dimensions given by

tr(σ(x))α + ∥σ(x) − tr(σ(x))
d

I∥
F

≤ 0. (4.64)

where d is the number of space dimensions. The Drucker-Prager model uses Inequality (4.64)

in both two and three dimensions, because it is easier to work with than the Mohr-Coulomb

model in 3D and it is a decent approximation of Mohr-Coulomb in that case.

In summary, the Drucker-Prager model for the stress field σ requires that

y(σ(x)) ≤ 0 (4.65)

for all points x in the domain occupied by the material, where y(σ) = tr(σ)α+∥σ − tr(σ)
d I∥F

and d is the number of space dimensions. Note that this function is actually defined in terms

of the eigenvalues of σ as y(σ) = tr(D)α + ∥D − tr(D)
d I∥F .

4.11.2 Kirchhoff stress

The Kirchhoff stress τ is related to the Cauchy stress σ as τ = Jσ where J = det(F) is the

determinant of the deformation gradient F. It is often mathematically convenient to express

the Drucker-Prager stress condition in terms of this stress measure. We will find this useful

when deriving and analyzing properties of the plastic flow. Expressing the Drucker-Prager

condition in terms of τ is simply the requirement that y(τ (x)) ≤ 0 for all x in the domain.

4.11.3 Yield surface

We can think of the condition y(τ ) = tr(τ )α + ∥τ − tr(τ)
d I∥F ≤ 0 as defining a feasible region

in stress space. Since the constraint can be evaluated as a function of the principal stresses,
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we can visualize it as the cone (τ1 + τ2)α + ∣τ1−τ2∣√

2
≤ 0 for 2D problems, or the cone (τ1 + τ2 +

τ3)α +
√
∑3
j=1 (τj −∑3

i=1
τi
3
)2 ≤ 0 for 3D problems. The plastic flow will be chosen as a means

of satisfying this constraint. When the stress is in the feasible region, there is no plastic flow.

However, when the stress reaches the boundary of this region, the plastic flow will be chosen

in a manner that prevents the stress from leaving the feasible region. For this reason, the

boundary of the feasible region is called the yield surface, since plastic “yield” occurs when

the state of stress reaches it.

4.12 Plastic flow

The plastic flow is characterized by the multiplicative decomposition of the deformation

gradient F = FEFP , however it is convenient for analysis and constitutive modeling to

consider evolution of the left elastic Cauchy-Green strain bE = FEFET = FCP −1
FT where

CP = FP TFP is the right plastic Cauchy-Green strain. We will use l = ∇v for brevity through-

out. Recalling that the deformation then evolves as DF
Dt = lF, DbE

Dt = lbE +bElT +FDCP −1

Dt FT .

The term FDCP −1

Dt FT is the Lie derivative of the of bE with respect to v so we denote it

as LvbE. The Lie derivative of bE is its rate of change independent of deformation in the

flow, and it will be determined to define the plastic flow as a means of satisfying the stress

feasibility condition in Inequality (4.65). For example, when the stress is inside the feasible

region, LvbE = 0. However, when the stress is on the yield surface, it will be chosen to

guarantee that ẏ(t) ≤ 0, thus preventing any future elastic stresses attaining values outside

the feasible region. This can be done in infinitely many ways, however care must be taken

to avoid artifacts associated with non-volume preserving plastic flows, as well as to guaran-

tee that the plastic flow increases entropy (or decreases the total energy). To illustrate the

different choices of LvbE in satisfying stress feasibility, we denote it as LvbE = −γL where

L is an arbitrary matrix. With this view, L is the direction of the Lie derivative and γ is its

magnitude. Given any direction L, we can choose magnitude γ to guarantee that ẏ(t) ≤ 0.
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4.12.1 Effect of plastic flow on stress criteria

