Weak Separation, Pure Domains and Cluster Distance
 Miriam Farber and Pavel Galashin

MIT

Weak separation

We denote by $\binom{[n]}{m}$ the collection of all m-element subsets of $[n]=\{1,2, \ldots, n\}$.
Definition. Two subsets $A, B \in\binom{[n]}{m}$ are weakly separated if the convex hull of $A \backslash B$ does no intersect the convex hull of $B \backslash A$ when drawn on a circle.

A collection of sets in $\binom{n n}{m}$ is called weakly separated if any two of its elements are weakly separated from each other.
In their study of quasicommuting quantum minors, Leclerc and Zelevinsky stated the following purity conjecture:
Conjecture (Leclerc-Zelevinsky (1998)). Every maximal (by inclusion) weakly separated collec tion in $\binom{[n]}{m}$ has size

$$
m(n-m)+1 \text {. }
$$

For example, when $m=2$, the maximal by inclusion weakly separated collections in $\binom{n}{2}$ are precisely triangulations of the n-gon. Each of them has $n-3$ diagonals and n sides which agree with the formula above: $2(n-2)+1=2 n-3$.
This conjecture has been confirmed independently by Danilov-Karzanov-Koshevoy in 2010 and by Oh-Postnikov-Speyer in 2015. Oh, Postnikov and Speyer showed that each such collection co esponds to a plabic tiling, which is a certain two-dimensional complex embedded in the plan The dual objects to ply noll

igure 1: A plabic tiling corresponding to a max mal by inctusion cole of subsets in $\binom{6(6)}{3}$. It has $10=3(6-3)+1$ ertices

We say that a collection $\mathcal{A} \subset\binom{[n]}{m}$ is a pure domain of rank d if every maximal by inclusion co lection of sets from \mathcal{A} has size d, and in this case we write $\operatorname{rk}(\mathcal{A})=d$. Thus the above conjectur can be restated as the collection $\left.{ }^{[n]}\right)$ is a pure domain of rank $m(n-m)+1$.

Cluster distance

Given two subsets $I, J \in\binom{[n]}{m}$ that are not weakly separated, one can ask how close they are to being weakly separated. More specifically, let us denote $\mathcal{A}_{I, J} \subset\binom{n}{m}$ the collection of all sets weakly separated from both I and J.
Definition (Farber-Postnikov (2015)). The cluster distance between I and J is defined by

$$
d(I, J)=\operatorname{rk}\binom{[n]}{m}-\max \left\{\# \mathcal{C} \mid \mathcal{C} \subset \mathcal{A}_{I, J} \text { is a weakly separated collection }\right\}
$$

Remark. Weakly separated collections correspond to clusters in the cluster algebra associated with the coordinate ring of the Grassmannian, and the notion of cluster distance between cluste variables generalizes in a straightforward way to all cluster algebras
It turns out that for a lot of pairs (I, J), the domain \mathcal{A}_{I} is pure and there is a simple fo mula for its rank. For example, if $m=2$ and I and J are two crossing diagonals, $\mathcal{A}_{I, J}$ is pur of rank $2 n-4$. But first we concentrate on the case when I and J are complementary: $I \in\left({ }_{k} k\right.$ nd $J=\bar{l}=[$ h $\backslash I$. into an even number of
Definition. The set $I \in\binom{[2 k]}{k}$ is called balanced if for all $i \neq j \in[2 r], p_{i}+p_{j}<k$

Remark. As $k \rightarrow \infty$, the probability that a random set is balanced tends to 1 . Thus "balanced can be seen as an analogue of "generic"

Theorem. If I is balanced, then $\mathcal{A}_{I, \bar{T}}$ is a pure domain of rank
$2 k+\sum_{i=1}^{2 r}\binom{p_{i}}{2}$.

