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Abstract of the Dissertation

Virtual Node Algorithms for Stokes Interface

Problems

by

Diego C. Assêncio

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor Giovanni Zocchi, Chair

We present two numerical methods for the solution of the Stokes equations designed

to handle both interfacial discontinuities, geometrically irregular flow domains and discon-

tinuous fluid properties such as viscosity and density. The methods are efficient, easy to

implement and yield second order accurate, discretely divergence free velocities. We call

these methods Virtual Node Algorithms. The first method handles the case in which the

fluid viscosity is continuous across the interfaces, while the second method handles the

case in which the fluid viscosity is discontinuous across the interfaces. In both cases, we

assume the fluid viscosity to be uniformly constant over the spatial extension of each fluid.

We discretize the Stokes equations using an embedded approach on a uniform MAC-grid

employing virtual nodes at interfaces and boundaries. Interfaces and boundaries are rep-

resented with a hybrid Lagrangian/level set method. For the continuous viscosity case, we

rewrite the Stokes equations as three Poisson equations and use the techniques developed

in Bedrossian et al. (2010) [1] to impose jump and boundary conditions. We also use a

final Poisson equation to enforce a discrete divergence-free condition. All four linear sys-

tems involved are symmetric positive definite with three of the four having the standard

5-point Laplace stencil everywhere. Numerical results are presented indicating second or-

der accuracy in L∞ for both velocities and pressure. For the discontinuous viscosity case,

we presented a method which requires no knowledge of the jumps on the fluid variables

and their derivatives along the interface. The degrees of freedom associated with virtual
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nodes allow for accurate resolution of discontinuities in the fluid stress at the interfaces but

require a Lagrange multiplier term to enforce continuity of the fluid velocity. We provide a

novel discretization of this term that accurately resolves the constant pressure null modes.

The discrete coupled equations for the velocity, pressure and Lagrange multipliers are in

the form of a symmetric KKT system. Numerical results are presented indicating second

order accuracy for the velocities and first order accuracy for the pressure (in L∞).
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CHAPTER 1

Introduction

Interface problems are present in a vast array of applications in the Natural Sciences and in

Engineering. They occur naturally, for instance, when different materials interact through

surfaces which are very thin when compared to their other relevant physical dimensions.

Due to the often complicated geometry of the contact interfaces and of the material do-

mains, the discontinuity in material properties across the interfaces and the possible free-

dom of the interface to undergo motion, these problems are very difficult to tackle. Analytic

tools are in general insuficient to solve problems of this type, making numerical simulations

the best available ways to study and solve them in practice. However, the challenges im-

posed by this type of problem cannot be dealt with standard numerical methods since they

are not designed to account for such interfacial discontinuities. In this dissertation, the

author will describe his work with Prof. Joseph Teran on a new class of methods, which

will be referred to as Virtual Node Agorithms (VNA), that were designed to numerically

solve problems of this type on the context of fluid flow.

We consider the Stokes equations for two-phase, incompressible flow in irregular do-

mains:

∇ · σ = µ∆u−∇p = −f , x ∈ Ω \ Γ (1.1)

∇ · u = 0, x ∈ Ω \ Γ (1.2)

u(x) = U(x), x ∈ ∂Ω (1.3)

[u](x) = 0, x ∈ Γ (1.4)

[σ · n](x) = f i, x ∈ Γ (1.5)
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Here p is the pressure, u = (u, v) is the fluid velocity, µ is the fluid viscosity (assumed

uniform over the extension of each fluid), σ = µ
(

∂u
∂x

+ ∂u
∂x

T
)

− pI is the fluid stress tensor,

Γ is the interface between the two phases, f is the body force density and f i is the force

per unit length supported on the interface between the two phases (e.g. surface tension).

The interface Γ is a codimension one closed curve that divides the domain into an interior

region Ω− and an exterior region Ω+ such that Ω = Ω− ∪ Ω+ ∪ Γ (see Figure 1.1(a)).

We let n denote the outward unit normal to Ω− at a point x ∈ Γ and define [v](x) :=

v+(x)− v−(x) = limǫ→0+v(x + ǫn) − limǫ→0+v(x − ǫn) as the “jump” of the quantity v

across the interface Γ. Unless otherwise stated, we assume the curves Γ and ∂Ω are smooth

(∂Ω will also be taken to be a rectangular curve for interface problems).

The Stokes equations describe fluid flow with very small Reynolds number Re = ULρ/µ,

where U is a characteristic velocity of the flow, L is a characteristic length of the system

and ρ is the fluid density. As shown in [2], they can be derived directly from the the

Navier-Stokes equations,

ρ
Du

Dt
= ρ

(

∂u

∂t
+ u · ∇u

)

= ∇ · σ + f , (1.6)

when we take the limit Re→ 0. Flows with small Reynolds numbers are characterized by

either small velocities, high viscosities or, most commonly, small body sizes. In this type of

regime, the advective intertial force term ρDu

Dt
becomes negligible when compared with the

other force terms. Examples of fluid flow of this type include swimming of microorganisms

and flow of viscous polymers.

We introduce in this dissertation two second order VNAs for approximating the incom-

pressible two-phase Stokes equations with irregular embedded interfaces and boundaries on

a uniform Cartesian MAC-grid. The first algorithm was developed to tackle the problem

when the viscosity µ is the same inside and outside the interface Γ. The second algorithm

deals with the case in which the fluids inside and outside the interface have different vis-

cosities. In other words, these algorithms were developed to handle the cases [µ] = 0 and

[µ] 6= 0 respectively across Γ. In both algorithms, we use regular grids because it simplifies

the implementation, permits straightforward numerical linear algebra and achieves higher

2



Ω
−

Ω
+

Γ

nτ

θ

(a)

Ω

∂Ω

n(λ)

τ (λ)

x(λ)

(b)

Figure 1.1: (a) Interface Γ separates the fluid domain Ω = Ω+∪Ω−∪Γ into its exterior Ω+

and interior Ω−. The figure shows the unit normal and tangent vectors n and τ . If θ is the

angle between n and the horizontal x axis, then n = (cos θ, sin θ) and τ = (− sin θ, cos θ).

(b) Irregular domain Ω. The vectors n(λ) and τ (λ) are the outward normal and the

positively oriented tangent vectors of ∂Ω at the point x(λ).
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order accuracy in L∞. Our approach uses duplicated Cartesian grid cells along the interface

to introduce additional “virtual” nodes that accurately account for the lack of regularity.

When the viscosity of both fluid phases is the same, we can formulate the Stokes problem

as three Poisson equations with jump conditions. This allows us to directly use the VNAs

developed by Bedrossian et al. in [1] (generalized to three dimensions by Hellrung et al. in

[3]). Their methods solve Poisson problems with interfaces:

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ (1.7)

[u] = a(x), x ∈ Γ (1.8)

[β(x)∇u] · n = b(x), x ∈ Γ (1.9)

u(x) = g(x), x ∈ ∂Ωd (1.10)

β(x)∇u(x) · n = h(x), x ∈ ∂Ωn, (1.11)

where ∂Ω = ∂Ωd∪∂Ωn. Their methods are second order accurate, geometrically flexible and

easy to implement. Also, they discretize the equations (1.7-1.11) on a uniform Cartesian

grid, making the coupling between our methods with theirs straightforward to implement.

The spatial uniformity of the fluid viscosity implies, as will be shown in Chapter 2, that

the coefficient β(x) is a constant for each of the Poisson equations that need to be solved,

simplifying the overall work even further.

Our choice of staggering the variables (velocities and pressure) on a MAC-grid requires

separate Poisson discretizations for each variable. We also solve a final Poisson equation

over the pressure grid to enforce a discrete divergence-free condition yielding a total of four

Poisson solves per Stokes solve. All four linear systems involved are symmetric positive

definite. In all but the final Poisson equation, our approach yields the standard 5-point

stencil almost everywhere (notably, we have the standard 5-point stencil across the interface

between the phases). This desirable property is directly associated with our choice of using

the methods of [1] to solve them. The VNA which results from this reformulation of

the Stokes equations is outlined in Chapter 2. Numerical results indicating second order

accuracy in L∞ for both velocities and the pressure are presented in Chapter 4.

If the fluid viscosities are different, the aforementioned approach fails to be directly

4



useful since the interfacial discontinuities on the velocities and the pressure become coupled

in a complicated manner, making the solutions of the Poisson equations for each of them

very difficult to obtain. We describe a VNA developed to tackle this kind of problem in

Chapter 3. In this case, the discretization of the Stokes equations as well as the divergence-

free and jump constraints are conducted through a variational formulation which yields

symmetric numerical stencils. We use Lagrange multipliers to enforce the jump conditions

weakly. Results for this algorithm indicating second order accuracy in L∞ for both velocities

and first order accuracy in L∞ for the pressure are also presented in Chapter 4.

We represent the interfaces by Lagrangian particles for straightforward interface advec-

tion, however the techniques described in this dissertation require a level set representation

of interfaces and boundaries. We provide methods (which are slightly different for the

each of the VNAs presented) for transforming a Lagrangian interface into a level set which

is meaningful for both the velocities and pressure grids. This ensures that the discrete

interface conditions are enforced consistently for the staggered variables.

1.1 Existing methods

Our methods are second order accurate in L∞ for both embedded boundary conditions on

irregular flow domains and for embedded interfacial discontinuities in two-phase flows. This

is achieved with relatively simplistic linear algebra demands. Specifically, for the continuous

viscosity case, all linear systems are symmetric positive definite and have discrete stencils

equal to that of the standard 5-point Laplacian discretization almost everywhere. The

linear systems for the discontinuous viscosity case are symmetric indefinite and can be

solved using standard fast Krylov subspace methods such as MINRES. Both VNA described

in this dissertation yield discretely divergence-free velocities. Although many researchers

have developed embedded methods for the Stokes equations with interfacial discontinuities

and irregular domains, to the best of our knowledge our approaches are the first to support

this feature set. In our discussion of existing approaches, we will focus only on embedded

(or immersed) methods that avoid unstructured meshing when addressing boundary and

5



interface conditions at irregular geometric boundaries.

Embedded techniques use a computational domain that simply encompasses rather than

geometrically adheres to the irregular domain. A good review of embedded methods is given

by Lew et al. in [4]. They point out that these techniques originated with the papers of

Harlow and Welch [5] and Charles Peskin [6]. Peskin developed the Immersed Boundary

Method (IBM) to simulate blood flow in the heart [7, 8, 9, 10], but it has also been applied

to problems such as aquatic animal locomotion, [11], platelet adhesion and aggregation

during blood clotting [12, 13], swimming of microorganisms in viscoelastic Stokesian fluids

[14], peristaltic pumping [15], oscillating filaments on viscous fluids [16] and many others

[17, 18, 19, 20, 21]. A summary of the development of the Immersed Boundary Method

and its applications can be found in [22]. Despite its vast popularity and considerable ease

of implementation, the IBM suffers from its use of regularized delta functions to represent

singular forces acting on interfaces. This renders the method first order accurate and

implies that the physical characteristics of the flow near the interfacial boundaries are not

accurately captured. Singular forces acting on the interface impose discontinuities in the

pressure, the velocities and their derivatives which the IBM may fail to accurately resolve

[23]. However, for sufficiently smooth problems in which the interfaces are thick instead of

infinitesimally thin the IBM can achieve second order accuracy [24, 25]. Adaptive versions

of the IBM were developed in [26] to enhance convergence over coarse grids but the results

were still only first order accurate. Another deficiency of the IBM is poor conservation of

volume near the interface. The seriousness of this problem, especially for the simulation of

blood flow in the heart, motivated the development of a better volume conserving version

of the IBM in [27]. However, this version of the IBM only works for periodic domains.

Also, the stencils of its discrete gradient and divergence operators are much larger than

those of the original IBM.

Attempts to address the lower order of accuracy of the IBM resulted in a series of other

methods. For instance, the Blob-Projection Method presented in [28] is effectively a higher

order version of the IBM. However, methods of the type just mentioned still fail to sharply

capture the discontinuities created by the singular forces across interfaces since they yield,

6



similarly to the IBM, velocities and pressures which are continuously differentiable across

them.

Many methods were designed to improve the order of accuracy of the original IBM.

The Immersed Interface Method (IIM) is perhaps the most popular example of this. The

IIM was first developed for elliptic equations with interfacial discontinuities [29] and later

applied to Stokes flow [30]. The IIM achieves second (and higher) order accuracy by

capturing interfacial discontinuities in the pressure, the velocities and their derivatives in

a sharp manner. The IIM has been used in many fluid flow problems including interface

and rigid boundary problems [23, 31, 32, 33, 34, 35], Hele-Shaw flow [36] and also problems

in which the viscosity is discontinuous across the interfaces [37]. Arbitrarily high orders

of accuracy have been achieved [38, 39]. The method is considerably more difficult to

implement than the IBM and most applications are in two space dimensions as a result.

However, researchers have applied the IIM to three dimensional flows [40]. For more about

the IIM, we refer the reader to a review of its applications in [41].

A limitation of the IIM is the lack of symmetry in discretizations arising from problems

with discontinuous coefficients. This imposes an obstacle on the overall speed of these

methods since fast linear solvers such as conjugate gradients cannot be used. However, it

should be noted that the IIM can yield symmetric matrices for continuous viscosity Stokes

flow.

One method that is capable of always guaranteeing a symmetric discretization is the

Ghost Fluid Method (GFM). Initially applied to the Poisson equation with interfacial jumps

and variable coefficients [42], the GFM was used to simulate multimaterial compressible

inviscid flows [43] and also multiphase incompressible flows [44]. Unfortunately, the GFM

is only capable of achieving first order results for interface problems.

Some of the first embedded methods were fictitious domain methods by Hyman [45] and

Saul’ev [46]. The fictitious domain approach has been used with incompressible materials

in a number of works [47, 48, 49, 50, 51, 52, 53, 54, 55]. These approaches embed the

irregular geometry in a more simplistic domain for which fast solvers exist (e.g. Fast

7



Fourier Transforms). The calculations include fictitious material in the complement of the

domain of interest. A forcing term (often from a Lagrange multiplier) is used to maintain

boundary conditions at the irregular geometry. Although these techniques naturally allow

for efficient solution procedures, they depend on a smooth solution across the embedded

domain geometry for optimal accuracy, which is not typically possible.

The Extended Finite Element Method (XFEM) and related approaches in the finite el-

ement literature also make use of geometry embedded in regular elements. Although origi-

nally developed for crack-based field discontinuities in elasticity problems, these techniques

are also used with embedded problems in irregular domains. Daux et al. first showed that

these techniques can naturally capture embedded Neumann boundary conditions [56, 57].