Consider how the stress criteria function y(τ ) varies with the elastic state as a function of

time: y(τ (bE(t))). The plastic flow will effect this evolution via

ẏ(t) = ∂y

∂τ
(τ (bE(t))) ∶ ∂τ

∂bE
(bE(t)) ∶ DbE

Dt
(t)

= ∂y

∂τ
(τ (bE(t))) ∶ ∂τ

∂bE
(bE(t)) ∶ (lbE + bElT + LvbE)

(4.66)

Here, the ∶ operator denotes a generalized dot product to express the chain rule when dif-

ferentiating the composition of scalar and matrix valued functions of matrix argument. The

material derivative D
Dt appears in the chain rule because we are considering how y evolves

with time for one particle of the continuum. Defining β as the rate of change of y in the

absence of plasticity (LvbE = 0) gives

β = ∂y

∂τ
(τ (bE(t))) ∶ ∂τ

∂bE
(bE(t)) ∶ (lbE + bElT ) (4.67)

and using the convention that LvbE = −γL gives

ẏ(t) = β − γ ∂y
∂τ

(τ (bE(t))) ∶ ∂τ
∂bE

(bE(t)) ∶ L. (4.68)

When the stress criteria is satisfied, we have y(τ (bE(t))) < 0 and there is no plastic flow,

(LvbE = 0). However, when we reach the boundary of the feasible region in stress space,

y(τ (bE(t))) = 0, then we will leave the region if β > 0. In this case, we choose γ so that

ẏ(t) = 0. This defines the plastic flow as

LvbE =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if y(τ (bE)) < 0 or if y(τ (bE)) = 0 and β ≤ 0

−γL, if y(τ (bE)) = 0 and β > 0
(4.69)

where γ is chosen as

γ = β
∂y
∂τ (τ (bE(t))) ∶

∂τ
∂bE (bE(t)) ∶ L

(4.70)
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4.12.2 Choosing the direction of the plastic flow

In order to insure that stress never leaves the feasible region, the plastic flow direction L only

needs to have non-zero component ∂y
∂τ (τ (bE(t))) ∶

∂τ
∂bE (bE(t)) ∶ L. Thus, for a given value of

bE, there are infinitely many choices of L that will suffice in preventing stresses outside the

feasible region. However, care must be taken to insure that the plastic flow does not decrease

the entropy of the system. Or more specifically, that it does not instantaneously increase

the rate of change of the total energy and thus violate the second law of thermodynamics

[GS08]. Notably, the rate of change of total energy would be zero in the absence of plasticity

so violating this would cause an increase in the total energy. Physically we would expect the

plasticity to decrease the total energy over time. We next discuss the choice of L in light of

the entropy concerns.

The total energy E(t) =KE(t) + PE(t) satisfies (see Section 4.14)

E(t +∆t) −E(t) =W t(t,∆t) − ∫
t+∆t

t
∫

Ω0
ẇP (X, s)dXds (4.71)

whereW t(t,∆t) is the work done by external traction t boundary conditions and ẇP = τ ∶ lP

where lP = −1
2LvbEbE

−1. In the absence of plasticity, the work done by the mechanical

stresses is equal to the negative change in the potential, and this leads to exact conservation

of energy (minus the effect of the boundary conditions and external forcing). In the case of

plasticity, the total energy may go up or down from the work done by the mechanical stress,

and this term quantifies that. Specifically, the plastic flow must be designed in a way that

ensures non-negative ẇP , otherwise total energy may increase due to plasticity, which would

violate the second law of thermodynamics.

