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Abstract

This article presents a local regularity theorem for the one-phase
Hele-Shaw flow. We prove that if the Lipschitz constant of the initial
free boundary in a unit ball is small, then for small uniform positive
time the solution is smooth. This result improves on our earlier results
in [CJK] because it is scale-invariant. As a consequence we obtain
existence, uniqueness and regularity properties of global solutions with
Lipschitz initial free boundary.

1 Introduction

For (x, t) ∈ IRn × IR (or some subset) let u(x, t) be a viscosity solution
(defined in the next section) of the Hele-Shaw problem

(HS)







−∆u(·, t) = 0 in {u > 0},

∂u
∂t = |Du|2 on ∂{u > 0}

where Du denotes the gradient of u in the space variables x. We refer to

Ωt(u) = {x : u(x, t) > 0} ⊂ IRn, Ω(u) = {(x, t) : u > 0} ⊂ IRn+1

∗Department of Mathematics, University of Arizona. e-mail: schoi@math.arizona.edu.

Partially supported by NSF grant 0713598.
†Department of Mathematics, MIT. e-mail: jerison@math.mit.edu. Partially supported

by NSF grant DMS 0244991.
‡Department of Mathematics, UCLA. e-mail: ikim@math.ucla.edu. Partially sup-

ported by NSF grant DMS 0627896

1



e n

Ω

u=0

u>0

V

Figure 1: Initial setting of the problem

as the positive phase of u and to

Γt(u) = ∂Ωt(u), Γ(u) = ∂Ω(u)

as the free boundary of u.
If u is smooth up to the free boundary, then the free boundary moves

with normal velocity V = ut/|Du|, and hence the second equation in (HS)
implies that

V = |Du| = −∂u
∂ν
,

where ν is the outward spatial normal, with respect to Ωt(u), on Γt(u). (see
Figure 1)

The classical Hele-Shaw problem models an incompressible viscous fluid
which occupies part of the space between two parallel, nearby plates, and u is
the pressure of the fluid. The short-time existence of classical solutions with
initial surface Γ0 of class C2+α was proved by Escher and Simonett [ES].
When n = 2, Elliot and Janovsky [EJ] showed the existence and unique-
ness of weak solutions formulated by a parabolic variational inequality in
a Sobolev space. (See also Gustafsson [G].) Using this variational notion
of solutions, Sakai [S] showed that for n = 2, Γt(u) for all time t > 0 is
either analytic or has a cusp-type singularity caused by collision of two free
boundary components.

In this paper we prove a quantitative, geometric version of Sakai’s the-
orem in general dimensions. Of independent interest is an estimate on the
free boundary speed, or, equivalently, the size of the spatial gradient on the
free boundary (part (c) of Theorems 1.1 and 1.2).

Our first main theorem concerns global solutions starting from a Lip-
schitz initial free boundary. (See section 9 for the precise definition of global
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solutions.) Let en = (0, . . . , 0, 1) ∈ IRn and

Ω0 = {x ∈ IRn : xn < g(x′), x = (x′, xn) ∈ IRn−1 × IR}

where g is Lipschitz continuous with Lipschitz constant L ≤ Ln, a dimen-
sional constant. There is a positive harmonic function u0 in Ω0 that vanishes
on ∂Ω0, and it is unique up to a constant multiple. Because there is only
uniqueness up to a constant multiple, we must normalize the solution at
subsequent times t.

Theorem 1.1. (Theorem 9.2) There exists a unique, global solution u of
(HS) in IRn× [0,∞) with initial positive phase Ω0(u) = Ω0, u(x, 0) = u0(x),
normalized at infinity by

lim
R→∞

u(−Ren, t)
u0(−Ren)

= 1 for each fixed t > 0.

Moreover the following properties hold.

(a) For t > 0 the free boundary Γt(u) is smooth and is a Lipschitz graph
with respect to en with Lipschitz constant L;

(b) u is smooth in Ω̄t(u) for t > 0;

(c) If x ∈ Γ0(u) and x+ den ∈ Γt(u) with d ≥ 0, then

C−1 ≤ |Du(x+ den, t)|
|Du(x− den, t)|

≤ C

for a constant C > 0 depending only on dimension.

Note that part (a) says that the Lipschitz constant is preserved (or de-
creases) with time. In fact, we show in Theorem 9.2(d) that if g(−x′) =
g(x′), then u(−x′, xn, t) = u(x′, xn, t), and the Lipschitz constant decreases
to zero locally uniformly as t → ∞.

Ln can be taken to be any number Ln < an, where an is the Lipschitz
constant appeared in our earlier work [CJK]. For n = 2 we have a2 = 1, for
which the initial harmonic function u(x, 0) vanishes on the boundary at a
rate bounded below by the square of the distance to the boundary. For a
Lipschitz constant L < a2, some points of the free boundary can stay fixed
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for small t > 0, and the free boundary need not be smooth for those values
of t. (See [JK], [KLV].)

Theorem 1.1 is proved using Theorem 1.2, our main local theorem. We
also show that blow-up limits of local solutions are global solutions as in
Theorem 1.1. The local theorem says, roughly speaking, that u and Γt(u)
stay smooth as long as there is no invasion of fingers (another component of
Ω(u)) from the top portion of the local neighborhood.

Let Ω0 be, as above, the region below the graph of the Lipschitz function
g with Lipschitz constant L ≤ Ln. Assume further that g(0) = 0.

Theorem 1.2. (Corollary 5.6, Theorem 6.3 and Corollary 7.4) Suppose u
is a solution of (HS) in B2(0)× [0, T ] with initial positive phase Ω0 ∩B2(0),
and u satisfies u(−en, 0) = 1 with

u(x, s) ≤ 10u(x, t), u(x, s) ≤ (1 +At−1+a(t− s))u(x, t) for 0 ≤ s < t ≤ T,
(1.1)

u(−en, t) ≤ Au(−en, 0) = A for 0 ≤ t ≤ T, (1.2)

and
ΩT (u) ∩B2(0) ⊂ (Ω0 + c0en). (1.3)

Then there is a constant c0 > 0 depending only on dimension and on A > 0
such that the following properties hold:

If 0 < r < c0 is chosen sufficiently small that u(ren, T/2) > 0, then

(a) The free boundary Γt(u) is C1 and is a Lipschitz graph with respect to
en with Lipschitz constant L′ < Ln in Br(0), and L′ → L as r → 0.

(b) The spatial normal of Γt(u) in Br(0) is continuous in space and time.

(c) If x ∈ Γ0(u) ∩Br(0) and x+ den ∈ Γt(u) ∩Br(0), then

C−1 ≤ |Du(x+ den, t)|
|Du(x− den, t)|

≤ C

for a constant C > 0 depending only on dimension.

The role of constant A in Theorem 1.2 is clarified in the body of the
paper, where a slightly stronger theorem is proved than is stated here. Our
previous theorem in [CJK] gives smoothness for sufficiently small time, but
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depends on global features of the initial configuration. That theorem also
treated only constant boundary data f(x, t) = c.

Concerning the validity of the hypotheses, we show in Lemma 2.14 that
(1.1) is satisfied by suitably re-scaled solutions of (HS) in (IRn−K)× [0,∞)
with u(x, t) = f(x, t), x ∈ K for a fixed boundary K, provided f(x, t) is
smooth and is strictly positive. Hypothesis (1.3) serves to define the time
scale T : it is chosen so that the free boundary moves at most a small multiple
of unit distance in time T . The distance r is the distance the free boundary
moves in a comparable time T/2. The normalization u(−en, 0) = 1 and the
second condition in (1.1) implies that T ≤ T0(n,A). On the other hand,
due to (1.2) T can be chosen to be bounded below by a positive constant
depending only on the dimension. Thus under conditions (1.1) and (1.2),
one should think of T as comparable to unit size.

Hypothesis (1.2) is the last vestige of a global hypothesis. It is valid if T
is sufficiently small and in many typical situations. Because it measures the
change in size of u at a point well inside the region, it can only fail if there is
a change that swamps the effects of the initial conditions. We believe that
(1.2) only goes wrong when there are collisions.

The main idea of the proof is to compare solutions at each scale to
solutions on star-shaped Lipschitz domains, to which the estimates of [CJK]
apply. We use the notion of viscosity solutions and the main tool is the
comparison principle (Theorem 2.7). The crucial first step is a suitably
localized Carleson-type estimate.

In section 2 we state several preliminary results including the defini-
tion and properties of viscosity solutions of (HS). In section 3 we prove a
Carleson-type estimate (3.1). This property is used in Section 4 to show
that level sets of u are flat (Proposition 4.1). In Section 5 we prove the non-
degeneracy of the solution on the free boundary and the Lipschitz continuity
of Γ(u). In Section 6 and 7 iteration methods developed in [CJK] are used
to derive further spatial regularity of the solution and the free boundary.
The key steps in the iteration process are estimates on the change of direc-
tion of Du over time (Lemma 6.1 and Lemma 7.1). In Section 8 we prove
regularity of Γ(u) in time. In Section 9, as an application of the main results
obtained in previous sections, we prove existence, uniqueness and regularity
properties of global solutions of (HS) with Lipschitz initial free boundary
with appropriate conditions at infinity. At the same time, we show that the
blow-up limits of local solutions are global solutions of the type in Theorem
1.1.
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2 Preliminary results

We will recall the definition of viscosity solutions for (HS) introduced in
[K1]. Roughly speaking, viscosity sub and supersolutions are defined by
comparison with local (smooth) super and subsolutions. In particular, clas-
sical solutions of (HS) are also viscosity sub and supersolutions.

Let K be a compact subset of IRn and Q = (IRn −K)× (0,∞). Also let
Σ be a cylindrical domain D× (a, b) ⊂ IRn × IR, where D is an open subset
of IRn.

For a nonnegative real valued function u(x, t) defined in a cylindrical
domain D × (a, b),

Ω(u) = {(x, t) : u(x, t) > 0}, Ωt(u) = {x : u(x, t) > 0},

Γ(u) = ∂{(x, t) : u(x, t) = 0}, Γt(u) = ∂{x : u(x, t) = 0}.