These approaches are equivalent to the variational cut cell method of Almgren et al. in [58].

Enforcement of Dirichlet constraints is more difficult with variational cut cell approaches

[59, 4] and typically involves a Lagrange multiplier or stabilization. Dolbow and Devan re-

cently investigated the convergence of such approaches with incompressible materials and

point out that much analysis in this context remains to be completed [60]. Despite the

lack of thorough analysis, such XFEM approaches appear to be very accurate and have

been used in many applications involving incompressible materials in irregular domains

[61, 62, 63, 64, 65].

There are also many finite difference (FDM) and finite volume methods (FVM) that

utilize cut uniform grid cells. Many of these methods have been developed in the context of

incompressible flow. For example, Almgren et al. use cut uniform bilinear cells to solve the

Poisson equation for pressures in incompressible flow calculations [58]. Marelle et al. use

collocated grids and define sub cell interface and boundary geometry in cut cells via level

sets [66]. Ng et al. also use level set descriptions of the irregular domain and achieve second

order accuracy in L∞ for incompressible flows [67]. The approach of Batty and Bridson is

similar, but not as accurate [68]. Cut cell FDM and FVM have also been developed for

incompressible and nearly incompressible elastic materials. Bijelonja et al. use cut cell FVM

to enforce incompressibility more accurately than is typically seen with FEM [69]. Beirão

da Veiga et al. use polygonal FVM cells to avoid remeshing with irregular domains [70].
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Barton et al. [71] and Hill et al. [72] use cut cells with Eulerian elastic/plastic flows. Other

examples of FVM can be found in [73] and [74].

A series of other second order cartesian grid methods have also been developed to tackle

interface and irregular boundary problems. For instance, as examples of other methods

which capture interfaces and boundaries in a sharp manner we should mention ghost cell

methods [75] and boundary integral methods [76], the last one being based on a Poisson

solver for irregular domain problems developed in [77]. Some methods are capable of

producing results which are only partially second order accurate for fluid flow problems.

As an example, see [78] for a method which was used to simulate two dimensional fluid flow

using second-order FDM/FVM discretizations for the streamfunction-vorticity equations.
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CHAPTER 2

Stokes problem: continuous fluid viscosity

2.1 Reformulation of the Stokes equations: Poisson

As mentioned in Chapter 1, our method for the Stokes problem with continuous fluid

viscosity is designed to leverage the advances in a recent paper by Bedrossian et al [1]. We

facilitate this by formulating our discretization in terms of three Poisson equations. We will

first cover the derivation of these Poisson equations from the two-phase Stokes equations

in irregular domains (1.1). The solutions u and p may have discontinuities across the

interface Γ [30]. We therefore first consider each subdomain Ω+ and Ω− separately to avoid

complications associated with these discontinuities. Taking the divergence of both sides of

equation (1.1) and noting that ∇ · u = 0 from the incompressibility condition, we get the

following Poisson equation:

∇ · (µ∆u−∇p+ f) = 0 =⇒ ∆p = ∇ · f , x ∈ Ω \ Γ (2.1)

This divergence is rigorously defined for all points x ∈ Ω on either side of the interface

(x ∈ Ω \ Γ = Ω− ∪ Ω+) but not for points x on the interface. After solving this Poisson

equation for the pressure p, we can solve another two Poisson equations for the velocity

components u and v using the solution for obtained for p:

∆p = ∇ · f , x ∈ Ω \ Γ (2.2)

µ∆u = px − f 1, x ∈ Ω \ Γ (2.3)

µ∆v = py − f 2, x ∈ Ω \ Γ. (2.4)

Here, f 1 and f 2 are the horizontal and vertical components of the body force density field

f . These equations hold on the interior of the domain and away from the interface. We

10



Γh

(a) (b)

Figure 2.1: (a) Discrete Lagrangian interface Γh. (b) Fluid variables are discretized over an

Eulerian MAC grid. A level set representation of the interface is defined over the nodes of a

“doubly-fine” sub grid. We approximate the zero isocontour of the level set with piecewise

linear Γ̂h. The black dots represent the intersection of the interface Γ̂h and the edges of

each doubly-fine grid cell.
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must therefore derive boundary and interface conditions in terms of the body forces f and

the interfacial forces f i to solve these equations in practice.

2.1.1 Interface conditions

We assume that all fluids have the same viscosity µ. In this case, the discontinuities in

u, v and p are decoupled from each other [37] and the three Poisson equations above can

truly be solved separately. Let x(λ, t) be an arbitrary parametrization of the curve Γ.

We can express the jump conditions in u, v and p in terms of the force per unit length

of the parametrization parameter λ. We will use F(λ, t) to denote this parameterization

dependent force density. Recall that the jump in a quantity w at a point x(λ, t) of the

interface is expressed as:

[w] (x) := w+(x)− w−(x) = limǫ→0+w(x+ ǫn)− limǫ→0+w(x− ǫn) (2.5)

where n is the outward unit normal of Ω− at the point x. If we let τ (λ, t) denote the

positively oriented unit tangent to the interface Γ at the point x, then

n = (cos θ, sin θ)

τ = (− sin θ, cos θ),

(2.6)

where θ is the positively oriented angle between n and the x axis (see Figure 1.1(a)). The

normal and tangential components of the force density F(λ, t) are then:

Fn(λ, t) := F(λ, t) · n(λ, t)

Fτ (λ, t) := F(λ, t) · τ (λ, t).
(2.7)
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We can use these conventions to express the jump conditions on u, v, p across the interface

Γ [23, 34, 79]:

[p](x(λ, t)) = Fn(λ, t)

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

−1

(2.8)

[u](x(λ, t)) = 0 (2.9)

[v](x(λ, t)) = 0 (2.10)

[

∂p

∂n

]

(x(λ, t)) =
∂

∂λ

(

Fτ (λ, t)

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

−1
)

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

−1

(2.11)

µ

[

∂u

∂n

]

(x(λ, t)) = Fτ (λ, t) sin θ

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

−1

(2.12)

µ

[

∂v

∂n

]

(x(λ, t)) = −Fτ (λ, t) cos θ

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

−1

, (2.13)

Despite the explicit appearance of the parametrization function x(λ, t), the jumps de-

fined above are independent of the chosen parametrization in the sense that, if x̃(λ̃, t) also

parametrizes Γ, then all the jumps above are the same at each point x̃(λ̃, t) = x(λ, t).

Equations (2.9) and (2.10) can together be interpreted as expressing the no-slip and no-

penetration conditions that make the fluid surrounding the interface stick to but not travel

through it [80]. The interface points move then with the local fluid velocities (which are

uniquely defined since the no-slip and no-penetration conditions make u and v continuous

along Γ):
∂x

∂t
= (u(x, t), v(x, t)). (2.14)

Equation (2.8) states that the normal component of the interfacial force is balanced by

a pressure jump across the interface, while Equations (2.12) and (2.13) state that the

tangential component of the interfacial force is balanced by a jump on the fluid shear

forces acting on the interface.
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2.1.2 Irregular domain boundary conditions

We must also know appropriate boundary conditions for u, v and p to solve Poisson equa-

tions (2.2), (2.3) and (2.4) in practice. We will assume that Dirichlet boundary conditions

are know for the velocities along ∂Ω. Thus for all x ∈ ∂Ω we will have u(x) = U(x) and

v(x) = V (x) for some functions U(x) and V (x) defined only over ∂Ω. Let x(λ) be a pa-

rameterization of ∂Ω, let n(λ) be the unit outward normal vector to ∂Ω at the point x(λ)

and let τ (λ) be the unit tangential vector to ∂Ω at that same point (see Figure 1.1(b)).

The Neumann boundary conditions for the pressure are then (a derivation of this fact is

given in Appendix A):

∇p · n = f · n− ∂ω

∂τ
for x ∈ ∂Ω, (2.15)

where ω = vy − ux is the fluid vorticity and ∂ω/∂τ = ∇ω · τ is the tangential component

of the gradient of ω at x ∈ ∂Ω. It is shown in Appendix B that the solutions of the

original and the reformulated versions of the Stokes problem are the same if the boundary

conditions are of the Dirichlet type for the velocities and of the Neumann type for the

pressure as in equation (2.15). Naturally, we need to have Dirichlet boundary conditions

for u = (u, v) which preserve the total fluid volume inside of the domain Ω:

∫

∂Ω

(U, V ) · n dl = 0 (2.16)

2.2 Description of numerical method

The method couples a discrete Lagrangian representation of the interface (Γh) with a back-

ground Eulerian representation of fluid velocities and pressures. The Lagrangian interface

moves with the local fluid velocity (as in equation (2.14)) and the temporal discretization

is explicit. The fluid variables are stored on a staggered MAC grid [81] to facilitate en-

forcement of a discrete divergence-free condition. We use the VNA presented in [1] to solve

the Poisson interface problems (2.2), (2.3) and (2.4) over the respective sub-grids in the

MAC grid. The interface is represented with Lagrangian particles and interfacial forces are

naturally defined at the particle locations. However, the VNA was designed for a level set
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representation of the interface geometry and jump conditions. We provide a procedure for

defining a level set representation of the interface geometry and boundary conditions from

the Lagrangian particles. The overall procedure for advancing one time step is:

1. Compute interface forces (from surface tension or elasticity) at all particles in Γh;

details in Sections 4.2.1 and 4.2.2.

2. Compute the level set and transfer jump conditions from the Lagrangian interface

Γh; details in Section 2.2.1.

3. Use VNA to solve ∆p = ∇ · f with interface conditions (2.8, 2.11) and Neumann

boundary conditions (2.15); details in Section 2.2.2.

4. Use VNA to solve µ∆u = −px + f 1 with interface conditions (2.9, 2.12); details in

Sections 2.2.2 and 2.2.3.

5. Use VNA to solve µ∆v = −py + f 2 with interface conditions (2.10, 2.13); details in

Sections 2.2.2 and 2.2.3.

6. Project the velocity field u = (u, v) to enforce the divergence-free condition; details

in Section 2.2.4.

7. Interpolate velocities from the MAC grid to the Lagrangian interface and update

particle positions using forward Euler; details in Section 2.2.5.

In the last step, the x and y components of the velocity on a given interface node xi are

interpolated from the u and v velocities respectively determined in steps 4 and 5. This

interpolation is done using the conventions presented in [1] for defining quantities on the

interface.

We will now describe each of these steps in detail. We give only limited discussion

of the computation of the Lagrangian interface forces f i (Sections 4.2.1 and 4.2.2) and

the interpolation from the MAC grid to the Lagrangian interface (Section 2.2.5) as these

aspects are relatively straightforward.
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2.2.1 Computation of the level set from Γh

A Lagrangian representation of the interface is convenient for computing interfacial forces

and also for discretizing the motion of the interface. We represent the discrete interface

Γh with a sequence of points xi where i ∈ {0, 1, 2, . . .M − 1}. The points are connected

by segments and form a closed curve as shown in Figure 2.1(a) (we also support multiple

closed curves). This curve is used to divide the domain into the discrete interior and

exterior domains Ω−
h and Ω+

h respectively (see Figures 2.1(b) and 2.2). In order to use the

VNA, we need to define a level set over the MAC grid that corresponds with Γh. Let N

denote the number of MAC grid cells per dimension and let h be the length of a cell edge

(we assume x and y edges have the same length, see Figure 2.1(b)). The level set is defined

on the nodes of a doubly-fine grid with 2N × 2N cells per direction (see Figure 2.1(b)).

We use the doubly-fine grid because it naturally defines a discrete level set on the u, v and

p subgrids. An alternative is to compute a level set with N cells per dimension on each of

the respective subgrids, however such a choice would complicate the accurate computation

of px and py needed for the u and v Poisson solves (see Section 2.2.3 for a more detailed

discussion of these issues). The level set is computed as a signed distance function on the

nodes of cells intersecting Γh. Nodes that are not incident on a cell intersecting Γh are set

to positive or negative h/2 depending on whether the node is inside Ω+
h or Ω−

h respectively.

The computation of the narrow band level set is negligible compared to the time taken to

solve the linear systems with the VNA.

In order to simplify the process of determining which interface segments in Γh intersect

which grid cell edges, we first ensure that each segment on the interface is smaller than the

cell width h/2 of the doubly-fine grid. This can be done by adding nodes x̃i to subdivide

its segments (see Figure 2.2). This is only for the computation of nodal level set values; the

computation of the interfacial forces uses the original set of segments Γh. We will denote

this subdivided discrete interface as Γ̃h. This subdivision simplifies the determination of

which doubly-fine grid cells intersect which segments in Γh. We also perturb the nodes x̃i of

Γ̃h to prevent them from falling directly on the edges of any cell (see figure 2.3). Specifically,

16



h/2
{

Γh

(a)

Γ̃h

(b)

Γ̂h

Ω+
h

Ω−
h

(c)

Figure 2.2: Figure (a) shows the original discrete Lagrangian interface Γh with nodes xi

(blue circles). Figure (b) shows the subdivided Γ̃h. The added nodes (x̃i) are indicated with

smaller light blue circles. Nodes are added until all segments of Γ̃h are shorter than the cell

width h/2 of the doubly-fine grid. Figure (c) shows the Lagrangian approximation Γ̂h of

the discrete interface Γh which is generated by the level set computed from Γh. The black

circles denote the positions at which Γ̂h crosses the edges of each cut cell. The domains Ω−
h

and Ω+
h are defined from the level set and Γ̂h. The Lagrangian curve Γ̂h is used in the VNA

[1] for quadrature purposes and interface conditions must be transferred from Γh (where

they are naturally defined) to Γ̂h.
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Figure 2.3: The picture on the left shows a piece of the interface Γ̃h with three (circled)

nodes lying too close to the edges of the cells they fall into. The picture on the right shows

the perturbation applied to these nodes. The shaded regions depict the thresholds used for

determining if a node is too close to a grid cell edge. Note that the size of these regions is

exaggerated for ease of visualization. In practice they are set to have a width proportionate

to h/2.

for a given x̃i, we determine which cell in the doubly-fine grid contains it. We then clamp

this node toward the cell center in a dimension by dimension fashion until it is at least

as far as some tolerance αh away from the edges of the cell (typically we use α = 1e−6).