The principle of maximum plastic dissipation [BW08] seeks to design the plastic flow

in a way that maximizes ẇP to respect this concern. This leads to an associative plastic

flow where lP = γ ∂y∂τ or LvbE = −2γ ∂y∂τ bE. Unfortunately, the choice of matrix L in LvbE =

−γL will effect the volume change in the plastic flow. Specifically, it can be shown that if

tr(L) = 0, then the plastic flow will be volume preserving with JP = det(FP ) = 1. Since

the elastic potential seeks to preserve det(FE) = 1 by design, a volume preserving plastic
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flow will produce an overall flow that tends to preserve volume. However, without tr(L) = 0

there is a potential for excessive volume loss or gain in the model and indeed simply using

LvbE = −2γ ∂y∂τ bE will tend to cause excessive volume gain during sheering [Mas13]. However,

using the non-associative rule LvbE = −γGbE, with G = ∂y
∂τ −

1
dtr(

∂y
∂τ )I, the deviatoric part of

∂y
∂τ , remedies the artifact. Furthermore, we show in Section 4.14.6 that the modification still

guarantees that ẇP is non-negative and thus satisfies the second law of thermodynamics. In

summary, the plasticity is expressed through LvbE as

LvbE =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if y(τ (bE)) < 0 or if y(τ (bE)) = 0 and β ≤ 0

−γGbE, with G = ∂y
∂τ −

1
dtr(

∂y
∂τ )I, if y(τ (bE)) = 0 and β > 0

(4.72)

where, given L = GbE, γ is defined as in Equation (4.70).

4.13 Derivation of return mapping algorithm from plastic flow

The return mapping algorithm is the discrete equivalent to solving for a strain that satisfies

the plastic flow rule in Equation (4.72) and that lies in the Drucker-Prager yield surface. In

this section first we outline the method of Simo and Meschke [SM93] to derive the discrete

equations from their continuous versions, and then we show how they can be solved leading

to a procedure that computes Z(FE, α). This procedure starts by assuming there is no

plastic flow and a return mapping algorithm is derived from the flow equations that shows

how to project back to the yield surface if the assumption of no plastic flow is invalid.

Consider the evolution of bE from time tn to time tn+1 = tn + ∆t. We consider this

evolution per particle, and thus it is useful to take a Lagrangian view. We outline the

notation used in the Lagrangian view in Section 4.14. Specifically useful here is the flow

map φ ∶ Ω0 × [0, T ] → Rd, and its relation to the deformation gradient F = ∂φ
∂X . Define the

time tn configuration of the material as Ωtn = {x̃∣x̃ = φ(X, tn) for some X ∈ Ω0} and define

φ̃ ∶ Ωtn × [tn, T ] → Rd as φ̃(x̃, t) = φ(φ−1(x̃, tn), t). Intuitively, φ̃ defines the deformation as
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if the time tn configuration Ωtn of the material is the reference configuration, rather than Ω0

as in the standard Lagrangian view. This is some times called an updated Lagrangian view.

While the deformation gradient F defines the deformation from the initial configuration (Ω0)

to the time t configuration (Ωt), the Jacobian F̃ = ∂φ̃
∂x̃ defines the deformation from the time

tn configuration (Ωtn) to the time t configuration (Ωt), where t ≥ tn. Also these are related

as F = F̃Fn, or more precisely F(X, t) = F̃(φ(X, tn), t)F(X, tn) for all X ∈ Ω0.

Define bE∗ = F̃−1bEF̃−T . Let us consider the difference between the evolution of bE∗

and bE in absence of plasticity at time tn < t < tn+1. By the definition of bE∗, DbE∗

Dt =

−2γF̃−1GF̃bE∗, therefore in absence of plasticity bE∗ is constant since DbE∗

Dt = 0. In contrast

bE is not constant in absence of plasticity, as bE ∣t = F̃∣
t
bE ∣tnF̃T ∣

t
. In other words, bE∗ is

constant along characteristics except for the effect of plasticity, but at the same time bE

would also be stretched by the flow. This isolation of the plastic part allows for a more

intuitive discretization. Specifically, combined with the initial value bE∗∣tn = bE ∣tn , we can

use the exponential approximation bE∗∣tn+1 ≈ exp(−2δγ F̃−1GF̃)∣
tn+1

bE ∣tn where δγ ≥ 0 will

be used to enforce the constraint y(τ (bE ∣tn+1)) ≤ 0. Multiplying the approximation by F̃∣
tn+1