Definition 2.1. A nonnegative upper semi-continuous function u defined
in Σ is a viscosity subsolution of (HS) if

(a) for each a < T < b the set Ω(u) ∩ {t ≤ T} is bounded; and

(b) for every φ ∈ C2,1(Σ) such that u− φ has a local maximum in Ω(u) ∩
{t ≤ t0} ∩ Σ at (x0, t0),

(i) − ∆φ(x0, t0) ≤ 0 if u(x0, t0) > 0.

(ii) (φt − |Dφ|2)(x0, t0) ≤ 0 if (x0, t0) ∈ Γ(u) if − ∆φ(x0, t0) > 0.

Note that because u is only lower semi-continuous there may be points
of Γ(u) at which u is positive.

Definition 2.2. A nonnegative lower semi-continuous function v defined in
Σ is a viscosity supersolution of (HS) if for every φ ∈ C2,1(Σ) such that
v − φ has a local minimum in Σ ∩ {t ≤ t0} at (x0, t0),

(i) − ∆φ(x0, t0) ≥ 0 if v(x0, t0) > 0,

(ii) If (z0, t0) ∈ Γ(v), |Dφ|(x0, t0) 6= 0 and
−∆ϕ(x0, t0) < 0,

then

(φt − |Dφ|2)(x0, t0) ≥ 0.
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Definition 2.3. u is a viscosity subsolution of (HS) with initial data u0 and
fixed boundary data f > 0 if

(a) u is a viscosity subsolution in Q̄,

(b) u = u0 at t = 0; u ≤ f on ∂K;

(c) Ω(u) ∩ {t = 0} = Ω(u0);

Definition 2.4. u is a viscosity supersolution of (HS) with initial data u0

and fixed boundary data f if v is a viscosity supersolution in Q̄ with v = v0
at t = 0 and v ≥ f on ∂K.

For a nonnegative real valued function u(x, t) defined in a cylindrical
domain D × (a, b),

u∗(x, t) = lim sup
(ξ,s)∈D×(a,b)→(x,t)

u(ξ, s).

Definition 2.5. u is a viscosity solution of (HS) (with boundary data u0

and f) if u is a viscosity supersolution and u∗ is a viscosity subsolution of
(HS) (with boundary data u0 and f .)

Definition 2.6. We say that a pair of functions u0, v0 : D̄ → [0,∞) are
(strictly) separated (denoted by u0 ≺ v0) in D ⊂ IRn if

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii) in supp(u0) ∩ D̄ the functions are strictly ordered:

u0(x) < v0(x).

The following properties of viscosity solutions are frequently used in our
paper.

Theorem 2.7. (Comparison principle, [K1]) Let u, v be respectively viscos-
ity sub- and supersolutions in D× (0, T ) ⊂ Q with initial data u0 ≺ v0 in D.
If u ≤ v on ∂D and u < v on ∂D ∩ Ω̄(u) for 0 ≤ t < T , then u(·, t) ≺ v(·, t)
in D for t ∈ [0, T ).

Theorem 2.8. ([K2]) Let u be a viscosity solution of (HS). Then u is
harmonic in Ω(u). Indeed u(x, t) = ht(x), where

ht(x) = inf{v ∈ P with v = 1 on ∂K and v ≥ 0 on Γt}.
where P is the set of superharmonic functions in Ωt which are lower

semi-continuous in Ω̄t.
Moreover Γ(u∗) = Γ(u).
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Next we state several properties of harmonic functions:

Lemma 2.9. (Dahlberg, see [D]) Let u1, u2 be two nonnegative harmonic
functions in a domain D of IRn of the form

D = {(x′, xn) ∈ IRn−1 × IR : |x′| < 2, |xn| < 2M,xn > f(x′)}

with f a Lipschitz function with constant less than M and f(0) = 0. Assume
further that u1 = u2 = 0 along the graph of f . Then for

D1/2 = {|x′| < 1, |xn| < M,xn > f(x′)}

we have

0 < C1 ≤ u1(x
′, xn)

u2(x′, xn)
· u2(0,M)

u1(0,M)
≤ C2

with C1, C2 depending only on M .

Lemma 2.10. (Jerison and Kenig, see [JK]) Let D, u1 and u2 be as in
Lemma 2.9. Assume further that

u1(0,M/2)

u2(0,M/2)
= 1.

Then, u1(x
′, xn)/u2(x

′, xn) is Hölder continuous in D̄1/2 for some coefficient
α, both α and the Cα norm of u1/u2 depending only on M .

Lemma 2.11. (Caffarelli, see [C1]) Let u be as in Lemma 2.9. Then there
exists c > 0 depending only on M such that for 0 < d < c ∂

∂xn
u(0, d) ≥ 0

and

C1
u(0, d)

d
≤ ∂u

∂xn
(0, d) ≤ C2

u(0, d)

d

where Ci = Ci(M).

Lemma 2.12. (Caffarelli, see [C1]) Let u be harmonic in B1. Then there
exists ǫ0 > 0 such that if

u(x+ ǫe) ≥ u(x) for ǫ > ǫ0 and x, x+ ǫe ∈ B1(0)

for a unit vector e ∈ IRn then e · ∇u ≥ 0 in B1/2(0).
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Lemma 2.13. ([JeKi], Lemma 4.1) Let Ω be Lipschitz domain contained
in B10(0). There exists a dimensional constant βn > 0 such that for any
ζ ∈ ∂Ω, 0 < 2r < 1 and positive harmonic function u in Ω ∩ B2r(ζ), if u
vanishes continuously on B2r(ζ) ∩ ∂Ω, then for x ∈ Ω ∩Br(ζ),

u(x) ≤ C(
|x− ζ|
r

)βnsup{u(y) : y ∈ ∂B2r(ζ) ∩ Ω}

where C depends only on the Lipchitz constants of Ω.

We finish this section by showing that (1.1) is a generic assumption.

Lemma 2.14. Let w solve (HS) in (IRn−K)× [0,∞) with smooth boundary
data f > 0 on ∂K and initial positive phase Ω1. Let us normalize such that
u(−en, 0) = 1. Then (1.1) holds with

T = sup{t : sup
xi∈K,0≤τi≤t

f(x1, τ1)

f(x2, τ2)
≤ 10},

and with
A = sup{ft(x, t) : x ∈ K, 0 ≤ t ≤ T}.

Proof. 1. Let A as given above. Then for any T > 0 we have f(x, t) ≤
(1 +Aǫ)f(x, s) where |t− s| ≤ ǫ and 0 ≤ t, s ≤ T . By Theorem 2.7, for any
ǫ > 0

u(x, t+ t0) ≤ (1 +Aǫt)u(x, (1 + ǫ)t+ t0) for 0 ≤ t ≤ 1/A

for any 0 ≤ t0. Differentiating in ǫ > 0 yields

(Atu+ tut)(x, t+ t0) = t(A0u+ ut)(x, t+ t0) > 0.

Since t0 is arbitrary, we conclude

ut ≥ −Au for 0 ≤ t ≤ T

This proves the second inequality in (1.1).
2. By definition of f , f ∈ [a, 10a] with a > 0 for 0 ≤ t ≤ T . Since the

positive phase Ωt(u) expands in time, it is clear from the maximum principle
of harmonic functions that u(x, s) ≤ 10u(x, t) if 0 ≤ s < t ≤ T .
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3 A Carleson-type estimate

Our first goal is to show the ǫ-flat result, i.e. to show that the level sets of u
stays ǫ-close to those of Lipschitz functions with small Lipschitz constants,
at least for a small amount of time. For this we will first prove that u is
”almost” increasing in the direction of −en in appropriate space-time scale.
From this section, suppose u is a solution of (HS) in B2(0) × [0, T ] with
initial positive phase Ω0 ∩B2(0).

Proposition 3.1. There is a constant c0 > 0 depending only on dimension
and on A > 0 such that if u satisfies the first condition of (1.1), (1.2) and
(1.3), and 0 < r < c0 is sufficiently small that u(ren, T/2) > 0, then the
following property holds: for small t > 0 such that u(ren, t) = 0,

max
x∈∂Ba(0)

u(x, t) ≤ Cu(−aen, t) (3.1)

where a = rγ > r, 0 < γ < 1 and C are dimensional constants.

⋄ For Λ ⊂ IRn, denote

Λ + sen = {x+ sen : x ∈ Λ}.

⋄ For P ∈ B2(0)∩ (IRn − Ω̄0), denote by t(P ;u), the time the free boundary
of u reaches P , i.e.,

t(P ;u) = sup{t > 0 : u(P, t) = 0}.

The proof of Proposition 3.1 follows from the following lemma:

Lemma 3.2. There is a dimensional constant c′0 > 0 such that if u satisfies
(1.3) with c′0, and 0 < r < c′0 is sufficiently small that u(ren, T ) > 0, then
the following property holds:

∫ t0

0
max

x∈∂Ba(0)
u(x, t)dt ≤ C

∫ t0

0
u(−aen, t)dt (3.2)

where t0 = t(ren;u), a = rγ > r, γ < 1 and C are dimensional constants.
Further suppose u satisfies the first condition of (1.1), and for 0 ≤ t ≤ t0

2−m2
0/2 ≤ u(−en, t)

u(−en, 0)
≤ 2m2

0/2

where m0 is the largest integer such that r ≤ 2−m0 . Then

max
x∈∂Ba(0)

u(x, t) ≤ Cu(−aen, t)

for 0 ≤ t ≤ t0/2 and a dimensional constant C.
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Proof of Proposition 3.1. Let m0 be the smallest integer such that

A ≤ 2m2
0/2 and 2−m0/γ < c′0.

Then by Lemma 3.2, (3.1) holds for a = 2−m0 (r = 2−m0/γ) and small t such
that

t ≤ min{t(ren;u), T}/2
and hence the result follows. 2

For the proof of Lemma 3.2, we first show the following two lemmas.

Lemma 3.3. If x0 ∈ B2(0) and min{u(x, T ) : x ∈ Bs(x0)} = 0, then

∫ T

0
u(x0, t)dt ≤ C(n)s2.

