Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions

Gaku Liu
Joint work with Pavel Galashin and Darij Grinberg

MIT

FPSAC 2016

History

Grothendieck polynomials and their variations are K-theory analogues of Schubert and Schur polynomials.

History

Grothendieck polynomials and their variations are K-theory analogues of Schubert and Schur polynomials.

■ Grothendieck polynomials (Lascoux-Schützenberger '82): polynomial representatives of structure sheaves of Schubert varieties in the K-theory of flag manifolds

History

Grothendieck polynomials and their variations are K-theory analogues of Schubert and Schur polynomials.

■ Grothendieck polynomials (Lascoux-Schützenberger '82): polynomial representatives of structure sheaves of Schubert varieties in the K-theory of flag manifolds
■ stable Grothendieck polynomials (Fomin-Kirillov '96): symmetric power series representatives of structure sheaves of Schubert varieties in the K-theory of the Grassmannian

History

Grothendieck polynomials and their variations are K-theory analogues of Schubert and Schur polynomials.

■ Grothendieck polynomials (Lascoux-Schützenberger '82): polynomial representatives of structure sheaves of Schubert varieties in the K-theory of flag manifolds

- stable Grothendieck polynomials (Fomin-Kirillov '96): symmetric power series representatives of structure sheaves of Schubert varieties in the K-theory of the Grassmannian
■ dual stable Grothendieck polynomials (Lam-Pylyavskyy '07): symmetric functions which are the continuous dual basis to the stable Grothendieck polynomials with respect to the Hall inner product

Reverse plane partitions

A reverse plane partition (rpp) is a filling of a skew diagram λ / μ with positive integers such that entries are weakly increasing along rows and columns.

Irredundant content

We define the irredundant content of an rpp T to be the sequence $c(T)=\left(c_{1}, c_{2}, c_{3}, \ldots\right)$ where c_{i} is the number of columns of T which contain an i.

$$
c(T)=(3,3,2,1,0,0, \ldots)
$$

Dual stable Grothendieck polynomials

For each skew shape λ / μ, define

$$
g_{\lambda / \mu}=\sum_{\substack{T \text { is an rpp } \\ \text { of shape } \lambda / \mu}} x^{c(T)}
$$

where $x^{\left(c_{1}, c_{2}, c_{3}, \ldots\right)}=x_{1}^{c_{1}} x_{2}^{c_{2}} x_{3}^{c_{3}} \cdots$.

Dual stable Grothendieck polynomials

For each skew shape λ / μ, define

$$
g_{\lambda / \mu}=\sum_{\substack{T \text { is an } \mathrm{rpp} \\ \text { of shape } \lambda / \mu}} x^{c(T)}
$$

where $x^{\left(c_{1}, c_{2}, c_{3}, \ldots\right)}=x_{1}^{c_{1}} x_{2}^{c_{2}} x_{3}^{c_{3}} \cdots$.

The $g_{\lambda / \mu}$ are called dual stable Grothendieck polynomials.

Dual stable Grothendiecks are symmetric

Theorem (Lam-Pylyavskyy '07)
For every λ / μ, the power series $g_{\lambda / \mu}$ is symmetric in the x_{i}.

Dual stable Grothendiecks are symmetric

Theorem (Lam-Pylyavskyy '07)

For every λ / μ, the power series $g_{\lambda / \mu}$ is symmetric in the x_{i}.

Their proof uses Fomin-Greene operators-fundamentally combinatorial, but the combinatorics are mysterious.

Dual stable Grothendiecks are symmetric

Theorem (Lam-Pylyavskyy '07)

For every λ / μ, the power series $g_{\lambda / \mu}$ is symmetric in the x_{i}.

Their proof uses Fomin-Greene operators-fundamentally combinatorial, but the combinatorics are mysterious.

Our result: A bijective proof of this theorem.

Dual stable Grothendiecks are symmetric

Theorem (Lam-Pylyavskyy '07)

For every λ / μ, the power series $g_{\lambda / \mu}$ is symmetric in the x_{i}.