on the left and F̃T ∣
tn+1

on the right, and recalling the definition of bE∗, we obtain

bE ∣
tn+1

= F̃∣
tn+1

bE∗∣
tn+1

F̃T ∣
tn+1

≈ F̃∣
tn+1

exp(−2δγ F̃−1GF̃)∣
tn+1

bE ∣
tn

F̃T ∣
tn+1

= F̃∣
tn+1

F̃−1∣
tn+1

exp(−2δγG)∣tn+1F̃∣
tn+1

bE ∣
tn

F̃T ∣
tn+1

= exp(−2δγG)∣tn+1F̃∣
tn+1

bE ∣
tn

F̃T ∣
tn+1

.

Using the notation B̂E = F̃∣
tn+1

bE ∣tnF̃T ∣
tn+1

, we are looking for a solution pair δγ and bE ∣tn+1

such that

bE ∣
tn+1

= exp (−2δγG(τ (bE ∣
tn+1

))) B̂E, (4.73)

and constraint y(τ (bE ∣tn+1)) ≤ 0 is satisfied. Note that B̂E is the elastic strain we would get

without the effect of plasticity. For example if y(τ (B̂E)) ≤ 0, then δγ = 0 and bE ∣tn+1 = B̂E

97



is the trivial solution pair and there is no plastic flow. In this sense, we can see that B̂E can

be considered as the trial elastic state obtained without any plastic flow. If this does not

satisfy the constraint, δγ and bE ∣tn+1 must be defined to “project" B̂E to bE ∣tn+1 .

We use this process to define the projection Z(FE, α). FE is considered the trial elastic

state, one obtained in the absence of plastic flow. Thus, B̂E = FEFET and we seek the

solution of Equation 4.73 to define the projection to bE ∣tn+1 , from which we can determine

Z(FE, α). This can be done most easily by considering the singular value decomposition of

FE.

If the singular value decomposition of FE is given by FE = UEΣEVET , then B̂E =

FEFET = UEΣE2
UET . It can be shown that U diagonalizes G(τ (bE ∣tn+1)) and bE ∣tn+1 (i.e.

G(τ (bE ∣tn+1)) = UEĜ(ΣE,n+1)UET , and bE ∣tn+1 = UE (ΣE,n+1)2
UET ), then we may write

(4.73) as

UE (ΣE,n+1)2
UET = exp (−2δγUEĜ(ΣE,n+1)UET)UEΣE2

UET = UE exp (−2δγĜ(ΣE,n+1))ΣE2
UET .

(4.74)

Multiplying both sides of Equation (4.74) by UET on the left and by UE on the right, and

taking log results in

2 ln (ΣE,n+1) = −2δγĜ(ΣE) + 2 ln (ΣE) . (4.75)

The model that we choose uses the Hencky-strain as a measure of deformation. By defining

εE ∶= lnΣE and HE ∶= lnΣE,n+1, (4.76)

we may simplify and rearrange Equation (4.75)

εE −HE = δγĜ. (4.77)

This is our discrete flow rule. In the return mapping algorithm, we want to solve for HE
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satisfies Equation (4.77) subject to the constraint

y(τ (HE)) ≤ 0. (4.78)

Solving Equation (4.77) and (4.78) can be seen as a ray-cone intersection problem, see Figure

9 in the paper. Before proceeding, we introduce the deviatoric operator to act on matrices:

dev(A) ∶= A − 1

d
tr(A)I, (4.79)

i.e. dev(A) gives the deviatoric part of any arbitrary square matrix A of size d × d. Equa-

tion (4.77) has no solution if tr(εE) ≥ 0. In this case the sand is in extension and we

project to the tip HE = 0. We have G = dev( ∂y∂τ ), and
∂y
∂τ = αI + dev(τ)

∥dev(τ)∥F
, thus G is sim-

ply dev(τ)
∥dev(τ)∥F

. In principal space this becomes Ĝ = dev(τ̂)
∥dev(τ̂)∥F

, where τ̂ and Ĝ are diagonal.

