Critical varieties in the Grassmannian

Pavel Galashin (UCLA) FPSAC 2021 January 20, 2022

[GP18] (with P. Pylyavskyy) "Ising model and the positive orthogonal Grassmannian." Duke Math. J. arXiv:1807.03282 [Gal20] "A formula for boundary correlations of the critical Ising model." Probab. Theory Related Fields. arXiv:2010.13345 [Gal21a] "Critical varieties in the Grassmannian." arXiv:2102.13339.
[Gal21b] "Totally nonnegative critical varieties." arXiv:2110.08548.
[Gal21c] "Poset associahedra." arXiv:2110.07257.

Ising model

- (G, x) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$

- (G, \mathbf{x}) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$
- Spin configuration: $\sigma: V(G) \rightarrow\{ \pm 1\}$,

- (G, \mathbf{x}) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$
- Spin configuration: $\sigma: V(G) \rightarrow\{ \pm 1\}$,

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}},
$$

- (G, \mathbf{x}) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$
- Spin configuration: $\sigma: V(G) \rightarrow\{ \pm 1\}$,

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}},
$$

- Boundary correlation matrix: $M=\left(m_{i j}\right)_{i, j=1}^{n}$: $m_{i j}:=\operatorname{Prob}\left(\sigma_{i}=\sigma_{j}\right)-\operatorname{Prob}\left(\sigma_{i} \neq \sigma_{j}\right)$.

- (G, \mathbf{x}) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$
- Spin configuration: $\sigma: V(G) \rightarrow\{ \pm 1\}$,

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}},
$$

- Boundary correlation matrix: $M=\left(m_{i j}\right)_{i, j=1}^{n}$: $m_{i j}:=\operatorname{Prob}\left(\sigma_{i}=\sigma_{j}\right)-\operatorname{Prob}\left(\sigma_{i} \neq \sigma_{j}\right)$.
- Star-triangle moves (preserve boundary correlations).

- (G, \mathbf{x}) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$
- Spin configuration: $\sigma: V(G) \rightarrow\{ \pm 1\}$,

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}},
$$

- Boundary correlation matrix: $M=\left(m_{i j}\right)_{i, j=1}^{n}$: $m_{i j}:=\operatorname{Prob}\left(\sigma_{i}=\sigma_{j}\right)-\operatorname{Prob}\left(\sigma_{i} \neq \sigma_{j}\right)$.
- Star-triangle moves (preserve boundary correlations).

- (G, \mathbf{x}) : weighted planar graph embedded in a disk.
- $0<x_{e}<1$ for all $e \in E(G)$
- Spin configuration: $\sigma: V(G) \rightarrow\{ \pm 1\}$,

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}},
$$

- Boundary correlation matrix: $M=\left(m_{i j}\right)_{i, j=1}^{n}$:

$$
m_{i j}:=\operatorname{Prob}\left(\sigma_{i}=\sigma_{j}\right)-\operatorname{Prob}\left(\sigma_{i} \neq \sigma_{j}\right) .
$$

- Star-triangle moves (preserve boundary correlations).

$$
\begin{aligned}
& A=\sqrt{\frac{(a b c+1)(a+b c)}{(b+a c)(c+a b)}} \\
& B=\sqrt{\frac{(a b c+1)(b+a c)}{(a+b c)(c+a b)}} \\
& C=\sqrt{\frac{(a b c+1)(c+a b)}{(a+b c)(b+a c)}}
\end{aligned}
$$

Phase transition

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}}
$$

Usually:

- $G=$ large piece of a (e.g. square) lattice;
- $x_{e}=x$ for all $e \in E(G)$.

Phase transition

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}}
$$

Usually:

- $G=$ large piece of a (e.g. square) lattice;
- $x_{e}=x$ for all $e \in E(G)$.
- Get a phase transition at critical temperature $x_{\text {crit }}$.

$$
\text { red }=+\operatorname{spin} \quad \text { blue }=- \text { spin }
$$

$$
x<x_{\text {crit }}
$$

$$
x=x_{\text {crit }}
$$

$$
x>x_{\text {crit }}
$$

Phase transition

$$
\operatorname{Prob}(\sigma) \propto \prod_{\sigma_{u} \neq \sigma_{v}} x_{\{u, v\}}
$$

Usually:

- $G=$ large piece of a (e.g. square) lattice;
- $x_{e}=x$ for all $e \in E(G)$.
- Get a phase transition at critical temperature $x_{\text {crit }}$.
- Square lattice: $x_{\text {crit }}=\sqrt{2}-1$.

$$
\text { red }=+ \text { spin } \quad \text { blue }=- \text { spin }
$$

$x<x_{\text {crit }}$

$$
x=x_{\text {crit }}
$$

$$
x>x_{\text {crit }}
$$

Square lattice
$x_{\text {crit }}=\sqrt{2}-1$

Hexagonal lattice
$x_{\text {crit }}=2-\sqrt{3}$

Triangular lattice

$$
x_{\text {crit }}=\frac{1}{\sqrt{3}}
$$

Square lattice
$x_{\text {crit }}=\sqrt{2}-1$
$x_{\text {crit }}=\tan (\pi / 8)$

Hexagonal lattice
$x_{\text {crit }}=2-\sqrt{3}$
$x_{\text {crit }}=\tan (\pi / 12)$

Triangular lattice
$x_{\text {crit }}=\frac{1}{\sqrt{3}}$
$x_{\text {crit }}=\tan (\pi / 6)$

Square lattice
$x_{\text {crit }}=\sqrt{2}-1$
$x_{\text {crit }}=\tan (\pi / 8)$

Hexagonal lattice

$$
\begin{gathered}
x_{\text {crit }}=2-\sqrt{3} \\
x_{\text {crit }}=\tan (\pi / 12)
\end{gathered}
$$

Triangular lattice

$$
\begin{gathered}
x_{\text {crit }}=\frac{1}{\sqrt{3}} \\
x_{\text {crit }}=\tan (\pi / 6)
\end{gathered}
$$

Square lattice
$x_{\text {crit }}=\sqrt{2}-1$
$x_{\text {crit }}=\tan (\pi / 8)$

Hexagonal lattice

$$
\begin{gathered}
x_{\text {crit }}=2-\sqrt{3} \\
x_{\text {crit }}=\tan (\pi / 12)
\end{gathered}
$$

Triangular lattice

$$
\begin{gathered}
x_{\text {crit }}=\frac{1}{\sqrt{3}} \\
x_{\text {crit }}=\tan (\pi / 6)
\end{gathered}
$$

$$
x_{e}=\tan \left(\theta_{e} / 2\right)
$$

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R.

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R. - G consists of diagonals connecting black vertices.

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R.
- G consists of diagonals connecting black vertices.
- Edge weights:

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R.
- G consists of diagonals connecting black vertices.
- Edge weights:

- Z-invariance: these edge weights are invariant under star-triangle moves.

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R.
- G consists of diagonals connecting black vertices.
- Edge weights:

- Z-invariance: these edge weights are invariant under star-triangle moves.
- Conclusion: boundary correlation matrix M_{R} depends only on the shape of the region R.

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R.
- G consists of diagonals connecting black vertices.
- Edge weights:

- Z-invariance: these edge weights are invariant under star-triangle moves.
- Conclusion: boundary correlation matrix M_{R} depends only on the shape of the region R.
- Formula for M_{R} in terms of R ?

A formula for regular polygons

Let R be a regular 2 N -gon and $m_{i j}$ be the corresponding boundary correlations.

A formula for regular polygons

Let R be a regular $2 N$-gon and $m_{i j}$ be the corresponding boundary correlations.

Theorem (G. (2020))
For $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

A formula for regular polygons

Let R be a regular $2 N$-gon and $m_{i j}$ be the corresponding boundary correlations.

Theorem (G. (2020))
For $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

For $1 \ll d \ll N$, this gives the Leibniz formula for π :

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

For $1 \ll d \ll N$, this gives the Leibniz formula for π :

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots .
$$

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

For $1 \ll d \ll N$, this gives the Leibniz formula for π :

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots .
$$

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the limit predicted by conformal field theory.

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1
$$

For $1 \ll d \ll N$, this gives the Leibniz formula for π :

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

Corollary (G. (2020))

When regular polygons approach the circle, the boundary correlations tend to the limit predicted by conformal field theory.
[CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math., 189(3):515-580, 2012.
[Hon10] Clement Hongler. Conformal invariance of Ising model correlations. PhD thesis, 06/28 2010.