Once the nodes are perturbed, we can unambiguously determine which segments in Γ̃h

intersect which edges in the doubly-fine grid. Cell edges cut an even number of times are

considered to be uncut. All possible cases are illustrated in Figure 2.4(a). In order to avoid

ambiguities, cases (4) and (7) require special treatment. We treat case (4) as a subcase of

case (3) and also case (7) as a subcase of case (6). For example, consider Figure 2.4(b). In

case (4) the node A is within a small tolerance of the segment PQ, P is in the lower-left

cell and Q is in the upper-right cell. Here, we automatically consider edges AC and AB as

intersecting edge PQ. Otherwise if node A is sufficiently far from edge PQ we explicitly

compute intersections between edge PQ and edges AC, AB, AE and AD to determine if

we are in case (5) or case (3).

18
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(5) (6) (7) (8)

(a)

A

B

C

D

E
P

Q

(b)

Figure 2.4: Segment-cell collision detection. Figure (a) shows the eight cases to be consid-

ered when determining which cell edges are cut by a given segment of the discrete interface

Γ̃h. Cases (4) and (7) happen when a segment intersects four cells simultaneously by cross-

ing a corner node (shown as small red circles in the figure). Figure (b) shows a case which

requires special attention.

Once we have determined which subdivided interface segments in Γ̃h intersect which

grid cell edges, we compute the exact distance to Γ̃h for all grid nodes incident on a cut

cell. That is, for all grid nodes with at least one of its four incident cells cut by a segment in

Γ̃h, we compute the analytic distance from that node to each of the segments that intersect

any of its incident cells and define the minimum as the distance from the grid node to Γ̃h.

We set the distance to be a large positive constant for all grid nodes not incident on a

cut cell. Finally, we determine the sign of the level set value depending on whether or not

the nodes they correspond to are inside or outside Γ̃h (see figure 2.5). This is done with a

flood-fill approach. The lower left node of the domain is defined to be outside the domain.

We then sweep through the nodes in a dimension-by-dimension fashion. The sign of the

next node in the sweep is the same as the previous node if the edge connecting them is

crossed an even number of times, otherwise it is given the opposite sign.
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Ω−
h

Ω+
h

Γ̃h

Figure 2.5: The level set values are computed exactly on the corner nodes of doubly-fine

cells which are crossed by the interface Γ̃h. These cut cells are shaded in pink, their nodes

are labeled with an “E”. The level set values are set to h/2 on the nodes labeled with a

“+” and to −h/2 on the nodes labeled with a “−”. The “+” and “−” nodes lie on the side

of Ω+
h and Ω−

h respectively.

2.2.2 Computation of jump conditions at Γ̂h

The VNA requires a description of the jump conditions along the embedded interface. It

suffices to define these conditions at the center of each segment on a cell-wise Lagrangian

approximation to the zero isocontour of the level set. We call this additional Lagrangian

curve Γ̂h. Γ̂h is an approximation to the zero isocontour of the level set (see Figure 2.2).

It is determined by connecting points on the doubly-fine grid cell edges where the level set

interpolates to zero. The VNA uses Γ̂h for quadrature purposes and the accuracy required

in the definition of the jump conditions is related to this. Unfortunately, the jump and

boundary conditions needed for equations (2.2), (2.3) and (2.4) are naturally defined at the

nodes of the original Lagrangian interface Γh. We provide a procedure to transfer these

conditions from the Lagrangian nodes of Γh to the centers of the segments on Γ̂h (see Figure

2.6).

Recall that we denote the points on the ends of the segments in the curve Γh as xi with

i = 0, 1, . . . ,M − 1. If there are m doubly-fine grid cells cut by the zero isocontour of the

levelset, let P = {p0,p1, . . . ,pm−1} denote the set of segment centers on Γ̂h (see Figure

2.6). Assume we have computed the jump conditions at the points xi of Γh. For each
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








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





(a)

ck

xk

pk

xi

xi+1

Γh

Γ̂h

(b)

Figure 2.6: Setting the jump conditions. (a): In the VNA, the jump conditions (Equations

(2.8 -2.13)) must be defined at the centers of the segments on the cell-wise Lagrangian

approximation to the zero isocontour of the level set. These cell-wise segment centers are

shown in light-green large circles above. The black smaller circles represent points were the

level set interpolates to zero for cut cells (these points define the cell-wise Lagrangian ap-

proximation to the zero-isocontour). Figure (b): Jump conditions are naturally computed

at the nodes xi of the discrete interface Γh and then transferred to the points pk through

the points x̂k. Each point pk lies at the center of the Γ̂h segment on the doubly-fine cut

cell ck. The jump at x̂k is computed by linearly interpolating the values at the nodes xi

and xi+1. Note that the above separation between the level set generated interface Γ̂h and

the discrete interface Γh is exaggerated for illustrative purposes.
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k = 0, 1, . . . ,m − 1, let x̂k be the point on Γh closest to pk (see Figure 2.6). We linearly

interpolate the jump condition at x̂k from the values at the ends of the segment to which

it belongs. This condition is then defined to be the jump at pk.

In the VNA [1], we impose the jump conditions for u, v and p over each cut cell of

their respective grids in an integral average sense. For that, we need to represent the

discrete velocities and the pressure in terms of the bilinear functions over each grid node of

their grids. Each node i on the u, v and p grids (including duplicated ones) have bilinear

functions Nu
i (x), N

v
i (x) and Np

i (x) associated to them. Notice, however, that the total

number of nodes after the duplication is performed might be different for each grid (we

duplicate the nodes of each grid independently as described in Section 2.2.1), meaning the

index i has different ranges for u and v nodes. The discrete versions of u, v and p are then:

uh(x) =
nu
∑

i=1

uiN
u
i (x), (2.17)

vh(x) =
nv
∑

i=1

viN
v
i (x), (2.18)

ph(x) =

np
∑

i=1

piN
p
i (x), (2.19)

for all x ∈ Ωh. Above nu, nv and np are the total number of nodes (including duplicates

ones) on the u, v and p grids respectively. The discrete jump conditions are expressed as

below:
∫

cu
l
∩Γ̂h

[uh(x)] dl =
nu
∑

i=1

uiΘ
u
i

∫

cu
l
∩Γ̂h

Nu
i (x) dl =

∫

cu
l
∩Γ̂h

au(x) dl (2.20)

∫

cu
l
∩Γ̂h

[∇uh(x) · n] dl =
nu
∑

i=1

uiΘ
u
i

∫

cu
l
∩Γ̂h

∇Nu
i (x) · n dl =

∫

cu
l
∩Γ̂h

bu(x) dl (2.21)

where cul ∩ Γ̂h is the portion of Γ̂h on the lth cut cell (cul ) of the u grid, au(x) is the jump in

u(x) and bu(x) is the jump in the normal derivative of u(x). Similar expressions for [vh(x)]

and [ph(x)] enforce the discrete jumps on vh and ph on the cut cells of the v and p grids

respectively. Above Θu
i = +1 if the ith node on the u grid is associated with a cut cell of

Ω+
h , Θ

u
i = −1 if it is associated with a cut cell of Ω−

h and Θu
i = 0 for all other nodes; Θv

i

and Θp
i are defined in an equivalent manner for the nodes of the v and p grids respectively.
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Expressions for line integrals over polygonal curves needed to compute the integrals of the

bilinear functions on equations (2.20) and (2.21) (∇Nu
i (x) · n is a linear function, hence

also bilinear) are given in Appendix C.

Let Lk denote the length of the segment of Γ̂h on the doubly-fine cut cell ck. We can

approximate the integrals of the jump conditions on the right hand side of equations (2.20)

and (2.21) using the values at the segment centers (a(pk) and b(pk)) and the segment

lengths (Lk):

∫

cu
l
∩Γ̂h

a(x)dS≈
∑

ck∩c
u
l

a(pk)Lk (2.22)

∫

cu
l
∩Γ̂h

b(x)dS≈
∑

ck∩c
u
l

b(pk)Lk, (2.23)

where the sum takes into account only the doubly-fine cells ck which intersect the cell cul .

2.2.3 Construction of ∇p

The VNA uses duplicated grid cells along the interface to introduce additional nodal degrees

of freedom. These degrees of freedom allow for the more accurate solution of the Poisson

interface problems. The MAC grid structure we employ therefore requires this duplication

procedure on each of the u, v and p subgrids. See Figure 2.7 for an illustration of this

process. The duplication must be done in a manner that coordinates duplication of the three

subgrids. Specifically, the u, v and p degrees of freedom interact through the right hand side

terms in Poisson equations for u and v (where px and py respectively appear). Therefore

the duplication process must admit a procedure for the computation of the respective

components of ∇p on each of the duplicated grids for u and v. This is complicated by the

use of virtual p degrees of freedom in the ∇p stencils on cut cells. Fortunately, we will

show here that the definition of the level set over the doubly-fine grid admits a consistent

duplication and subsequent ∇p transfer procedure.

The duplication procedure we advocate is trivially defined by inheriting the doubly-fine

level set to each of the u, v and p subgrids. We first define the Lagrangian zero isocontour

on the doubly-fine grid (Γ̂h) as described in Section 2.2.2. This gives a piecewise linear
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Ω−
h

cx ∩ Ω−
h

cx cp

(a)

Ω+
h

(b)

Figure 2.7: A typical case where the computation of ∇p is not trivial. The colored nodes in

figure (a) are either virtual (shown with an extra border outline) or material nodes of the u,

v and p grids associated with Ω−
h , while the colored nodes on figure (b) are the equivalent

ones for Ω+
h . The large blue triangle corresponds to a virtual node on the Ω−

h u grid. The

original node is shown enlarged on the right in Ω+
h . Notice that simple methods such as

centered differences cannot be used to compute px numerically on the node on the Ω−
h side

since there is no p node of Ω−
h on its left. Note that we highlight the cells cx and cp as well

as the region cx ∩ Ω−
h in the image at the left to aid in the discussion from Section 2.2.3.

approximation to the zero isocontour over each cut cell in the doubly-fine grid. Then, for

each subgrid we define the Lagranagian cell-wise approximation to the zero isocontour as

the union of the piecewise linear approximations over the four grid cells in the doubly-fine

grid that are contained in the subgrid (see Figure 2.8 for illustration). Also, a u, v or p cell

is considered cut (and then subsequently duplicated) if any of its four sub doubly-fine grid

cells are cut. Note that this is a slightly different criteria than that used in the original

VNA [1]. There, a grid cell was considered cut if any of its four nodal level set values were

of differing sign.

The staggering of the variables on the MAC grid naturally facilitates a second order

centered finite difference stencil for px at each u degree of freedom and for py at each v
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degree of freedom. Not coincidentally, these are precisely the source terms needed in the

Poisson equations for u and v respectively. Unfortunately, these stencils are not always well

defined for interfacial u and v degrees of freedom. For example consider the left subfigure

in Figure 2.7. Here, a centered difference computation of px at the virtual u node (drawn

as a large blue triangle pointing to the right) is not possible because there is no p degree

of to the left.

Fortunately, the VNA requires only cell-wise averages of the right had side terms of the

Poisson equations (see Section 4 in [1] for more details). Notably we will never explicitly

require components of ∇p at virtual u and v nodes like the one node highlighted in the left

subfigure in Figure 2.7. The required cell-wise averages are:

ph,x =

∫

cx∩Ω
±

h

ph,x dA and ph,y =

∫

cy∩Ω
±

h

ph,y dA. (2.24)

Here, cx and cy are cells in the duplicated u and v grids respectively. cx ∩ Ω±
h is the

intersection of the fluid domain with cx (similar for cy ∩ Ω±
h ). Note that these regions

are non-trivial for cells in the duplicated grids that intersect the interface. That is, these

regions correspond to cut cells. An example of such a cut cell is shown incident to the

enlarged u node in left subfigure of Figure 2.7. While we do not have a p degree of freedom

to the left of this node, we do have enough information to compute ph,x over the cut cell.

Specifically, we have enough information to determine a piecewise bilinear approximation

to p over cx ∩ Ω−
h . Note that there is a p cell (cp) containing region cx ∩ Ω−

h in Figure 2.7.

This implies that we can approximate p as bilinear over the required region. In general,

there will be at most two p cells overlapping any cx ∩ Ω±
h or cy ∩ Ω±

h region and we can

always use this to generate a piecewise bilinear approximation to p wherever needed.

The aforementioned piecewise bilinear representation of p is merely the one given in

equation (2.19) restricted to points x ∈ cx ∩ Ω±
h or cy ∩ Ω±

h . It can be directly used to

compute the derivatives of p with respect to x and y:

ph,x(x) =

Np
∑

i=1

piN
p
i,x(x) and py(x) =

Np
∑

i=1

piN
p
i,y(x) for all x ∈ Ωh. (2.25)

The cell-wise averages (ph,x and ph,y) of ph,x and ph,y can then be computed exactly as in
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Figure 2.8: Inheriting the Lagrangian zero isocontour from the doubly-fine grid. The image

depicts the definition of the piecewise linear approximation to the zero isocontour over u,

v and p grid cells. For each case, the grid cell is considered cut if any of the four sub grid

cells are cut. u grid cells are shown in blue with triangular nodes pointing to the right, the

v grid cells are show in red with triangular nodes pointing upwards and the p grid cells are

shown in green with circular nodes.

[1] (see also Appendix C). This is easily done because the integrands in

ph,x =

np
∑

i=1

pi

∫

cx∩Ω
±

h

Np
i,x dA and ph,y =

np
∑

i=1

pi

∫

cy∩Ω
±

h

Np
i,y dA (2.26)

are piecewise bilinear. That is, we need only integrate a low order polynomial in x and y

over the polygonal cut cell regions cx ∩ Ω±
h and cy ∩ Ω±

h .

2.2.4 Projection onto divergence-free space

When we use the Poisson formulation (equations (2.3) and (2.4)) for the discretization of

u and v, we get second order (in L∞) accurate velocities. However, they do not in general

satisfy a discrete divergence-free condition. While any consistent approximation of the

divergence will converge to zero under refinement with the u and v we generate from the

Poisson equations, it is often advantageous to enforce a discrete divergence-free condition.

We satisfy this divergence-free condition via projection and our numerical experiments
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suggest that this process does not degrade the L∞ accuracy.

The divergence-free condition is defined over each cell in a p-node centered grid. For

every p node (including virtual p nodes created in the duplication procedure), we define

the p-centered grid cell (Cp) to consist of the four surrounding sub cells in the doubly-fine

grid (see Figure 2.9). These cells are also duplicated whenever the p node at its center is

virtual. We enforce the following conditions at all p-centered grid cells Cp:
∫

Cp∩Ω
±

h

∇ · uh dA =

∫

Cp∩Ω
±

h

(uh,x + vh,y) dA

=

∫

Cp∩Ω
±

h

[

nu
∑

i=1

uiN
u
i,x +

nv
∑

i=1

viN
v
i,y

]

dA = 0.