From (§4.14.5) we have τ̂ = ∂ψ
∂εE

= 2µHE + λ tr(HE)I because we use the energy density

ψ(εE) = µ tr((εE)2) + 1
2λ tr(εE)2. Thus Ĝ = dev(HE

)

∥dev(HE)∥F
. Using Equation (4.77), we can see

that tr(ε) = tr(HE), since tr(Ĝ) = 0. Thus dev(εE)−dev(HE) = δγ dev(HE
)

∥dev(HE)∥F
, and collecting

like terms we have dev(εE) = (1 + δγ
∥dev(HE)∥F

)dev(HE). Thus Ĝ = dev(εE)
∥dev(εE)∥F

. Then plugging

the equation for the ray HE = εE−δγ dev(εE)
∥dev(εE)∥F

, into the equation for the cone y(τ (HE)) = 0,

and solving for δγ, we obtain

δγ = ∥dev(εE)∥F + (dλ + 2µ

2µ
) tr(εE)α. (4.80)

If δγ ≤ 0 we intersect the cone from the inside and thus don’t need to project and have

HE = εE. Otherwise we project to the cone and HE = εE − δγε̂E. Finally, we return

Z(FE, α) = UeHE
VT .

4.14 Energy and plasticity

Here we discuss the notion of total, kinetic and potential energy in the context of elastoplas-

ticity. It is important to carefully consider the effect the plastic flow will have on the rate
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of change of total energy. The plastic flow should not increase the rate of change of total

energy. Using a hyperelastic constitutive model for the elastic stress implies that the rate of

change of total energy in the absence of plasticity will be zero. We take a Lagrangian view of

the continuum for these derivations. We define a number of quantities here for completeness

but refer the reader to the texts of Gonzalez and Stuart [GS08] and Bonet and Wood [BW08]

for more detail on Lagrangian and Eulerian descriptions of the continuum.

We use φ ∶ Ω0 × [0, T ] → Rd to denote the flow map of the material (where d = 2

or 3 is the number of space dimensions). The Lagrangian view identifies particles of the

continuum with their initial positions. Ω0 is the set of all initial positions of particles in the

material. We use X to represent points in Ω0. We use Ωt = {x∣ x = φ(X, t) for some X ∈ Ω0}

to represent the time t configuration of the material. In other words, φ(⋅, t) ∶ Ω0 → Ωt

and φ(X, t) is the location of particle X at time t. Thus φ(X, t) is the trajectory of the

material point X over time, and V(X, t) = ∂φ
∂t (X, t) is its velocity and A(X, t) = ∂2φ

∂t2 (X, t)

is its acceleration. Note also that the deformation gradient is related to the flow map as

F = ∂φ
∂X . The flow map is invertible (a fundamental assumption of continuum mechanics) and

its inverse φ−1 can be used to define any function over Ω0 as a function over Ωt. For example,

the Eulerian velocity is related to the flow map as v(x, t) = V(φ−1(x, t), t). We can also define

a Lagrangian version of the mass density R ∶ Ω0×[0, T ] → R with R(X, t) = ρ(φ(X, t), t) and

ρ(x, t) = R(φ−1(x, t), t).

The Lagrangian view presents more options when defining stresses, for example while the

Cauchy stress (σ) relates area weighted normals in the current configuration (Ωt) to surface

tractions, the first Piola-Kirchhoff Stress (P) relates area weighted normals in the initial

configuration (Ω0) to surface tractions. We will use the first Piola-Kirchhoff stress tensor in

our discussion of energy.