Lemma 3.4. There is a dimensional constant c′0 > 0 such that if u satisfies
(1.3) with c′0, and 0 < r < c′0 is sufficiently small that u(ren, T ) > 0, then
the following property holds: for t0 = t(ren;u),

Ωt0 ∩B2−m(0) ⊂ (Ω0 + 2−5men) (3.3)

where m ≥ 1 is any integer such that r < rγ ≤ 2−m, 0 < γ < 1 is a
dimensional constant.

Proof of Lemma 3.3: Let

r0 = inf{r : min{u(x, 0) : x ∈ Br(x0)} = 0}.

and change the coordinate so that x0 = 0. We construct a radially symmetric
barrier as follows: let φ(x) be the harmonic function in B1(0)−B1/2(0) with
φ = 0 on ∂B1(0) and φ = 1 on ∂B1/2(0). Let

α(t) = C1u(0, t) and r2(t) = C(n)

∫ t

0
α(s)ds + r2,

where C1 > 0 is a dimensional constant to be chosen later. Then

h(x, t) := α(t)φ(r(t)−1x).

is a subsolution of (HS), since

V = r′(t) ≤ |Dφ| = C(n)α(t)r−1(t) on Γt(h) = ∂Br(t)(0).
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Now we compare h with u in the domain

Σ := (IRn −Br(t)/2(0)) × (0, T ).

At t = 0 h ≺ u by definition of r and Harnack inequality for u. As long as
Ωt(h) ⊂ Ωt(u), h(·, t) ≤ u(·, t) on ∂Br(t)/2(0) due to the Harnack inequality
for u, if C1 is chosen sufficiently small. Therefore h cannot cross u from below
for the first time in Ω(h). On the other hand, as long as h(·, t) ≤ u(·, t) on
∂Br(t)/2(0), h(·, t) ≺ u(·, t) due to Theorem 2.7. Thus we conclude that
h ≤ u in Σ, and in particular

Br(T )(0) ⊂ ΩT (h) ⊂ ΩT (u).

By our hypothesis r(T ) ≤ s, which means

∫ T

0
α(t)dt =

∫ T

0
C1u(0, t)dt ≤ C(n)s2.

This yields our conclusion. 2

Proof of Lemma 3.4: We prove the lemma by induction for 1 ≤ m ≤
m0, where m0 is the largest integer such that rγ ≤ 2−m0 . Suppose (3.3)
holds for some m ∈ N. To simplify notations, denote

B1 = B2−m(0), B2 = B2−m·4/5(0), B3 = B2−m·3/5(0), B4 = B2−m−1(0),

and p0 = −2−m−1en.
Let h(x, t) = ht(x) be the harmonic function in (Ω0 +2−5men)∩B1 such

that

ht(x) =







0 on Γ0 + 2−5men,

u(x, t) on ∂B1.

Due to the maximum principle for harmonic functions, u(·, t) ≤ ht in B1.
In particular, for x ∈ Γ0 ∩B2 and 0 ≤ s ≤ 2−5m,

u(x+ sen, t) ≤ ht(x+ sen)

≤ C(
2−5m

2−m
)kht(x− 2−m

10
en)

≤ C2−4km2m

∫

∂B1

u(x, t)dx

≤ C2−4km(u(p0, t) + 2m

∫

S
u(x, t)dx)
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where S = ∂B1∩{Γ0+sen : 0 ≤ s ≤ 2−5m}, C and k are positive dimensional
constants. Denote the last term of the above inequality by mt, i.e.,

mt = C2−4km(u(p0, t) + 2m

∫

S
u(x, t)dx).

It then follows from above arguments that

u(x+ sen, t) ≤ mt (3.4)

for x ∈ Γ0 ∩ B2 and 0 ≤ s ≤ 2−5m. Next, let wt be the harmonic function
in Ω0 ∩B2 such that

wt(x) =







u(x, t) on ∂B2 ∩ Ω0,

mt on Γ0 ∩B2.

Then u(x, t) ≤ wt(x) in Ω0 ∩B2, and by Lemma 2.9

max
x∈Ω0∩∂B3

u(x, t) ≤ max
x∈∂B3

wt(x)

≤ C(mt + u(p0, t)).

Above inequality and (3.4) imply

max
x∈∂B3

u(x, t) ≤ C(mt + u(p0, t))

≤ C(2−4km+m

∫

S
u(x, t)dx+ u(p0, t)). (3.5)

Now for x0 ∈ Γ0 ∩B4, construct a wedge Λx0 with vertex x0:

Λx0 = x0 + {(x′, xn) : L|x′| < xn <
2−m

10
},

which is contained in B3 − Ω0. Let v(x, t) solve (HS) with











v(x, t) = max
x∈∂B3

u(x, t) on the fixed boundary ∂B3,

Γ0(v) = Λx0,

Note that by Theorem 2.7 u ≤ v for 0 ≤ t ≤ t0. Hence for

d̄(x0) := max{s : u(x0 + sen, t0) > 0, x0 + sen ∈ B4},
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we get

d̄(x0) ≤ d(x0, t0; v) := inf{d : x0 + den ∈ Γt0(v)}

≤ C(

∫ t0

0

maxx∈∂B3 u(x, t)

2−m−1
dt)α

≤ C(2−4km+2m

∫ t0

0

∫

S
u(x, t)dxdt +

∫ t0

0

u(p0, t)

2−m
dt)α (3.6)

where
S = ∂B1 ∩ {Γ0 + sen : 0 ≤ s ≤ 2−5m},

the second inequality follows from Lemma 2.13 with a constant 1/2 < α < 1
depending on n, and the last inequality follows from (3.5).

On the other hand, if (3.3) holds for m, then Lemma 3.3 implies

∫ t0

0
u(x, t)dt ≤ C2−10m for x ∈ S.

It follows that
∫ t0

0

∫

S
u(x, t)dxdt ≤ C2−15m.

We proceed to find an upper bound of

∫ t0

0

u(p0, t)

2−m
dt: construct a wedge

Λ̃x0 = x0 + {(x′, xn) : −2−m

10
< xn < −L|x′|}

in Ω0, and a ball B̃ inside Λ̃x0 . Let w solve (HS) with







w(x, t) = cu(p0, t) on the fixed boundary ∂B̃,

Γ0(w) = Λ̃x0.

If c is a sufficiently small dimensional constant, then due to Harnack in-
equality for harmonic functions and Theorem 2.7

w ≤ u for 0 ≤ t ≤ t0.

Due to Lemma 2.13

(

∫ t0

0

cu(p0, t)

2−m
dt)β ≤ d(0, t0;u) := inf{d : den ∈ Γt0(u)} = r (3.7)
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for a dimensional constant β > 1. Let γ = 1/(12β) and let m0 be the largest
integer such that rγ ≤ 2−m0 . Then if m < m0, (3.6) and (3.7) imply

d̄(x0) ≤ C(2−4km−13m + r1/β2m)α

≤ C(2−13m + 2−11m)1/2

≤ C2−11m/2.

Here C is a dimensional constant, and the second inequality follows from
rγ = r1/(12β) < 2−m0 < 2−m. Thus if m > m1 = m1(n), then

d̄(x0) ≤ 2−5(m+1).

For m ≤ m1, (3.3) holds if we let c′0 < 2−5m1 . 2

We are now ready to prove Lemma 3.2 using Lemma 3.4.
Proof of Lemma 3.2: Let m0 be the largest integer such that rγ ≤

2−m0 , where γ is given as in Lemma 3.4. For 0 ≤ t ≤ t0 = t(ren;u) and
1 ≤ m ≤ m0, denote

At,m = max{u(x, t) : x ∈ ∂B2−m(0) ∩ {Γ0 + sen : 0 ≤ s ≤ 2−5m}}.

Note that, due to (3.5),

At,m+1 ≤ max
∂B2−m·3/5(0)

u(x, t)

≤ C(2m

∫

∂B2−m (0)∩{Γ0+sen:0≤s≤2−5m}
u(x, t)dx + u(pm, t))

≤ C(2−4mAt,m + u(pm, t))

where pm = −2−m−1en and C is a dimensional constant. Then by iteration
on m we obtain that

At,m0 ≤ Cm02−2m2
0At,1 +

m0
∑

m=1

Cm0−m2−2(m2
0−m2)u(pm, t).

Here, by Harnack inequality, u(pm, t) is bounded as follows:

u(pm, t) ≤ Cm0−m
0 u(pm0 , t) (3.8)

where C0 is a constant depending on n. Hence, if m0 ≥ m̄ for a sufficiently
large constant m̄ depending on n and C0, then

At,m0 ≤ 2−m2
0(At,1 + u(pm0 , t)) (3.9)
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where pm0 = −2−m0−1en. Observe that

∫ t0

0
At,1dt ≤

∫ t0

0
max

x∈B1/2(0)
u(x, t)dt ≤ C

∫

∂B1(0)

∫ t0

0
u(x, t)dtdx ≤ C (3.10)

where the last inequality follows from Lemma 3.3.
Next let

a = 2−m0−1 ≈ rγ . (3.11)

Then by (3.9) and (3.10)

∫ t0

0
max

x∈∂Ba(0)
u(x, t)dt ≤ 2−m2

0

∫ t0

0
At,1dt+ C

∫ t0

0
u(−aen, t)dt

≤ C(2−m2
0 +

∫ t0

0
u(−aen, t)dt). (3.12)

It follows that

2(−m0−1)/γ ≤ r

≤ C(

∫ t0

0

max
x∈∂Ba(0)

u(x, t)

a
dt)α

≤ C(2−m2
0+m0 + 2m0

∫ t0

0
u(−aen, t)dt)α

≤ C2(−m2
0+m0)α + C(2m0

∫ t0

0
u(−aen, t)dt)α (3.13)

where the second inequality follows from Lemma 2.13 with 1/2 < α < 1
depending on n, and the third inequality follows from (3.11) and (3.12). If
m0 ≥ m̄(n) >> 1,

C2(−m2
0+m0)α+1 ≤ 2(−m0−1)/γ

where C > 1 is a constant given in (3.13). Thus (3.13) implies

2(−m0−1)/γ ≤ C(2m0

∫ t0

0
u(−aen, t)dt)α

and we get

2(−m2
0+m0)α ≤ 2(−m0−1)/γ ≤ C(2m0

∫ t0

0
u(−aen, t)dt)α. (3.14)

16



By (3.12) and (3.14)

∫ t0

0
max

x∈∂Ba(0)
u(x, t)dt ≤ C(2−m2

0 +

∫ t0

0
u(−aen, t)dt)

≤ C

∫ t0

0
u(−aen, t)dt.