(2.27)

Note that this defines a linear set of constraints on the uh and vh degrees of freedom. If

we define U to be the vector of degrees of freedom of uh, V to be the vector of degrees of

freedom of vu, and W to be the vector of all nodal velocity degrees of freedom:

W =





U

V



 , (2.28)

then we can symbolically represent the linear constraints in equations (2.27) as DW = 0.

The limited support of the bilinear functions Nu
i and N v

i implies that D is a sparse matrix

(see Figure 2.9). Since the number of cells Cp with pressure nodes in their centers is the

same as the total number of pressure nodes np, then D ∈ R
np×(nu+nv). Note that the

evaluation of the entries in D must be done using the cut-cell integration of low order

polynomials over polygons as discussed in Section 2.2.3. The projection of the W obtained

by solving the discrete equations (2.3) and (2.4) can then be performed as:

1. Solve DDT P̂ = DW, where P̂ ∈ R
np

2. W←W −DT P̂.

The linear system DDT P̂ = DW is symmetric positive definite and can be solved with the

conjugate gradient method.
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Cp Cp

Figure 2.9: The stencil of the matrix D for the divergence-free projection algorithm pro-

posed involves only the colored nodes on the figures above (blue triangles pointing to the

right are nodes of the u grid; red triangles pointing up are nodes of the v grid). Far away

from the interface (left figure), the stencil encompasses a maximum of 12 points (6 from

the u grid and 6 from the v grid). For cut cells, fewer u and v values are necessary to

represent the stencil (figure on the right).

2.2.5 Interface advection

At the end of each time step, we advect the nodes of the interface Γh using forward Euler to

compute the interfacial forces at the next time step. To accomplish this we must interpolate

u and v values from the MAC grid to each node xi of Γh. This must be computed using

virtual and material degrees of freedom associated with either Ω+
h or Ω−

h but not both as in

[1]. For that, we determine the original cells on the u and v grids at which xi lies and use

bilinear interpolation to compute the velocity values at xi using only degrees of freedom

from Ω+
h or Ω−

h . The choice of region is in principle arbitrary since Γh and Γ̂h approximate

each other. In practice, however, we verify explicitly if xi falls into Ω+
h or Ω−

h by directly

verifying whether or not it is in the interior of Γ̂h. Using degrees of freedom of u and v

associated with both sides of Γ̂h would decrease the order of accuracy of our results since

these quantities are not continuously differentiable across Γ̂h.
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CHAPTER 3

Stokes problem: discontinuous fluid viscosity

For two-phase incompressible Stokes problems in which the fluid viscosities are different,

the approach of Chapter 2 is not useful since the jumps on the velocities, the pressure and

their normal derivatives across the interface given in Equations (2.8- 2.13) are no longer

valid. Instead, the jumps across the interface are coupled in a complicated way [37]. This

led us to developed a VNA to tackle this kind of problem through a variational formulation

of the Stokes equations (1.1- 1.5). The jump and divergence-free conditions are enforced

weakly.

3.1 Description of numerical method

As in the previous VNA, we couple a Lagangian representation of the interface (Γh) with

an Eulerian representation of the fluid velocity and pressure (see Figure 3.1). The Eulerian

discretization is defined over a staggered MAC grid [81] with piecewise bilinear velocity

and piecewise constant pressure as in [82] (see Figure 3.2). We use a weak form of the

Stokes interface problem and simultaneously solve for the pressure, velocity and Lagrange

multipliers needed to ensure continuity of the velocity across duplicated cells at the inter-

face. We create a level set defined over the pressure grid from the Lagrangian curve Γh.

This level set naturally defines a consistent representation of the interface on each of the

staggered velocity and pressure grids. Interface cells in each grid can then be duplicated

consistently. Our cutting procedure for interface cells is specifically designed to resolve the

constant pressure null modes of the weak formulation. We show that this property of the

discretization significantly improves the performance of our solver. Advection for the par-
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Γh

(a) (b)

Figure 3.1: (a) Discrete Lagrangian interface Γh. (b) Fluid variables are discretized over an

Eulerian MAC grid. A level set representation of the interface is defined over the nodes of

the pressure sub grid. We approximate the zero isocontour of the level set with piecewise

linear Γ̂h. The black dots represent the intersection of the interface Γ̂h and the edges of

each pressure grid cells.
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(a)

ω1 ω2

ω3ω4

ω1 ω2

ω3ω4

ω1 ω2

ω3ω4

(b)

Figure 3.2: (a) Cells on the u, v and p sub-grids of the MAC grid. Triangles and circles

indicate where the velocity and pressure degrees of freedom are located. The blue cell with

corner triangles pointing to the right is a u grid cell; the red cell with corner triangles

pointing up is a v grid cell and the green cell with a single center circle is a p cell. Notice

that while u and v cells have four degrees of freedom per cell, p cells have only a single

degree of freedom. (b) Cells from Figure (a) with their four subcells indexed as ω1, ω2, ω3,

and ω4.
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ticles in the Lagrangian Γh is explicit and is done with the interpolated local fluid velocity.

Interfacial forces are defined on the Lagrangian particles and then transferred to the cut

cells to define stress jump conditions for the Eulerian variables. The complete procedure

for advancing one time step is:

1. Compute interface forces (from surface tension or elasticity) at all particles in Γh;

details in Sections 4.2.1 and 4.2.2.

2. Compute the level set from Γh and transfer stress jump conditions; details in Sections

3.1.1 and 3.1.2.

3. Construct discrete stencils that respect the cut grid cells; details in Section 3.1.3.

4. Solve the symmetric system for the coupled velocity, pressure and Lagrange multipli-

ers; details in Section 4.3.1.

5. Interpolate velocities from the MAC grid to the Lagrangian interface and update

particle positions using forward Euler; details in Section 3.1.4.

In what follows, we describe each of these steps in detail.

3.1.1 Computation of the level set from Γh

Similarly to the VNA presented in the previous chapter, a Lagrangian representation of

the interface is again convenient for computing interfacial forces and also for explicit Euler

update of the interface geometry. We therefore represent the discrete interface Γh again as

a sequence of Lagrangian points xi where i ∈ {0, 1, 2, . . .M − 1}. The points are connected
by segments and form a closed curve as shown in Figure 3.1(a) An Eulerian representation

of the interface for the discretization of the fluid and pressure variables is defined through a

level set which is constructed from Γh. The level set values are defined at the corner nodes

of the pressure grid cells (see Figure 3.3). This level set can naturally be interpreted as

having a constant normal over pressure cells. The discrete Eulerian interface is perturbed

to prevent it from intersecting any of the velocity nodes on the MAC grid.
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h











(a) (b)

Figure 3.3: Figure (a) shows the original MAC grid with the pressure cells drawn. The

edges of the subcells are drawn with dashed lines. Figure (b) shows the nodes where the

level set is computed drawn as large circles. These nodes lie on the corners of each pressure

grid cell (notice the pressure degrees of freedom are not stored there, but instead at the

small green nodes at the center of each p cell); u and v grid nodes are omitted for clarity.

We duplicate cells in the MAC grid that are crossed by the interface to introduce

additional degrees of freedom that allow us to accurately capture discontinuities present at

the interface. In order to complete this duplication procedure, we must know which cells in

the MAC grid intersect the interface and we must know which velocity and pressure grid

nodes are inside or outside the interface. We determine this with a level set approximation

to Γh defined over the pressure grid (see Figures 3.1(b) and 3.3). We define the pressure

grid to consist of cells centered around pressure degrees of freedom (see Figures 3.2 and

3.3). These choices are motivated by the constraint that the normal to the interface must

be approximated as constant over each cell on the pressure grid. The necessity of this

constraint is outlined in Section 3.1.3.5.

3.1.1.1 Level set definition over the p grid

We define u, v and p sub-grids of the MAC grid. These are shown in Figure 3.2. The u

and v grids are node-centric in that the degrees of freedom are located at grid nodes. The
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p grid however is cell-centric in that p degrees of freedom are located at cell centers. We

use h to denote the grid cell size (which we assume is the same in both x and y directions).

We define the level set representation of the grid over the p grid. However unlike the

pressure degrees of freedom, we store the signed distance values at the nodes of the grid

(see Figure 3.3(b)).

The computation of the level set which implicitly defines the discrete Eulerian interface

is identical to the computation of the level set outlined in Section 2.2.1, the exception

being we compute level set values on the corners of the pressure grid cells instead of on the

corners of the doubly-fine grid cells. We refer the reader to that section for more details.

3.1.1.2 Definition of u and v interface cells

The level set on the pressure grid naturally defines interface pressure cells as those with

any vertices having signed distance values with opposite signs. However, we also need to

know which u and v cells cross the interface. The velocity sub-grids of the MAC grid are

defined node-wise (see Figure 3.2). That is, velocity grid cells are defined to have velocity

degrees of freedom on their vertices, as opposed to on their centers as with the pressure

grid. We will later duplicate all interface pressure and velocity cells to introduce virtual

degrees of freedom, however first we must define the interface velocity cells in a manner

consistent with the definition of interface pressure cells. This is done by first creating a

single segment approximation to the zero isocontour of the level set over each pressure grid

cell. Using linear interpolation, we determine the approximate intersection of the level set

isocontour at each edge of each interface pressure cell. If this intersection is too close to a

u or v node, we perturb it slightly towards the end node of that cell edge lying closer to the

intersection point (see Figure 3.4). This modification is enough to move the intersection

away from the relevant u or v node. Typically we perturb the position of the intersection

point by αh with α = 10−6. This perturbation is performed because our discretization of

the u and v fluid equations will require that this interface does not cross the velocity grid

nodes (see Section 3.1.3.3). Connecting the segments in each pressure cell together forms
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a closed curve that we denote as Γ̂h (see Figure 3.1(b)). We use this curve to define which

cells in the u and v grids intersect the interface. Each velocity grid cell intersects two

pressure cells. A u or v velocity cell is defined to intersect the interface whenever either of

its two incident pressure cells has an interface segment that intersects the velocity cell (see

Figure 3.4).

3.1.2 Transfer of interfacial forces to Eulerian fluid grid

We require a description of the interface forces f i along the embedded interface Γ̂h when

discretizing the Eulerian fluid variables (see Section 3.1.3.3). It suffices to define values for

f i at the center of each segment of Γ̂h. Unfortunately, the interface forces f i are naturally

defined at the nodes of the original Lagrangian interface Γh. We provide a procedure to

transfer these conditions from the Lagrangian nodes of Γh to the centers of the segments on

Γ̂h. This procedure is very similar to the one outlined in Section 2.2.2, the only difference

being Γ̂h is now a segment over each pressure cut cell, while before it was a segment over

each doubly-fine grid cell.

Recall that we denote the points on the curve Γh as xi with i = 0, 1, . . . ,M − 1.

We denote the number of pressure cells that intersect the interface as nq. Let P =
{

p0,p1, . . . ,pnq−1

}

denote the set of segment centers on Γ̂h. As in Chapter 2, we com-

pute the forces f i at the points xi of Γh. For each k = 0, 1, . . . ,m− 1, let x̂k be the point

on Γh closest to pk. We linearly interpolate f i at x̂k from the values at the ends of the

segment to which it belongs. This interpolated value is then defined to be the interfacial

force at pk.

3.1.3 Eulerian discretization details

With the Eulerian interface geometry and jump conditions defined from the Lagrangian in-

terface representation, we will now describe the discretization of the Eulerian fluid variables

over the MAC grid. Our discrete stencils for the velocity and fluid variables are defined

from the weak formulation of the Stokes equations. We will first derive this weak form
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including the effects of the discontinuity in the fluid stresses arising from the interfacial

forces. We will use a cell duplication procedure to introduce virtual nodes that accurately

capture the discontinuities in the stress, but this process requires a Lagrange multiplier

term to guarantee continuity in the fluid velocity across the interface. The procedure is

designed to exactly capture the null modes in the variational formulation. The pressure

can only be determined up to a constant, and the Lagrange multipliers that guarantee

continuity can only be determined up to the same constant times the x and y components

of the interface normal. We show that failure to capture these modes exactly leads to sig-

nificantly inferior performance. Furthermore, we show that our definition of the Eulerian

interface Γ̂h is designed to facilitate discrete resolution of these modes.

3.1.3.1 Variational formulation

Here we derive the weak form of the Stokes equations with interfacial discontinuities needed

for our discrete Eulerian fluid equations. For simplicity of exposition we assume that the

domain Ω is rectangular and periodic. Taking the dot product of the force balance portion of

the Stokes interface problem (Equation (1.1)) with a function w(x) ∈ H1(Ω\Γ)×H1(Ω\Γ)
and integrating over Ω \ Γ yields:

−
∫

Ω\Γ

w · (∇ · σ) dA = −
∫

Ω\Γ

∇ · (w · σ)−∇w : σ dA

=

∫

Γ

[w · σ] · n dl +

∫

Ω\Γ

∇w : σ dA

=

∫

Ω\Γ

w · f dA,

(3.1)

where the divergence theorem was used with n being the outward unit normal to Ω− at a

point x ∈ Γ as in Chapter 1. Using the equalities

[ab] = a+b+ − a−b− = [a] b+ a [b] , a =
a+ + a−

2
and b =

b+ + b−

2
, (3.2)
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Γ̂h

(a) (b) (c)

Figure 3.4: Determination of cut u and v cells from Γ̂h: velocity cells are defined to be

interface cells if either of the two incident pressure cells have a segment in Γ̂h that intersects

the cell. Figure (a) shows a typical case of interface perturbation to prevent u and v nodes

from intersecting the segments. The dashed red circles indicate the threshold distance from

the interface to a given u or v node. The upward arrow indicates the perturbation of the

intersection point away from that u node. Figure (b) shows a u cell and the two p cells it

intersects. This u cell is considered cut since it is intersected by the interface segment at

one of these pressure cells. Figure (c) shows a similar example for a cut cell on the v grid.

and the symmetry of σ, we can rewrite these equations as:

−
∫

Ω\Γ

w · (∇ · σ) dA =

∫

Γ

[w] · σ · n dl +

∫

Γ

w · [σ] · n dl +

∫

Ω\Γ

∇w : σ dA

=

∫

Ω\Γ

∇w :
(

µ
(

∇u+∇uT
)

− pI
)

dA

+

∫

Γ

[w] · σ · n dl +

∫

Γ

w · [σ] · n dl

=

∫

Ω\Γ

µ

2

(

∇w +∇wT
)

:
(

∇u+∇uT
)

dA

−
∫

Ω\Γ

p(∇ ·w) dA+

∫

Γ

[w] · q dl +

∫

Γ

w · f i dl

=

∫

Ω\Γ

w · f dA,

(3.3)

where q(x) = (q1, q2)T = σ · n is defined only along Γ. Therefore, we can express the weak
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form of the Stokes interface problem as:

Find (u, p,q) ∈ H1(Ω \ Γ)×H1(Ω \ Γ)× L2(Ω \ Γ)× L2(∂Ω)× L2(∂Ω) such that
∫

Ω\Γ

µ

2

(

∇w +∇wT
)

:
(

∇u+∇uT
)

dA−
∫

Ω\Γ

p(∇ ·w) dA+

∫

Γ

[w] · q dl (3.4)

= −
∫

Γ

w · f i dl +
∫

Ω\Γ

w · f dA, ∀w ∈ H1(Ω \ Γ)×H1(Ω \ Γ)
∫

Ω\Γ

λ∇ · u dA = 0, ∀λ ∈ L2(Ω \ Γ), (3.5)

∫

Γ

ψ(x) · [u(x)] dl = 0, ∀ψ ∈ L2(Γ)× L2(Γ) (3.6)

Note that we must treat q as an additional unknown since σ · n will not generally be

known. This can be viewed as the Lagrange multiplier associated with the constraint that

the velocity must be continuous (Equation (3.6)).