We can also express the governing equations in the Lagrangian view. Conservation of

mass, in the Lagrangian view is

R(X, t)J(X, t) = R(X,0), X ∈ Ω0, t ∈ [0, T ] (4.81)
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where recall that J(X, t) = det(F(X, t)). Conservation of linear momentum results in force

density balance

R(X,0)A(X, t) = ∇X ⋅P(X, t), X ∈ Ω0, t ∈ [0, T ]. (4.82)

Note that this equation has units of force density but is otherwise just Newton’s second law

generalized to the continuum.

4.14.1 Work done by elastic deformation

The work done by the elastic forces (W e) is defined to be (see [BW08])

W e(T ) = ∫
T

0
∫

Ω0
Pij,jVidXdt. (4.83)

Here we use the convention that Pij,jk represents ∂Pij

∂Xk
and unless otherwise stated, we use

the Einstein summation conventions where repeated indices are summed over their ranges.

With this in mind, the work can be rewritten by using integration by parts, this satisfies

∫
T

0
∫

Ω0
Pij,jVidXdt = ∫

T

0
∫

Ω0
(PijVi),j −PijVi,jdXdt = ∫

T

0
∫
∂Ω0

tiVidS(X) − ∫
Ω0
PijVi,jdXdt

(4.84)

where ti = PijNj is the applied traction boundary condition. Now since

d

dt ∫Ω0
ψ(F(X, t))dX = ∫

Ω0

dψ

dFij
(F(X, t))Vi,j(X, t)dX = ∫

Ω0
PijVi,jdX (4.85)

we can say

W e(T ) =W t(T ) −∫
T

0

d

dt∫Ω0
ψ(F(X, t))dXdt

=W t(T ) −∫
Ω0
ψ(F(X, T ))dX +∫

Ω0
ψ(F(X,0))dX

=W t(T ) − PE(T ) + PE(0)
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where W t(T ) = ∫
T

0 ∫∂Ω0 tiVidS(X)dt is defined to be the work done by the boundary forces

and PE(t) is the elastic potential at time t. The kinetic energy KE(t) is

KE(t) = ∫
Ω0

1

2
V(X, t)T (R(X,0)V(X, t))dX (4.86)

The rate of change of kinetic energy density is:

d

dt
[1

2
V(X, t)T (R(X,0)V(X, t))] = R(X,0)A(X, t) ⋅V(X, t) (4.87)

and assuming

R(X,0)A(X, t) = ∇X ⋅P (4.88)

we get

∫
T

0
∫

Ω0

d

dt
[1

2
V(X, t)T (R(X,0)V(X, t))]dXdt =KE(T ) −KE(0) =W e (4.89)

and also

KE(T ) −KE(0) + PE(T ) − PE(0) =W t(T ) (4.90)

4.14.2 Plastic flow rate and potential

With plasticity we have F = FEFP and Ḟ = ḞEFP +FEḞP . Also,

ḞE = ḞFP −1 −FEḞPFP −1 (4.91)

etc. The elastic potential energy is defined as

PE(t) = ∫
Ω0

ψ(FE(X, t))dX (4.92)
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and its rate of change is

d

dt
PE(t) = ∫

Ω0

∂ψ

∂Fij
(FE(X, t))ḞE

ij (X, t)dX

= ∫
Ω0

∂ψ

∂Fij
(FE)F P

jk

−T
Ḟik − FE

ki

T ∂ψ

∂Fij
(FE)F P

jl

−T
Ḟ P
kldX.

The integral above motivates the definition of the first Piola-Kirchhoff Stress in the presence

of plasticity as Pik = ∂ψ
∂Fij

(FE)F P
jk

−T or

P(X, t) = ∂ψ
∂F

(FE(X, t))FP −T (X, t). (4.93)