To prove the second part of the lemma, we further assume u(x, s) ≤
10u(x, t) for 0 ≤ s < t ≤ T , and

1/10 ≤ u(−en, t)
u(−en, 0)

≤ M̃ := 2m2
0/2

for 0 ≤ t ≤ t0 = t(ren;u). Then by Harnack inequality for harmonic
functions

max
0≤t≤t0

u(−aen, t) ≤ 10u(−aen, t0) ≤ Cm0M̃

where a = 2−m0−1 and C is a dimensional constant. Hence by Lemma 2.13

(

∫ t0

0

Cm0M̃

a
dt)β ≥ r

for a constant 0 < β < 1 depending on n, which implies

1

t0
≤ Cm02m0r−1/βM̃ ≤ 2km0M̃

where k is a positive dimensional constant.
Since

10As,1 ≥ At0/2,1 for s ≥ t0/2, and

∫ t0

0
At,1dt ≤ C,

it follows that
t0
20
At0/2,1 ≤

∫ t0

t0/2
At,1dt ≤ C.

Hence if t ≤ t0/2, then

At,1 ≤ 10At0/2,1 ≤ C
1

t0
≤ C2km0M̃

for positive dimensional constants C and k. Then by (3.9)

At,m0 ≤ C2−m2
0(2km0M̃ + u(pm0 , t)) (3.15)
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and, due to Harnack inequality,

u(pm0 , t) ≥ C2−k̃m0u(−en/2, t) ≥ C2−k̃m0

for k̃ = k̃(n) > 0. Since M̃ = 2m2
0/2, if m0 ≥ m̄ for a sufficiently large m̄

depending on n, then (3.15) implies

At,m0 ≤ Cu(pm0 , t)

and hence for a = 2−m0−1

max
x∈∂Ba(0)

u(x, t) ≤ Cu(−aen, t).

2

4 ǫ-flatness of level sets of u in a ball

In this section, we show the flatness property of u satisfying the hypothesis
of Proposition 3.1, i.e., satisfying the first condition of (1.1), (1.2) and (1.3).
0 < r < c0 will denote a sufficiently small constant such that u(ren, T/2) >
0.

To show the ǫ-flatness of u (Proposition 4.1), we will construct a star-
shaped barrier w for u. Proof of the proposition will need more arguments
than that of Lemma 3.2 in [CJK] due to the fact that the Hölder continuity
of u in time (Corollary 2.3 in [CJK]) does not hold here.

We begin by introducing some notations.
⋄ For nonzero vectors v1, v2 in IRn, we define α(v1, v2) to be the (smaller)
angle between v1 and v2.
⋄ We say that a function f has a cone of monotonicity

W (θ, ν) := {p ∈ IRn : α(p, ν) < θ}

or f is monotone for the cone W (θ, ν) in D ⊂ IRn if f is monotone increasing
along every direction p ∈W (θ, ν) in D.

Consider a star-shaped domain Ω′ such that

(i) Ω′ ∩B2(0) = Ω0 ∩B2(0);

(ii) Ω′ is star-shaped with respect to every x ∈ K ′ ⊂ Ω′ for a sufficiently
large ball K ′.
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Let v0 be the harmonic function in Ω′ − K ′ with data 1 on ∂K ′ and 0 on
∂Ω′, and let v be the solution of (HS) with v(x, 0) = v0(x) and v(x, t) = 1
on ∂K ′. It follows from comparison arguments (see Lemma 3.3 in [CJK])
that v is starshaped with respect to K ′. In particular, v(·, t) is monotone
in B1(0) for the cone W (θ − ǫ,−en) for 0 ≤ t ≤ t(en; v), if K ′ is sufficiently
large depending on ǫ. Here ǫ is a small constant to be chosen later.

Based on v, we will construct a supersolution wsup and a subsolution
wsub of (HS) such that in Br(0), w

sub ≤ u ≤ wsup and the level sets of wsub

and wsup are close to each other.
We begin by constructing a concentric ball B2 of B1(0) as follows: Let

k0, k1 and k2 be sufficiently large numbers satisfying

k0 ≫ k1, γ =
k0

k0 + k1 + k2

where γ is a constant given as in Lemma 3.4. ( k0, k1 and k2 will be
determined later in the proof.) Let k = k0 + k1 + k2 and let ǫ = r1/k

(ǫk = r). We denote

B2 := Bǫk0 (0) ⊂ B1(0) =: B1.

Since rγ = ǫk0, Lemma 3.4 implies

Ωt0 ∩B2 ⊂ (Ω0 + ǫ5k0en) ∩B2

for t0 := t(ren;u). Next define

H = (Γ0 − ǫk0+k1en) ∩ 2

3
B2

where 2
3B2 = B2ǫk0/3(0). Observe that

radius(B2) ≫ dist(H,Γ0) ≫ max
x∈Γt0∩B2

dist(x,Γ0).

If k1 is sufficiently large, Lemma 2.10 implies that for any positive har-
monic functions h and g in B2∩Ω0, vanishing on Γ0, there exists a constant
c > 0 such that

1 − ǫ ≤ h

cg
≤ 1 + ǫ on H. (4.1)

Let h(x, t) := ht(x) be the harmonic function in B2 ∩ Ω0 such that

ht =







0 on Γ0,

u(x, t) on ∂B2 ∩ Ω0.
(4.2)

19



Then
ht(x) ≤ u(x, t) in B2.

Since h := ht and g := v0 are both positive harmonic functions in B2 ∩ Ω0,
which vanish on Γ0, h and g satisfies (4.1) with c = ct, i.e., there is a constant
ct such that

1 − ǫ ≤ ht

ctv0
≤ 1 + ǫ on H. (4.3)

Hence we get
(1 − ǫ)ctv0 ≤ u(x, t) for x ∈ H. (4.4)

Similarly,let h̃(x, t) := h̃t(x) be a harmonic function in B2∩(Ω0 +ǫ5k0en)
such that

h̃t =







0 on Γ0 + ǫ5k0en,

u(x, t) on ∂B2 ∩ (Ω0 + ǫ5k0en).
(4.5)

Then
u(x, t) ≤ h̃t(x) in B2. (4.6)

Since ǫ5k0 ≪ ǫk0+k1 = dist(H,Γ0), from a similar argument as for ht, we
obtain a constant c̃t such that

1 − ǫ ≤ h̃t

c̃tv0
≤ 1 + ǫ on H. (4.7)

Therefore we have

u(x, t) ≤ h̃t(x) ≤ (1 + ǫ)c̃tv0(x) for x ∈ H. (4.8)

Let w be the star-shaped solution of (HS) with







Ω0(w) = Ω0(v),

w(x, t) = (1 − 3ǫ)ct on ∂K ′.

In other words,

w(x, t) = (1 − 3ǫ)ctv(x, (1 − 3ǫ)

∫ t

0
csds).

We now state our main proposition:
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Proposition 4.1. Suppose u satisfies the first condition of (1.1), (1.2) and
(1.3) with c0 > 0 depending only on dimension and on A > 0. Suppose
0 < r < c0 is sufficiently small that u(ren, T/2) > 0, then the following
property holds: there is an integer k > 0 depending on dimension such that
if 0 < s ≤ r and ǫ satisfies ǫk = s, then the level sets of u(·, t) stay sǫ-close
to those of w in B2s(0) for 0 ≤ t ≤ t(sen;u). In particular u is sǫ-monotone
for the cone W (θ − ǫ,−en) in B2s(0) for 0 ≤ t ≤ t(sen;u).

Proof. Without loss of generality, we may assume s = r. We will perturb w
by order of ǫ to construct wsup and wsub.

Let w̃ be the star-shaped solution of (HS) with






Ω0(w̃) = Ω0(v),

w̃(x, t) = (1 + 3ǫ)c̃t on ∂K ′,

namely

w̃(x, t) = (1 + 3ǫ)c̃tv(x, (1 + 3ǫ)

∫ t

0
c̃sds).

Since r = ǫk ≪ ǫk0+k1, Corollary 2.3 in [CJK] implies

v(x, t′0) ≤ (1 + ǫ)v0(x) for x ∈ H

where t′0 := t(ren; v) = t(ǫken; v). Thus for 0 ≤ s ≤ r, x ∈ H and t =
t(sen;w),

w(x, t) = (1 − 3ǫ)ctv(x, t(sen; v))

≤ (1 − 2ǫ)ctv0(x)

≤ (1 − ǫ)u(x, t), (4.9)

where the last inequality follows from (4.4). Similarly if x ∈ H and t =
t(sen; w̃) then

w̃(x, t) = (1 + 3ǫ)c̃tv(x, t(sen; v))

≥ (1 + 3ǫ)c̃tv0(x)

≥ (1 + ǫ)u(x, t) (4.10)

where the last inequality follows from (4.8).
Based on w̃ we construct a supersolution wsup as in Lemma 3.2 of [CJK],

by bending the free boundaries of w̃ up above Γt(u) in 2
3B2 − 1

3B2. Define

ψ(x) =
1

|x|2 · (x1, ..., xn−1,−xn + 2|x|2)
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where x = (x1, ..., xn) ∈ IRn. Since ψ is the composition of reflection about

xn = 1 and the conformal mapping sending x to
x

|x|2 ,

φ := ψ(x+ en) − en

is also conformal. Observe that φ fixes 0 and will bend the free boundary
of w̃ up above Γt(u) in 2

3B2 − 1
3B2. Set St to be the strip between H and

Γt(w̃) and define

wsup(x, t) = (1 + ǫ)w̃(φ−1(x), t) in R := φ(St) ∩
2

3
B2.

Note that wsup(·, t) is harmonic in R and

Γt(w
sup) = φ(Γt(w̃))

in 2
3B2. By a similar argument as in Lemma 3.2 of [CJK], wsup is a super-

solution in 2
3B2 × [0, T ].