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

- Similar story for electrical networks:

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

- Similar story for electrical networks:
- Treat each edge of G as a resistor.

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1 .
$$

- Similar story for electrical networks:
- Treat each edge of G as a resistor.
- Electrical response matrix $\Lambda: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, sending boundary voltages \mapsto boundary currents.

Theorem (G. (2020))

If R_{N} is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
m_{i j}=\frac{2}{N}\left(\frac{1}{\sin ((2 d-1) \pi / 2 N)}-\frac{1}{\sin ((2 d-3) \pi / 2 N)}+\cdots \pm \frac{1}{\sin (\pi / 2 N)}\right) \mp 1
$$

- Similar story for electrical networks:
- Treat each edge of G as a resistor.
- Electrical response matrix $\Lambda: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, sending boundary voltages \mapsto boundary currents.

Theorem (G. (2021))

If R is a regular $2 N$-gon then for $1 \leqslant i, j \leqslant N$ and $d:=|i-j|$, we have

$$
\Lambda_{i j}=\frac{\sin (\pi / N)}{N \cdot \sin ((2 d-1) \pi / 2 N) \cdot \sin ((2 d+1) \pi / 2 N)}
$$

The totally nonnegative Grassmannian
$\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M$ is a $k \times n$ matrix of rank $k\}$.

The totally nonnegative Grassmannian

$\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M$ is a $k \times n$ matrix of rank $k\}$.
Plücker coordinates: $\Delta_{I}(M)=$ maximal minor of M with column set l.

The totally nonnegative Grassmannian

$$
\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M \text { is a } k \times n \text { matrix of rank } k\} .
$$

Plücker coordinates: $\Delta_{l}(M)=$ maximal minor of M with column set l.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

$$
\operatorname{Gr}_{\geqslant 0}(k, n):=\left\{\operatorname{RowSpan}(M) \in \operatorname{Gr}(k, n) \mid \Delta_{l}(M) \geqslant 0 \text { for all } I\right\} .
$$

The totally nonnegative Grassmannian

$$
\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M \text { is a } k \times n \text { matrix of rank } k\} .
$$

Plücker coordinates: $\Delta_{l}(M)=$ maximal minor of M with column set l.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

$$
\operatorname{Gr}_{\geqslant 0}(k, n):=\left\{\operatorname{RowSpan}(M) \in \operatorname{Gr}(k, n) \mid \Delta_{l}(M) \geqslant 0 \text { for all } I\right\} .
$$

Example:

$$
\text { RowSpan }\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 1
\end{array}\right) \in \operatorname{Gr}_{\geqslant 0}(2,4)
$$

The totally nonnegative Grassmannian

$$
\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M \text { is a } k \times n \text { matrix of rank } k\} .
$$

Plücker coordinates: $\Delta_{l}(M)=$ maximal minor of M with column set l.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

$$
\operatorname{Gr}_{\geqslant 0}(k, n):=\left\{\operatorname{RowSpan}(M) \in \operatorname{Gr}(k, n) \mid \Delta_{l}(M) \geqslant 0 \text { for all } I\right\} .
$$

Example:

$$
\operatorname{RowSpan}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 1
\end{array}\right) \in \operatorname{Gr} \geqslant 0(2,4) \quad \begin{array}{lll}
\Delta_{13}=1 & \Delta_{12}=2 & \Delta_{14}=1 \\
\Delta_{24}=2 & \Delta_{34}=1 & \Delta_{23}=0
\end{array}
$$

The totally nonnegative Grassmannian

$$
\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M \text { is a } k \times n \text { matrix of rank } k\} .
$$

Plücker coordinates: $\Delta_{l}(M)=$ maximal minor of M with column set l.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

$$
\operatorname{Gr}_{\geqslant 0}(k, n):=\left\{\operatorname{RowSpan}(M) \in \operatorname{Gr}(k, n) \mid \Delta_{l}(M) \geqslant 0 \text { for all } I\right\} .
$$

Example:

$$
\text { RowSpan }\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 1
\end{array}\right) \in \operatorname{Gr} \geqslant 0(2,4) \quad \begin{array}{lll}
\Delta_{13}=1 & \Delta_{12}=2 & \Delta_{14}=1 \\
\Delta_{24}=2 & \Delta_{34}=1 & \Delta_{23}=0
\end{array}
$$

$\phi^{\text {lsing }}:\{n \times n$ lsing boundary correlation matrices $\} \xrightarrow{\text { G.-Pylyavskyy '18 }} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$;

The totally nonnegative Grassmannian

$$
\operatorname{Gr}(k, n):=\{\operatorname{RowSpan}(M) \mid M \text { is a } k \times n \text { matrix of rank } k\} .
$$

Plücker coordinates: $\Delta_{l}(M)=$ maximal minor of M with column set l.