3.1.3.2 Null modes

The null modes of the weak formulation play an important role in our discretization. Specif-

ically, we found that failure to exactly resolve discrete counterparts to the continuous null

modes lead to drastically inferior performance. This is not uncommon for simple discrete

systems like the Poisson equation with periodic or Neumann boundary conditions in which

the rows of the discrete system must sum to zero. In the case of the weak form of the

interfacial Stokes problem, there are three null modes. The first two modes arise from

our assumption of periodicity in the domain Ω. These two modes are simply constant x

or constant y velocities (with pressures p and Lagrange multipliers q equal to zero). The

third mode is a constant pressure mode with Lagrange multipliers equal to the constant

pressure times the x or y component of normal at the interfacial discontinuity (and with

zero velocities). We can derive these modes by first noting that all integral operators on

the left of Equations (3.4-3.6) are bilinear in u, p, q and w, λ, ψ. Hence, with some abuse

of notation, we can write the left hand side of these equations as:
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(a) (b)

(c) (d)

Figure 3.5: All interface velocity and pressure cells are duplicated to introduce virtual

degrees of freedom for capturing discontinuities. Figure (a) shows the material and virtual

nodes on the pressure grid associated with Ω−
h while Figure (b) shows the material and

virtual nodes of that grid associated with Ω+
h . The virtual nodes associated with Ω−

h are

the duplicated versions of the material nodes associated with Ω+
h which lie at the same

positions. Figures (c) and (d) show the nodes of the u grid associated with Ω−
h and Ω+

h

respectively.
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(w, λ, ψ)K











u

p

q











= (w, λ, ψ)











A −G C
−D 0 0

B 0 0





















u

p

q











, (3.7)

where:

wAu =

∫

Ω\Γ

µ

2

(

∇w +∇wT
)

:
(

∇u+∇uT
)

dA, (3.8)

wGp =

∫

Ω\Γ

p(∇ ·w) dA, (3.9)

wCq =

∫

Γ

[w] · q dl, (3.10)

λDu =

∫

Ω\Γ

λ∇ · u dA = 0, (3.11)

ψBu =

∫

Γ

ψ(x) · [u(x)] dl = 0. (3.12)

Setting u = (c1, c2)T with p = 0 and q = 0 for arbitrary constants c1 and c2, it is trivial to

see that wAu = 0 since ∇(c1, c2)T = 0, λDu = 0 since ∇· (c1, c2)T = 0 and ψBu = 0 since

u = (c1, c2)T is continuous across the interface. Therefore, u = (c1, c2)T with p = 0 and

q = 0 are clearly two of the null modes. We can derive the third mode by setting u = 0

with p = c and applying the divergence theorem:

∫

Ω\Γ

p(∇ ·w) dA = c

∫

Ω\Γ

(∇ ·w) dA = −c
∫

Γ

[w] · n dl =

∫

Γ

[w] · q dl. (3.13)

Therefore in order for −Gp+Cq = 0, we must have q = −cn. We will discuss the discrete

versions of these kernel modes in Section 3.1.3.5.

3.1.3.3 Discretization of fluid variables

We duplicate all u, v and p interface grid cells to introduce virtual nodes that capture

the discontinuities in the fluid stress. That is, for each interface cell, we create a positive

and negative version of the cell associated with Ω+
h and Ω−

h respectively. These new cells

introduce four new degrees of freedom for the u and v grids and one new degree of freedom

for the p grid. As before, we refer to these newly introduced degrees of freedom as “virtual”.

For the x and y grids, the virtual degrees of freedom are on the vertices of the newly created
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Ω+
h and Ω−

h cells that lie outside the respective subdomains. There is only one virtual

pressure degree of freedom since the p degrees of freedom are on cell centers. This process

is illustrated in Figure 3.5.

This duplication process provides a classification of all grid cells as either interior (Ω−
h ) or

exterior (Ω+
h ). Furthermore, all degrees of freedom can also be classified as either interior

or exterior. We use this classification to define interior and exterior piecewise bilinear

approximations to u and v and interior and exterior piecewise constant approximations

to p. Specifically, we assume u and v are bilinear over interior and exterior cells, and we

assume p is constant over each exterior and interior cell. Note that our duplication of grid

cells at the interface means that these fields are discontinuous at the interface. We can

describe these piecewise bilinear fields as

uh(x) =
nu
∑

i=1

uiN
u
i (x) and vh(x) =

nv
∑

j=1

vjN
v
j (x) for all x ∈ Ωh, (3.14)

where nu and nv are the number of x and y nodes, respectively, and Nu
i and N v

j are the

standard piecewise bilinear interpolating functions associated with x node i and y node j,

respectively. We will henceforth use U ∈ R
nu+nv to denote the vector of velocity degrees

of freedom. Similarly, the pressure field is described as

ph(x) =

np
∑

k=1

pkφ
p
k(x), for all x ∈ Ωh \ Γ̂h, (3.15)

where np is the number of cells in the duplicated p grid and φp
k is the characteristic function

of the kth pressure cell (equal to one for x in the cell and zero otherwise). We will henceforth

use P ∈ R
np to denote the vector of pressure degrees of freedom.

Notice that each of the functions Nu
i (x), N

v
i (x) and φp

i (x) are defined on one side of the

interface. Hence, if x ∈ Ω+
h , then Nu

i (x) = 0 for all the nodes i on the u grid associated with

Ω−
h and vice versa. The same applies to the basis functions on the v and p grids. Finally,

since q is defined only along Γ, we build its discrete counterpart only along Γ̂h. Specifically,

we assume that q(x) is piecewise constant over each segment in Γ̂h. It is therefore piecewise

constant over each pressure cell on the interface. If there are nq pressure cells cut by Γ̂h,

41



then:

qh(x) =

nq
∑

l=1

qlφ
q
l (x) for all x ∈ Γ̂h. (3.16)

φq
l (x) is the characteristic function of the lth pressure cell that is cut by the interface.

We will henceforth use Q =





Q1

Q2



 ∈ R
2nq to denote the vector of Largange multiplier

degrees of freedom (Q1 and Q2 contain all x and y degrees of freedom of qh respectively).

The body force density is discretized also by assuming it is piecewise constant over each

pressure cell. Hence:

fh =

np
∑

k=1

fkφ
p
k(x) for all x ∈ Ωh \ Γ̂h, (3.17)

where fk is the average body force density on the kth pressure cell. In all examples con-

sidered, the body forces are spatially constant over each fluid domain and hence the cells

averages are constants over Ω+
h and Ω−

h . Similarly, as discussed in Section 3.1.2, we define

the jump conditions in the stress to be piecewise constant over each segment in Γ̂h, so we

can represent the discrete Eulerian stress jump f i as

f ih(x) =

nq
∑

i=1

f i(pi)φ
q
i (x) for all x ∈ Γ̂h. (3.18)

Here, f i(pi) are the values of the interfacial forces transferred from the discrete Lagrangian

interface Γh to the segment centers pi in the discrete Eulerian interface Γ̂h as described on

Section 3.1.2.

We now define our discretization of the Stokes interface problem (3.4), (3.5) and (3.6)

using the Eulerian approximations uh, vh, ph, qh, f
i
h and fh just discussed. That is, we

approximate the space H1(Ω \ Γ)×H1(Ω \ Γ) by the space V u
h (Ωh)× V v

h (Ωh) of piecewise

bilinear functions over the u and v grids, the space L2(Ωh) by the space V p
h (Ωh) of piecewise

constant functions over each pressure grid cell and the space L2(Γ) by the space V q
h (Γ̂h) of

piecewise constant functions over the intersection of Γ̂h with each pressure cell. We obtain

a linear system by assuming that wh is approximated as with uh, that λh is approximated

as with ph and that ψh is approximated as with qh. Specifically, the discrete variational

problem can be written as:
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Find U ∈ R
nu+nv , P ∈ R

np , Q ∈ R
2nq such that

(WT ,ΛT ,ΨT )K











U

P

Q











= (WT ,ΛT ,ΨT )











F

0

0











, ∀











W

Λ

Ψ











∈ R
nu+nv+np+2nq , (3.19)

where

K =























Auu Auv −Gu Cu 0

Avu Avv −Gv 0 Cv

−Du −Dv 0 0 0

Bu 0 0 0 0

0 Bv 0 0 0























and F =





F1

F2



 =





F̂1

F̂2



+





f̂1

f̂2



 . (3.20)

Here, W ∈ R
nu+nv , Λ ∈ R

np , and Ψ ∈ R
2nq are the discrete degrees of freedom

representing wh, λh and ψh, respectively, and U ∈ R
nu+nv , P ∈ R

np , and Q ∈ R
2nq are

the discrete degrees of freedom representing uh, ph and qh, respectively. F̂1 ∈ R
nu and

F̂2 ∈ R
nv are associated with the interfacial forces along the x and y directions respectively

while f̂1 ∈ R
nu and f̂2 ∈ R

nv are associated with the body forces along the x and y directions

respectively. We can derive the entries in the matrix K from Equation (3.4) by assuming

that only one entry in any of W ∈ R
nu+nv , Λ ∈ R

np , Ψ ∈ R
2nq is equal to one with all

other entries zero. The system can then be defined in terms of x equations, y equations, p

equations and q equations as:

x equations (i = 1, . . . , nu):

nu
∑

j=1

(

µ

∫

Ωh\Γ̂h

2Nu
i,xN

u
j,x +Nu

i,yN
u
j,y dA

)

uj +
nv
∑

j=1

(

µ

∫

Ωh\Γ̂h

Nu
i,yN

v
j,x dA

)

vj

−
np
∑

j=1

(∫

Ωh\Γ̂h

Nu
i,xφ

p
j dA

)

pj +

nq
∑

j=1

(

Θu
i

∫

Γ̂h

Nu
i φ

q
j dl

)

q1j

= −
nq
∑

j=1

(∫

Γ̂h

1

2
Nu

i φ
q
j dl

)

f i1(pj) +

np
∑

j=1

(∫

Ωh\Γ̂h

Nu
i φ

p
j dA

)

f
1

j for all i = 1, . . . , nu,

(3.21)
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y equations (i = 1, . . . , nv):

nu
∑

j=1

(

µ

∫

Ωh\Γ̂h

N v
i,xN

u
j,y dA

)

uj +
nv
∑

j=1

(

µ

∫

Ωh\Γ̂h

2N v
i,yN

v
j,y +N v

i,xN
v
j,x dA

)

vj

−
np
∑

j=1

(∫

Ωh\Γ̂h

N v
i,yφ

p
j dA

)

pj +

nq
∑

j=1

(

Θv
i

∫

Γ̂h

N v
i φ

q
j dl

)

q2j

= −
nq
∑

j=1

(∫

Γ̂h

1

2
N v

i φ
q
j dl

)

f i2(pj) +

np
∑

j=1

(∫

Ωh\Γ̂h

N v
i φ

p
j dA

)

f
2

j for all i = 1, . . . , nv,

(3.22)

p equations (i = 1, . . . , np):

−
nu
∑

j=1

(∫

Ωh\Γ̂h

φp
iN

u
j,x dA

)

uj −
nv
∑

j=1

(∫

Ωh\Γ̂h

φp
iN

v
j,y dA

)

vj = 0, for all i = 1, . . . , np ,

(3.23)

qx equations (i = 1, . . . , nq):

nu
∑

j=1

(

Θu
j

∫

Γ̂h

φq
iN

u
j dl

)

uj = 0, for all i = 1, . . . , nq , (3.24)

qy equations (i = 1, . . . , nq):

nv
∑

j=1

(

Θv
j

∫

Γ̂h

φq
iN

v
j dl

)

vj = 0, for all i = 1, . . . , nq. (3.25)

Note that in the x and y equations, µ takes the value µ+ if the node i is associated with Ω+
h

and µ− if it is associated with Ω−
h . Also, Θu

j = 1 if the node j on the u grid is associated

with a cut cell of Ω+
h , Θ

u
j = −1 if it is associated with a cut cell of Ω−

h and Θu
j = 0 for

all other nodes; Θv
j is defined analogously for the nodes of the v grid. We can rewrite the

equations above using the notation introduced in Equation (3.20) as:

Auu
ij = µ

∫

Ωh\Γ̂h

2Nu
i,xN

u
j,x +Nu

i,yN
u
j,y dA Gu

ij =

∫

Ωh\Γ̂h

Nu
i,xφ

p
j dA

Auv
ij = µ

∫

Ωh\Γ̂h

Nu
i,yN

v
j,x dA Gv

ij =

∫

Ωh\Γ̂h

N v
i,yφ

p
j dA

Avu
ij = µ

∫

Ωh\Γ̂h

N v
i,xN

u
j,y dA Du

ij =

∫

Ωh\Γ̂h

φp
iN

u
j,x dA

Avv
ij = µ

∫

Ωh\Γ̂h

2N v
i,yN

v
j,y +N v

i,xN
v
j,x dA Dv

ij =

∫

Ωh\Γ̂h

φp
iN

v
j,y dA
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Cu
ij = Θu

i

∫

Γ̂h

Nu
i φ

q
j dl Bu

ij = Θu
j

∫

Γ̂h

φq
iN

u
j dl

Cv
ij = Θv

i

∫

Γ̂h

N v
i φ

q
j dl Bv

ij = Θv
j

∫

Γ̂h

φq
iN

v
j dl,

F̂ 1
i = −

nq
∑

j=1

(∫

Γ̂h

1

2
Nu

i φ
q
j dl

)

f i1(pj) f̂ 1
i =

np
∑

j=1

(∫

Ωh\Γ̂h

Nu
i φ

p
j dA

)

f
1

j

F̂ 2
i = −

nq
∑

j=1

(∫

Γ̂h

1

2
N v

i φ
q
j dl

)

f i2(pj) f̂ 2
i =

np
∑

j=1

(∫

Ωh\Γ̂h

N v
i φ

p
j dA

)

f
2

j

Note that Auu and Avv are symmetric, while Auv = (Avu)T . Also, we have Gu
ij = Du

ji,

Gv
ij = Dv

ji, C
u
ij = Bu

ji and Cv
ij = Bv

ji, so Gu = (Du)T , Gv = (Dv)T , Cu = (Bu)T and

Cv = (Bv)T . Therefore, the system matrix K is symmetric.