Now we compare wsup and u in

Σ := (
1

2
B2 ∩R) × [0, T̃ ],

where T̃ = min{t0, t(ren;wsup)}, t0 = t(ren;u).
First note that, due to (4.6), (4.10) and the fact

max
φ−1(R)

|φ(x) − x| ≈ ǫ2k0 ≪ ǫk0+k1 ≈ dist(H,Γ0(u)), (4.11)

we have

u(x, t) ≤ wsup(x, t) on φ(H) ∩ 1

2
B2 × [0, T̃ ].

Secondly observe that in 2
3B2 − 1

3B2 and for 0 ≤ t ≤ T̃

Γ(u) ⊂ (
⋃

s≤ǫ5k0

(Γ0(u) + sen)) × [0, T̃ ]

due to Lemma 3.4. On the other hand,

Γt(w
sup) = φ(Γt(w̃)) ⊂

⋃

s≥ǫ2k0

(Γ0(w̃) + sen) =
⋃

s≥ǫ2k0

(Γ0(u) + sen).

Hence it follows that

Ω(u) + ǫ2k0/2en ⊂ Ω(wsup) in (
2

3
B2 −

1

3
B2) × [0, T̃ ] (4.12)
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Due to (4.10), (4.12) and Lemma 2.10, we obtain

u(x, t) ≤ wsup(x, t) on ∂(
1

2
B2 ∩R) × [0, T̃ ].

Therefore u ≤ wsup on the parabolic boundary of Σ, and Theorem 2.7
yields that

u ≤ wsup in Σ. (4.13)

Similarly we construct a subsolution wsub as follows. Let ψ̄ be the com-
position of reflection about xn = 1 and the conformal mapping sending x to

x

|x− 2en|2
, then φ̄ := ψ̄(x+ en)− en will bend the free boundary of w down

below Γt(u) in 2
3B2 − 1

3B2. Let us define

wsub(x, t) = (1 − ǫ)w(φ̄−1(x), t)

Then wsub(·, t) is harmonic in R̄ := 2
3B2∩φ̄(S̄t), where S̄t is defined similarly

as in St. From an argument parallel to the one for showing (4.13), we get

wsub ≤ u ∈ (
1

2
B2 ∩ R̄) × [0, T ′],

where T ′ = min{t0, t(ren;wsub)}.
Let B3 = B2r(0) = B2ǫk(0). Then in B3, if 0 ≤ t ≤ T ′ and 0 < s ≤ r,the

level sets {x ∈ B3 : u(x, t) = s} are located between {x ∈ B3 : wsup(x, t) =
s} and {x ∈ B3 : wsub(x, t) = s}, which are in the ǫr-neighborhood of
{x ∈ B3 : w̃(x, t) = s} and {x ∈ B3 : w(x, t) = s}, respectively. Since
w is monotone in B1(0) for the cone W (θ − ǫ,−en), to conclude it suffices
to prove that the level sets {x ∈ B3 : w(x, t) = s} are contained in the
rǫ-neighborhood of the level sets {x ∈ B3 : w̃(x, t) = s} of w̃.

Recall that w and w̃ are star-shaped solutions with the same initial
domain, and with different fixed boundary values (1 − ǫ)ct and (1 + ǫ)c̃t,
respectively. By (4.4) and (4.8), ct and c̃t satisfy

1 ≤ c̃t
ct

≤ (1 + 2ǫ)
h̃t(x)

ht(x)
(4.14)

for x ∈ H. Let x0 = −ǫk0+k1en ∈ H, then

h̃t(x0) ≤ (1 + C
maxx∈∂B2 u(x, t)

u(−ǫk0en, t)
ǫβk0)ht(x0)
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for C > 0 and β > 0 depending on n, since ht = h̃t = u(x, t) on ∂B2 ∩{ht >
0}, and since

Γt(h̃) = Γt(h) + ǫ5k0en in B2,

with ǫ5k0 much smaller than ǫk0+k1 = d(x0,Γt(h)) for 0 ≤ t ≤ T ′. Therefore
if k0 is sufficiently large, (4.14) implies

1 ≤ c̃t
ct

≤ 1 +
maxx∈∂B2 u(x, t)

u(−ǫk0en, t)
ǫ. (4.15)

By Proposition 3.1,

max
x∈∂B2

u(x, t) ≤ Cu(−ǫk0en, t)

and thus

1 ≤ c̃t
ct

≤ 1 + Cǫ

for a dimensional constant C. Now (4.16) and Lemma 3.3 of [CJK] yields
that the level sets of w and w̃ are contained in the Crǫ-neighborhood of each
other.

5 Non-degeneracy and Lipschitz continuity

Our next goal is to improve Proposition 4.1 to conclude that u(·, t) is Lips-
chitz in space in Br(0) for 0 ≤ t ≤ t(ren;u). For this purpose we first need
to show that u is non-degenerate on Γ(u) in ǫ-scale (Proposition 5.1).

Proposition 5.1. Let u be a solution of (HS) with 0 ∈ Γ in B2(0) × IR+.
In addition suppose that t(en;u) = 1, u satisfies (1.1) with A ≤ 1 and u(·, t)
is ǫ-monotone for 0 < ǫ < ǫn for the cone W (θ,−en), θ > π/4 in the region
B2(en) for t ∈ [0, 1], where ǫn is a dimensional constant and t0 = t(en).
Then there exists a dimensional C > 0 such that

B1/2(en) ∩ (Ωt + sen) ⊂ Ω(1+Cǫ)t (5.1)

for t(en/2;u) ≤ t ≤ t(en;u) and 0 ≤ s ≤ ǫ.

The proof is parallel to that of Proposition 4.1 in [CJK], but we state
the proof below to illustrate the use of (1.1).
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Proof. For P1 ∈ B1/2(en) ∩ Ωt(u), denote t1 = t(P1). The goal is to show

that u(P1 + sen, (1+Cǫ)t1) > 0 for some C(n) > 0. Let P2 = P1 + 1
5en, R =

B1/2(P2) −B1/10(P2) and Σ = R× [0, t1]. Define the function

w(x, t) := inf
Bǫϕ(x)(x)

u(y − ǫen, t)

where ϕ defined in R satisfies the following properties:

(a) ∆(ϕ−Qn) = 0 in R;

(b) ϕ = An on ∂B1/10(P2);

(c) ϕ = 1/
√

2 in ∂B1/2(P2).

Here Qn > 0 is a dimensional constant chosen such that Lemma 9 in
[C1] applies, An is chosen sufficiently large that ϕ(P1) > 2. Note that also
|Dϕ| ≤ C where C depends on Qn and An.

Now we compare w and u in Σ. First due to the ǫ-monotonicity of u
(in space) we can argue as in [CJK] to check that w ≥ u on the parabolic
boundary of Σ. Observe that, formally speaking, w satisfies

wt

|Dw| ≥ (1 −O(ǫ))|Dw| on Γ(w) ∩ Σ,

due to the definition of w. It follows that for some constant C = C(n) > 0

w1(x, t) := (1 + Cǫ)w(x, (1 + Cǫ)t) is a supersolution of (HS) in Σ,

(For rigorous proof see the proof of Proposition 4.1 in [CJK].)
Note that t1 ≤ 1. Thus if u satisfies (1.1) with A < 1 then w ≤ w1(x, t)

and therefore Theorem 2.7 yields

u(x, t) ≤ w1(x, t) in Σ.

On the other hand by (c) and the definition of w, w(x, t) ≤ u(x+ sen, t) at
P for 0 ≤ s ≤ ǫ and thus we can conclude.

The following corollary and its proof correspond to Corollary 4.4 in
[CJK].
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Corollary 5.2. Let u, ǫ be as given in Proposition 5.1 and let t = t(en;u).
Then there exists C(n) > 0 such that for x ∈ Γt(u) ∩B1/2(en),

sup
y∈B2ǫ(x)

u1(y, t) ≥ Cǫ.

In terms of our original u, the following holds:

Corollary 5.3. Let P0 ∈ Γt0(u) and d(P0, P1) = r, t1 = t(P1;u) > t0.
Furthermore suppose that u is rǫ-monotone for 0 < ǫ < ǫn for the cone
W (θ, en), θ > π/4 in B2r(P0) × [t0, t1]. Then there exits a dimensional
constant C > 0 such that

sup
y∈B2rǫ(x)

u(y, t) ≥ C

t1 − t0
rǫ.

for t = t1.

Remark. Corollary 5.3 states that the lower bound on the normal
velocity, or |Du| on Γ(u), is proportional to the distance d it has moved
in en direction from its initial position. Furthermore this lower bound is
obtained uniformly in the space neighborhood of size d, suggesting that the
regularization of the free boundary occurs in scale of d in space and t(den;u)
in time.

Proof. Let

ũ(x) =
(t1 − t0)

r
u(rx, (t1 − t0)t+ t0)

and apply Corollary 5.2 to ũ.

The following lemma is a modification of Theorem 5.1 in [CJK]. The
proof is parallel to that in [CJK].

Lemma 5.4. Suppose u solves (HS) in B3(0)× [0, t0], t0 = t(en;u) such that

(a) u(·, t) is ǫ-monotone for a cone W (θ,−en) in B2(en) for 0 ≤ t ≤ t0.

(b) u satisfies
sup

y∈B2ǫ(x)
u(y, t) ≥ Cǫ (5.2)

for x ∈ Γt(u) for 0 ≤ t ≤ t0.
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If π/2−θ < tan−1(Ln) for a dimensional constant Ln > 0 and 0 < ǫ < 1/100
then there is a constant 0 < λ < 1 depending only on C and n such that
u(·, t) is λǫ-monotone for W (θ′,−en) in B2−ǫ1/4(en) for ǫ1/6 ≤ t ≤ t0 with

θ′ = θ − ǫ1/14.