Their proof uses Fomin-Greene operators-fundamentally combinatorial, but the combinatorics are mysterious.

Our result: A bijective proof of this theorem.

- Bijection is a generalization of the Bender-Knuth involutions for semistandard tableaux.

Schur functions

A semistandard Young tableau (SSYT) is a filling of a skew diagram λ / μ with positive integers such that entries are weakly increasing along rows and strictly increasing down columns.

Schur functions

A semistandard Young tableau (SSYT) is a filling of a skew diagram λ / μ with positive integers such that entries are weakly increasing along rows and strictly increasing down columns.

For each skew shape λ / μ, define the Schur function

$$
s_{\lambda / \mu}=\sum_{\substack{T \text { is a SSYT } \\ \text { of shape } \lambda / \mu}} x^{c(T)} .
$$

Schur functions

A semistandard Young tableau (SSYT) is a filling of a skew diagram λ / μ with positive integers such that entries are weakly increasing along rows and strictly increasing down columns.

For each skew shape λ / μ, define the Schur function

$$
s_{\lambda / \mu}=\sum_{\substack{T \\ \text { is s sSYTT } \\ \text { of shape } \lambda / \mu}} c^{c(T)} .
$$

The Bender-Knuth involutions are a way to prove the $s_{\lambda / \mu}$ are symmetric.

Bender-Knuth involutions

Suffices to show that $s_{\lambda / \mu}$ is symmetric in the variables x_{i} and x_{i+1} for all i.

Bender-Knuth involutions

Suffices to show that $s_{\lambda / \mu}$ is symmetric in the variables x_{i} and x_{i+1} for all i.

Let $\operatorname{SSYT}(\lambda / \mu)$ be the set of all SSYT's of shape λ / μ.

Bender-Knuth involutions

Suffices to show that $s_{\lambda / \mu}$ is symmetric in the variables x_{i} and x_{i+1} for all i.

Let $\operatorname{SSYT}(\lambda / \mu)$ be the set of all SSYT's of shape λ / μ.

For each i, we define an involution $B_{i}: \operatorname{SSYT}(\lambda / \mu) \rightarrow \operatorname{SSYT}(\lambda / \mu)$ such that $c\left(B_{i} T\right)=s_{i} c(T)$, where s_{i} is the permutation $(i i+1)$.

Generalized Bender-Knuth involutions

To prove $g_{\lambda / \mu}$ is symmetric, suffices to show it is symmetric in the variables x_{i} and x_{i+1} for all i.

Generalized Bender-Knuth involutions

To prove $g_{\lambda / \mu}$ is symmetric, suffices to show it is symmetric in the variables x_{i} and x_{i+1} for all i.

Let $\operatorname{RPP}(\lambda / \mu)$ be the set of all RPP's of shape λ / μ.

Generalized Bender-Knuth involutions

To prove $g_{\lambda / \mu}$ is symmetric, suffices to show it is symmetric in the variables x_{i} and x_{i+1} for all i.

Let $\operatorname{RPP}(\lambda / \mu)$ be the set of all RPP's of shape λ / μ.

For each i, we define an involution $B_{i}: \operatorname{RPP}(\lambda / \mu) \rightarrow \operatorname{RPP}(\lambda / \mu)$ such that $c\left(B_{i} T\right)=s_{i} c(T)$, where s_{i} is the permutation $(i i+1)$.

Three types of columns

Restricting an rpp to cells with entries 1 or 2 , we have three types of columns:

Three types of columns

Restricting an rpp to cells with entries 1 or 2, we have three types of columns:

■ 1-pure: Contains 1's and no 2's.

Three types of columns

Restricting an rpp to cells with entries 1 or 2, we have three types of columns:

- 1-pure: Contains 1's and no 2's.
- mixed: Contains both 1 's and 2's.

Three types of columns

Restricting an rpp to cells with entries 1 or 2, we have three types of columns:

■ 1-pure: Contains 1's and no 2's.

- mixed: Contains both 1 's and 2's.
- 2-pure: Contains 2's and no 1's.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same size).

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same size).
2 "Resolve descents" one at a time until none remain.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1 -pure columns (of the same size).
2 "Resolve descents" one at a time until none remain.