3.1.3.4 Computation of the matrix K elements

There are many area and line integrals involved in the definition of the discrete system.

We will show here that they can all be computed with modest implementation complexity

and computational cost. We perform all area integrals by dividing them into sums of

integrals over cells in the pressure grid. That is, each area integral is represented as a sum

of integrals over the material region of the spatially disjoint pressure cells (whose union

is the entire fluid domain). This pressure-cell-wise view of the integration allows us to

naturally evaluate these integrals near the geometrically elaborate interface. We use cpi

to denote the ith pressure cell for i = 1, 2, . . . , np. To further facilitate the computation

of the integrals, we divide each pressure cell cpi into four subcells ω1, ω2, ω3, and ω4,

as shown in Figure 3.6(a). Also, for reasons which will be outlined below, we construct

positively oriented boundaries for each of these subcells intersecting the material region as

in Figure 3.7. With this convention, the area integrals are expressed as

∫

Ωh\Γ̂h

f(x, y) dA =

∫

Ω+
h

f(x, y) dA+

∫

Ω−

h

f(x, y) dA (3.26)

=

np
∑

i=1

4
∑

j=1

∫

wj∩Ω
+
h

f(x, y) dA+

np
∑

i=1

4
∑

j=1

∫

wj∩Ω
−

h

f(x, y) dA. (3.27)
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ω1 ω2

ω3ω4

v1 v2 v3

v4 v5 v6

u1 u2

u3 u4

u5 u6

p1

(a)

ω1

v1 v2

v4 v5

u1 u2

u3 u4p1

(b)

ω2

v2 v3

v5 v6

u1 u2

u3 u4p1

(c)

ω3

v2 v3

v5 v6

u3 u4

u5 u6

p1

(d)

ω4

v1 v2

v4 v5

u3 u4

u5 u6

p1

(e)

ω2

v2 v3

v5 v6

u1 u2

u3 u4p1

(f)

Figure 3.6: Nodes involved in the contribution to the elements of K from a given (shaded)

pressure cell. Figure (a) shows all contributing nodes on a given material pressure cell,

while figures (b)-(e) show the contributing nodes for each subcell (marked in pink) lying

on the interior of the pressure cell from Figure (a). Figure (f) shows an example in which

the pressure cell is cut; in the example shown fewer u and v nodes are needed to compute

the matrix elements associated with that cell in comparison to the cell of Figure (a) (in

this case, only subcell ω2 has a nonvanishing material region).
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Note that the second sum in each term of the right hand side is over the subcells ωj of the

pressure cell cpi and that some of these subregions may be empty in the case of cut cells, as

outlined in Figure 3.7.

We use our pressure-cell-wise integration convention to express the discrete system

matrix K as the sum of the pressure-cell element matrices Kcpi ∈ R
np
i×np

i for cells cpi . Here

we slightly abuse the term “sum” since np
i will be between 7 and 13. We simply mean that

the entries inK can be written as sums of entries in these cell-wise matrices. The size of each

matrix Kcpi is determined by the number of interpolating functions supported over pressure

cell cpi . The staggering of variables leads to 13 interpolating functions supported over a

given interior/uncut pressure cell (6 x-components, 6 y-components and one pressure).

There may be fewer than 12 velocity nodes involved in the case of cut cells (see Figure 3.6).

The number is determined by the subregions ω1 − ω4 that intersect the domain. This is

illustrated in Figure 3.6(f)).

As mentioned above, we further divide the cell-wise Kcpi as a sum of matrices defined

over the subregions ω1 − ω4 as Kcp = Kcp

ω1
+ K

cpi
ω2 + K

cpi
ω3 + K

cpi
ω4 . This is done because

the integrands are all smooth over the ω1 − ω4 subregions (with kinks at the boundaries

of these regions). Specifically, the integrands are at most quadratic over the subregions

and we preform these integrations analytically following the ideas developed in [1]. For

example, the entries in Kcp

ω1
involve u1, u2, u3, u4, v1, v2, v4 and v5 as demonstrated in

Figure 3.6(b); therefore, it only has non-zero values on rows and columns involving these

degrees of freedom. The resulting equations based on those degrees of freedom are shown

in Figure 3.8. If we order the 13 nodes with indices shown in Figure 3.6(a), then on the

interior of the domain, where cpi ∩Ωh = cpi , the sum of these four subintegrals is always the

same:
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K
cp
ω1

=
1

64







































































16µ 0 0 −16µ 0 0 9µ −6µ −3µ 3µ −2µ −µ 8h

0 16µ −16µ 0 0 0 3µ 6µ −9µ µ 2µ −3µ −8h

0 −16µ 96µ −µ 0 −16µ −6µ 4µ 2µ 6µ −4µ −2µ 48h

−16µ 0 −µ 96µ −16µ 0 −2µ −4µ 6µ 2µ 4µ −6µ −48h

0 0 0 −16µ 16µ 0 −3µ 2µ µ −9µ 6µ 3µ 8h

0 0 −16µ 0 0 16µ −µ −2µ 3µ −3µ −6µ 9µ −8h

9µ 3µ −6µ −2µ −3µ −µ 16µ 0 0 0 −16µ 0 8h

−6µ 6µ 4µ −4µ 2µ −2µ 0 96µ 0 −16µ −µ −16µ 48h

−3µ −9µ 2µ 6µ µ 3µ 0 0 16µ 0 −16µ 0 8h

3µ µ 6µ 2µ −9µ −3µ 0 −16µ 0 16µ 0 0 −8h

−2µ 2µ −4µ 4µ 6µ −6µ −16µ −µ −16µ 0 96µ 0 −48h

−µ −3µ −2µ −6µ 3µ 9µ 0 −16µ 0 0 0 16µ −8h

8h −8h 48h −48h 8h −8h 8h 48h 8h −8h −48h −8h 0







































































(3.28)

We illustrate the stencil sparsity in Figure 3.9 for equations sufficiently far from the inter-

face.

For boundary cells where cp ∩Ωh 6= cp, we have to perform the integrations involved in

each of K
cp
ωj carefully, taking into account the boundary geometry. These integrals can be

computed analytically in a straightforward manner following the approach of [1]. Let P be

the polygonal cut-cell geometry consisting of d boundary segments si. All pressure subcells

cells fit into this category since their boundaries are a set of segments which we orient as

in Figure 3.7. All the functions that need to be integrated when computing the elements

of K are at most quadratic over the pressure subcells. We use the procedure described in

Appendix C to exactly compute these integrals.

3.1.3.5 Kernel modes of the matrix K

As mentioned in Section 3.1.3.2, there are three kernel modes for the continuous problem.

We found that failure to discretely resolve these modes resulted in significantly inferior

performance of the method. Specifically, failure to discretize the interface geometry in a

manner consistent with the discrete interface jump conditions leads to a matrix K that

does not capture the constant pressure mode. The smallest mode of K is then numerically

similar to the constant pressure mode, but with non-zero eigenvalue. This numerical error
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Γ̂h

ω1 ω2

ω3 ω4

ω1 ω2

ω3ω4 ω4

Figure 3.7: Construction of the positively oriented boundaries of each subcell in a given

pressure cell. The figure on the left shows the pressure cell and its four subcells ω1, ω2, ω3

and ω4. The subcells are duplicated since the original pressure cell is cut. The figure in the

middle shows the orientation of the boundaries of the subcells associated with the copy of

the pressure cell on Ω−
h , while the figure on the right shows the same for the single subcell

(ω4) associated with the copy of the pressure cell on Ω+
h .

in the rank of the matrix causes considerable degradation in the performance of the iterative

solver for the discrete systems. We demonstrate this with explicit examples in Section 4.3.4.

The first two kernel modes are a consequence of the periodicity of the domain and

correspond to constant x and y velocities. These modes will always be captured when

the rows of K associated with x and y velocity equations sum to zero. This constraint

is satisfied for nearly all choices of interface geometry and jump condition discretization.

As discussed in Section 3.1.3.2, the third mode has zero velocity, constant pressure and

Lagrange multiplier q equal to the constant pressure times the outward normal to the

interface. Our choice of interface geometry discretization yields a constant normal to the

interface on each pressure cell. We also set the Lagrange multiplier space to be piecewise

constant wherever the pressure and the normals are piecewise constant. This combination

of choices allows us to have a discrete mode that corresponds exactly to the continuous

mode over a piecewise linear interface. Using the notation for our discrete variables, this

mode has zero velocities U with any scalar multiple of P = (1, . . . , 1)T and the same scalar

multiple of qli = −nl
i for l = 1, 2 for each entry in Q. Here, ni = (n1

i , n
2
i ) is the ith outward

normal of the discrete interface Γ̂h. As discussed in Section 3.1.3.3, we have a different

value of the index i for each cut pressure cell. To verify that this is a kernel mode of K,
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Figure 3.8: Symbolic formulas for the entries in the pressure-cell-wise discretization: Kcp

w1
.

note that:

K























0

0

P

Q1

Q2























=























−(Du)TP+ (Bu)TQ1

−(Dv)TP+ (Bu)TQ2

0

0

0























(3.29)

Since the velocities are zero, all q and p equations will be zero. Now, consider the ith

x velocity equation. This is the equation associated with x velocity node i = 1, 2, . . . , nu.

Assume that the node is associated with Ω+
h . Then, if P = (1, . . . , 1)T ,

−
(

(Du)TP
)

i
= −

np
∑

j=1

Du
jipj = −

np
∑

j=1

∫

Ωh\Γ̂h

φp
jN

u
i,x dA = −

∫

Ω+
h

∇ · (Nu
i , 0) dA

=

∫

Γ̂h

Nu
i n

1 dl =

nq
∑

k=1

n1
k

∫

Γ̂h∩c
p

j(k)

Nu
i dl.

(3.30)

Here we use the fact that the interpolating function Nu
i is only supported on Ω+

h since i

is assumed to be a positive node. Also, we use the fact that n1
k is constant over Γ̂h ∩ cpj(k)

where cpj(k) is the pressure cell that intersects the kth segment in Γ̂h.
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Figure 3.9: Visualization of discrete stencils away from the interface in the matrix K. u

node stencils are shown at the left, v node stencils are in the middle and p node stencils

are shown at the right.

Now, if we set q1k = −n1
k for k = 1, 2, . . . , nq then,

(

(Bu)TQ1
)

i
=

nq
∑

k=1

Bu
kiq

1
k = −

nq
∑

k=1

Θu
i

∫

Γ̂h

Nu
i φ

q
kn

1
k dl = −

nq
∑

k=1

n1
k

∫

Γ̂h∩c
p

j(k)

Nu
i dl (3.31)

since i is a positive node implies that Θu
i = 1. Therefore −

(

(Du)TP
)

i
+
(

(Bu)TQ1
)

i
= 0

for all i positive x node equations. The argument is simular for negative nodes and for the

y equations. We reiterate that our choice of discretization for the Lagrangian multiplier q,

which is associated with the jump conditions for u and v, is crucial for the incorporation of

the constant pressure mode into the kernel of the matrixK. Generally speaking, the discrete

q must be piecewise constant exactly where the discrete interface normals are piecewise

constant. Other choices of discretization may prevent this mode from being captured

exactly. An example of a discretization which fails to capture this mode is presented in

Section 4.3.4. It is shown there that the simulation times are significantly larger when

compared to our choice of discretization for q.

Since the matrixK is symmetric, for any kernel mode z we have that zTK = (KTz)T = 0

because K = KT . Hence, from Equation (3.20), we see that the right hand side force terms

must be orthogonal to the kernel of K. The constant u, constant v and constant p modes

described above provide an orthogonal basis of the kernel of K and hence we must always
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project out components on the right hand side forces which are parallel to the space spanned

by these three vectors. Notice that projecting out the constant u and v vectors from the

right hand side implies that the total force acting on the fluid in both the horizontal and

vertical directions must have zero sum. The right hand side forces on Equation (3.20) are

naturally orthogonal to the constant pressure mode.

3.1.4 Interface advection

The interface is advected is performed in the same way as for the continuous viscosity case.

Details are therefore omitted here; see Section 2.2.5 for a detailed decription of this step.
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CHAPTER 4

Numerical results

We will now discuss a number of numerical tests we used to demonstrate that our method

is capable of achieving second order accuracy in L∞ for u, v and, in the continuous viscosity

case, also for p (results for p are first order accurate if the viscosity is discontinuous across

the interface). First we will define the precise notion of order of convergence that we use

and discuss how we compute it for u, v and p. In the context of continuous fluid viscosity,

we present our discretization and convergence results for interfacial elastic and surface

tension forces as well as problems in irregular domains. In the context of discontinuous

fluid viscosity, we present our discretization and convergence results also for interfacial

elastic and surface tension forces and for problems in which the fluid densities are different

(with gravitational forces present). In what follows, for irregular domain problems and for

problems in which the fluid viscosities are the same, the methods of Chapter 2 were used,

while for problems in which the fluid viscosities are different the methods of Chapter 3 were

used instead. For a better exposition, all figures mentioned in this chapter are placed at

its end.