Figure 2: A maximal by inclusion weakly separated collection in $\mathcal{A}_{I I}$ for $I=\{1,45,8910\} \in\binom{(12)}{6}$. We have
$\left(p_{1}, \ldots, p_{6}\right)=(1,2,2,2,3,2)$. Since I is balanced, the size of this collection equals $12+0+1+1+1+3+1=19$
In the course of the proof, we show that the corresponding "partial" plabic tiling always fills in the domain between two simple closed curves. The outside curve is fixed and contains just al cyclic intervals, while the inside curve depends on the collection. We extensively use the result

The non-complementary case

Let $I, J \in\binom{n}{m}$, and let $\pi(I), \pi(J) \in\binom{[2 k}{k}$ be the complementary subsets obtained from I and J by ignoring all the "irrelevant elements", i.e. the ones from $I \cap J$ and from $\overline{I \cup J . J}$. After that, $\pi(I)$ and $\pi(J)$ again partition the circle into an even number of cyclic intervals, and let $\left(p_{1}, p_{2} \ldots p_{2 r}\right)$ enote their lengths.
Definition. We say that I and J form a balanced pair if $\pi(I)$ is balanced (equivalently, if $\pi(J)$ is alanced)
heorem. If I and J form a balanced pair, then $\mathcal{A}_{I, J}$ is a pure domain of rank

$$
\mathrm{rk}\binom{[n]}{m}-\mathrm{rk}\binom{[2 k]}{k}+2 k+\sum_{i=1}^{2 r}\binom{p_{i}}{2} .
$$

Note that if $m=2$ then two crossing diagonals do not form a balanced pair, however, the theorem still holds for this case, since we have $m=k=2$ and $\binom{p_{i}}{2}=0$ for all i
We can rewrite $\operatorname{rk}\binom{(n)}{m}-\operatorname{rk}\binom{2 k]}{k}$ as $m(n-m)-k^{2}$. Or, in terms of cluster distance,

$$
d(I, J)=1+k^{2}-2 k-\sum_{i=1}^{2 r}\binom{p_{i}}{2}
$$

This number does not depend on n and m. For the unbalanced case, we show that the same value ives an upper bound on the cluster distance
Theorem. For any $I, J \in\left(\begin{array}{c}{\left[\begin{array}{c}n \\ m\end{array}\right)}\end{array}\right.$

$$
d(I, J) \leq 1+k^{2}-2 k-\sum_{i=1}^{2 r}\binom{p_{i}}{2} .
$$

Left-Right purity

Definition. For a positive integer n, denote by $\mathcal{L R}([0, n])$ the collection of all subsets $I \subset[0, n]=$ $\{0,1, \ldots, n\}$ such that I contains exactly one of the elements $0, n$.
The following seemingly unrelated instance of the purity phenomenon is an important ingredient of our proof:
Theorem. The collection $\mathcal{L R}(0, n)$ is a pure domain of rank

$$
\binom{n}{2}+n+1
$$

References

Danilov, Karzanov, and Koshevoy(2010)] V. I. Danilov, A. V. Karzanov, and G. A. Koshevoy. O maximal weakly separated set-systems. J. Algebraic Combin., 32(4):497-531, 2010.
Danilov, Karzanov, and Koshevoy(2014)] V. I. Danilov, A. V. Karzanov, and G. A. Koshevoy Combined tilings and the purity phenomenon on separated set-systems. arXiv preprin arXiv:1401.6418, 2014
Farber and Postnikov(2015)]M. Farber and A. Postnikov. Arrangements of equal minors in the positive Grassmannian. To appear in Advances in Mathematics (Zelevinsky issue), 2015

Leclerc and Zelevinsky(1998)] B. Leclerc and A. Zelevinsky. Quasicommuting families of quantum Plücker coordinates. In Kirillov's seminar on representation theory, volume 181 of Amer Math. Soc. Transl. Ser. 2, pages 85-108. Amer. Math. Soc., Providence, RI, 1998
Oh and Speyer(2014)] S. Oh and D. E. Speyer. Links in the complex of weakly separated collec tions. arXiv preprint arXiv:1405.5191, 2014
Oh, Postnikov, and Speyer(2015)] S. Oh, A. Postnikov, and D. E. Speyer. Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015
[Postnikov(2006)] A. Postnikov. Total positivity, Grassmannians, and networks. arXiv preprin
math/0609764, 2006.