Corollary 5.5. Let u be as in Proposition 5.1. Then Γt(u) is Lipschitz in
space with Lipschitz constant L < L′ = L+Cǫ1/14 < Ln in B2(0)× [1/2, 1],
where C is a dimensional constant.

Proof. 1. Due to Corollary 5.3, (5.2) holds for u in B2(0) × [1/4, 1] with
dimensional constant C. By iterating Lemma 5.4 and Proposition 5.1, it
follows that u(·, t) is monotone in the cone W (θ′,−en) in Bs(en) for b ≤ t ≤
1, where

s = 2 − Cǫ1/4Σ∞
k=0λ

k/4, b = c+ Cǫ1/6Σ∞
k=0λ

k/6

for C = C(n,A), a dimensional constant 0 < c < 1, and

θ′ = θ − ǫ1/14Σ∞
k=0λ

k/14. (5.3)

Hence if a(r,A) is chosen sufficiently small such that the corresponding ǫ in
Proposition 4.1 is sufficiently small, the lemma holds for 1/2 ≤ t ≤ 1.

Corollary 5.6. Let u, r and k as given in Proposition 4.1. Then for 0 <
s < r, u is Lipschitz in space with Lipschitz constant L < L′ + s(14k)−1

< Ln

in Bs(0) × [0, t(sen;u)].

Proof. For any 0 < a ≤ r and x0 ∈ Γ0 ∩B2(0), let

ũ(x, t) =
t(a)

a
u(a(x− x0), t(r)t), t(r) = t(x0 + aen;u).

We then apply Proposition 4.1 and Corollary 5.5 with ũ to derive the lemma
for 1

2t0 ≤ t ≤ t0. Since r is arbitrary small, we get the Lipschitz property of
Γt(u) in Ba(0) for 0 < t < t(aen;u).

Corollary 5.7. Let u and r be as given in Proposition 4.1. Then for 0 ≤
t ≤ t(sen;u) with 0 ≤ s ≤ r,

1/C1 ≤ u(−sen, t)
u(−sen, 0)

≤ C1

and
s2

C1u(−sen, 0)
≤ t(sen;u) ≤ C1

s2

u(−sen, 0)
,

where C1 = C1(n,A).
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Proof. Due to Corollary 5.6 u is Lipschitz in space in Br(0) × [0, t(ren;u)]
with r = r(n,A). Hence it follows that Γt(u) is Lipschitz in Br(0) for
0 < t < t(ren;u), and which implies

max
∂Br(0)

u(x, t) ≤ Cu(−ren, t)

where 0 < t < T and C is a dimensional constant. Furthermore, since
u(−en, t) ≤ Au(−en, 0), By Harnack inequality

max
∂Bs(0)

u(x, t) ≤ C1u(−sen, 0)

for 0 < s < r, 0 < t < t(sen;u) and C1 = C1(n,A). Then the results follow
from a similar argument as in Theorem 2.1 and Corollary 2.2 of [CJK].

6 Regularity in space

In section 6-7 we modify iteration argument used in section 9-10 of [CJK]
to yield further regularity of Γ(u).

The main idea is that the nice properties of u in the positive phase
propagates to the free boundary over time. In particular in [CJK] ut ≤
C|Du|2 in the positive phase, due to the fact that Ωt(u) was a globally
Lipschitz domain with Lipschitz constant L < Ln. This property, ensures
that the direction of the spatial gradient Du(−en, t), which represents the
direction of propagation of the flow in unit scale, does not change too quickly
in time (see Lemma 9.1 in [CJK]).

In our case ut is no longer bounded since Ωt(u) may not be Lipschitz
outside of B1(0). Hence we need a new argument to control the change of
Du
|Du| over time.

Lemma 6.1. Let u solve (HS) in B1(0)× (−1, 1) with (1.1), 0 ∈ Γ0(u) and
t(en;u) = 1. Suppose

(a) u(·, t) is monotone for the cone W (en, θ0) in B1(0), with θ0 > π/2 −
tan−1(Ln).

(b) u(·, t) is monotone for the cone W (νl, θl) in B2−l+1(0)× (0, 2−lδl) with
δl = π/2 − θl > l−2.

Then for integer l > l0 where l0 depending only on θ0 and n, there exist
a unit vector νl+1 ∈ IRn and 0 < h0(n) < 1 and 0 < r0(n) < 1 such that
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u(·, t) is monotone increasing in B2−l−5(−2−l−1en)×(0, r02
−lδl) for the cone

η ∈W (νl+1, θl+1) with
δl+1 ≤ h0δl.

Proof. 1. Let u and w be given as in Proposition 4.1. Then the following is
true due to Proposition 4.1:

|u−w|(x, t) ≤ C2−αlw(−2−len, t) in B2−l+1(0) × [0, t(2−len;u)] (6.1)

where C > 0 and 0 < α < 1 only depend on n.
Due to the hypothesis and (6.1), w2(·, t) is 2(−α−1)l-monotone for the

cone W (en, θl) in B2−l+1(0) × [0, t(2−len;w)], and thus due to Corollary 5.2
in [CJK], w(·, t) is monotone for the cone W (νl+1, θ

′
l) with

θ′l = θl − C2−α/14l

where C only depends on θ0, n . Let δ′l = π/2 − θ′l. Observe that, due to
(1.1),

t(ren;u) ≥ rt(en;u) = r/2.

In particular

t(2−len;w) ≥ (1 − 2−αlt(2−len;u) ≥ 2−l−1.

Note that due to Lemma 9.1 in [CJK] applied to w, there exist a unit
vector νl ∈ IRn, 0 < r1(n) < 1 and 0 < h0 = h0(n) < 1 such that

α(Dw2, νl) ≤ h0δ
′
l in B2−l−3(−2−len) × [0, r12

−lδl]. (6.2)

Since δl > l−2, h0δ
′
l < h̃0δl for sufficiently large l, where

0 < h̃0 = 1/2 + h0/2 < 1.

2. Take a unit vector p ∈ IRn such that

α(p, νl) ≤ π/2 − (2 − h̃0)δl.

Due to (6.2), for 0 < ǫ < 1 and 0 ≤ t ≤ r02
−lδl, there exists c0 > 0

depending on n such that

w(· + 2−lǫp, t) ≥ c02
−lǫ(1 − h̃0)δl

w(−2len, t)

2−l
+ w(·, t) (6.3)
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in B2−l−3(−2−len) for 0 ≤ t ≤ r12
−lδl. Now by (6.1),

u(· + 2−lǫp, t) ≥ (1 − C2−αl)w(· + 2−lǫp, t)

≥ (c0(1 − h̃0)ǫδl − C2−αl)w(−2len, t) + w(·, t)

≥ (1 − 2−αl)(c0h̃0ǫδl − 2C2−αl)u(−2−len, t) + u(·, t),

in B2−l−3(−2−len) for 0 ≤ t ≤ r12
−lδl, where the second inequality is due

to (6.3). In other words u(·, t) is 2−lǫ-monotone in the direction of p in
B2−l−3(−2−len) if l is sufficiently large with respect to 1 − h̃0, α and ǫ such
that

c0(1 − h̃0)ǫδl > c0(1 − h0)ǫl
−2 > C2−αl.

Thus if we choose ǫ = ǫ(θ0, n) > 0 small enough, then Lemma 1 in [C2]
implies that

p ·Du(x, t) ≥ 0 in B2−l−5(−2−len) × [0, r12
−lδl],

for l > l0(θ0, n), which proves our assertion.

Below we state a modified version of Lemma 9.3 in [CJK]. The proof is
parallel to that in [CJK]. Combined with Lemma 6.1, the following lemma
says that, for (x0, t0) ∈ Γ(u), Du

|Du| converges as we take smaller neighbor-

hoods of (x0, t0). The rate of this convergence, in comparison with the size
of the neighborhood, determines the regularity of Γ(u) in space.

Lemma 6.2. Let u solve (HS) in B1(0) × [−τ, τ ], 0 < τ < 1 with

(0, 0) ∈ Γ(u), t(en;u) = 1 and |Du| > m0 on Γ(u).

In addition suppose there exists a unit vector ν ∈ IRn and 0 < b0 < 1 such
that

α(Du,−en) ≤ δ in B1(0) × (−τ, τ).
with δ smaller than a dimensional constant, and

α(Du(x, t), ν) ≤ b0δ in B1/16(−en) × (−τ, τ).

Then there exists a unit vector ν1 ∈ IRn and a constant 0 < c < 1 depending
only on n,m0 and b0 such that

α(Du(x, t), ν1) ≤ δ1 in B1/2(0) × (−τ/2, τ/2)

where δ1 ≤ δ − cδτ.
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Now we go back to our original solution u. Let us fix P0 ∈ Γ0 ∩Br(0)

s0 ∈ [t(P0 + sen), t(P0 + 2sen)], 0 < s ≤ r and x0 ∈ Γs0(u) ∩B3s(P0).

Change the coordinate and re-scale as follows:

ŭ(x, t) =
α

s
u2(sx+ x0, αt+ s0), α = t(sen;u). (6.4)

Next, we construct blow-up family {ul} of u which satisfy the hypothesis
of Lemma 6.1 as follows:

ul+1(x, t) := 4lαlŭ(2
−lx, αlt),

where α0 = 1 and for l ≥ 1

αl = t(2−len; ŭ).

Note that ul (l = 1, 2....) is a viscosity solutions of (HS) in B1(0)×(−1, 1)
with the property t(en;ul+1) = 1. Also recall that Γ(u) is Lipschitz with
Lipschitz constant L < Ln and by Corollary 5.3

|Dul(x, t)| ≥ m0 for (x, t) ∈ (B1(0) ∩ Ωt(ul)) × (−1/2, 1).

with m0 = m0(n).
Now we apply an iteration argument, starting with sufficiently large l

if necessary. Suppose that ul(·, t) is monotone for the cone W (νl, θl) in
B2(0) × (−δl, δl) where

δl = π/2 − θl > l−2.