With this definition, the work done by the mechanical forces is

W e(T ) = ∫
T

0
∫

Ω0

Pij,j(X, t)Vi(X, t)dXdt

=W t(T ) − ∫
T

0
∫

Ω0

∂ψ

∂Fij
(FE)ḞikF P

jk

−T
dXdt

4.14.3 Stress power density

Define the stress power density as

ẇ(X, t) = τij(X, t)lij(X, t) = Pij(X, t)Ḟij(X, t) (4.94)

with l = ḞF−1 and τ = Jσ = PFT . Also define

ẇe(X, t) = τij(X, t)leij(X, t) =
∂ψ

∂Fij
(FE(X, t))ḞE

ij (X, t) (4.95)

with lE = ḞEFE−1. ẇe(X, t) is then the rate of change in elastic potential density since

d

dt
PE(t) = ∫

Ω0

∂ψ

∂Fij
(FE(X, t))ḞE

ij (X, t)dX = ∫
Ω0

ẇe(X, t)dX (4.96)
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Next, defining

ẇp(X, t) = FE
ki

T ∂ψ

∂Fij
(FE)F P

jl

−T
Ḟ P
kl = PilFE

ik Ḟ
P
kl (4.97)

gives

ẇ(X, t) = ẇe(X, t) + ẇp(X, t). (4.98)

The term FEḞP is referred to as the plastic rate of deformation [BW08]. The work can then

expressed as

W e(T ) = ∫
T

0
∫
∂Ω0

tiVidS(X) − ∫
Ω0
PijVi,jdXdt =W t(T ) − ∫

T

0
∫

Ω0

ẇe(X, t) + ẇp(X, t)dXdt

(4.99)

and then also

KE(T ) −KE(0) =W t(T ) − ∫
T

0
∫

Ω0

ẇe(X, t) + ẇp(X, t)dXdt

=W t(T ) − PE(T ) + PE(0) − ∫
T

0
∫

Ω0

ẇp(X, t)dXdt

and thus

KE(T ) −KE(0) + PE(T ) − PE(0) =W t(T ) − ∫
T

0
∫

Ω0

ẇp(X, t)dXdt. (4.100)

This motivates why ẇp(X, t) is often referred to as “plastic dissipation rate”.

4.14.4 Hencky strain derivative lemma

Consider symmetric positive definite matrix B ∈ Rd×d with d = 2 or 3. Use B = UΛUT to

denote the eigenvalue decomposition of B where Λ is diagonal and positive definite. Define

ε(B) = 1
2 ln(B) = Uln(Λ

1
2 )UT . For example if B = FFT , then ε is the Hencky strain. We

can also write B(ε) = e2ε.

Lemma: Suppose that f(B) is a scalar function of B which is invariant under coordinate

changes, and f̂(ε) = f(B(ε)), then ∂f̂
∂ε = 2 ∂f

∂BB.

Proof: First note that f̂ will also be invariant under coordinate change and therefore
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can be written as a function of the invariants of ε. That is f̂(ε) = f̃(I1, I2, I3). This means

we have ∂f̂
∂ε =

∂f̃
∂I1

∂I1
∂ε +

∂f̃
∂I2

∂I2
∂ε +

∂f̃
∂J

∂J
∂ε where ∂I1

∂ε = I, ∂I2∂ε = I1I−εT , ∂J∂ε = Jε−T . Therefore, if ε is

diagonal then ∂f̂
∂ε will be as well. Note that from frame invariance we have f̂(ε) = f̂(RTεR)

for any rotation R. Which means

∂f̂

∂ε
∣
ε

∶ δε = ∂f̂
∂ε

∣
RT εR

∶ RT δεR

∂f̂

∂ε
∣
ε

∶ δε = R
∂f̂

∂ε
∣
RT εR

RT ∶ δε

∂f̂

∂ε
∣
ε

= R
∂f̂

∂ε
∣
RT εR

RT

R
∂f̂

∂ε
∣
ε

RT = ∂f̂
∂ε

∣
RT εR

Plugging in R = U we have U∂f̂
∂ε ∣εU

T = ∂f̂
∂ε ∣UT εU

and is therefore diagonal.