4.1 Convergence measure

We use N to denote the number of MAC grid cells per direction. We define our discrete

approximation to a field g at grid point (xi, yj) as gNi,j. Let EN
i,j = gNi,j − g(xi, yj). We

examine convergence in the point-wise infinity norm which we define as:

eN =
∥

∥EN
∥

∥

∞
= max

i,j

∣

∣EN
i,j

∣

∣ (4.1)
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We say that the method is r-th order accurate if:

eN =≤ Chr (4.2)

for some constant C with h ∝ 1/N being the cell width. Hence:

∥

∥g2N − gN
∥

∥

∞
≤
∥

∥g2N − g
∥

∥

∞
+
∥

∥gN − g
∥

∥

∞

≤ C(hr
2N + hr

N)

= C ′

(

1

(2N)r
+

1

N r

)

= C ′ 1

N r

(

1

2r
+ 1

)

= C ′′ 1

N r

(4.3)

where all constants were incorporated into C ′′. Taking the log10 on both sides of the

equation above and defining a = log10 C
′′, we get:

log10
∥

∥g2N − gN
∥

∥

∞
≤ a− r log10N. (4.4)

In other words, the negative of the slope of the plot of log10
∥

∥g2N − gN
∥

∥

∞
versus log10 N is

the order of convergence of the method in the L∞ norm. We use this procedure to compute

the order of convergence in the results that follow. Note that in order to define the quantity

g2N − gN , they must be defined at common grid points (i, j). We do this by taking the

difference at all grid points (i, j) in the grid associated with gN as g2N will also be defined

at those points.

The discontinuities in the velocities and the pressure at the interface Γ̂h require special

treatment in our grid refinement studies. The comparison of g2N and gN must only be done

at points on the same side of the interface. That is, a given grid point (i, j) may be on the

interior of the interface for g2N and on the exterior of the interface for gN (or vice versa).

This will happen because the geometry of the interface will change with N since the level

set is also defined on a grid with resolution set by N . It would artificially degrade our error

convergence estimates if we compare points on opposite sides of the interface. Therefore,

we define the infinity norm of the difference between g2N and gN to only consider points
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that are on the same side of the interface on both grids. Note that this also precludes

comparing the values at virtual degrees of freedom.

4.2 Examples with continuous fluid viscosity

The following numerical examples show the numerical results we obtained with the VNA

for the Stokes problems with continuous fluid viscosities outlined in Chapter 2.

4.2.1 Elastic interface discretization

Our discretization of elastic interfacial forces is very standard, but we briefly cover it here

for completeness. Let x(λ, t) be a parametrization of the interface Γ. We assume that

the range of λ is [0, L0], where L0 is the equilibrium length of the elastic interface. This

equilibrium length L0 is defined such that all elastic forces vanish at all points of Γ if its

configuration is a circle of radius R0 = 2π/L0. The elastic force density (per unit length of

the parameter λ) at a given point x(λ, t) ∈ Γ is given by the equation:

F(λ, t) =
∂

∂λ
(T (λ, t)τ (λ, t)) (4.5)

where τ (λ, t) is the unit vector tangential to the interface at the point x(λ, t):

τ (λ, t) =
∂x

∂λ

/

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

(4.6)

and T (λ, t) is the tension at that point:

T (λ, t) = κ(λ)

(∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

− 1

)

. (4.7)

The function κ(λ) determines the elastic properties at each point of the interface. Here we

will take κ(λ) to be a constant. The interface is discretely represented with M nodes and

we compute the force density Fi on each node xi of Γh as:

τi+1/2 =

(

∂x

∂λ

)

i+1/2

/

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

i+1/2

=
xi+1 − xi

‖xi+1 − xi‖
, (4.8)

Ti+1/2 = κ

(‖xi+1 − xi‖
∆λ

− 1

)

(4.9)
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and

Fi =
Ti+1/2τi+1/2 − Ti−1/2τi−1/2

∆λ
(4.10)

with ∆λ = L0/M . Here the subscript i + 1/2 refers to the point at the center of the

segment which connects the nodes xi and xi+1. We divide the force density (4.10) by
∥

∥

∂x
∂λ

∥

∥

i
= ‖xi−xi−1‖+‖xi+1−xi‖

2∆λ
to define the jump conditions:

f ii =
2∆λ

‖xi − xi−1‖+ ‖xi+1 − xi‖
Fi. (4.11)

For all elastic interface tests we use a rectangular periodic domain [−1, 1]× [−1, 1] with
an initial elliptical interface of semi-major radius a = 0.7 and semi-minor radius b = 0.4

centered at the domain origin at t = 0. The ellipse is given uniform elasticity constant

κ = 10. The fluid viscosity is set to µ = 1 (uniformly). For a MAC grid with N cells per

direction, the interface is represented with M = N/2 segments. The nodes of the interface

are positioned initially according to the expression:

xi = (a cos θi, b sin θi), (4.12)

where θi = 2πi/Nb = 4πi/N for i = 1, 2, . . . , N/2. This choice of the parametrization of

the interface ensures each of its segments has length between 2.5h and 4.5h at all times of

the simulation. The linear systems for the pressure and for the velocities are solved using

multigrid. The time step was ∆t = 5h2 = 20/N2. We verified the order of convergence

for the pressure, for the velocities and for the interface Γh according to the L∞ norm

at the times t1 = 0.1, t2 = 0.2, t3 = 0.3 and t4 = 0.4. Also, we checked how the total

interface volume change ∆Vh = (interface volume at time t)−(interface volume at timet =

0) converged to zero as the grid was refined and the order of convergence of the maximum

and minimum distances between the interface Γh and the origin of the rectangular domain

(these distances are denoted below as Rmax and Rmin respectively). The numbers of grid

cells per direction used on the convergence test were N = 32, 64, 128, 256. As can be seen

from Table 4.1, all the results obtained are second order accurate for all these quantities.

Figure 4.1 shows the time evolution of the interface Γh.
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Quantity t = 0.1 t = 0.2 t = 0.3 t = 0.4

uh 2.44 2.30 2.22 2.24

vh 2.31 2.20 2.26 2.15

ph 2.74 2.01 2.23 2.23

Γh 2.63 2.24 2.11 2.10

Rmax 2.10 2.05 2.02 2.02

Rmin 1.76 1.95 1.98 1.99

∆Vh 2.05 2.01 2.01 2.01

Table 4.1: Orders of convergence for Example 4.2.1.

4.2.2 Surface tension

Let x(s, t) be the parameterization of the interface with respect to arclength. The surface

tension force density (per unit interface length) at a given point x(s, t) ∈ Γ is:

f i(s, t) = 2σ
∂τ (s, t)

∂s
(4.13)

where again τ (s, t) is the unit vector tangential to the interface at the point x(s, t) and σ

is the surface tension constant of the interface Γ. Since we are using the interface arclength

as our paramertization, we have:
∥

∥

∥

∥

∂x

∂s

∥

∥

∥

∥

= 1. (4.14)

The surface tension force density is then in this case:

f ii = 2σ
τi+1/2 − τi−1/2

∆s
, ∆s =

‖xi+1 − xi‖+ ‖xi − xi−1‖
2

. (4.15)

Here, τi+1/2 is the same as in Equation (4.8). Note that the surface tension force density

(4.13) is always normal to the interface.

For all surface tension tests we use a rectangular periodic domain [−1, 1]× [−1, 1] with
an elliptical interface of semi-major radius a = 0.7 and semi-minor radius b = 0.4 centered

at the domain origin at t = 0. The fluid viscosity is again set to µ, the surface tension

constant is σ = 10. We use the same number of interface nodes as in the elastic interface
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Quantity t = 0.1 t = 0.2 t = 0.3 t = 0.4

uh 2.25 1.90 1.99 2.05

vh 2.05 1.84 2.06 2.12

ph 1.75 1.79 1.92 2.05

Γh 2.06 1.95 2.37 2.10

Rmax 2.24 1.95 1.93 1.95

Rmin 1.96 1.96 1.97 1.97

∆Vh 1.83 1.90 1.91 1.92

Table 4.2: Orders of convergence for Example 4.2.2.

examples: M = N/2 segments. The nodes of the interface are positioned initially as in

the elastic interface case and the linear systems for the pressure and for the velocities are

solved using multigrid. Also the time step is again ∆t = 5h2 = 20/N2.

We verified the order of convergence for the pressure, for the velocities and for the

interface Γh according to the L∞ norm at the times t1 = 0.1, t2 = 0.2, t3 = 0.3 and

t4 = 0.4. Also, we again checked the the order of convergence of the total interface volume

change ∆Vh towards zero as the grid was refined and the order of convergences of Rmax

and Rmin. The numbers of MAC grid cells per direction used on the convergence tests were

N = 32, 64, 128, 256. As can be seen from Table 4.2 all the results obtained are second

order accurate for all these quantities. Figure 4.2 shows the time evolution of the interface

Γh.

4.2.3 Irregular domain

We also demonstrate second order convergence with the following irregular domain prob-

lem. Consider two concentric circles with radii R1 = 0.3 and R2 = 0.8 respectively with a

Stokesian fluid in between having viscosity µ = 1. The inner cylinder rotates counterclock-

wise with angular velocity ω1 = 2 and the outer circle rotates counterclockwise with angular

velocity ω2 = 1. We used the values N = 40, 80, 160, 320, 640 for the MAC grid resolutions.
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Quantity t = 0.0

uh 2.16

vh 2.11

Table 4.3: Orders of convergence for Example 4.2.3.

The linear systems are solved using conjugate gradients with Jacobi preconditioning. In

order to visualize the fluid motion, we divided the fluid domain in two halves: x > 0 and

x < 0. Marker particles were placed at these two domains and allowed to be advected

with the fluid using forward Euler. As can be seen from Table 4.3, the results obtained are

second order accurate for the velocities. Figure 4.3 shows position of the marker particles

at different time steps.

4.3 Examples with discontinuous fluid viscosity

The following numerical examples show the numerical results we obtained with the VNA

for the Stokes problems with discontinuous fluid viscosities outlined in Chapter 3.

4.3.1 Jacobi preconditioned MINRES

Our discretization requires the solution of a symmetric linear system for the velocities, the

pressure and the Lagrange multipliers. In all examples described below, we use MINRES

to solve the linear systems involved. As noted in [1], the cut cells can lead to rows in the

matrix with very small magnitude. This can significantly degrade the condition number

of the system. We alleviate this with a simple Jacobi preconditioning strategy. This is

slightly different that in [1] where the matrices were all symmetric positive definite. Our

system is symmetric but with a zero lower right block. We therefore use a block Jacobi

approach to alleviate rows with small magnitude.

We first construct a Jacobi preconditioner for the A matrix portion of K. We define
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this block of the preconditioner J(1) as:

J
(1)
ii =















1√
Kii

if i < Nu +Nv

1 if i ≥ Nu +Nv

(4.16)

Let K(1) = J(1)KJ(1). The diagonal entries in the first Nu +Nv rows of K(1) are 1 and its

off-diagonal entries are smaller than 1. In the second step, we construct a preconditioning

matrix that normalizes each row i > Nu+Nv ofK
(1), leaving its leading (Nu+Nv)×(Nu+Nv)

block unchanged. Letting ki be the i
th row of K(1), we construct the second preconditioning

matrix J(2) as:

J
(2)
ii =















1 if i < Nu +Nv

1

‖ki‖2
if i ≥ Nu +Nv

. (4.17)

Letting J = J(2)J(1) and writing the solution vector in Equation (3.19) as x and the right

hand side as b, we then solve the following linear system:

JKJJ−1x = (JKJ)y = Jb, (4.18)

where y = J−1x.

4.3.2 Elastic interface discretization

Consider the elastic interface problem of Section 4.2.1. We simulated the evolution of an

elastic interface as in that section but with fluid viscosities inside and outside the interface

set to µ− = 3 and µ+ = 1 respectively. All other parameters of the simulation were kept

the same. As can be seen from Table 4.4, all the results obtained are second order accurate

for all these quantities except for the pressure, which is first order accurate. Figure 4.4

shows the time evolution of the interface Γh.

4.3.3 Surface tension

Consider the surface tension problem of Section 4.2.2. We simulated the evolution of the

contact interface as in that section but with fluid viscosities inside and outside the interface
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Quantity t = 0.1 t = 0.2 t = 0.3 t = 0.4

uh 1.76 1.80 2.40 1.85

vh 1.60 1.85 2.03 2.03

ph 0.63 0.85 0.82 0.69

Γh 2.55 2.47 2.48 2.47

Rmax 2.03 2.05 2.09 2.10

Rmin 2.02 2.08 2.08 2.10

∆Vh 2.23 2.16 2.21 2.24

Table 4.4: Orders of convergence for Example 4.3.2.

Quantity t = 0.1 t = 0.2 t = 0.3 t = 0.4

uh 2.05 1.80 2.25 1.88

vh 1.89 2.16 1.85 1.87

ph 0.84 0.97 1.06 0.86

Γh 1.82 2.01 2.21 2.34

Rmax 2.22 2.28 2.28 2.26

Rmin 1.95 1.96 1.98 1.98

∆Vh 2.12 2.15 2.16 2.19

Table 4.5: Orders of convergence for Example 4.3.3.

set to µ− = 3 and µ+ = 1 respectively. All other parameters of the simulation were kept

the same. As can be seen from Table 4.5, all the results obtained are second order accurate

for all these quantities except for the pressure, which is first order accurate. Figure 4.5

shows the time evolution of the interface Γh.

4.3.4 Pressure null mode test

We provide evidence of the importance of capturing the constant pressure null mode. Our

initial investigations used a doubly-fine level set to form the approximated Lagrangian
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N Our method Doubly-fine level set

32 978 1897

64 2500 5402

128 6635 16095

Table 4.6: Average number of MINRES iterations per time step for Example 4.3.4

N Our method Doubly-fine level set

32 1.40 1.91

64 4.63 8.80

128 46.3 86.0

Table 4.7: Average run time per time step (in seconds) for Example 4.3.4

interface Γ̂h following the approach in [83]. That is, we first used a level set defined over a

grid with twice as many cells per dimension as the pressure grid. The nodes of the pressure

grid are also nodes of this doubly-fine grid. Although this procedure is still adequate for

consistently computing the integrals which define the system matrix K and the right hand

side components, the resulting matrix K does not have the constant pressure mode in

its kernel. This mode is then only captured approximately as N → ∞. The effective

conditioning of the system was significantly degraded by this. To illustrate, we ran the

tests in the elasticity example section for N = 32, 64, 128 up to t = 0.1 and computed

the average number of MINRES iterations for convergence and also the average amount of

execution time per time step. Our residual tolerance was rTOL = 10−7. As can be seen

from Tables 4.6 and 4.7, performance was significantly improved by capturing these modes.