Then ŭ satisfies the hypothesis of Lemma 6.1, and thus there exists a unit
vector ν and 0 < r0(n), h0(n) < 1 such that ul+1(·, t) is monotone increasing
in B1/16(−en) × (−2r0δl, 2r0δl) for the cone W (θl+1, ν) with δl+1 ≤ h0δl.
Now Lemma 6.2 applies to ul+1 to yield the enlarged cone of monotonicity
W (νl+1, θl+1) with

π/2 − θl+1 = δl+1 = δl − cr0δ
2
l , c = c(n) (6.5)

for ul+1 in B1/2(0) × [−r0δl, r0δl]. Now we can repeat the process with

δl+k, where k = k(n) such that 2−k < r0.
From (6.5) we obtain

δl ≈
C

l
,

which yields the differentiability of Γ(u) in space at (0, 0):
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Theorem 6.3. Let u and r be as given in Proposition 4.1, and let τ =
t(ren;u). Then Γ(u) is C1 in space in Br(0) × [−τ, τ ]. In particular, there
exist constants l0, C0 > 0 depending only on n such (x0, t0) ∈ Γ(u),

Γt(u) ∩B2−l(x0) for |t− t0| ≤ 2−l

is a Lipschitz graph with respect to direction Du
|Du|(−2−len, t0), with Lipschitz

constant less then
C0

l
if l ≥ l0.

7 Upper bound of the spatial gradient on the free

boundary

To derive an upper bound of |Du|, we need stronger regularity than C1 of
Γ(u) in space. For this we need a refined version of Lemma 6.1 as below:

Lemma 7.1. Suppose u is as given in Lemma 6.1 with l−2 ≤ δl ≤ l−1.
Then for l ∈ N, l > l0 where l0 depending only on n and θ0, there exist a
unit vector νl+1 ∈ IRn and 0 < r0, h0, k < 1 such that u(·, t) is monotone
increasing in

B2−l−5/
√

l(−
2−l

√
l
en) × (0, r02

−llkδl)

along every direction η ∈W (θ1, ν1) with

δl+1 ≤ h0δl.

Here r0 = r0(θ0, n) and k, h0 only depends on θ0 and n.

Proof. Proceeding as in the proof of Lemma 6.1, one can construct a star-
shaped solution w of (HS) with s = 2−l√

l
. Moreover arguing as before, w(·, t)

is monotone for the cone W (en, θ
′
l) in

B2−l+1(0) × [0, t(2−len;w)],

where θ′l = θl − C2−
α
14

l, C = C(n). Observe that δ′l = δl + C2−
α
14

l ≤ 2l−l

for sufficiently small l, and by Proposition 10.5 in [CJK] applied to w

wt(x, t) = |Dw|2(−(2l
√
l)−1en, t)(1 +O(l−k))

in the region

B 1
8
(2l

√
l)−1(−(2l

√
l)−1en) × [0, t(2−len;w)]
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where 0 < k < 1/2 and C > 0 depends only on n.
Due to Lemma 9.1 in [CJK] applied to w, there exists a unit vector

νl ∈ IRn and 0 < h0 < 1 such that

α(Dw, νl) ≤ h0δl in B 1
8
(2l

√
l)−1(−(2l

√
l)−1en) × [0, r02

−llkδl].

Parallel argument as in the proof of Lemma 5.1 yields the conclusion.

We can now apply an iteration argument as in section 6 to the family of
functions

ũl+1(x, t) = 4llβlŭ(
x

2l
√
l
, βlt)

where ŭ is defined in (6.4) and

βl = t(
2−l

√
l
en;u)

Namely, {ũl} is defined similarly as {ul} in section 6, but replacing the
scaling factor 2l by 2l

√
l. Then the corresponding δl obtained for ũl satisfies

δl+1 = δl − δ2l l
k,

and we obtain δl ∼ l−γ , where 1 < γ < 2. Thus the following theorem is
obtained for ŭ:

Theorem 7.2. There exist constants l0 > 0 and 1 < γ < 2 depending only
on n such that for a free boundary point (x0, t0) ∈ Γ(ũ) ∩ (B1(0) × [0, 1]), if
l > l0 then Γ(ŭ) ∩ B2−l(x0, t0) is a Lipschitz graph with Lipschitz constant
less then l−γ .

Then by Theorem 2.4 in [W] we obtain the upper bound of |Dŭ|:
Corollary 7.3. The spatial gradient Dŭ(·, t) exists in Ω̄t(ŭ) ∩ B1(0) for
0 ≤ t ≤ 1 and

|Dŭ(·, t)| ≤ C in Ωt(u) ∩B1(0) for 0 ≤ t ≤ 1,

where C is a dimensional constant.

In terms of our original function u, we obtain the following statement:

Corollary 7.4. Let u,r and τ as given in Theorem 6.3. Then for any
P0 ∈ Γ0 ∩Br(0), 0 < t0 = t(P0 + sen) < τ we have

C1 ≤ |Du(·, t)|
|Du(P0 − sen, t)|

≤ C2 in Ωt(u) ∩Bs(P0 + sen) for
t0
2

≤ t ≤ t0.

Here C1 and C2 are dimensional constants.
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8 Regularity in time

It remains to address the regularity of Γ(u) in time. Here we will use the
fact that, due to the second condition in (1.1), eAtu is increasing in time,
and therefore one-sided limits u(x, t−) and u(x, t+) exists for all (x, t).

Proposition 8.1. Let u, r and τ be as in Theorem 6.3. Then Γ(u) is
Lipschitz continuous in time in Br(0) × (0, τ). More precisely, if (x0, t0) ∈
Γ(u), then

V −
(x0,t0) := lim

(y,s)∈Ω(u)→(x0,t0),s<t0

ut

|Du|(y, s) = |Du|(x, t−0 )

and
V +

(x0,tl)
:= lim

(y,s)∈Ω(u)→(x0,t0),s>t0

ut

|Du|(y, s) = |Du|(x, t+0 )

Remark Note that u may have jump discontinuities in time, and thus
one cannot ensure that free boundary velocity is continuous in time.

Proof. 1. For l = 1, 2, ... let us define

ul(x, t) = 2lu(x0 + 2−lx, t0 + 2−lt) in B2l(0) × [−2l, 2l].

Without loss of generality we may assume that en := Du
|Du|(x0, t0). The-

orem 6.3 yields that

α(Dul, ek) → 0 as l → ∞ if k 6= n, (8.1)

locally uniformly in IRn.
Moreover, due to Theorem 7.2 and Theorem 2.4 in [W],

|Du(·, t) −Du(x0 − 2−men, t)| ≤ 1/m in Ωt(u) ∩B2−m(x0) (8.2)

for |t− t0| ≤ 2−m.
2. Let us we define, for a given domain Σ ∈ IRn+1,

dΣ(x, t) := signed distance function to Σ.

Formally speaking,
ut

|Du| = |Du| on Γ(u)
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in a small neighborhood of (x0, t0). In particular dΩ(ul) is uniformly Lipschitz
in time with respect to l. Due to a barrier argument based on Corollary 7.3,
one can show that Γ(ul) has bounded normal velocity. Therefore if we define

u∞(x, t) := lim sup
l→∞,(y,s)→(x,t)

ul(y, s)

and
u∞(x, t) := lim inf

l→∞,(y,s)→(x,t)
ul(y, s),

Then due to Arzeli-Ascola, dΩ(u∞) and dΩ(u∞) are given by a local uniform
limit of respective subsequences of {dΩ(ul)}l∈N.

3. Due to (8.1) and (8.2),

u∞(x, t) = a1(t)(a2(t) − xn)+, and u∞(x, t) = b1(t)(b2(t) − xn)+.

where a2(t) and b2(t) is increasing, a2(0) = b2(0) = 0 and Lipschitz
continuous in time. Also observe that, due to (1.1) (1 + 2−lAt)ul increases
in time, and thus u∞ and u∞ increases in time, and in particular a1(t) and
b1(t) has one-sided limits.

4. We prove that a1(0−) = b1(0−). Suppose

|a1(0−) − b1(0−)| > δ > 0.

By definition of a1(t), b1(t), one can choose sufficiently large l1, l2 and xl, yl

so that

|a1(0−) −Dul1(xl, s
1
l )|, |b1(0−) −Dul2(yl, s

2
l )| < δ/4 (8.3)

with xl, yl ∈ B1(0) and si
l → 0− as l → ∞. On the other hand, due to

(1.1), u(−2−men, 0
−) exists for any m, and thus if |s1l − s2l | and |s1l |, |s2l | is

sufficiently small depending on m with s1l , s
2
l < 0, then

|u(−2−men, s
1
l ) − u(−2−men, s

2
l )|

2−m
< δ/4. (8.4)

Now due to (8.1) and (8.2), if l and m is chosen sufficiently large,

|Du(−2−men, s
1
l ) −Dul(xl, s

1
l )| < δ/4 (8.5)

and
|Du(−2−men, s

2
l ) −Dul(y1, s

2
l )| < δ/4. (8.6)

Putting (8.3)-(8.6) together, one obtains |a1(0−) − b1(0−)| < δ, a con-
tradiction.
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5. Parallel argument holds for other cases to obtain

a1(0−) = b1(0−) = |Du|(x0, t0−) and a1(0+) = b1(0+) = |Du|(x0, t0+).

Now it is straightforward from barrier arguments, using the fact that
{ul} are viscosity solutions of (HS), to prove that

a′2(0−) = b′2(0−) = |Du|(x0, t0−) and a′2(0+) = b′2(0+) = |Du|(x0, t0+),

9 Global solutions with initially Lipschitz free bound-

aries

As an application of Theorem 1.2, we will show existence, uniqueness and
regularity and properties of global solutions of (HS). Let

Ω0 := {xn ≤ g(x′), x = (x′, xn)} (9.1)

where g is Lipschitz continuous with Lipschitz constant L < Ln and
g(0) = 0. Then there is a unique harmonic function u0 in Ω0 such that
u0(−en) = 1 and u0 = 0 on Γ0.

Definition 9.1. A lower semi-continuous function u(x, t) in IRn× [0,∞) is
a global viscosity solution of (HS) with initial data u0 if

(a) u(x, t) is a viscosity solution of (HS) in BR(0)× (0,∞) for any R > 0,

(b) u increases in time, and

(c) u locally uniformly converges to u0 as t→ 0.