A "descent" is a pair of adjacent columns which contain a 2 immediately to the left of a 1 .

Resolving descents: Example

Resolving descents: Example

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1 -pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.

- How do we know that this process will terminate?

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1 -pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.

- How do we know that this process will terminate?

■ Look at positions of 1-pure and 2-pure columns.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.
■ How do we know that this process will terminate?
■ Look at positions of 1-pure and 2-pure columns.

- How do we know the end result is unique?

A lemma

Let S be the set of all intermediate tableaux that can be achieved during the above algorithm.

A lemma

Let S be the set of all intermediate tableaux that can be achieved during the above algorithm.

For $T, T^{\prime} \in S$, write $T \xrightarrow{u} T^{\prime}$ if T^{\prime} is obtained from T by resolving a descent in columns $u, u+1$.

A lemma

Let S be the set of all intermediate tableaux that can be achieved during the above algorithm.

For $T, T^{\prime} \in S$, write $T \xrightarrow{u} T^{\prime}$ if T^{\prime} is obtained from T by resolving a descent in columns $u, u+1$.

Write $T \xrightarrow{*} T^{\prime}$ if T^{\prime} can be obtained from T through a sequence of descent resolutions.

A lemma

Let S be the set of all intermediate tableaux that can be achieved during the above algorithm.

For $T, T^{\prime} \in S$, write $T \xrightarrow{u} T^{\prime}$ if T^{\prime} is obtained from T by resolving a descent in columns $u, u+1$.

Write $T \xrightarrow{*} T^{\prime}$ if T^{\prime} can be obtained from T through a sequence of descent resolutions.

Lemma

If T, T_{u}, and $T_{v} \in S$ such that $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$, then there exists $T^{\prime} \in S$ such that $T_{u} \xrightarrow{*} T^{\prime}$ and $T_{v} \xrightarrow{*} T^{\prime}$.

Proof of lemma

Lemma

If T, T_{u}, and $T_{v} \in S$ such that $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$, then there exists $T^{\prime} \in S$ such that $T_{u} \xrightarrow{*} T^{\prime}$ and $T_{v} \xrightarrow{*} T^{\prime}$.

Proof of lemma

Lemma

If T, T_{u}, and $T_{v} \in S$ such that $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$, then there exists $T^{\prime} \in S$ such that $T_{u} \xrightarrow{*} T^{\prime}$ and $T_{v} \xrightarrow{*} T^{\prime}$.

Proof: If $|u-v| \geq 2$, then the result is easy.

Proof of lemma

Lemma

If T, T_{u}, and $T_{v} \in S$ such that $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$, then there exists $T^{\prime} \in S$ such that $T_{u} \xrightarrow{*} T^{\prime}$ and $T_{v} \xrightarrow{*} T^{\prime}$.

Proof: If $|u-v| \geq 2$, then the result is easy.
Assume $u=v-1$. Columns $u, u+1, u+2$ must look like:

Resolving descents: End result is unique

Proposition

For each $T \in S$, there is a unique $T^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T \xrightarrow{*} T^{\prime}$.

Resolving descents: End result is unique

Proposition

For each $T \in S$, there is a unique $T^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T \xrightarrow{*} T^{\prime}$.

Proof: Let $\ell: S \rightarrow \mathbb{N}$ be a function such that if $T_{1} \xrightarrow{u} T_{2}$, then $\ell\left(T_{1}\right)<\ell\left(T_{2}\right)$.

Resolving descents: End result is unique

Proposition

For each $T \in S$, there is a unique $T^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T \xrightarrow{*} T^{\prime}$.

Proof: Let $\ell: S \rightarrow \mathbb{N}$ be a function such that if $T_{1} \xrightarrow{u} T_{2}$, then $\ell\left(T_{1}\right)<\ell\left(T_{2}\right)$.

We use backward induction on $\ell(T)$. Suppose $T \notin \operatorname{RPP}(\lambda / \mu)$. Suppose $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$.