Definition (Postnikov (2006))

The totally nonnegative Grassmannian is

$$
\operatorname{Gr}_{\geqslant 0}(k, n):=\left\{\operatorname{RowSpan}(M) \in \operatorname{Gr}(k, n) \mid \Delta_{l}(M) \geqslant 0 \text { for all } I\right\} .
$$

Example:

$$
\text { RowSpan }\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 1
\end{array}\right) \in \operatorname{Gr} \geqslant 0(2,4) \quad \begin{array}{lll}
\Delta_{13}=1 & \Delta_{12}=2 & \Delta_{14}=1 \\
\Delta_{24}=2 & \Delta_{34}=1 & \Delta_{23}=0 .
\end{array}
$$

$\phi^{\text {lsing }}:\{n \times n$ Ising boundary correlation matrices $\} \xrightarrow{\text { G.-Pylyavskyy '18 }} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$;
$\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \xrightarrow{\text { Lam '14 }} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.

Critical Z-invariant Ising model

[Bax86] R. J. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. London Ser. A, 404(1826):1-33, 1986.

- Choose a rhombus tiling of a polygonal region R.
- G consists of diagonals connecting black vertices.
- Edge weights:

- Z-invariance: these edge weights are invariant under flips (star-triangle moves).
- Conclusion: boundary correlation matrix M_{R} depends only on the shape of the region R.
- Formula for M_{R} in terms of R ?

$\phi^{\text {Ising }}:\{n \times n$ Ising boundary correlation matrices $\} \stackrel{\text { G.-Pylyavskyy '18 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$; $\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \xrightarrow{\text { Lam '14 }} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.
$\phi^{\text {Ising }}:\{n \times n$ Ising boundary correlation matrices $\} \stackrel{\text { G.-Pylyavskyy '18 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$; $\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \stackrel{\text { Lam '14 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.

Main Result (G. (2021))

An explicit Grassmannian formula for $\phi^{\operatorname{ls} \operatorname{sing}}\left(M_{R}\right)$ in terms of the shape of R.
$\phi^{\text {lsing }}:\{n \times n$ Ising boundary correlation matrices $\} \stackrel{\text { G.-Pylyavskyy '18 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$; $\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \stackrel{\text { Lam '14 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.

Main Result (G. (2021))

An explicit Grassmannian formula for $\phi^{\operatorname{ls} \operatorname{sing}}\left(M_{R}\right)$ in terms of the shape of R.

- The inverse of $\phi^{\text {lsing }}$ is easily computed using linear algebra.
$\phi^{\text {Ising }}:\{n \times n$ Ising boundary correlation matrices $\} \stackrel{\text { G.-Pylyavskyy '18 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$; $\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \stackrel{\text { Lam '14 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.

Main Result (G. (2021))

An explicit Grassmannian formula for $\phi^{\text {lsing }}\left(M_{R}\right)$ in terms of the shape of R.

- The inverse of $\phi^{\text {lsing }}$ is easily computed using linear algebra.
- Similar $\operatorname{Gr}(n+1,2 n)$ formula for electrical resistor networks.
$\phi^{\text {Ising }}:\{n \times n$ Ising boundary correlation matrices $\} \stackrel{\text { G.-Pylyavskyy '18 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$; $\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \stackrel{\text { Lam '14 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.

Main Result (G. (2021))

An explicit Grassmannian formula for $\phi^{\operatorname{ls} \operatorname{sing}}\left(M_{R}\right)$ in terms of the shape of R.

- The inverse of $\phi^{\text {lsing }}$ is easily computed using linear algebra.
- Similar $\operatorname{Gr}(n+1,2 n)$ formula for electrical resistor networks.
- If R is regular then $\phi^{\operatorname{lsing}}\left(M_{R}\right) \in \operatorname{Gr}_{\geqslant 0}(n, 2 n)$ is the unique cyclically symmetric point.
$\phi^{\text {Ising }}:\{n \times n$ Ising boundary correlation matrices $\} \stackrel{\text { G.-Pylyavskyy '18 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n, 2 n)$; $\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \stackrel{\text { Lam '14 }}{\longrightarrow} \mathrm{Gr}_{\geqslant 0}(n+1,2 n)$.