4.3.5 Rising drop

We also demonstrate the effect of discontinuous material properties by simulating fluids

with different densities and viscosities under with a gravitational body force. We use a

uniform gravity g = 10, with fluid densities ρ− = 1 inside the interface and the ρ+ = 2
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outside the interface. The viscosities are set to either µ+ = 1 and µ− = 3 or to µ+ = 1 and

µ− = 3. We use a rectangular periodic domain [−1, 1] × [−1, 1] with an initial elliptical

interface of semi-major radius a = 0.5 and semi-minor radius b = 0.2 centered at the the

position (0,−0.7). We simulate interfaces with no surface tension and with surface tension

constant σ = 1 for both these viscosity combinations. The interface is represented with

M = N segments for the cases in which the surface tension constant is set to zero and with

M = N/2 segments otherwise. The nodes of the interface are positioned initially according

to the expression:

xi = (a cos θi, b sin θi − 0.7), (4.19)

where θi = 2πi/Nb = 4πi/N for i = 1, 2, . . . , N/2. The time step is ∆t = 50h2 = 200/N2.

The results are shown on Figure 4.6.
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(a) t=0.0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4

Figure 4.1: Configuration of Γh at different times for the elastic interface problem of Sec-

tion 4.2.1. Pressure is shown in gray. Dark regions have lower pressure; brighter regions

have higher pressure.
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(a) t=0.0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4

Figure 4.2: Configuration Γh at different times for the surface tension problem of Sec-

tion 4.2.2. Pressure values are shown in gray. Dark regions have lower pressure; brighter

regions have higher pressure. Compare these results with the ones of Figure 4.1.

65



(a) t=0.0 (b) t=1.0

(c) t=2.0 (d) t=3.0

(e) t=5.0 (f) t=10.0

Figure 4.3: Position of the marker particles at different times for the problem of Sec-

tion 4.2.3. The fluid pressure is spatially uniform in this example.
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(a) t=0.0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4

Figure 4.4: Configuration of Γh at different times for the elastic interface problem of Sec-

tion 4.3.2. Pressure is shown in gray. Dark regions have lower pressure; brighter regions

have higher pressure.
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(a) t=0.0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4

Figure 4.5: Configuration Γh at different times for the surface tension problem of Sec-

tion 4.3.3. Pressure values are shown in gray. Dark regions have lower pressure; brighter

regions have higher pressure. Compare these results with the ones of Figure 4.4.
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(a) (b) (c) (d)

Figure 4.6: Rising drop. Configurations of the interface Γh are shown at different times and

for different combinations of σ, µ+ and µ−. Pressure is shown in gray. Dark regions have

lower pressure; brighter regions have higher pressure. Each column represents a different

test case; from bottom to top, the figures show the interface configurations at t = 0.0,

t = 3.0, t = 5.0 and t = 7.0. From left to right, each column represents a test with each of

these parameter combinations: µ− = 3, µ+ = 1, σ = 0 at column (a), µ− = 1, µ+ = 3, σ = 0

at column (b), µ− = 3, µ+ = 1, σ = 1 at column (c) and µ− = 1, µ+ = 3, σ = 1 at column

(d).
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CHAPTER 5

Summary and discussion

In this dissertation, we have presented two Virtual Node Algorithms (VNAs) designed to

accurately solve the incompressible Stokes equations with geometrically irregular domains

and interfaces. Both algorithms handle singular forces such as surface tension or elastic

forces supported along the interfaces.

Our first algorithm is an efficient and easy to implement second order accurate solver

for the Stokes equations with immersed interfaces and geometrically irregular domains.

The assumed spatial uniformity of the fluid viscosity permits a reduction of the problem to

solving three independent Poisson equations for the velocities and the pressure. This task

can be optimally performed using fast Poisson solvers such as multigrid. An additional

Poisson equation can then be solved to enforce a discrete divergence-free condition for the

velocities without sacrificing second order accuracy. The linear system associated with each

of these Poisson equations is symmetric positive definite. Examples with elastic interfaces

and surface tension were presented as well as flow of a single fluid in the region separating

two rotating concentric cylinders. All results obtained have shown second order accuracy

in L∞ for the velocities, the pressure and all other quantities measured.

Our second algorithm is a second order accurate solver for the Stokes equations with

immersed interfaces and discontinuous fluid properties. We considered examples in which

both the fluid viscosities and densities are discontinuous across the interface. Our method

is capable of resolving discrete counterparts of the continuous null modes for these interface

problems and we showed that this is necessary for efficient performance. Also, the method

is easy to implement and yields a symmetric linear system of equations. Examples with

elastic interfaces and surface tension were presented, as well as examples with drops which
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rise due to the presence of gravitational forces coupled with discontinuous fluid densities.

All results obtained have shown second order accuracy in L∞ for the velocities and all other

quantities measured except for the pressure, which is first order accurate.

It is the intention of the authors to extend the current methods to deal with the full

incompressible Navier-Stokes equations in the context of interfacial forces and discontinuous

fluid properties.
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APPENDIX A

Derivation of pressure boundary conditions

Let Ω be an irregular domain whose surface is a smooth curve ∂Ω. We will assume here that

Dirichlet boundary conditions are know for the velocities: u(x) = U(x) and v(x) = V (x)

for all x ∈ ∂Ω, with U(x) and V (x) being functions defined only along ∂Ω.

Let x0 = (x0, y0) be a point in ∂Ω. Let (ξ, η) be an orthogonal set of coordinates with

its origin at x0 constructed as in figure A.1. The ξ axis defines a line which is tangential

to ∂Ω at the point x0, while η defines a line which is parallel to the outward normal of ∂Ω

at that point.

Denoting V ξ and V η the components of the velocity on the (ξ, η) coordinates, we have:

∂V ξ

∂ξ
+

∂V η

∂η
= 0 (A.1)

Ω

∂Ω

η
ξ

x0

Figure A.1: Local coordinates centered at the point x0 of the domain boundary ∂Ω. The

ξ axis is tangential to ∂Ω at x0. The η axis is normal to ∂Ω at x0.
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and

(

∂2

∂ξ2
+

∂2

∂η2

)

V η − ∂p

∂η
+ f η = 0 (A.2)

(

∂2

∂ξ2
+

∂2

∂η2

)

V ξ − ∂p

∂ξ
+ f ξ = 0. (A.3)

Equation (A.1) is merely the divergence-free condition expressed in the set of orthogonal

coordinates defined above. Similarly, the pair of equations (A.2) and (A.3) are the Stokes

equations also written in the same set of coordinates, with f ξ and f η being the components

of f along the ξ axis and the η axis respectively.

Notice that, from equation (A.1), we have:

(

∂2

∂ξ2
+

∂2

∂η2

)

V η =
∂2V η

∂ξ2
+

∂

∂η

(

−∂V ξ

∂ξ

)

=
∂

∂ξ

(

∂V η

∂ξ
− ∂V ξ

∂η

)

=
∂ω

∂ξ

(A.4)

where ω is the fluid vorticity. Hence, as x −→ x0, we have from equation (A.2) that:

∂p

∂η
−→ f η +

∂ω

∂ξ
(A.5)

where the right hand side is computed at x0. In other words, the Neumann boundary

conditions for the fluid pressure at a given point of the domain surface are determined

by the normal component of the body force and by the tangential derivative of the fluid

vorticity at that point.

It is also important to keep in mind that the incompressibility condition ∇ · u = 0

imposes a restriction of the functions U(x) and V (x) since, by the divergence theorem:

∫

Ω

∇ · u dA = 0 =⇒
∫

∂Ω

u · n dl =

∫

∂Ω

(U(x), V (x)) · n(x) dl = 0 (A.6)

where n = n(x) is the unit outward normal to ∂Ω at the point x ∈ ∂Ω.
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APPENDIX B

Equivalence between original and modified Stokes

problems

As described in Section 3.1.3.1, whenever the viscosity of a Stokesian fluid is spatially

uniform, we can derive Poisson equations for each of the fluid variables:

∆p = ∇ · f , (B.1)

µ∆u = px − f1, (B.2)

µ∆v = py − f2, (B.3)

valid for all x ∈ Ω \ Γ. In this appendix, we show that the velocities and pressure which

are solutions of equations (B.1-B.3) solve in fact the incompressible Stokes equations:

∇ · σ = µ∆u−∇p = −f , (B.4)

∇ · u = 0, (B.5)

for all x ∈ Ω\Γ. In both set of equations, we assume Dirichlet boundary conditions for the

velocities and the Neumann boundary conditions for the pressure given in equation (A.5):

u(x) = U(x), (B.6)

v(x) = V (x), (B.7)

∂p

∂η
(x) = f η(x) +

∂ω

∂ξ
(x), (B.8)

for all x ∈ ∂Ω. We assume also that the Dirichlet boundary conditions for the velocities

preserve the total fluid volume inside the domain Ω:

∫

∂Ω

(U, V ) · n = 0. (B.9)
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Since equations (B.2) and (B.3) are merely equation (B.4) written in component form, all

we need to do is prove that the solution of equations (B.1-B.3) is such that the velocity

field (u, v) obtained satisfies the incompressibility condition ∇ · (u, v) = 0. To start, notice

that from equations (B.2) and (B.3) we have:

∇ · (µ∆u−∇p+ f) = µ∆(∇ · u)−∆p+∇ · f = 0, (B.10)

but from the equation (B.1) we must then have µ∆(∇ · u) = 0 =⇒ ∆(∇ · u) = 0. Let

g(x) = (∇ · u)(x) for all x ∈ Ω and let x0 ∈ ∂Ω as in Appendix A. Taking the limit

x −→ x0, we can follow similar steps as we did with when we derived equation (A.4) to

obtain:
(

∂2

∂ξ2
+

∂2

∂η2

)

V η =
∂2V η

∂ξ2
+

∂

∂η

(

−∂V ξ

∂ξ
+ g(x)

)

=
∂

∂ξ

(

∂V η

∂ξ
− ∂V ξ

∂η

)

+
∂g(x)

∂η

=
∂ω

∂ξ
+

∂g(x)

∂η
.

(B.11)

Following again the steps of Appendix A and using equation (B.11), we find that as x −→
x0:

∂p

∂η
−→ f η +

∂ω

∂ξ
+

∂g(x)

∂η
(B.12)

and hence, from equation (B.8), we obtain:

∂g(x)

∂η
=

∂(∇ · u)
∂η

= 0 (B.13)

for all x ∈ ∂Ω. In other words, equation (B.13) defines Neumann boundary conditions for

the divergence of the velocity field u. Since ∆(∇·u) = 0, then ∇·u = c for some constant

c for all x ∈ Ω. Finally, from (B.9), we get:
∫

Ω

∇ · u dA =

∫

∂Ω

(U, V ) · n dl = 0 (B.14)

implying that ∇ · u = 0 for all x ∈ Ω. Therefore, the solution of equations (B.1-B.3) with

Dirichlet boundary conditions for the velocities (satisfying equation (B.9)) and Neumann

boundary conditions for the pressure given in equation (B.8) also solve equations (B.4-B.5)

with the same boundary conditions applied.
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APPENDIX C

Integration of polynomials over polygonal

domains/curves

The integrals that define the matrices and right hand side elements in the Virtual Node

Algorithms presented in this dissertation can be computed analytically.

In fact, let P be a polygonal domain consisting of d boundary segments si. Let (xi, yi)

and (xi + ∆xi, yi + ∆yi) = (xi+1, yi+1) be the coordinates of the end points of si. If

p2(x, y) = a+ bx+ cy + dx2 + exy + fy2 is a quadratic function of x and y, then

∫

P

p2(x, y) dA =
d−1
∑

i=0

∆yi

[

a

(

∆xi

2
+ xi

)

+ b

(

(∆xi)
2

6
+

(∆xi)xi

2
+

x2
i

2

)

+ c

(

(∆xi)(∆yi)

3
+

(∆xi)yi + (∆yi)xi

2
+ xiyi

)

+ d

(

(∆xi)
3

12
+

xi(∆xi)
2

3
+

x2
i (∆xi)

2
+

x3
i

3

)

+ e

(

(∆xi)
2(∆yi)

8
+

(∆xi)(∆yi)xi

3
+

x2
i (∆yi)

4
+

(∆xi)
2yi

6

+
(∆xi)xiyi

2
+

x2
i yi
2

)

+ f

(

(∆xi)(∆yi)
2

4
+

2(∆xi)(∆yi)yi
3

+
(∆xi)y

2
i

2
+

xi(∆yi)
2

3

+ (∆yi)yixi + xiy
2
i

)

]

.

(C.1)

All the functions that need to be integrated when computing the matrices and right hand
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side elements of the VNAs are at most quadratic over the relevant polygonal domains. We

use the procedure above to compute these integrals. Equation (C.1) is derived as in [1] by

applying the divergence theorem:

∫

P

p2(x, y) dA =

∫

P

(

a+ bx+ cy + dx2 + exy + fy2
)

dA

=

∫

P

∇ ·
(

ax+
bx2

2
+ cxy +

dx3

3
+

ex2y

2
+ fxy2, 0

)

dA

=
d
∑

i=1

∫

si

(

ax+
bx2

2
+ cxy +

dx3

3
+

ex2y

2
+ fxy2, 0

)

· ñidl

=
d
∑

i=1

∫

si

(

ax+
bx2

2
+ cxy +

dx3

3
+

ex2y

2
+ fxy2

)

ñ1
i dl

(C.2)

where ñ1
i is the x component of the normal ñi to the segment si. The computation of the

line integrals is simplified if we parametrize each segment si as p(s) = (xi+s∆xi, yi+s∆yi)

for s ∈ [0, 1].

Line integrals of quadratic polynomials p2(x, y) over the oriented polygonal boundaries

are also needed for the right-hand-side terms and for the entries in the jump constraint ma-

trices. These can also be computed analytically. For a polygonal curve S with d segments,

we get:

∫

S

p2(x, y)dl =
d
∑

i=1

li

[

a+ b

(

xi +
∆xi

2

)

+ c

(

yi +
∆yi
2

)

+ d

(

x2
i + xi(∆xi) +

(∆xi)
2

3

)

+ e

(

xiyi +
xi(∆yi)

2
+

yi(∆xi)

2
+

(∆xi)(∆yi)

3

)

+ f

(

y2i + yi(∆yi) +
(∆yi)

2

3

)]

,

(C.3)

where li =
√

∆x2
i +∆y2i is the length of the ith segment of S.
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