Resolving descents: End result is unique

Proposition

For each $T \in S$, there is a unique $T^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T \xrightarrow{*} T^{\prime}$.

Proof: Let $\ell: S \rightarrow \mathbb{N}$ be a function such that if $T_{1} \xrightarrow{u} T_{2}$, then $\ell\left(T_{1}\right)<\ell\left(T_{2}\right)$.

We use backward induction on $\ell(T)$. Suppose $T \notin \operatorname{RPP}(\lambda / \mu)$. Suppose $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$.

By induction, there are unique $T_{u}^{\prime}, T_{v}^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T_{u} \xrightarrow{*} T_{u}^{\prime}, T_{v} \xrightarrow{*} T_{v}^{\prime}$.

Resolving descents: End result is unique

Proposition

For each $T \in S$, there is a unique $T^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T \xrightarrow{*} T^{\prime}$.

Proof: Let $\ell: S \rightarrow \mathbb{N}$ be a function such that if $T_{1} \xrightarrow{u} T_{2}$, then $\ell\left(T_{1}\right)<\ell\left(T_{2}\right)$.

We use backward induction on $\ell(T)$. Suppose $T \notin \operatorname{RPP}(\lambda / \mu)$. Suppose $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$.

By induction, there are unique $T_{u}^{\prime}, T_{v}^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T_{u} \xrightarrow{*} T_{u}^{\prime}, T_{v} \xrightarrow{*} T_{v}^{\prime}$.

By the Lemma, we must have $T_{u}^{\prime}=T_{v}^{\prime}$.

Resolving descents: End result is unique

Proposition

For each $T \in S$, there is a unique $T^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T \xrightarrow{*} T^{\prime}$.

Proof: Let $\ell: S \rightarrow \mathbb{N}$ be a function such that if $T_{1} \xrightarrow{u} T_{2}$, then $\ell\left(T_{1}\right)<\ell\left(T_{2}\right)$.

We use backward induction on $\ell(T)$. Suppose $T \notin \operatorname{RPP}(\lambda / \mu)$. Suppose $T \xrightarrow{u} T_{u}$ and $T \xrightarrow{v} T_{v}$.

By induction, there are unique $T_{u}^{\prime}, T_{v}^{\prime} \in \operatorname{RPP}(\lambda / \mu)$ such that $T_{u} \xrightarrow{*} T_{u}^{\prime}, T_{v} \xrightarrow{*} T_{v}^{\prime}$.

By the Lemma, we must have $T_{u}^{\prime}=T_{v}^{\prime}$.
Since this holds for any u, v, the Proposition is proved.

Newman's Lemma

Note about the above proof: We are implicitly basing our argument on Newman's lemma (or the diamond lemma): A terminating rewriting system is confluent if it locally confluent.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.

- How do we know that this process will terminate?
\square Look at positions of 1-pure and 2-pure columns.
■ How do we know the end result is unique?

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.
■ How do we know that this process will terminate?
■ Look at positions of 1-pure and 2-pure columns.

- How do we know the end result is unique?
- We do.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.

- How do we know that this process will terminate?

■ Look at positions of 1-pure and 2-pure columns.

- How do we know the end result is unique?

■ We do.

Easy to check that $B_{1}: \operatorname{RPP}(\lambda / \mu) \rightarrow \operatorname{RPP}(\lambda / \mu)$ is an involution.

Defintion of B_{1}

Let $T \in \operatorname{RPP}(\lambda / \mu)$. Construct $B_{1}(T)$ from T as follows.
1 Change all 1-pure columns to 2-pure columns and all 2-pure columns to 1-pure columns (of the same length).
2 "Resolve descents" one at a time until none remain.

- How do we know that this process will terminate?

■ Look at positions of 1-pure and 2-pure columns.

- How do we know the end result is unique?
- We do.

Easy to check that $B_{1}: \operatorname{RPP}(\lambda / \mu) \rightarrow \operatorname{RPP}(\lambda / \mu)$ is an involution.
Thus, $g_{\lambda / \mu}$ is symmetric.