Let u be a global viscosity solution with initial data u0. To address
uniqueness and regularity properties of u, we normalize the solution by
assuming that

lim
R→∞

u(−Ren, t)
u0(−Ren)

= 1 for each t ≥ 0. (9.2)

Lemma 9.2. Suppose u is a global solution of (HS) with (9.1). Then for
any ǫ > 0 and T > 0 there exists R0 > 0 such that if R > R0

d(x,Γ0(u) ∩BR(0)) ≤ ǫR for any x ∈ Γt(u), 0 ≤ t ≤ T. (9.3)
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Proof. Denote the following property by (P )t,R:

(P )t,R u ≤ ǫR2 on ∂BR(0) × [0, t]

where ǫ > 0 is a sufficiently small dimensional constant. Note that by (9.2)
and the Harnack inequality, there exists R0 = R0(t) > 0 such that

u(x−Ren, t) ≤ 2u(x−Ren, 0) ≤ CǫR2−α (9.4)

for x ∈ Γ0 ∩BR(0) and R ≥ R0.
Now suppose that (9.3) is violated at t = t0. This means that for any

ǫ > 0 there are sequences Rk → ∞ with which (P )t0,Rk
fails. (Otherwise

a barrier argument using radially symmetric barriers will yield (9.3).) In
other words, at every Rk = 2kR0(t0) there exists xk ∈ BRk

(0) such that
u(xk, t0) ≥ ǫR2

k. Since u increases in time, we have

u(xk, t) ≥ ǫR2
k for t ≥ t0.

Again from a barrier argument it follows that at t1 = t0 + 3
ǫ , the positive

phase Ωt1(u) contains B3Rk
(xk) for any k. But then B3Rk

(xk) contains
x = −Rken. This and the Harnack inequality contradicts (9.4) if Rk is
chosen sufficiently large so that Rk > R0(t1) and ǫ >> R−α

k .

We now state our main theorem:

Theorem 9.3. There exists a unique global solution u of (HS) with initial
data u0 which satisfies (9.1). Moreover the following properties hold for u :

(a) For any t > 0, Γt(u) is a Lipschitz graph with respect to the direction
en with Lipschitz constant L in IRn.

(b) Γ(u) ∩ {t > 0} is smooth in space and time.

(c) For any x ∈ Γ0(u) such that x+ den ∈ Γt(u),

C−1 ≤ |Du(x+ den, t)|
|Du(x− den, t)|

≤ C (9.5)

for a dimensional constant C > 0.

In addition, if g(−x′) = g(x′), then u(x′, xn, t) = u(−x′, xn, t) and the Lip-
schitz constant of the graph Γt(u) in any bounded neighborhood in space
decreases in time. In particular the Lipschitz constant of Γt(u) at time

t(den;u) in {x : |xn| ≤ 2−ld} is less than min[L,
C

lγ
] with 1 < γ < 2.
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Before proving Theorem 9.3 we first apply the theorem to show that the
local solution u given in Theorem 1.2 has a unique blow-up profile at t = 0
if the subsequence is chosen such that the blow-up limit of the initial data
is locally uniform. Let us define

uk(x, t) := αku(
x

k
, βkt), αk = u(−en

k
, 0)−1, βk =

αk

k2
,

where u is as given in Theorem 1.2. Note that by definition of viscosity
solutions for any x ∈ IRn

|u(x, t) − u(x, 0)| → 0 as t→ 0. (9.6)

Also observe that, since Ln is chosen such that u has less than quadratic
decay near the free boundary,

βk = (k2u(−en
k
, 0))−1 → 0 as k → 0.

Therefore for any t > 0 and sufficiently small d

| uk(−dken, t)
uk(−dken, 0)

− 1| =
|u(−den, βkt) − u(−en, 0)|

u(−den, 0)
→ 0 as k → ∞. (9.7)

Now the second equation Corollary 5.7 applied to u yields that Γt(uk) is
at most tγ away from Γ0(uk) in Bk(0), where 0 < γ < 1. Since Γt(u) is
Lipschitz continuous in space, it follows from (9.7) with Lemma 2.13 that

| uk(−Ren, t)
uk(−Ren, 0)

− uk(−dken, t)
uk(−dken, 0)

| ≤ tγ

R
+ dγ .

if R < dk.
Hence for any ǫ > 0 there exists R > 0 such that

lim sup
k→∞

| uk(−Ren, t)
uk(−Ren, 0)

− 1| ≤ ǫ. (9.8)

Due to Theorem 1.2 (a), (c) and Corollary 5.7 it follows that {uk} is
locally uniformly Hölder continuous in space and Γ(uk) is locally uniformly
Lipschitz continuous in space and Hölder continuous in time. Hence by
Ascoli-Arzela, along a subsequence uk(·, t) and dΩ(uk) locally uniformly con-
verges to u∞(·, t) and dΩ∞ . It follows that

(u∞)∗(x, t) = lim sup
0≤s→t,y→x

u∞(y, s)
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and
(u∞)∗(x, t) = lim inf

0≤s→t,y→x
u∞(y, s).

It follows from the stability properties of viscosity solutions that (u∞)∗ is
a global solution of (HS). (9.1) follows from (9.8) and the local uniforml
convergence of uk to u∞. Lastly u∞ increases in time due to the second
condition of (1.1). Due to Theorem 9.3 we have the following:

Theorem 9.4. u∞ is the unique global viscosity solution of (HS) with initial
positive phase

Ω∞
0 := {u∞(·, 0) > 0}

satisfying (9.1).

Note that Ω∞
0 is a subsequential limit of {uk(·, 0) > 0}, i.e., a subsequen-

tial limit of the blow-up profile of Ω0 at the origin.
Proof of Theorem 9.3.

1. Let Ω0 be as given in (9.1). First to show the existence, we consider
a sequence uN of star-shaped and Lipschitz initial positive phase ΩN which
coincides with Ω0 in BN2(0), and with fixed boundary data mN on KN =
B1(−Nen) such that uN (−en, 0) = 1. Then due to the main theorem in
[CJK], {uN}N is locally uniformly Hölder continuous in space and time,
and thus converges locally uniformly to u along a subsequence. It then
follows from the construction and the uniform Hölder continuity of {uN} in
time that u satisfies (9.1) and (9.2). In addition u is increasing in time and
thus a global viscosity solution of (HS).

2. Next we show the regularity of u. For given R > 0, let us define the
re-scaled function

uR(x, t) := C(R)R−1u(Rx,C(R)t),

where C(R) = R
u(−Ren,0) . Due to (9.2) it follows that, for any given T > 0

there exists R0 such that

uR(−en, t) ∈ [1, 2] for 0 ≤ t ≤ T

C(R)
, if R > R0. (9.9)

Since u is increasing in time, so is uR.
Moreover due to (9.3), for given T > 0 there exists R0 > 0 such that if

R > R0

ΩT/C(R)(uR) ∩B1(0) ⊂ Ω0 + c0en, (9.10)

where c0 is as given in Theorem 1.2.
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Recall that Γ0(uR) is Lipschitz continuous in IRn. with small Lipschitz
constant L < Ln. Due to (9.9) and (9.10), Theorem 1.2 and Corollary 5.6
apply to uR to yield that Γt(uR) is smooth, (9.5) holds, and is a Lipschitz
graph with Lipschitz constant L+ rα in Br(0) for

0 ≤ t ≤ min(
T

C(R)
, t(ren;uR))

for any r < r(n), where 0 < α < 1 depends on n.
In terms of u, this means that Γt(u) is a Lipschitz graph with Lipschitz

constant L+ rα in BrR(0) for 0 ≤ t ≤ min(T, t(rRen;u)).
Note that, due to Corollary 5.7 and the fact that L < Ln,

t(rRen;u) > c
(rR)2

Cu(−rRen, 0)
≥ c(rR)2

where c is a dimensional constant. Hence if we choose

r = R−1/(1+α/2) and R = T,

then it follows that Γt(u) is a Lipschitz graph with Lipschitz constant L+
R−α/2 in BR2α(0). Since R can be chosen arbitrarily large, we conclude.

3. Now we show the uniqueness of u. Suppose u and v are two global
solutions satisfying (9.2)-(9.3). For given R and x ∈ IRn, let ΨR(x) :=
ϕ−1 ◦ φ ◦ ϕ(x), where ϕ(x) = ǫ

Rx and φ = ψ(x+ en) − en, where

ψ(x) =
1

|x|2 · (x1, ..., xn−1,−xn + 2|x|2),

where x = (x1, ..., xn) ∈ IRn. Since ψ is the composition of reflection about

xn = 1 and the conformal mapping sending x to
x

|x|2 , ΨR is conformal. (ΨR

fixes 0 and will bend Γ(u) in the direction of en by ǫR on ∂BR(0)). We
compare ũ and v in BR(0) × [0, T ], where

ũ(x, t) = (1 + 2ǫ1/2)u((ΨR)−1(x), (1 + 3ǫ1/2)t)

Since 1− ǫ ≤ |DΨR| ≤ 1+ ǫ in BR(0), ũ is a supersolution of (HS) in BR(0).
Due to (9.3),

Ω(v) ⊂ Ω(u) in (Bǫ−1/2R(0) −BR(0)) × [0, T ]

if R is chosen sufficiently large with respect to ǫ and T . Moreover for suffi-
ciently large R, (9.2) and the construction of ũ yields that

v(−Ren, t) ≤ (1 − ǫ1/2)ũ(−Ren, t).
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Recall that both Γ(u) and Γ(u) are Lipschitz in space, due to our previous
argument. Therefore Lemma 2.10 yields that v ≤ ũ in ∂BR(0) as long as
Ω(v) ⊂ Ω(u) in BR(0).

Now Theorem 2.7 yields

v ≺ ũ in BR(0) × [0, T ].

Since ǫ can be chosen arbitrarily small and R→ ∞ as ǫ→ 0, we conclude
that v ≤ u. Similarly u ≤ v.

4. Finally the last statement of our theorem follows from the uniqueness
of global solutions, Theorem 7.2 and the fact that Du is always parallel to
en on the line {|x′| = 0}.

2
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