Deriving

∂f

∂B
∶ δB = ∂f̂

∂ε
∶ δε

= UT ∂f̂

∂ε
U ∶ UT δεU

= UT ∂f̂

∂ε
U ∶ diag(UT δεU)

From ε = 1
2U log(Λ)UT we have

δε = 1

2
(δU log(Λ)UT +UδΛΛ−1UT +U log(Λ)δUT )

UT δεU = 1

2
(UT δU log(Λ) + δΛΛ−1 + log(Λ)δUTU)

Since U is orthonormal UT δU is skew and therefore diag(UT δεU) = diag(δΛ)Λ−1. Similarly
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from B = UΛUT we have diag(UT δBU) = 1
2diag(δΛ). Continuing the derivation we have

∂f

∂B
∶ δB = 1

2
UT ∂f̂

∂ε
U ∶ diag(δΛ)Λ−1

= 1

2
UT ∂f̂

∂ε
U ∶ diag(UT δBU)Λ−1

= 1

2
UT ∂f̂

∂ε
UΛ−1 ∶ diag(UT δBU)

= 1

2
UT ∂f̂

∂ε
UΛ−1 ∶ UT δBU

= 1

2

∂f̂

∂ε
UΛ−1UT ∶ δB

= 1

2

∂f̂

∂ε
B−1 ∶ δB

Thus ∂f
∂B = 1

2
∂f̂
∂εB

−1 which yields ∂f̂
∂ε = 2 ∂f

∂BB.

4.14.5 The relationship between Kirchhoff stress and Hencky strain

Claim: For any isotropic constitutive model ψ, τ = ∂ψ
∂ε .

Proof: We have

P = ∂ψ
∂F

P = ∂ψ̃

∂B
F +FT ∂ψ̃

∂B

P = 2
∂ψ̃

∂B
F

PFT = 2
∂ψ̃

∂B
FFT

τ = 2
∂ψ̃

∂B
B.

By the Hencky strain derivative lemma applied to ψ̃(B) we have τ = ∂ψ
∂ε .
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4.14.6 Plastic Dissipation is Nonnegative

Recall that we have previously defined s = τ − 1
d tr(τ ), and that G = ∂y

∂τ −
1
dtr(

∂y
∂τ )I, i.e. it

satisfies G = −γLvbEbE
−1 (e.g. see Section (§4.12.2)). Therefore

ẇP = τ ∶ lP

= −τ ∶ 1

2
LvbEbE

−1

= γτ ∶ G

= γ

∥s∥F
τ ∶ s

= γ

∥s∥F
(s + 1

d
tr(τ )I) ∶ s

= γ∥s∥F .

Thus all that remains to prove is that γ ≥ 0. To do this we use the constraint that ∂y
∂t ≤ 0

when y = 0.

∂y

∂t
= ∂y

∂τ
∶ ∂τ
∂bE

∶ ḂE

= ∂y

∂τ
∶ ∂τ
∂bE

∶ (lbE + bElT − 2γ
∂y

∂τ
bE)

= ∂y

∂τ
∶ ∂τ
∂bE

∶ (lbE + bElT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η

−2γ
∂y

∂τ
∶ ∂τ
∂bE

∶ ( ∂y
∂τ

bE)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ν

.

So

0 = η − 2γν Ô⇒ γ = η

2ν

Note that η is what ∂y
∂t would be in the absence of plastic flow. Thus if η ≤ 0 the material is

deforming in such a way that the yield function is going down, and therefore is undergoing
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elastic deformation which means γ = 0. Otherwise η > 0 and

ν = ∂y

∂bE
∶ (2

s

∥s∥F
bE)

= 2
∂y

∂bE
bE ∶ s

∥s∥F
.

Applying the Hencky strain derivative lemma to y we have

ν = ∂y

∂εE
∶ s

∥s∥F

= ∂y

∂τ
∶ ∂τ
∂εE

∶ s

∥s∥F

= ( s

∥s∥
+ η̃I) ∶ C ∶ s

∥s∥F

= 2µ∥s∥F .
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