Generalized Bender-Knuth involutions

The B_{i} are the unique extensions of the Bender-Knuth involutions (to rpp) that satisfies a certain "locality" condition (see the last section of our paper).

Generalized Bender-Knuth involutions

The B_{i} are the unique extensions of the Bender-Knuth involutions (to rpp) that satisfies a certain "locality" condition (see the last section of our paper).

The B_{i} also give some additional structure to $\operatorname{RPP}(\lambda / \mu)$ beyond the above symmetry: they preserve some of the behavior between adjacent rows of an rpp.

The statistic ceq

For $T \in \operatorname{RPP}(\lambda / \mu)$, define $\operatorname{ceq}(T)=\left(q_{1}, q_{2}, q_{3}, \ldots\right)$ where q_{i} is the number of vertically adjacent pairs of cells in rows $i, i+1$ of T with equal entries.

$$
\operatorname{ceq}(T)=(2,0,0,1,0,0, \ldots)
$$

Refined dual stable Grothendieck polynomials

For each skew shape λ / μ, define

$$
\tilde{g}_{\lambda / \mu}=\sum_{T \in R P P(\lambda / \mu)} t^{\mathrm{ceq}(T)} X^{c(T)}
$$

where $t^{\left(q_{1}, q_{2}, q_{3}, \ldots\right)}=t_{1}^{q_{1}} t_{2}^{q_{2}} t_{3}^{q_{3}} \cdots$.

Refined dual stable Grothendieck polynomials

For each skew shape λ / μ, define

$$
\tilde{g}_{\lambda / \mu}=\sum_{T \in R P P(\lambda / \mu)} t^{\mathrm{ceq}(T)} X^{c(T)}
$$

where $t^{\left(q_{1}, q_{2}, q_{3}, \ldots\right)}=t_{1}^{q_{1}} t_{2}^{q_{2}} t_{3}^{q_{3}} \cdots$.
If $t=1$, then $\tilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$.
If $t=0$, then $\tilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.

Refined dual stable Grothendieck polynomials

For each skew shape λ / μ, define

$$
\tilde{g}_{\lambda / \mu}=\sum_{T \in R P P(\lambda / \mu)} t^{\mathrm{ceq}(T)} x_{X}^{c(T)}
$$

where $t^{\left(q_{1}, q_{2}, q_{3}, \ldots\right)}=t_{1}^{q_{1}} t_{2}^{q_{2}} t_{3}^{q_{3}} \cdots$.
If $t=1$, then $\tilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$.
If $t=0$, then $\tilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
From the previous proof, $\tilde{g}_{\lambda / \mu}$ is symmetric in x.

An example and a conjecture

Example: If λ / μ is a single column with n cells, then

$$
\tilde{g}_{\lambda / \mu}=e_{n}\left(t_{1}, t_{2}, \ldots, t_{n-1}, x_{1}, x_{2}, \ldots\right)
$$

An example and a conjecture

Example: If λ / μ is a single column with n cells, then

$$
\tilde{g}_{\lambda / \mu}=e_{n}\left(t_{1}, t_{2}, \ldots, t_{n-1}, x_{1}, x_{2}, \ldots\right) .
$$

Conjecture (Grinberg):

$$
\tilde{g}_{\lambda^{\prime} / \mu^{\prime}}=\operatorname{det}\left(e_{\lambda_{i}-\mu_{j}-i+j}\left(t_{\mu_{j}+1}, \ldots, t_{\lambda_{i}-1}, x_{1}, x_{2}, \ldots\right)\right)_{i, j=1}^{\ell(\lambda)}
$$

Thank you!
\qquad

References

- Sergey Fomin, Curtis Greene, Noncommutative Schur functions and their applications, Discrete Mathematics 306 (2006) 1080-1096.

■ Pavel Galashin, Darij Grinberg, Gaku Liu, Refined dual stable polynomials and generalized Bender-Knuth involutions, October 15, 2015, arXiv:1509.03803v2
■ Thomas Lam, Pavlo Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grassmanians, arxiv:0705.2189v1.
■ Alain Lascoux, Marcel-Paul Schützenberger, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sr. I Math 295 (1982), 11, 629-633.