Main Result (G. (2021))

An explicit Grassmannian formula for $\phi^{\operatorname{lsing}}\left(M_{R}\right)$ in terms of the shape of R.

- The inverse of $\phi^{\text {lsing }}$ is easily computed using linear algebra.
- Similar $\operatorname{Gr}(n+1,2 n)$ formula for electrical resistor networks.
- If R is regular then $\phi^{\operatorname{lsing}}\left(M_{R}\right) \in \mathrm{Gr}_{\geqslant 0}(n, 2 n)$ is the unique cyclically symmetric point. [Kar19] Steven N. Karp. Moment curves and cyclic symmetry for positive Grassmannians. Bull. Lond. Math. Soc., 51(5):900-916, 2019.
[GKL17] Pavel Galashin, Steven N. Karp, and Thomas Lam. The totally nonnegative Grassmannian is a ball.
Adv. Math., to appear. arXiv:1707.02010

Dimer model

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint, arXiv:math/0609764, 2006. [Tal08] Kelli Talaska. A formula for Plücker coordinates associated with a planar network. Int. Math. Res. Not. IMRN, pages Art. ID rnn 081, 19, 2008.

Dimer model

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint, arXiv:math/0609764, 2006. [Tal08] Kelli Talaska. A formula for Plücker coordinates associated with a planar network. Int. Math. Res. Not. IMRN, pages Art. ID rnn 081, 19, 2008.

Dimer model

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint, arXiv:math/0609764, 2006. [Tal08] Kelli Talaska. A formula for Plücker coordinates associated with a planar network. Int. Math. Res. Not. IMRN, pages Art. ID rnn 081, 19, 2008.

Dimer model

$$
\xrightarrow{\text { Meas }} \begin{array}{ll}
\Delta_{12}=a d g & \Delta_{13}=a f g h \\
\Delta_{23}=\text { aeh } & \Delta_{24}=b e+c d
\end{array} \quad \Delta_{14}=b f g \quad \Delta_{34}=c f h \quad \in G r \geqslant 0(2,4)
$$

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint, arXiv:math/0609764, 2006. [Tal08] Kelli Talaska. A formula for Plücker coordinates associated with a planar network. Int. Math. Res. Not. IMRN, pages Art. ID rnn 081, 19, 2008.

Dimer model

$$
\begin{array}{ll}
\Delta_{12}=\operatorname{adg} & \Delta_{13}=a f g h \\
\Delta_{23}=\text { aeh } & \Delta_{24}=b e+c d \\
\Delta_{14}=b f g \\
\Delta_{34}=c f h
\end{array} \quad \in \operatorname{Gr} \geqslant 0(2,4)
$$

- Taking different graphs parametrizes the whole $\mathrm{Gr}_{\geqslant 0}(k, n)$.
[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. Preprint, arXiv:math/0609764, 2006. [Tal08] Kelli Talaska. A formula for Plücker coordinates associated with a planar network. Int. Math. Res. Not. IMRN, pages Art. ID rnn 081, 19, 2008.

Dimer model

$\in \operatorname{Gr} \geqslant 0(2,4)$

- Taking different graphs parametrizes the whole $\mathrm{Gr}_{\geqslant 0}(k, n)$.
- Includes Ising and electrical networks as special cases.

Dimer model

$$
\begin{array}{ll}
\Delta_{12}=\operatorname{adg} & \Delta_{13}=a f g h
\end{array} \quad \Delta_{14}=b f g \quad 1 \quad \operatorname{Gr}_{\geqslant 0}(2,4)
$$

- Taking different graphs parametrizes the whole $\mathrm{Gr}_{\geqslant 0}(k, n)$.
- Includes Ising and electrical networks as special cases.
$\phi^{\text {lsing }}:\{n \times n$ Ising boundary correlation matrices $\} \xrightarrow{\text { G.-Pylyavskyy '18 }} \operatorname{Gr}_{\geqslant 0}(n, 2 n)$;
$\phi^{\text {elec }}:\{n \times n$ electrical response matrices $\} \xrightarrow{\text { Lam '14 }} \mathrm{Gr} \geqslant 0(n+1,2 n)$.

Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. Invent. Math., 150(2):409-439, 2002.
[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.

Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. Invent. Math., 150(2):409-439, 2002.
[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.

- Fix n points $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ clockwise on the unit circle.

Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. Invent. Math., 150(2):409-439, 2002.
[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.

- Fix n points $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ clockwise on the unit circle.
- A strand is a path in G that makes a sharp right turn at each black vertex and a sharp left turn at each white vertex.

Critical dimer model

[Ken02] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. Invent. Math., 150(2):409-439, 2002.
[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer. Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3), 110(3):721-754, 2015.

- Fix n points $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ clockwise on the unit circle.
- A strand is a path in G that makes a sharp right turn at each black vertex and a sharp left turn at each white vertex.
- Each edge e belongs to two strands terminating at p and q. Set

$$
w t(e):= \begin{cases}\left|v_{q}-v_{p}\right|, & \text { if } e \text { is not a boundary edge } \\ 1, & \text { otherwise }\end{cases}
$$

Critical dimer model

- Each edge e belongs to two strands terminating at p and q. Set

$$
\mathrm{wt}(e):= \begin{cases}\left|v_{q}-v_{p}\right|, & \text { if } e \text { is not a boundary edge }, \\ 1, & \text { otherwise }\end{cases}
$$

$|p q|:=\left|v_{q}-v_{p}\right|$

Critical dimer model

- Each edge e belongs to two strands terminating at p and q. Set

$$
w t(e):= \begin{cases}\left|v_{q}-v_{p}\right|, & \text { if } e \text { is not a boundary edge } \\ 1, & \text { otherwise }\end{cases}
$$

- These edge weights are invariant under square moves:

Critical dimer model

- Each edge e belongs to two strands terminating at p and q. Set

$$
w t(e):= \begin{cases}\left|v_{q}-v_{p}\right|, & \text { if } e \text { is not a boundary edge } \\ 1, & \text { otherwise }\end{cases}
$$

- These edge weights are invariant under square moves:

Main Result (G. (2021))
An explicit $\operatorname{Gr}(k, n)$ formula for the boundary measurements of the critical dimer model.

Critical varieties

- Recall: \{ weighted bipartite graphs in a disk $\} \xrightarrow{\text { Meas }} \mathrm{Gr}_{\geqslant 0}(k, n)$.

Critical varieties

- Recall: \{weighted bipartite graphs in a disk\} $\xrightarrow{\text { Meas }} \mathrm{Gr}_{\geqslant 0}(k, n)$.
- Restricting to critical edge weights yields totally nonnegative critical varieties inside $\mathrm{Gr}_{\geqslant 0}(k, n)$.

Critical varieties

- Recall: $\{$ weighted bipartite graphs in a disk $\} \xrightarrow{\text { Meas }} \mathrm{Gr}_{\geqslant 0}(k, n)$.
- Restricting to critical edge weights yields totally nonnegative critical varieties inside $\mathrm{Gr}_{\geq 0}(k, n)$.
- They appear to have remarkable combinatorial and topological properties.

Critical varieties

- Recall: $\left\{\right.$ weighted bipartite graphs in a disk $\xrightarrow{\text { Meas }} \mathrm{Gr}_{\geqslant 0}(k, n)$.
- Restricting to critical edge weights yields totally nonnegative critical varieties inside $\mathrm{Gr}_{\geq 0}(k, n)$.
- They appear to have remarkable combinatorial and topological properties.
- For example, they give rise to poset associahedra - a new family of polytopes associated to posets, similar to graph associahedra of Carr-Devadoss (2006).

Critical varieties

- Recall: $\left\{\right.$ weighted bipartite graphs in a disk $\xrightarrow{\text { Meas }} \mathrm{Gr}_{\geqslant 0}(k, n)$.
- Restricting to critical edge weights yields totally nonnegative critical varieties inside $\mathrm{Gr}_{\geq 0}(k, n)$.
- They appear to have remarkable combinatorial and topological properties.
- For example, they give rise to poset associahedra - a new family of polytopes associated to posets, similar to graph associahedra of Carr-Devadoss (2006).

Thanks!

P
$\mathscr{A}(P)$

